YSC2229: Introductory Data Structures
and Algorithms

lya Sergey

lya.sergey@yale-nus.edu.sg

mailto:ilya.sergey@yale-nus.edu.sg

Some Terminology

o Data represents information
» Computations represent data processing

* An algorithm is a sequence of computational steps that transform
the input data (given) into the output data (wanted).

What this course is about”

Solving computational problems

Searching:
finding a word In a text or an article to buy on Amazon

Storing and retrieving data:
representing files in you computer

Data compression/decompression: Sllie

transferring files on the internet

Path finding: I'l ;l_r’[
getting from a point A to point B in the most efficient way l_.ial

* Geometric problems:
finding the closes fuel station, shape intersection

4

")
R\
N

/»‘»r ZAN
«

Torpe

(the prosperous crab)

5

ROTATION!

Rules of the Game

* The problem: pack Torpe’s belongings into a cave (2D)
 Requirements:
 No overlapping, all within the room, at least 30% coveread
* Try to find the best (maximal cost)
* Avalilable actions:
 Moving the furniture

* Rotating the furniture

16

Data Structures

Representing the cave
Representing the furniture items
Encoding the item costs

Encoding the solutions

17

C
B k
1: (0,0), (2,0), (2,1), (1,1), (1,2, O,2)y#i1:(0,0), (1,0), (1,1), (0,1);12:(0,0), (2,0), (O,1D;13:(0,0), (0.5,0), (0.5,2), (0,2)

18

19

Checking a Solution

 \What is an acceptable solution?

 How to check it using the data types we already have”

20

* Cave size: 180

* 500 furniture pieces

» Coverage: 46%

lTowards an Algorithm

 \What are the main steps”
 How to produce an acceptable solution?

* \When should we stop?

23

Some solutions

What else this course IS apout

Analysis of Algorithms

Correctness

Time Complexity Storage.
Consumption

30

Algorithmic problems and Time Complexity

* possibly intractable — probably don’'t have reasonable-time
algorithmic solutions (e.g., SAT, graph isomorphism)

e practically intractable — definitely don’t have such solutions
(e.q. the Towers of Hanoi)

* non-computable — can’t be solved algorithmically at all
(e.q., the halting problem)

31

Aspects that we will stuady

» Algorithm Correctness
» Algorithm Termination
* [Ime complexity

* Worst case
* Average case

* Best VWorst case

Aspects that we will stuady

» Algorithm Correctness — Does my algorithm really do what it's supposed to do/
» Algorithm Termination — Does my algorithm always complete its work?
* [Ime complexity — How slow is my algorithm. ..

* Worst case — ... in the worst possible case’
* Average case — ... In an average case’

* Best Worst case — ... If | do my best to optimise it/

33

=xample: Determinant of a matrix

M's element
atrow 1, (1,i)-minor of M
column i
Laplace expansion: ‘ N ‘ — E (—1)2_1 Z\/jl z‘ N 1’7"
9
1=1
adi1 di12 ai3
For a 3x3 matrix: o1 A92 Q923 —
azp d3z2 433
o2 A23 o1 Q23 as1 @
a1 - a12 + ais " 22 —
azz2 d33 az; dss azpy a3z

CL11(CL22 33 — U23 - @32) - a12(a21 - a33 — 423 - a31) + a13(a21 32 — Ad29 a31)

34

=xample: Determinant of a matrix

n

Laplace expansion: ‘M‘ — Z(—l)i_lMl,i
1=1

(In Haskell)

M

detLaplace :: Num a => Matrix a -> a

detLaplace m

| sizem == 1=m ! (1,1)
| otherwise =
sum [(-1)"(i-1) * m ! (1l,i) * detLaplace (minorMatrix 1 i m) |
1 <-[1 .. ncols m]]

(demo)

35

Trangular matrices

ag; O .- 0 a1 Qa12 -+ Qlp
az1 a2z 0 0 ¥ 0 a29 as. n
Ap,1 Anp 2 An n 0 0 Un.n

Determinant ot a triangular matrix
'S a product of its diagonal elements.

adi1 di12 413

For a 3x3 matrix;: 0 aoo 423
0 0 a33

a11(azz - ass —M) B a12M —N + &13,@6@ —M = ad11 - A22 - 431

36

Determinants via LU-decomposition

| U-decomposition: any square matrix M, such that its top-left
element IS non-zero can be represented in a form

M = LU

where L and U are lower- and upper-triangular matrices.

Therefore, |M| = |L| - |U]|

detLU :: Num a => Matrix a -> a
detLU m = case luDecomp m of
(1, u) -> diagProd 1 * diagProd u

(demo)

37

Running time as a function of size

Time ()

3.17

~ const - n!

0.32

0.04

8 9 10 Size (n)

Determinant via Determinant via
Laplace expansion L U-decomposition

38

Time demand depends on problem size

Problem size

Function 10 10° 107 10*
log, n 3.3 6.6 10 13.3
n 10 100 1000 10*
nlog, n 33 700 10% 1.3 x 10°
n? 100 10* 10° 10°
n> 1000 10° 10? 1012
AL 1024 | 1.3 x10%° > 101 > 10t
n! 3x10°% | >10'Y > 10'% > 1010

http://en.wikipedia.org/wiki/Googol
39

‘Sizes” of different problems

Problem Input size, n

sorting number of items to be sorted

searching size of the set to query

number of rows and columns

determinant calculation . .
IN the matrix

finding a shortest path number of “checkpoints” to choose from

Iwo ways to analyse algorithms

e Empirical — repeatedly run algorithm with different inputs to get some idea
of behaviour on different inputs

® \Was our selection of inputs representative”

e this consumes the very resource (time) we are trying to conserve!

e Theoretical — analysis of a “paper” version of the algorithm
e can deal with all cases (even impractically large input instances);

e machine-independent.

41

Working Tools

e OCaml

 Emacs/Aguamacs

gA

* Joolbox OCaml
* Tuareg mode for syntax highlighting and RE

* Merlin mode for type information
-+ Company mode auto-completion and types

* ocp-indent for smart indentation

* https://github.com/ocaml/merlin/wiki/emacs-from-scratch

42

https://github.com/ocaml/merlin/wiki/emacs-from-scratch

The lextbook

y

-
o

Y

INTRODUCTION TO

THOMAS H.

CHARLES E.

RONALD L.

CLIFFORD

W

CORMEN

LEISERSON

RIVEST

STEIN

ALGORITHMS

THIRD EDITION

43

| ecture Notes (WIP)

lyasergey.net/YSC2229

Assessment

30% homework exercises

30% mid-term project

—

35% final project

—

5% class participation

45

Homework

* Done in groups of 3-4 people (3 is optimal)

e Deliverables:
e an OCaml file with the solutions

* a PDF with explanations of what has been done
* (Graded out of 20

* No extra points for recommended exercises (sorry)

46

Before the Break

e Tell a bit about yourself:
* Your name (optionally)
 \What is your programming background?
 \Why are you interested in Computer Science”
* \Which computing problems did you deal with?

* \WWhat are your expectations from this course”

47

