
YSC2229: Introductory Data Structures
and Algorithms

Ilya Sergey

ilya.sergey@yale-nus.edu.sg

 1

mailto:ilya.sergey@yale-nus.edu.sg

Some Terminology

• Data represents information

• Computations represent data processing

• An algorithm is a sequence of computational steps that transform
the input data (given) into the output data (wanted).

 2

What this course is about?

 3

• Searching:  
finding a word in a text or an article to buy on Amazon

• Storing and retrieving data:  
representing files in you computer

• Data compression/decompression:  
transferring files on the internet

• Path finding:  
getting from a point A to point B in the most efficient way

• Geometric problems:  
finding the closes fuel station, shape intersection

 4

Solving computational problems

Torpe
(the prosperous crab)

!5

!6

!7

!8

!9

!10

!11

!12

!13

MOVE
!

!14

!15

Rules of the Game
• The problem: pack Torpe’s belongings into a cave (2D)
• Requirements:

• No overlapping, all within the room, at least 30% covered
• Try to find the best (maximal cost)

• Available actions:
• Moving the furniture
• Rotating the furniture

 16

Data Structures

• Representing the cave

• Representing the furniture items

• Encoding the item costs

• Encoding the solutions

 17

i.e., (4.5, 3.534635257) or (5,0). The sequence of the vertices is arranged in a way that the interior
of the polygon will stay on the left, when one “walks” from one vertex to the next one. The successor of
the last vertex in the list is the �rst vertex.

For the room and the coordinates of furniture pieces, the �rst vertex is always (0, 0). However, in
your solutions, furniture pieces are going to be moved and rotated, so the �rst coordinate may no longer
be (0, 0). The following grammar in BNF1 formally speci�es the format of the problem description:

<problem-instance> ::= <problem-identifier> ":" <room> "#" <furniture-set>
<problem-identifier> ::= <int>
<room> ::= <point-sequence>
<furniture-list> ::= <furniture> | <furniture> ";" <furniture-list>
<furniture> ::= <cost> ":" <furniture-location>
<cost> ::= <int>

<furniture-location> ::= <point-sequence>
<point-sequence> ::= <point> | <point> "," <point-sequence>
<point> ::= "(" <double> "," <double> ")"

As an example, the text below describes the problem from Figures 1, the room and three furniture
entries, in the de�ned format, numbered 1:

1: (0,0), (2,0), (2,1), (1,1), (1,2), (0,2) # 1:(0,0), (1,0), (1,1), (0,1); 2:(0,0), (2,0), (0,1); 3:(0,0), (0.5,0), (0.5,2), (0,2)

In this example, the room is encoded as a polygon with six comma-separated integer vertices (0,0),
(2,0), (0,0), (2,1), (1,1), (1,2), (0,2), which follow the problem number. After the # sign,
follow three furniture entries. The �rst one, 1: (0,0), (1,0), (1,1), (0,1), for instance, corre-
sponds to the square A from Figure 1, with unit density 1; the second one, 2: (0,0), (2,0), (0,1)
is a triangle B, whose unit density is 2, etc.

Your goal for this task is to compute, for each of the 30 RFP instances, a set of positions of furniture
items, so they would �t the room (i.e., would not intersect its boundaries), would not overlap between
each other, and would correspond to items from the list, speci�ed in the problem description. You can
use each item only once, but it is okay not to use all available items (som of them might not even �t the
room). Furniture items can be rotated and translated (i.e., moved to new positions) in order to �t the room,
whose position is �xed. A “furnishing” is considered successful if it covers 30% or more of the room
area. Solutions that cover smaller area of a room will not be accepted by the server. At the moment, let
us ignore the unit costs: they will matter for the competition, outlined in Section 2.4.

For a submitted solution, the server checks that all encoded pieces of furniture at their new positions
are those from the problem statement, up to rotation and translation, but not up to permutation of the
order of the vertices in the encoding of polygons. That is if a piece of furniture with 4 vertices (A, B, C ,
D) was encoded as A,B,C,D, so that A0, B0, C 0, D0 is the encoding of its rotation/translation in your
solution, then A0 should be an image of A, B0 is an image of B, etc.

The solution for this task is a text �le. You can implement your algorithm in any program-
ming language of your preference and use any libraries you consider necessary. You do not have
to (and should not) submit the code.

1
https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

3

R

R

A

B

C

A B C

1

2

3

!18

1

2

3

!19

Checking a Solution

• What is an acceptable solution?

• How to check it using the data types we already have?

 20

• Cave size: 9
• 39 furniture pieces
• Coverage: 40%

!21

• Cave size: 180
• 500 furniture pieces
• Coverage: 46%

!22

Towards an Algorithm

• What are the main steps?

• How to produce an acceptable solution?

• When should we stop?

 23

Some solutions

 24

!25

!26

!27

What else this course is about

 28

Analysis of Algorithms

 29

 30

Correctness

Time Complexity Storage
Consumption

• tractable problems — admit solutions that run in “reasonable” time 
(e.g., sorting, searching, compression/decompression)

•possibly intractable — probably don’t have reasonable-time
algorithmic solutions (e.g., SAT, graph isomorphism)

•practically intractable — definitely don’t have such solutions  
(e.g. the Towers of Hanoi)

•non-computable — can’t be solved algorithmically at all  
(e.g., the halting problem)

!31

Algorithmic problems and Time Complexity

• Algorithm Correctness

• Algorithm Termination

• Time complexity

• Worst case
• Average case
• Best Worst case 

!32

Aspects that we will study

• Algorithm Correctness

• Algorithm Termination

• Time complexity

• Worst case
• Average case
• Best Worst case 

!33

• Algorithm Correctness — Does my algorithm really do what it’s supposed to do?

• Algorithm Termination — Does my algorithm always complete its work?

• Time complexity — How slow is my algorithm…

• Worst case — … in the worst possible case?

• Average case — … in an average case?

• Best Worst case — … if I do my best to optimise it?  

Aspects that we will study

|M | =
nX

i=1

(�1)i�1M1,i|M1,i|
������

a11 a12 a13
a21 a22 a23
a31 a32 a33

������
For a 3x3 matrix: =

a11

����
a22 a23
a32 a33

���� a12

����
a21 a23
a31 a33

����- + a13

����
a21 a22
a31 a32

����

a11(a22 · a33 � a23 · a32) - a12(a21 · a33 � a23 · a31) + a13(a21 · a32 � a22 · a31)

=

Laplace expansion:

z }| {

M’s element
at row 1,
column i z }| {

(1,i)-minor of M

!34

Example: Determinant of a matrix

detLaplace :: Num a => Matrix a -> a  

detLaplace m
 | size m == 1 = m ! (1,1)
 | otherwise =  
 sum [(-1)^(i-1) * m ! (1,i) * detLaplace (minorMatrix 1 i m) |  
 i <- [1 .. ncols m]]

(in Haskell)

(demo)

|M | =
nX

i=1

(�1)i�1M1,i|M1,i|Laplace expansion:

!35

Example: Determinant of a matrix

Determinant of a triangular matrix  
is a product of its diagonal elements.

0

BBB@

a1,1 0 · · · 0
a2,1 a2,2 0 0
...

...
. . .

...
an,1 an,2 · · · an,n

1

CCCAL = U =

0

BBB@

a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
...

...
. . .

...
0 0 · · · an,n

1

CCCA

For a 3x3 matrix: =

- +

������

a11 a12 a13
0 a22 a23
0 0 a33

������

a11(a22 · a33 � a23 · 0) a12(0 · a33 � a23 · 0) a13(0 · a32 � a220) = a11 · a22 · a31

!36

Triangular matrices

LU-decomposition: any square matrix M, such that its top-left
element is non-zero can be represented in a form  

where L and U are lower- and upper-triangular matrices.

(demo)

M = LU

|M | = |L| · |U |Therefore,

detLU :: Num a => Matrix a -> a
detLU m = case luDecomp m of
 (l, u) -> diagProd l * diagProd u

!37

Determinants via LU-decomposition

Determinant via  
Laplace expansion

Determinant via  
LU-decomposition

8 9 10

0.04

0.32

Time (s)

Size (n)

Time (s)

Size (n)8 9 10

3.17

≈0.00

11

0.01
⇡ const · n3

⇡ const · n!

!38

Running time as a function of size

Problem size
Function

http://en.wikipedia.org/wiki/Googol

10 102 103 104

log2 n 3.3 6.6 10 13.3

n 10 100 1000 104

n log2 n 33 700 104 1.3⇥ 105

n2 100 104 106 108

n3 1000 106 109 1012

2n 1024 1.3⇥ 1030 > 10100 > 10100

n! 3⇥ 106 > 10100 > 10100 > 10100

!39

Time demand depends on problem size

Problem Input size, n

sorting number of items to be sorted

searching size of the set to query

determinant calculation number of rows and columns  
in the matrix

finding a shortest path number of “checkpoints” to choose from

“Sizes” of different problems

!41

• Empirical — repeatedly run algorithm with different inputs to get some idea
of behaviour on different inputs

• was our selection of inputs representative?

• this consumes the very resource (time) we are trying to conserve!

• Theoretical — analysis of a “paper” version of the algorithm

• can deal with all cases (even impractically large input instances);

• machine-independent.

Two ways to analyse algorithms

Working Tools
• OCaml

• Emacs/Aquamacs

• Toolbox
• Tuareg mode for syntax highlighting and REPL
• Merlin mode for type information
• Company mode auto-completion and types
• ocp-indent for smart indentation
• https://github.com/ocaml/merlin/wiki/emacs-from-scratch

 42

https://github.com/ocaml/merlin/wiki/emacs-from-scratch

The Textbook

 43

A L G O R I T H M S
I N T R O D U C T I O N T O

T H I R D E D I T I O N

T H O M A S H.

C H A R L E S E.

R O N A L D L .

C L I F F O R D S T E I N

R I V E S T

L E I S E R S O N

C O R M E N

Lecture Notes (WIP)

 44

ilyasergey.net/YSC2229

Assessment

• 30% homework exercises

• 30% mid-term project

• 35% final project

• 5% class participation

 45

Homework
• Done in groups of 3-4 people (3 is optimal)

• Deliverables:
• an OCaml file with the solutions
• a PDF with explanations of what has been done

• Graded out of 20

• No extra points for recommended exercises (sorry)

 46

Before the Break

• Tell a bit about yourself:

• Your name (optionally)

• What is your programming background?

• Why are you interested in Computer Science?

• Which computing problems did you deal with?

• What are your expectations from this course?

 47

