YSC2229: Introductory Data Structures and Algorithms

ilya.sergey@yale-nus.edu.sg

Some Terminology

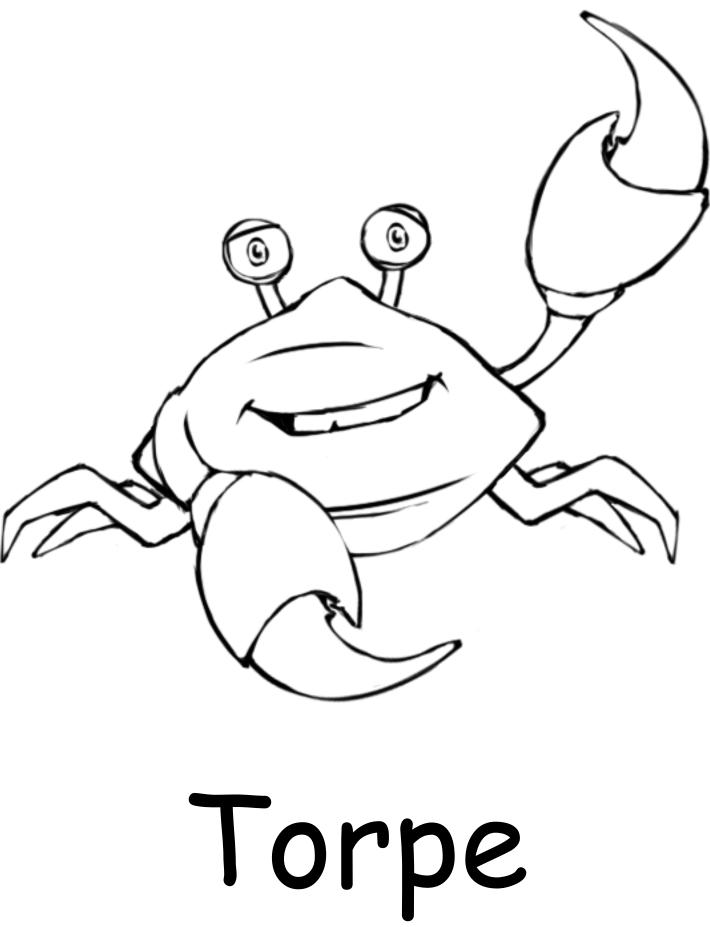
- **Data** represents information
- Computations represent data processing
- the *input* data (given) into the *output* data (wanted).

• An *algorithm* is a sequence of computational steps that transform

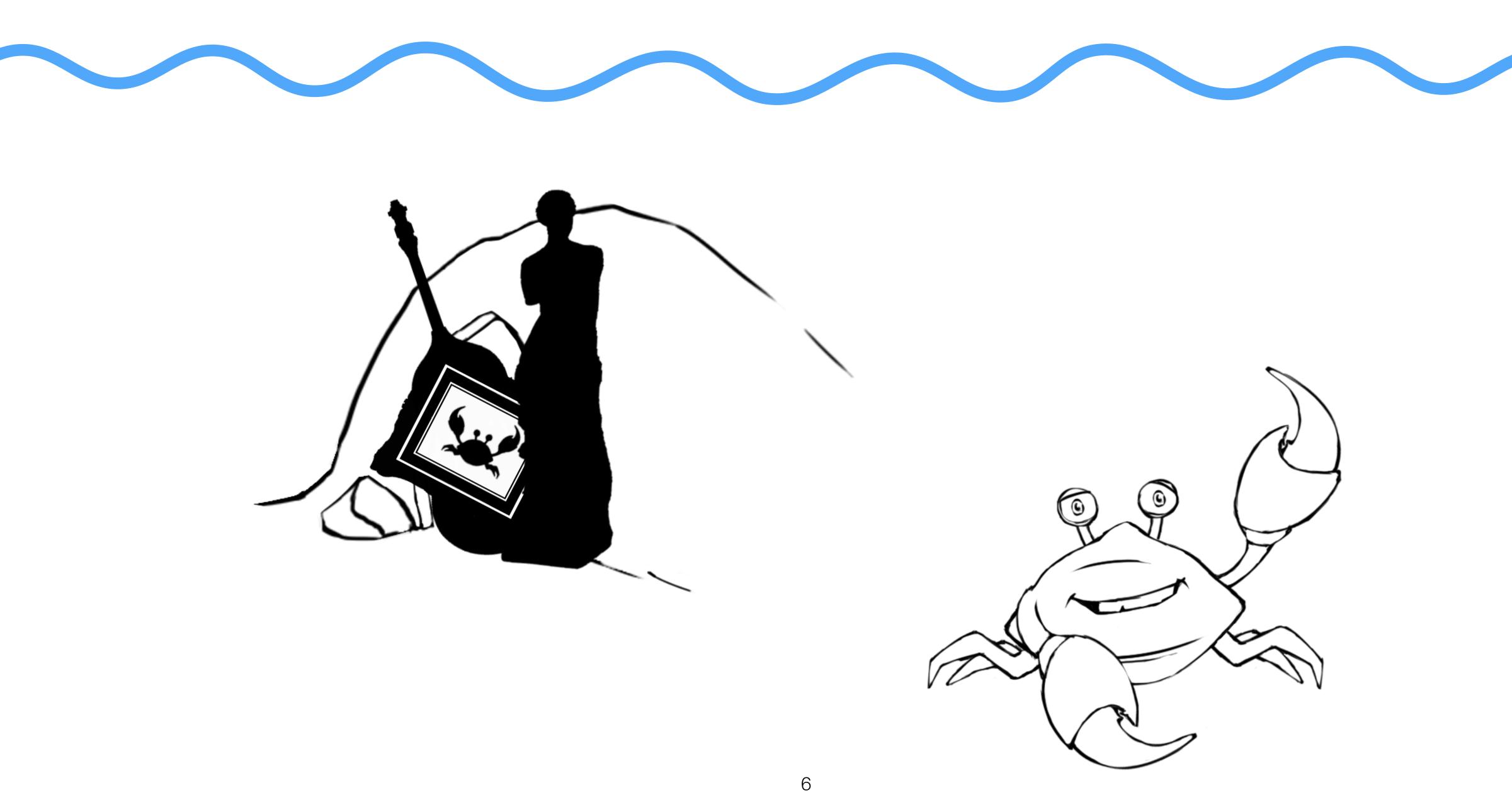
What this course is about?

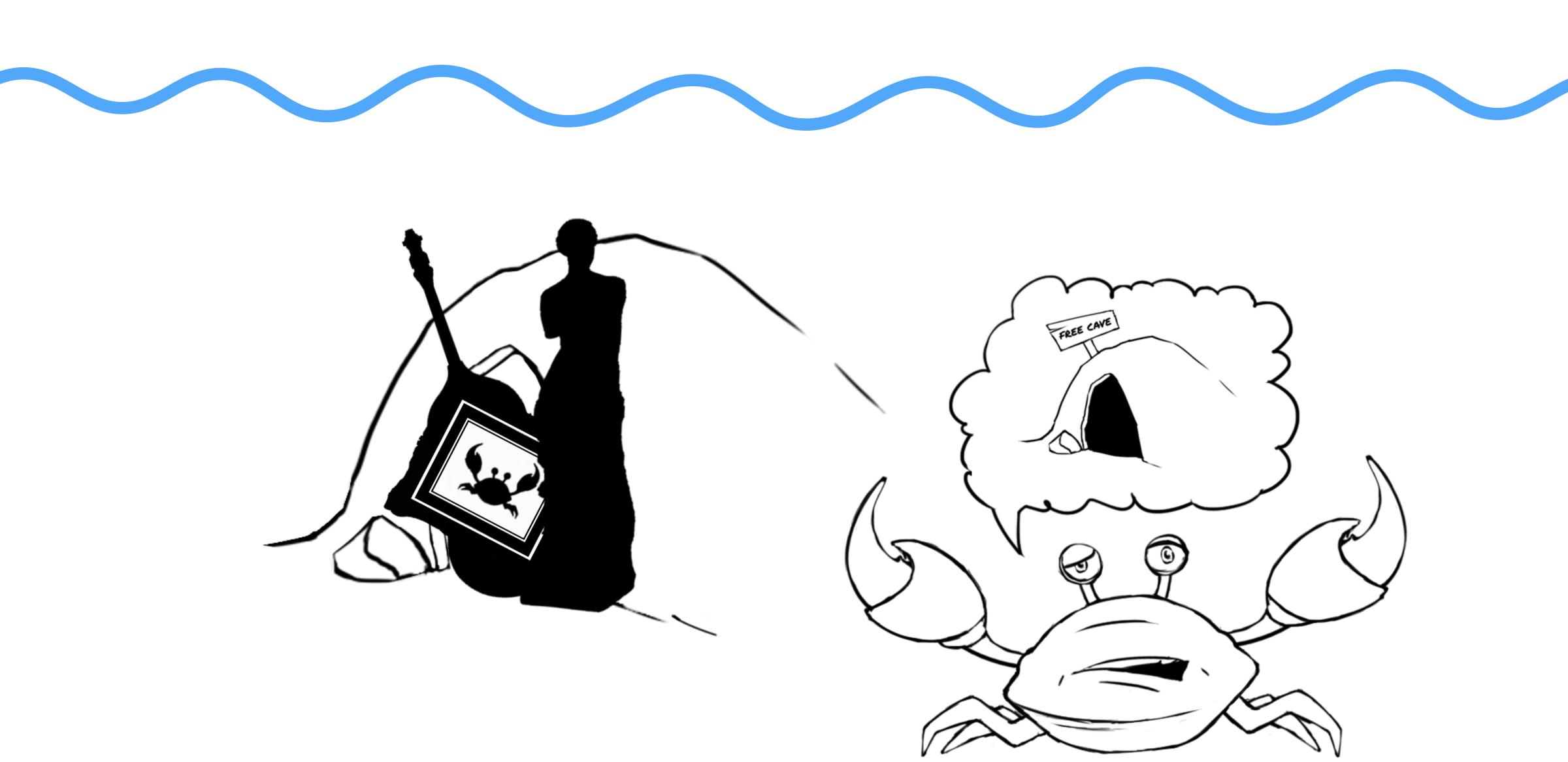
Solving computational problems finding a word in a text or an article to buy on Amazon

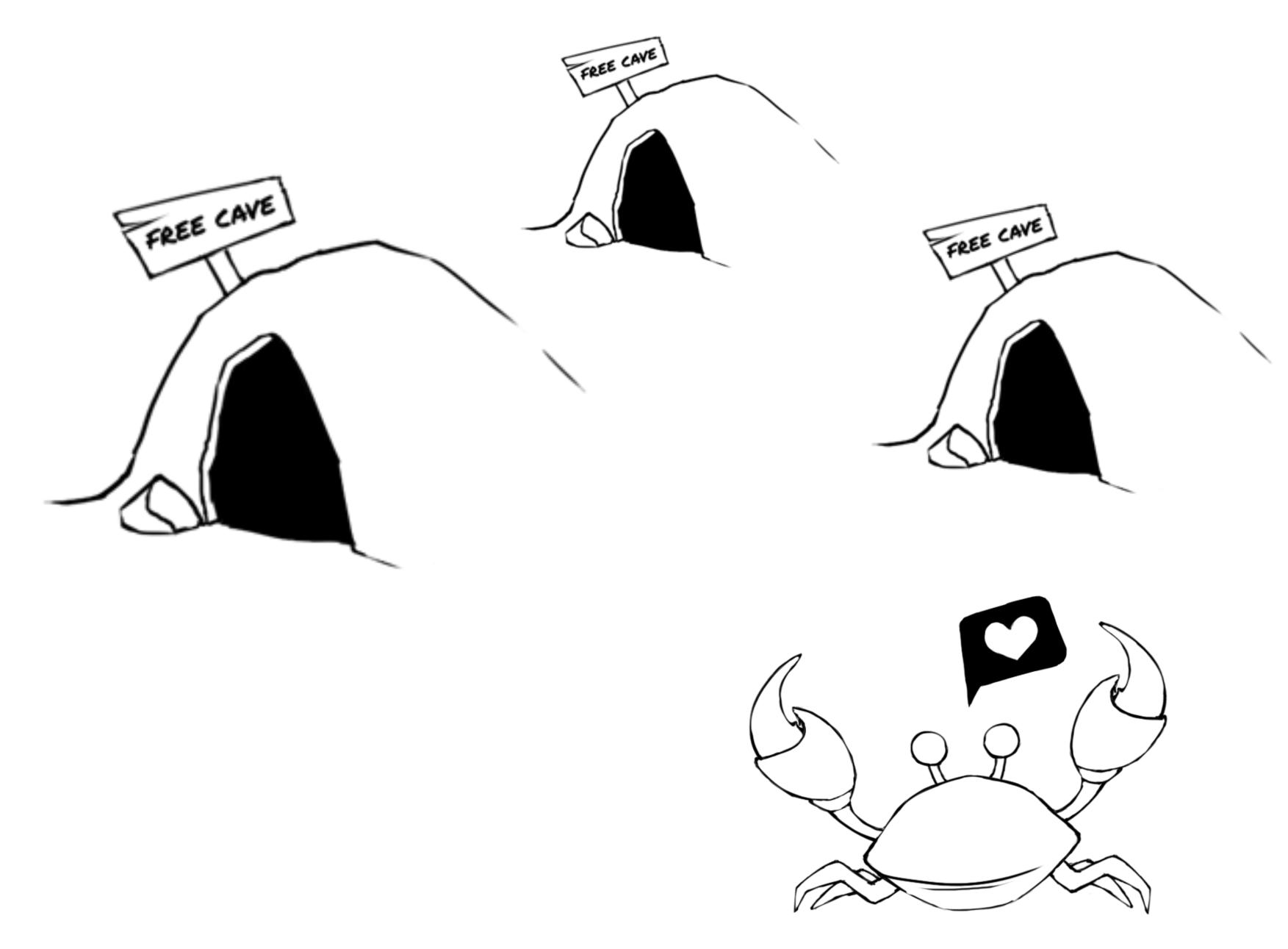
- Searching:
- Storing and retrieving data: representing files in you computer
- Data compression/decompression: transferring files on the internet
- Path finding: getting from a point A to point B in the most efficient way
- Geometric problems: finding the closes fuel station, shape intersection

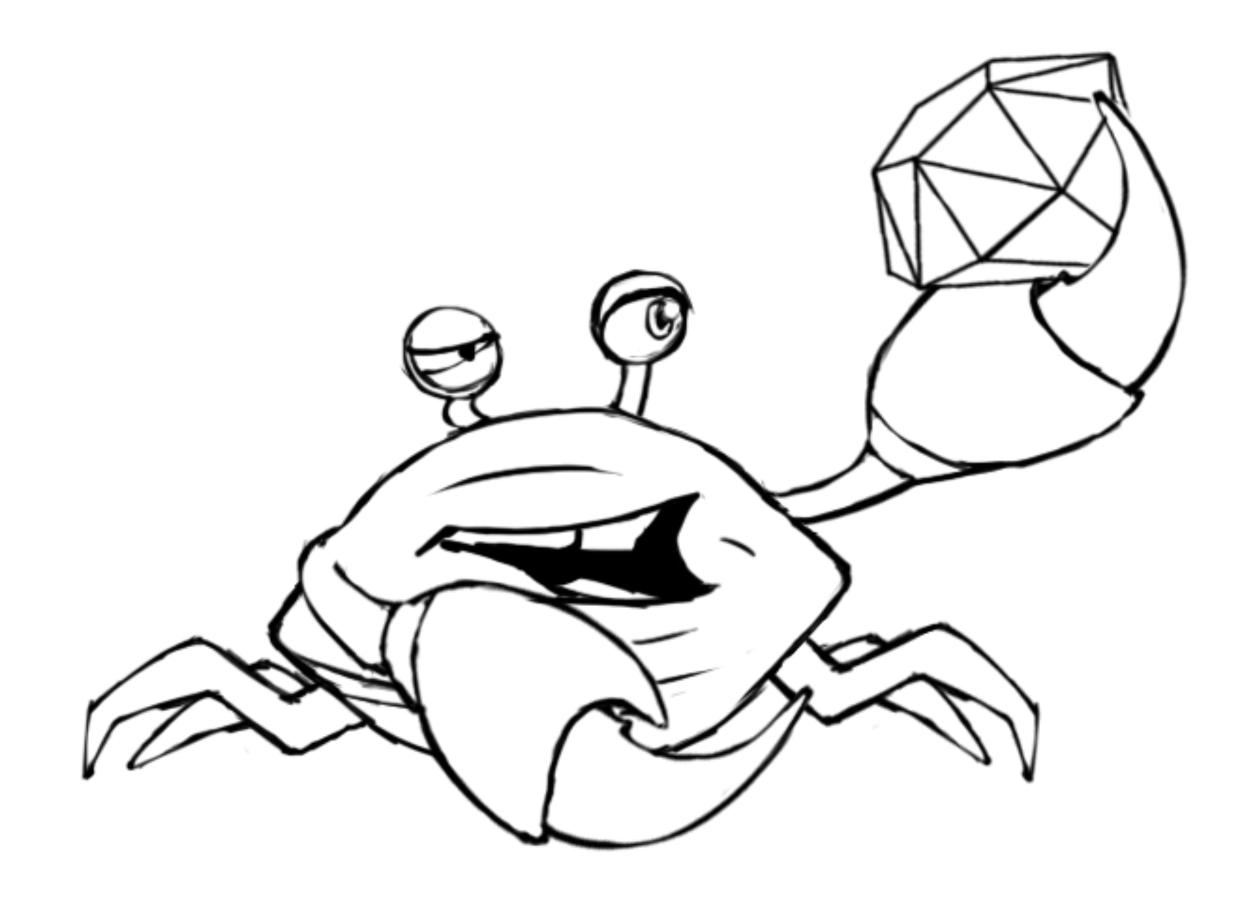


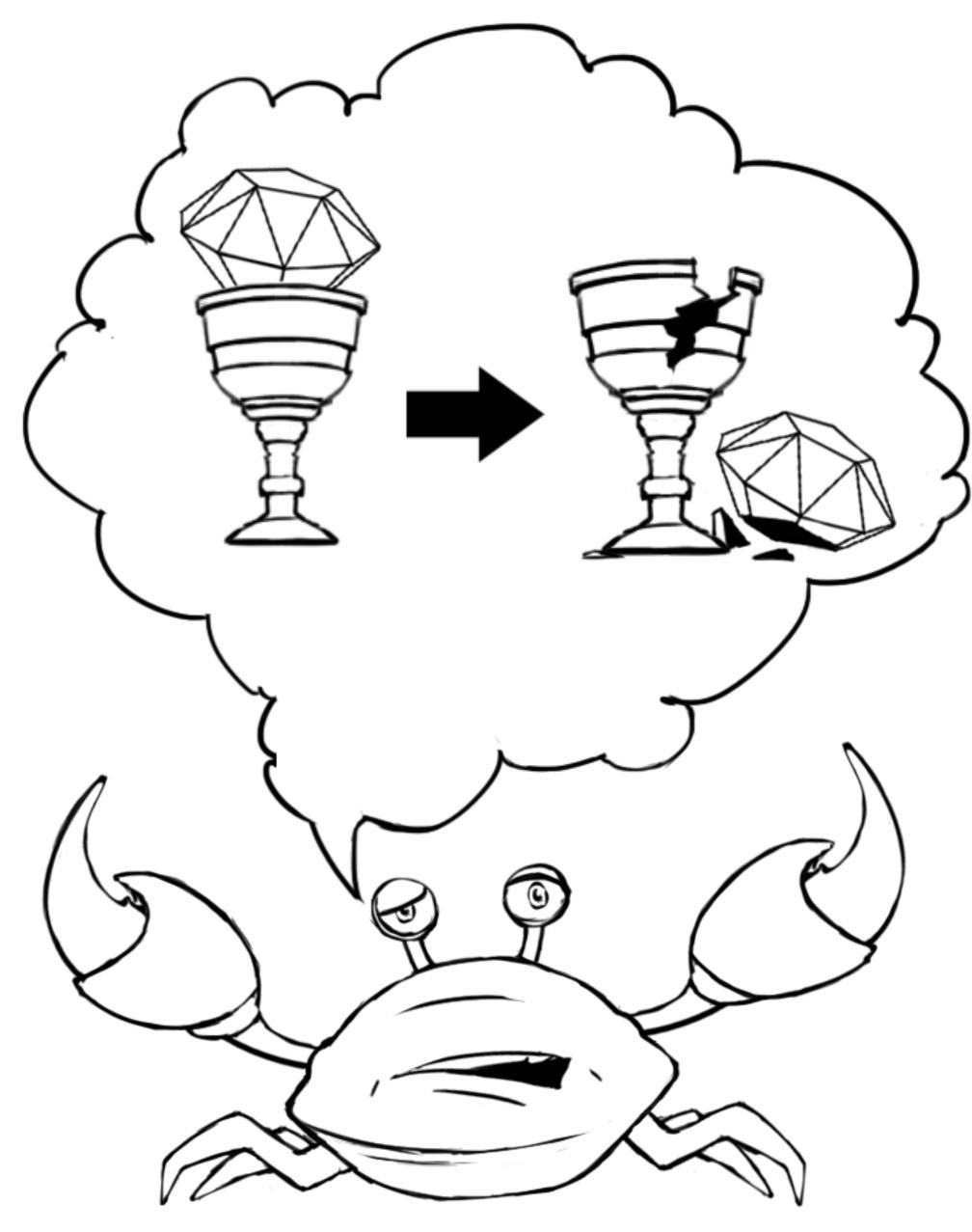
(the prosperous crab)

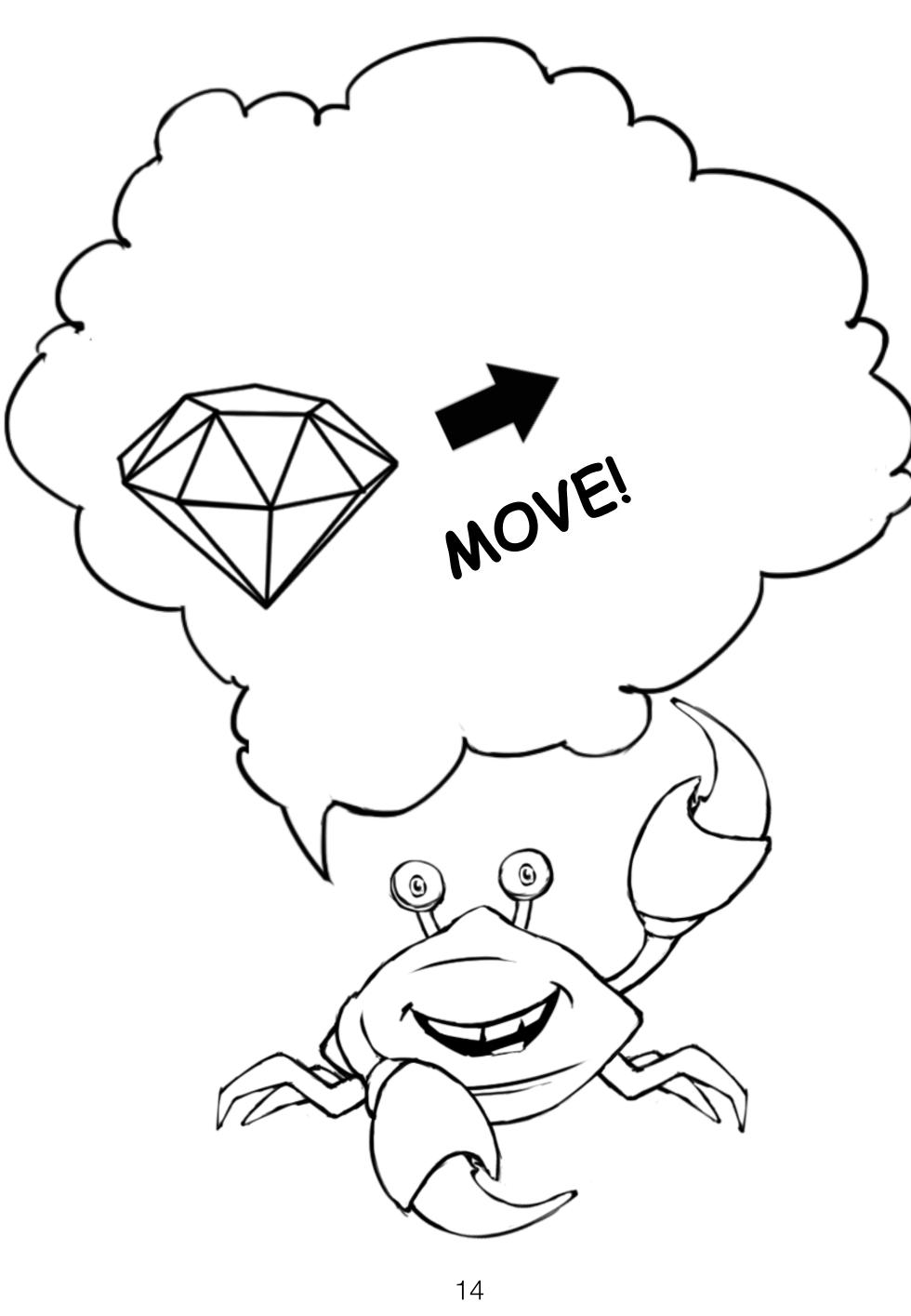


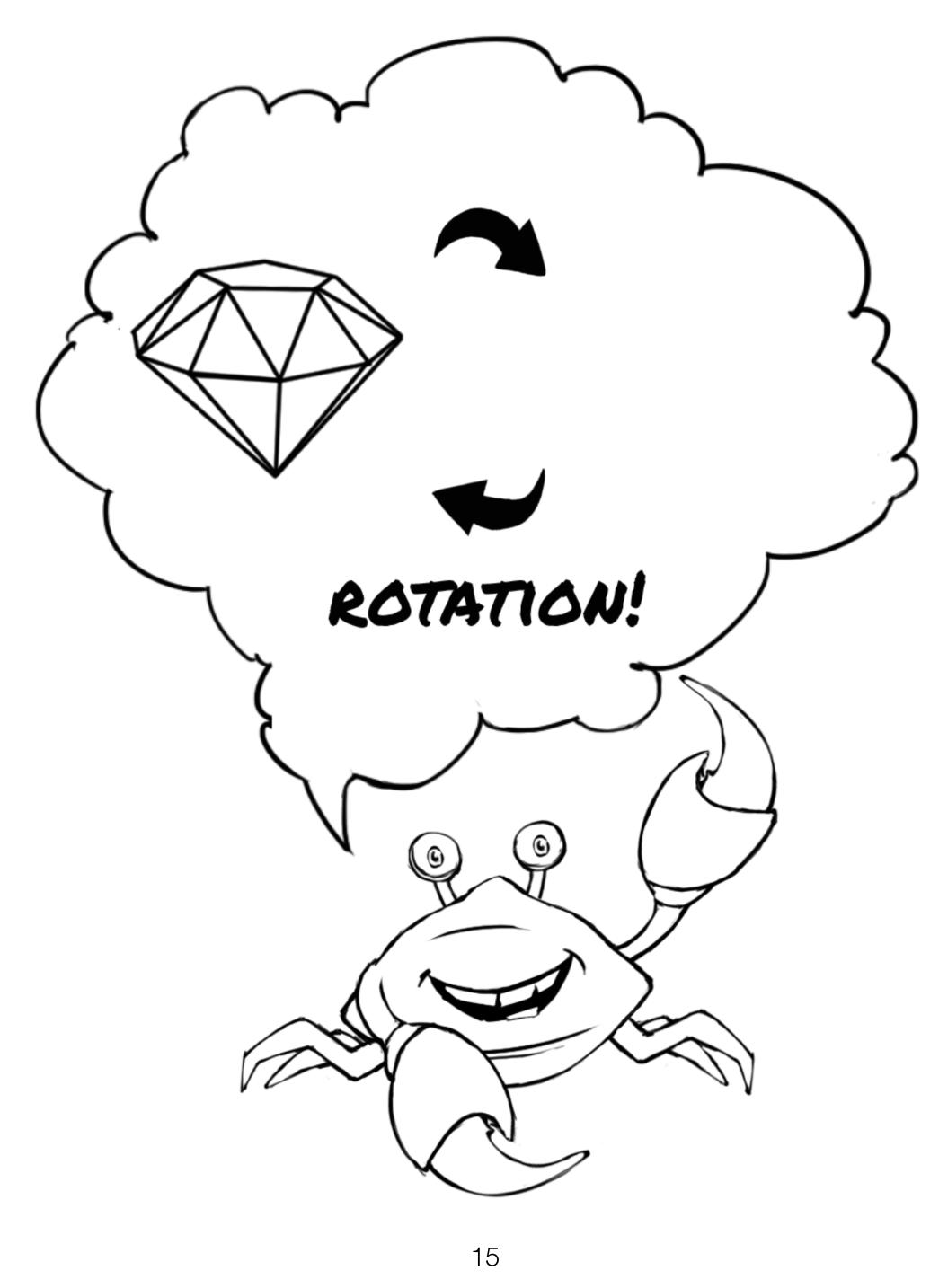












- The problem: pack Torpe's belongings into a cave (2D)
- Requirements:

٩

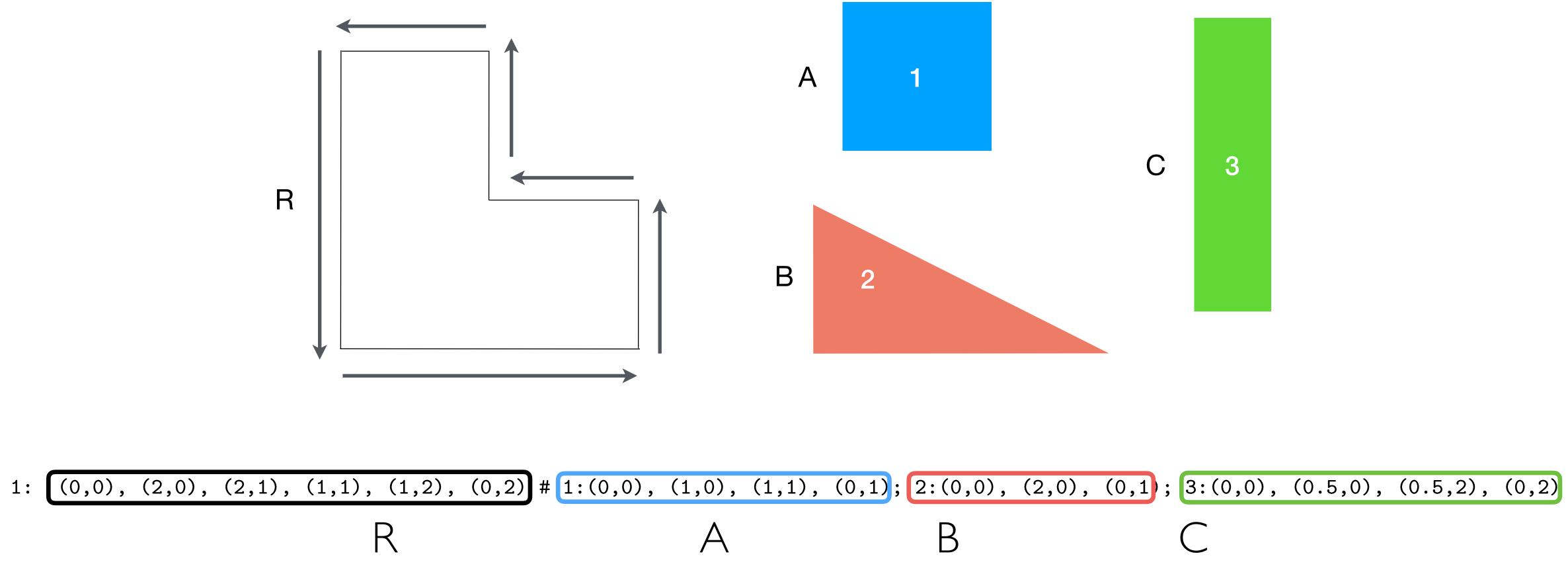
٩

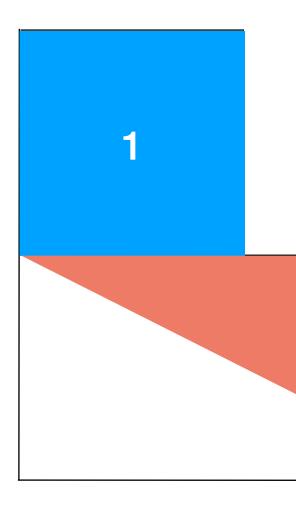
- No overlapping, all within the room, at least 30% covered • Try to find the best (maximal cost)
- Available actions:
 - Moving the furniture
 - Rotating the furniture

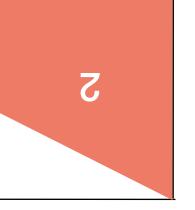
Rules of the Game

Data Structures

- Representing the cave
- Representing the furniture items
- Encoding the item costs
- Encoding the solutions



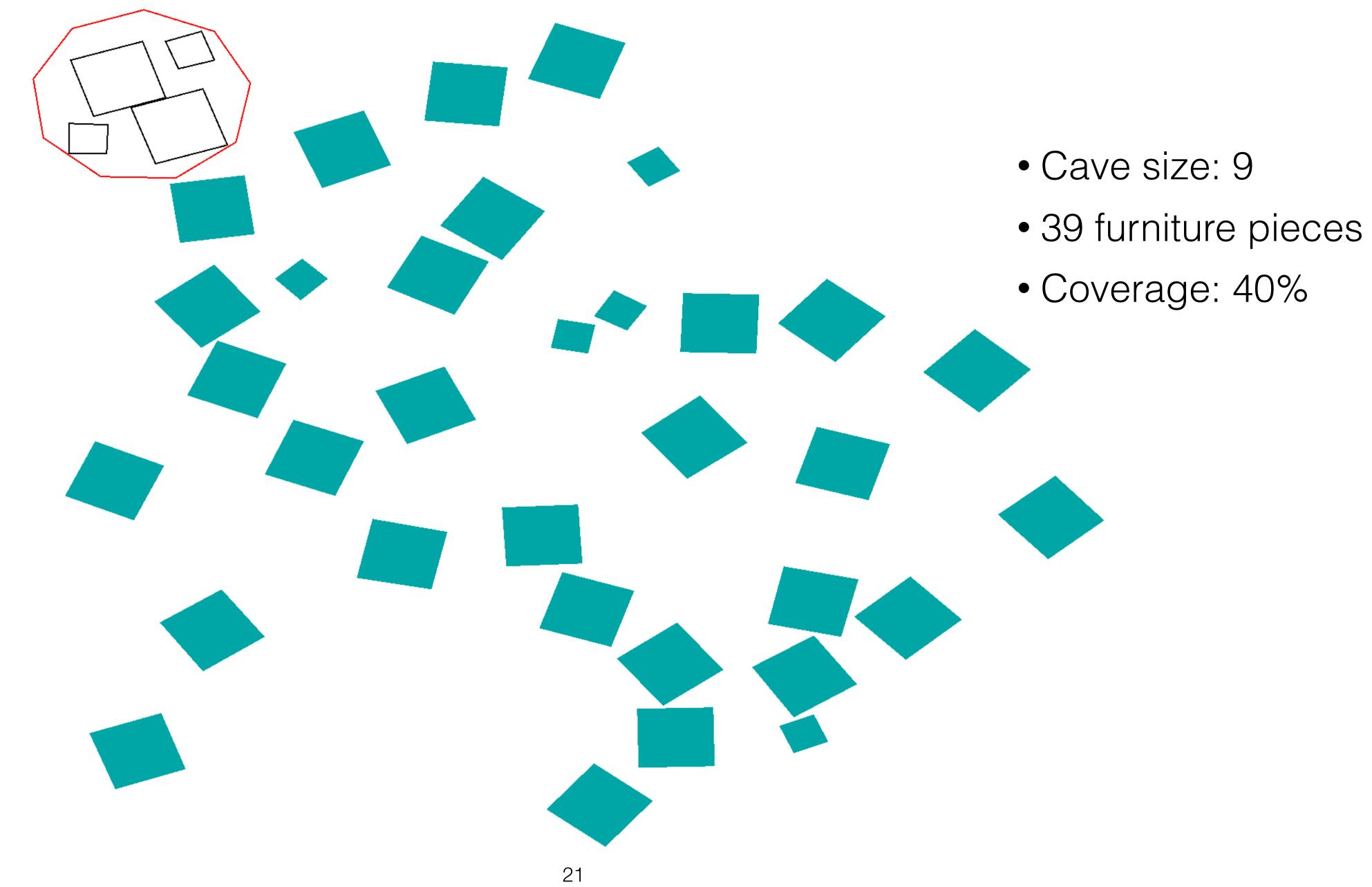




Checking a Solution

- What is an acceptable solution?

How to check it using the data types we already have?



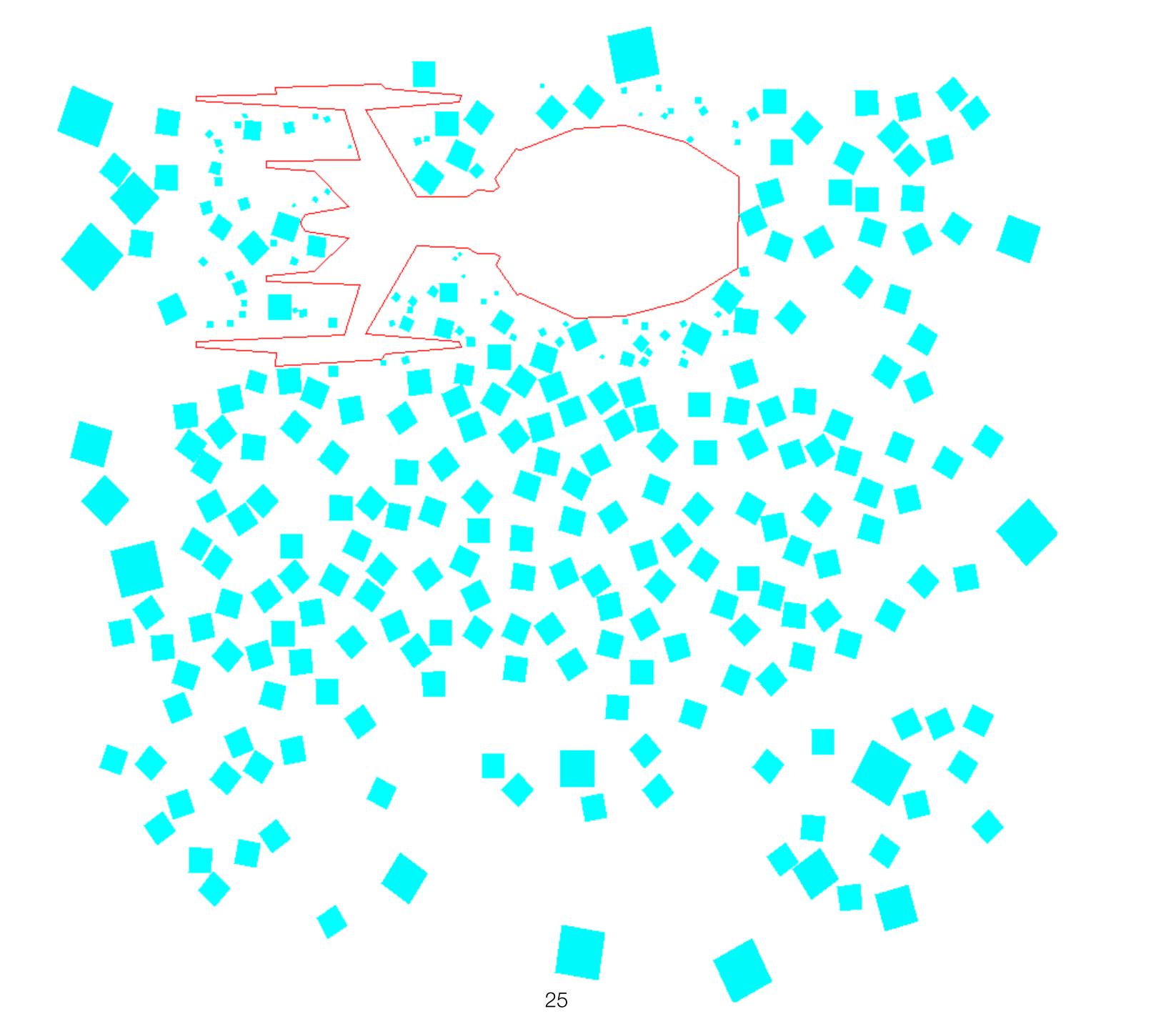


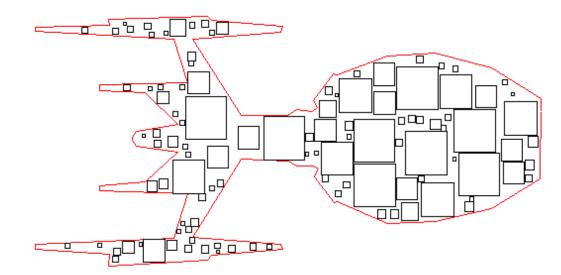
- Cave size: 180
- 500 furniture pieces
- Coverage: 46%

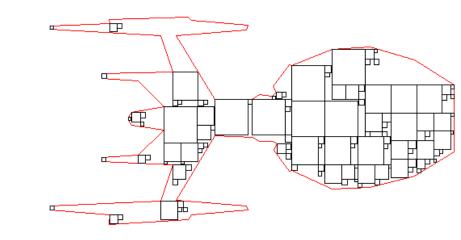
Towards an Algorithm

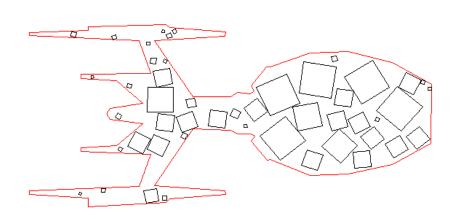
- What are the main steps?
- How to produce an acceptable solution?
- When should we stop?

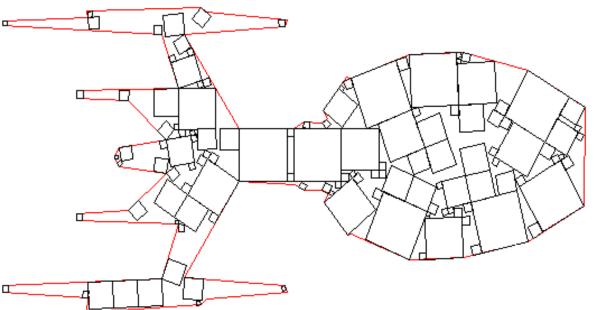
Some solutions

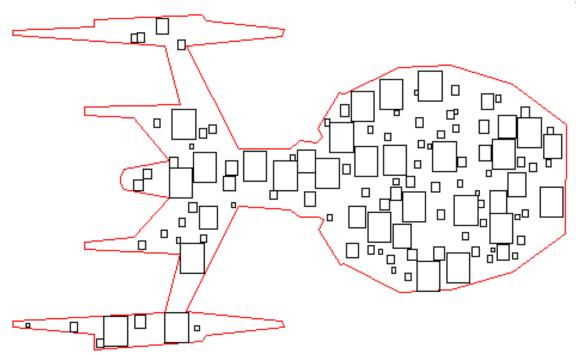


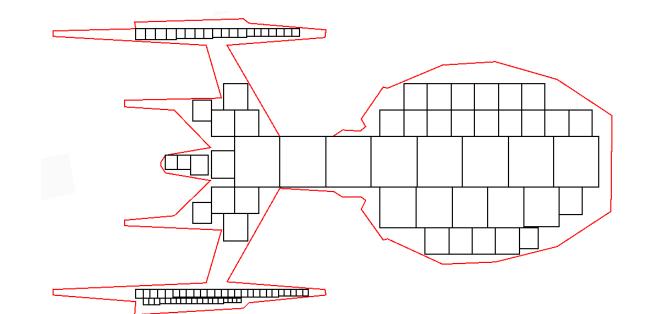


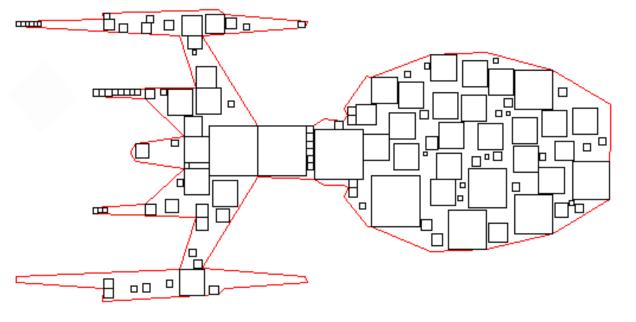


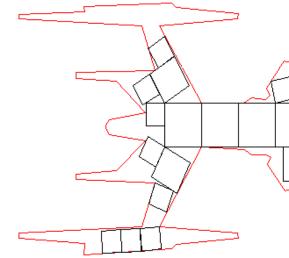


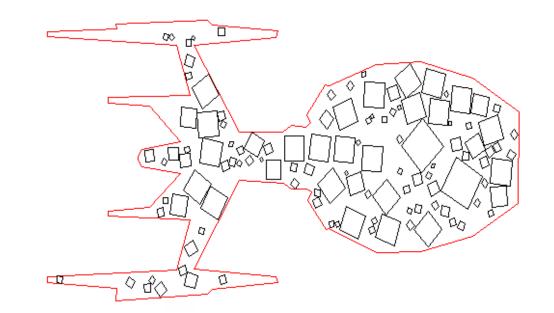


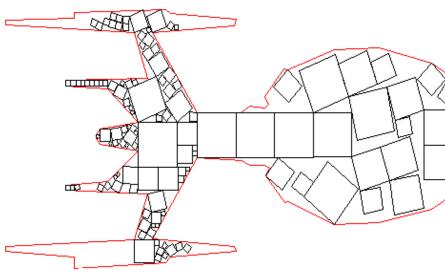


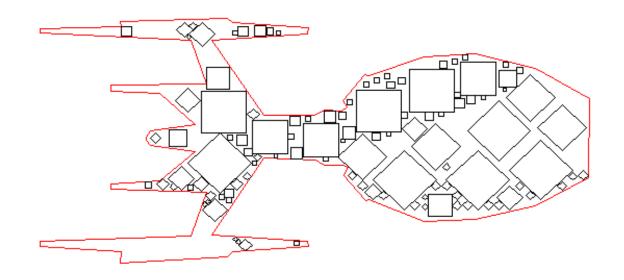


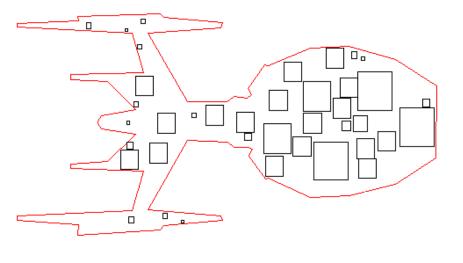


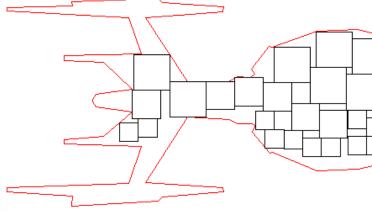


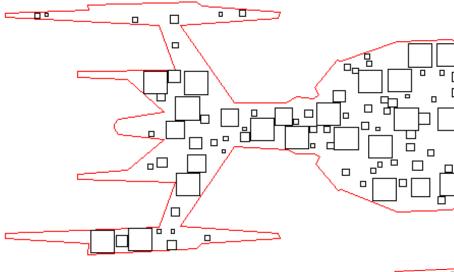


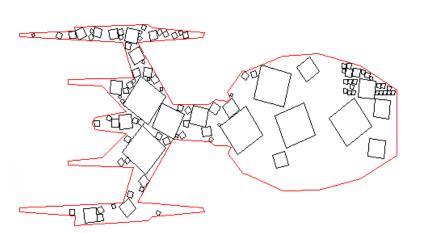


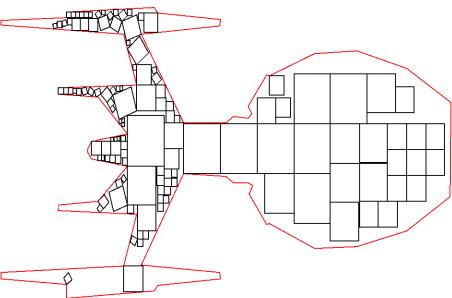


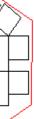


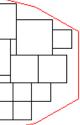












What else this course is about

Analysis of Algorithms

Correctness

Time Complexity

Storage Consumption

Algorithmic problems and Time Complexity

• tractable problems — admit solutions that run in "reasonable" time (e.g., sorting, searching, compression/decompression)

- possibly intractable probably don't have reasonable-time algorithmic solutions (e.g., SAT, graph isomorphism)
- practically intractable definitely don't have such solutions (e.g. the Towers of Hanoi)
- non-computable can't be solved algorithmically at all (e.g., the halting problem)

Aspects that we will study

- Algorithm Correctness
- Algorithm Termination
- Time complexity
 - Worst case
 - Average case
 - Best Worst case

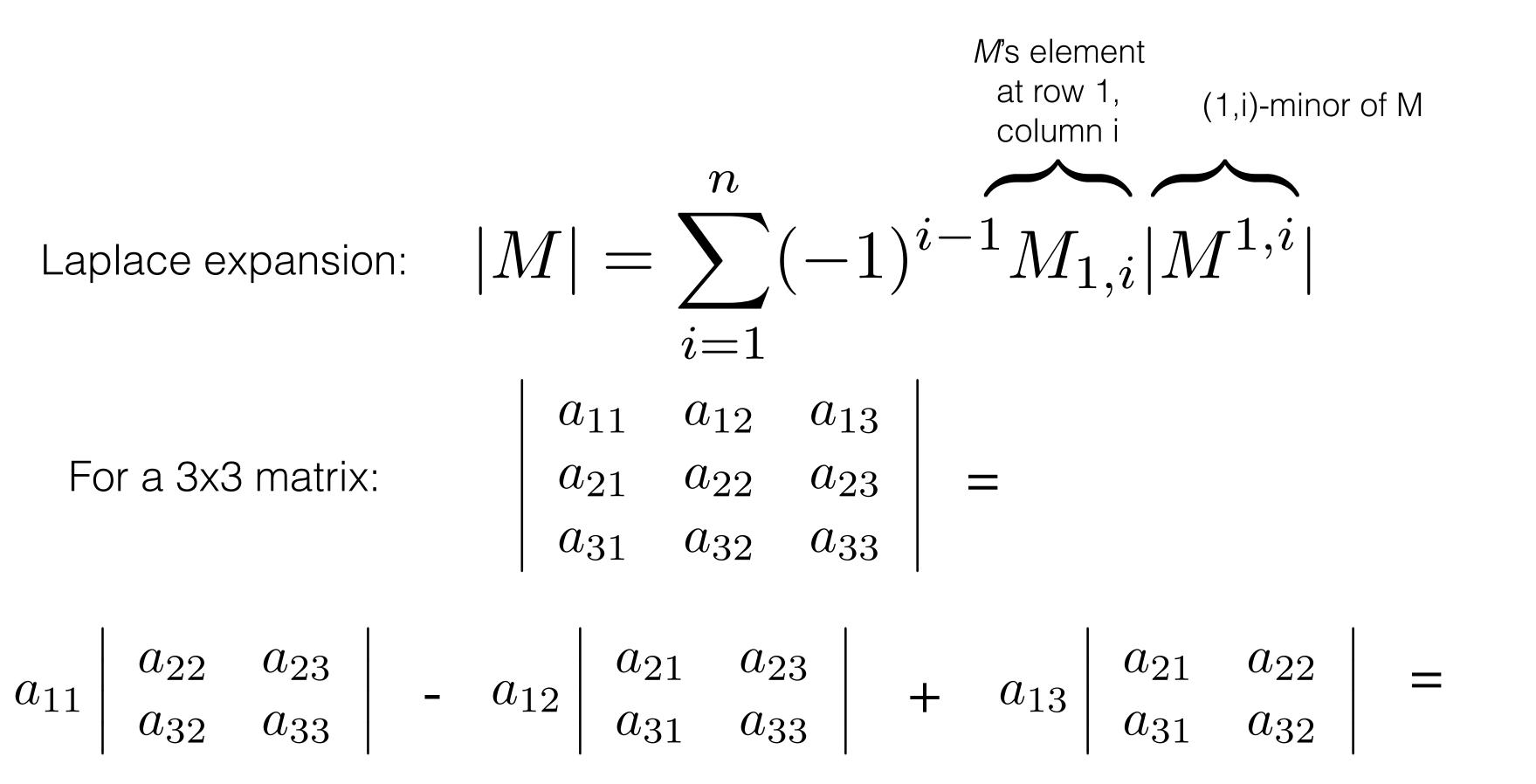
Aspects that we will study

- Algorithm Correctness Does my algorithm really do what it's supposed to do?
- Algorithm Termination Does my algorithm always complete its work?
- Time complexity *How slow is my algorithm*...
 - Worst case ... in the worst possible case?
 - Average case ... in an average case?
 - Best Worst case ... if I do my best to optimise it?

Example: Determinant of a matrix

Laplace expansion:

For a 3x3 matrix:



 $a_{11}(a_{22} \cdot a_{33} - a_{23} \cdot a_{32}) - a_{12}(a_{21} \cdot a_{33} - a_{23} \cdot a_{31}) + a_{13}(a_{21} \cdot a_{32} - a_{22} \cdot a_{31})$

Example: Determinant of a matrix

|M| =Laplace expansion:

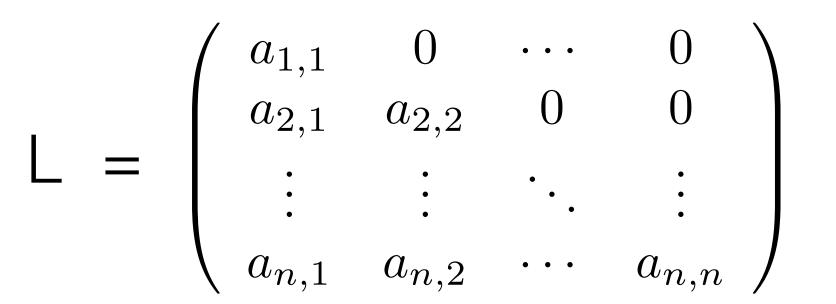
(in Haskell)

detLaplace :: Num a => Matrix a -> a detLaplace m size m == 1 = m ! (1,1)otherwise sum [(-1)^(i-1) * m ! (1,i) * detLaplace (minorMatrix 1 i m) i <- [1 .. ncols m]]

$$\sum_{i=1}^{n} (-1)^{i-1} M_{1,i} |M^{1,i}|$$

(demo)

Triangular matrices



For a 3x3 matrix:

$$\mathsf{U} = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ 0 & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{n,n} \end{pmatrix}$$

Determinant of a triangular matrix is a *product* of its diagonal elements.

 $a_{11}(a_{22} \cdot a_{33} - a_{23} \cdot 0) - a_{12}(0 \cdot a_{33} - a_{23} \cdot 0) + a_{13}(0 \cdot a_{32} - a_{22} \cdot 0) = a_{11} \cdot a_{22} \cdot a_{31}$

Determinants via LU-decomposition

element is non-zero can be represented in a form

where L and U are lower- and upper-triangular matrices.

Therefore, |I|

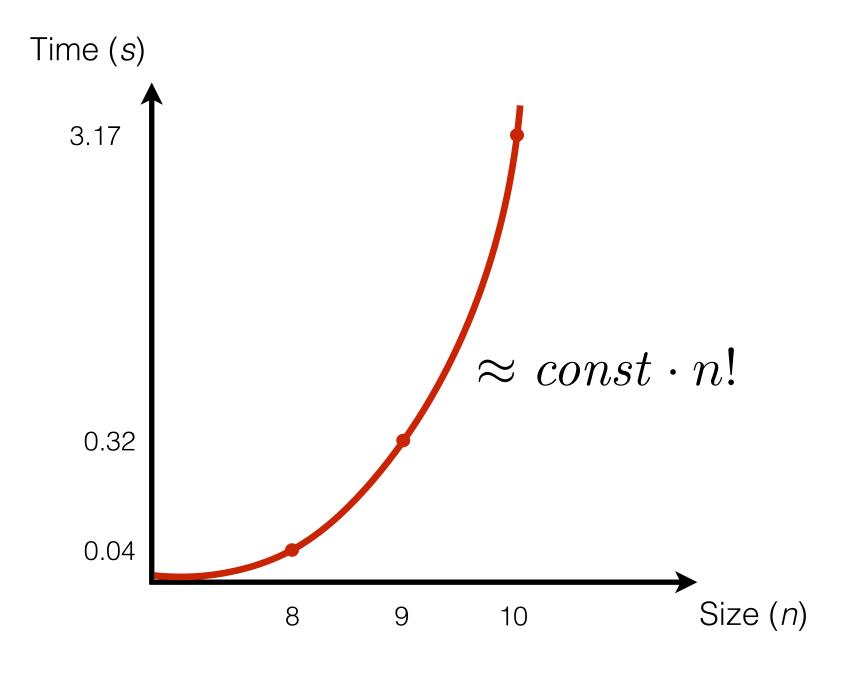
detLU :: Num a => Matrix a -> a detLU m = case luDecomp m of

- LU-decomposition: any square matrix M, such that its top-left
 - M = LU

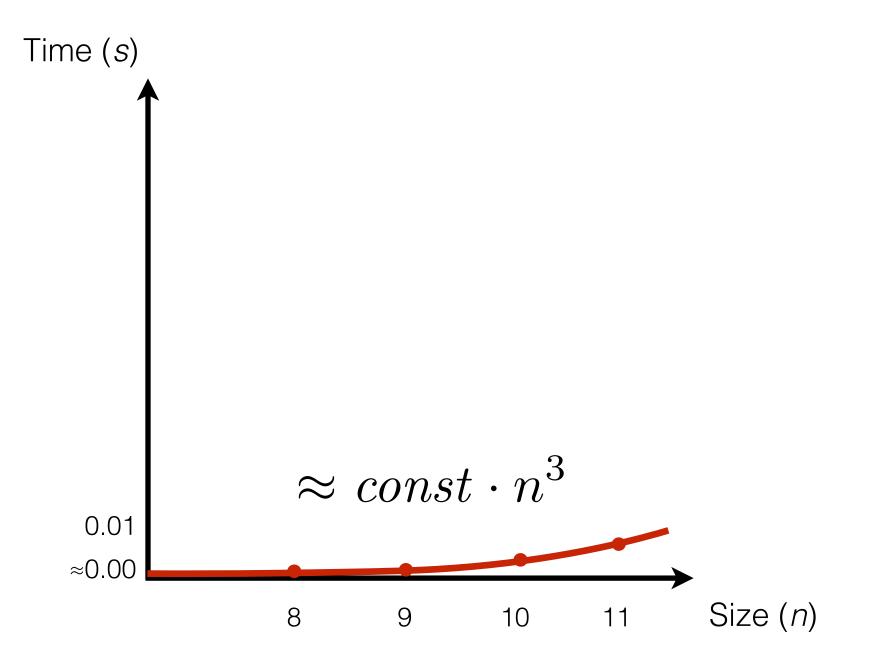
$$M| = |L| \cdot |U|$$

```
(1, u) -> diagProd l * diagProd u
```


Running time as a function of size



Determinant via Laplace expansion



Determinant via LU-decomposition

Time demand depends on problem size

Function	10	10^2	10^{3}	10^4
$\log_2 n$	3.3	6.6	10	13.3
n	10	100	1000	10^{4}
$n\log_2 n$	33	700	10^{4}	$1.3 imes 10^5$
n^2	100	10^4	10^{6}	10^{8}
n^3	1000	10^{6}	10^{9}	10^{12}
2^n	1024	$1.3 imes 10^{30}$	$> 10^{100}$	$> 10^{100}$
n!	3×10^6		$> 10^{100}$	$> 10^{100}$

Problem size

http://en.wikipedia.org/wiki/Googol

"Sizes" of different problems

Problem	
sorting	
searching	
determinant calculation	
finding a shortest path	n

Input size, n

number of items to be sorted

size of the set to query

number of rows and columns in the matrix

number of "checkpoints" to choose from

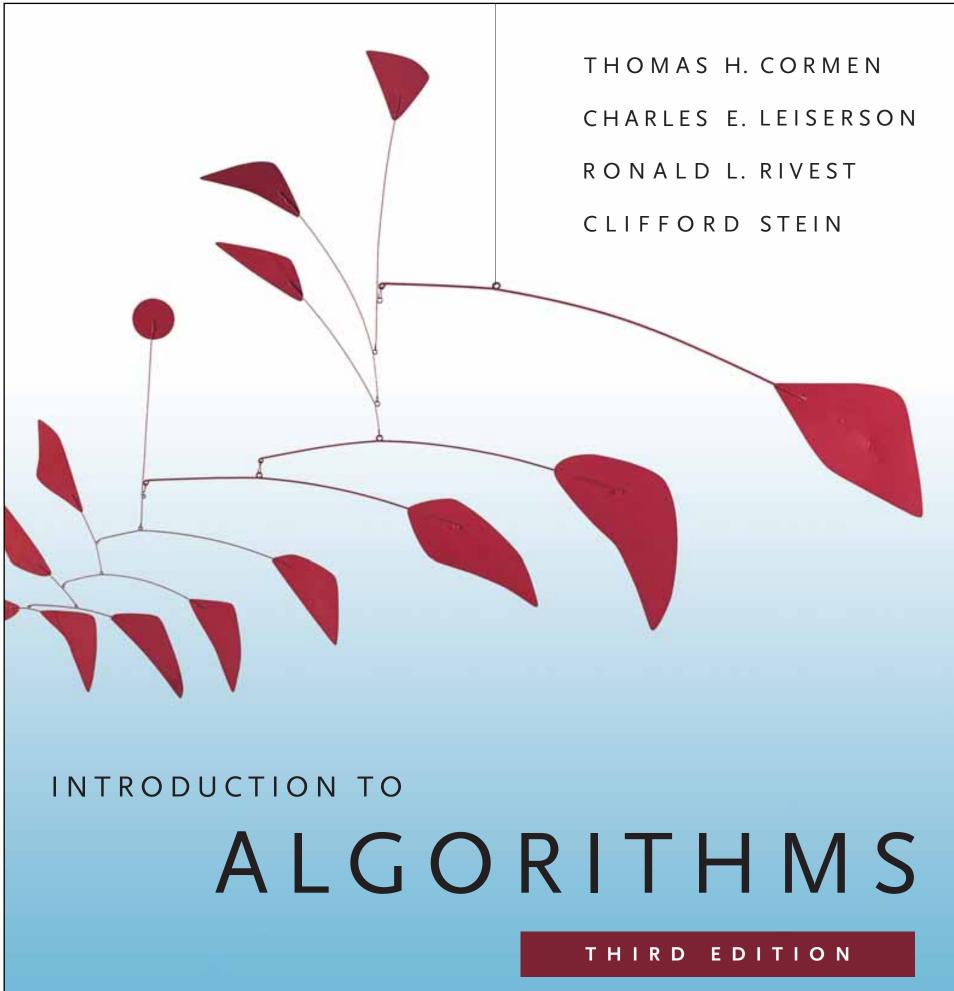
Two ways to analyse algorithms

- **Empirical** repeatedly run algorithm with different inputs to get some idea of behaviour on different inputs
 - was our selection of inputs representative?
 - this consumes the very resource (time) we are trying to conserve!
- **Theoretical** analysis of a "paper" version of the algorithm
 - can deal with all cases (even impractically large input instances);
 - machine-independent.

- OCaml
- Emacs/Aquamacs
- Toolbox
 - **Tuareg mode** for syntax highlighting and REPL
 - Merlin mode for type information
 - **Company mode** auto-completion and types •
 - ocp-indent for smart indentation

<u>https://github.com/ocaml/merlin/wiki/emacs-from-scratch</u>

The Textbook



Lecture Notes (WIP)

ilyasergey.net/YSC2229

Assessment

- 30% homework exercises
- 30% mid-term project
- 35% final project

- 5% class participation

Homework

- Deliverables:
 - an OCaml file with the solutions
- Graded out of 20

• Done in groups of 3-4 people (3 is optimal)

• a PDF with explanations of what has been done

• No extra points for recommended exercises (sorry)

- Tell a bit about yourself:
 - Your name (optionally)
 - What is your programming background?
 - Why are you interested in Computer Science?
 - Which computing problems did you deal with?
 - What are your expectations from this course?

Before the Break