
YSC4230: Programming Language
Design and Implementation

Ilya Sergey
ilya.sergey@yale-nus.edu.sg

ilyasergey.net/YSC4230/

mailto:ilya.sergey@yale-nus.edu.sg

Interpreters and Compilers

https://www.youtube.com/watch?v=_C5AHaS1mOA

(From Episode 6 of the classic 1983 television series, Bits and Bytes)

https://www.youtube.com/watch?v=_C5AHaS1mOA

Week 1: Introduction

• You will learn:
– How programs we write end up being executed
– Practical applications of Programming Language theory
– Lexing/Parsing/Interpreters
– How high-level languages are implemented in machine language
– (A subset of) Intel x86 architecture
– More about common compilation tools like GCC and LLVM
– How to better understand program code
– A little about programming language semantics & types (math behind programs)
– Advanced functional programming in OCaml (yay!)
– How to manipulate complex data structures
– How to be a better programmer

• Expect this to be a very challenging, implementation-oriented course (duh!)
– Programming projects can take tens of hours per week…

Why PLDI?

• Instructor: Ilya Sergey
Lectures (F2F): Wednesdays, 9am-12pm,
 Elm Common Lounge
Office hours: Mondays, 3:30pm-5:00pm (please, email me upfront)
 #RC3-01-03E, Cendana

• E-mail: ilya.sergey@yale-nus.edu.sg
• Web site: https://ilyasergey.net/YSC4230
• GitHub: https://github.com/ysc4230

Administrivia

Please, email me your GitHub name to access the code!

mailto:ilya.sergey@yale-nus.edu.sg
https://ilyasergey.net/YSC4230
https://github.com/ysc4230

Prerequisites: YSC1212 and YSC2229
– Significant programming experience
– Familiarity with data Structures
– HW1 will refresh your knowledge of OCaml

Grading:
• 85%: coding projects: Compiler

– Groups of 2 students (except the 1st one)
– Implemented in OCaml

• 10%: paper-based research project (individual)
– Writing a short review on a state-of-the-art paper in PLDI

• Lecture attendance is crucial (5% of the final grade)
– Active participation (asking questions, etc.) is encouraged

Course Policies

• Six homework assignments (each graded out of 100 points)
– HW1: OCaml Programming
– HW2: X86lite interpreter
– HW3: LLVMlite compiler
– HW4: Lexing, Parsing, simple compilation
– HW5: Higher-level Features
– HW6: Analysis and Optimisations

• Goal: build a complete compiler from a high-level, type-safe language to x86 assembly.

Homework Projects

• Morning class: most of us are sleepy at 9am.
Try to make class livelier by asking questions and participating in discussions!

General Advice

• Homework (except HW1) should be done individually or in pairs
• Late projects:

– up to 24 hours late: 10 point penalty
– up to 48 hours late: 20 point penalty
– after 48 hours: not accepted (sorry)

• Submission policy:
– Projects that don’t compile will get no credit
– Partial credit will be awarded according to the guidelines in the project description

• Fair work-split policy:
– In group projects it is expected each member to contribute non-trivial amount of code

(not comments, blank lines or trivial code permutations);
– I will use GitHub contribution tracking for this; please, make sure your email is properly

configure with GitHub so this accounting would work;
– “Freeloaders” will be penalised at my discretion.

Homework Policies

– “low level” and “high level” discussions across groups are fine
– “Low level”: “how do you debug your LLVM output?”, “what is the meaning of this x86 operation?”
– “High level”: “What is a lattice in a data flow analysis?”, drawing boxes on a whiteboard.

– “mid level” discussions / code sharing between teams are not permitted
– “Mid-level”: “how does your type checker implementation work on lambdas?”

– Adopting/translating code parts from the internet is not permitted (I will know)

– General principle: When in doubt, ask the instructor!

– Penalties for cheating:
– First strike: 0 points to the whole team for the homework
– Second strike: F for the module, case is passed to the Academic Integrity Committee

Academic Integrity

• Office Hours (#RC3-01-03E, Cendana):
Mondays 15:30-17:00 (preferred)
Wednesdays 17:15-18:30
Please, email me upfront!

• E-mail policy: questions about homework assignments sent less than
24 hours before submission deadline won’t be answered.

• Exception: bug reports.

11

Getting Help

Peer Tutor

Tram Hoang

tram.hoang@u.yale-nus.edu.sg

•Office Hours and Location TBA

• Course textbook: (recommended, not required)
– Modern compiler implementation in ML (Appel)

• Additional compilers books:
– Compilers – Principles, Techniques & Tools

(Aho, Lam, Sethi, Ullman)
• a.k.a. “The Dragon Book”

– Advanced Compiler Design & Implementation (Muchnick)

• About Ocaml:
– Real World Ocaml

(Minsky, Madhavapeddy, Hickey)
• realworldocaml.org

– Introduction to Objective Caml (Hickey)

Resources

• OCaml is a dialect of ML – “Meta Language”
– It was designed to enable easy manipulation abstract syntax trees
– Type-safe, mostly pure, functional language with support for polymorphic

(generic) algebraic datatypes, modules, and mutable state
– The OCaml compiler itself is well engineered

• you can study its source!

– It is the right tool for this job

• Forgot about OCaml after YSC2229?
– First two projects will help you get up to speed programming
– See “Introduction to Objective Caml” by Jason Hickey

• book available on the module web page, referred to in HW1

OCaml, again!

• Homework 1 is available on Canvas
– Individual project – no groups (the only in this module)
– Due: Wednesday, 25 August 2021 at 2:00am
– Topic: OCaml programming, an introduction to basic interpreters
– Those who took YSC1212 with Prof. Danvy will find it very familiar

• Recommended software:
– VSCode + OCaml extension
– See the prerequisites page for the full setup

HW1: Hellocaml

Any questions?

What is a Compiler, formally?

• A compiler is a program that translates from one programming language to another.

• Typically: high-level source code to low-level machine code (object code)
– Not always: Source-to-source translators, Java bytecode compiler, GWT Java ⇒ Javascript

What is a Compiler?

High-level Code

Low-level Code

?

Historical Aside

1980s: ML / LCF
1984: Standard ML
1987: Caml
1991: Caml Light
1995: Caml Special Light
1996: Objective Caml
2005: F# (Microsoft)
2015: Reason ML

• This is an old problem!
• Until the 1950’s: computers were programmed in assembly.

• Assembly is a textual representation of machine codes
• 1951—1952: Grace Hopper

– developed the A-0 system (Arithmetic Language version 0)
for the UNIVAC I

– She later contributed significantly to the design of COBOL
• 1957: FORTRAN compiler built at IBM

– Team led by John Backus
• 1960’s: development of the first

bootstrapping compiler for LISP
See https://en.wikipedia.org/wiki/Tombstone_diagram

• 1970’s: language/compiler design blossomed

• Today: thousands of languages (most little used)
– Some better designed than others...

https://en.wikipedia.org/wiki/Tombstone_diagram

• Optimized for human readability
– Expressive: matches human ideas of grammar / syntax / meaning
– Redundant: more information than needed (why?)
– Abstract: exact computation on CPU possibly not fully determined by code

• Example C source:

Source Code

#include <stdio.h>

int factorial(int n) {
 int acc = 1;
 while (n > 0) {
 acc = acc * n;
 n = n - 1;
 }
 return acc;
}

int main(int argc, char *argv[]) {
 printf("factorial(6) = %d\n", factorial(6));
}

• Optimized for Hardware
– Mimics the logic of a particular processor (CPU): x86, Arm
– Machine code hard for people to read
– Redundancy, ambiguity reduced
– Abstractions & information about intent is lost

• Assembly language
– strong correspondence between the instructions in the

language and the architecture's machine code instructions
– text representation of the machine language
– Etymology: internal instructions of a computer are

“assembled” into the actual form used by the machine

• Figure at left shows (unoptimised) 32-bit code for
the factorial function written in x86 assembly

_factorial:
BB#0:
 pushl %ebp
 movl %esp, %ebp
 subl $8, %esp
 movl 8(%ebp), %eax
 movl %eax, -4(%ebp)
 movl $1, -8(%ebp)
LBB0_1:
 cmpl $0, -4(%ebp)
 jle LBB0_3
BB#2:
 movl -8(%ebp), %eax
 imull -4(%ebp), %eax
 movl %eax, -8(%ebp)
 movl -4(%ebp), %eax
 subl $1, %eax
 movl %eax, -4(%ebp)
 jmp LBB0_1
LBB0_3:
 movl -8(%ebp), %eax
 addl $8, %esp
 popl %ebp
 retl

Low-Level Code

• Source code – Machine code mismatch
• Some languages are farther from machine code than others:

– Consider: C, C++, Java, Lisp, ML, Haskell, R, Python, JavaScript

• Goals of translation:
– Source level expressiveness for the task
– Best performance for the concrete computation
– Reasonable translation efficiency (< O(n3))
– Maintainable code
– Correctness!

How to translate?

• Programming languages describe computation precisely…
– therefore, translation can be precisely described
– a compiler must be correct with respect to the source and target language semantics.

• Correctness is important!
– Broken compilers generate broken code.
– Hard to debug source programs if the compiler is incorrect.
– Failure has dire consequences for development cost, security, etc.

• This course: some techniques for building correct compilers
– Finding and Understanding Bugs in C Compilers,

Yang et al. PLDI 2011
– There is much ongoing research about proving compilers correct.

(search for CompCert, Verified Software Toolchain, or Vellvm)

Correct Compilation

Program in C Program in x86 Assembly

compile

Specifying Compilers

Program P in C Program compile(P) in x86 Assembly

compile

interpret-as-C interpret-as-x86

Result(P, input) = Rc Rx86 = Result(compile(P), input)=

For any program P, and any input,
the result of interpreting P with input in C is the same as
the result of executing compilation of P with input in x86 Assembly.

Compiler Specification:

Correctness Theorem:

or, equivalently

∀ P, input, interpretC(P, input) = executex86(compile(P), input)

• Compile via a series of program representations

• Intermediate representations are optimised for program manipulation of various kinds:
– Semantic analysis: type checking, error checking, etc.
– Optimisation: dead-code elimination, common subexpression elimination, function inlining,

register allocation, etc.
– Code generation: instruction selection

• Representations are more machine specific, less language specific as translation proceeds

Idea: Translate in Steps

Source Code
(Character stream)
if (b == 0) a = 0;

Code Generation

Intermediate Code

Assembly Code
CMP ECX, 0
SETBZ EAX

Front End
(machine independent)

Back End
(machine dependent)

Middle End
(compiler dependent)

Simplified Compiler Pipeline

Intermediate
Code Generation

Abstract Syntax Tree

Parsing

Token Stream

Lexical Analysis

Representations of the programCompiler Passes

 Lexing → token stream
 Parsing → abstract syntax
 Disambiguation → abstract syntax
 Semantic analysis → annotated abstract syntax
 Translation → intermediate code
 Control-flow analysis → control-flow graph
 Data-flow analysis → interference graph
 Register allocation → assembly
 Code emission

Typical Compiler Stages

• Optimisations may be done at many of these stages
• Different source language features may require more/different stages
• Assembly code is not the end of the story (processors may optimise, too)

Loader

Executable image

Source code foo.c

Compiler

Assembly Code

gcc -S

foo.s

Assembler

Object Code

as

foo.o

foo

Linker

Fully-resolved machine Code

ldLibrary code

(Usually: gcc -o foo foo.c)

Compilation and Execution

Compiler Demo

See factorial.c in the project root

(use hexdump to see binary files)

https://github.com/ysc4230/week-01-simple-2021

https://github.com/ysc4230/week-01-simple-2021

• Rest of today:
– Refresher / background on OCaml
– “object language” vs. “meta language”

– Build a simple interpreter

• Next week:
– Diving into x86 Assembly programming

Short-term Plan

OCaml for Compiler Hackers

• 1971: Robin Milner starts the LCF Project at Stanford
– “logic of computable functions”

• 1973: At Edinburgh, Milner implemented his
theorem prover and dubbed it “Meta Language” – ML

• 1984: ML escaped into the wild and became
“Standard ML”

– SML ‘97 newest version of the standard
– There is a whole family of SML compilers:

• SML/NJ – developed at AT&T Bell Labs
• MLton – whole program, optimizing compiler
• Poly/ML
• Moscow ML
• ML Kit compiler
• MLj – SML to Java bytecode compiler

• ML 2000: failed revised standardization
• sML: successor ML – discussed intermittently
• 2014: sml-family.org + definition on GitHub

ML’s History

• The Formel project at the Institut National de Rechereche en
Informatique et en Automatique (INRIA)

• 1987: Guy Cousineau re-implemented a variant of ML
– Implementation targeted the

“Categorical Abstract Machine” (CAM)
– As a pun, “CAM-ML” became “CAML”

• 1991: Xavier Leroy and Damien Doligez wrote Caml-light
– Compiled CAML to a virtual machine with simple bytecode (much faster!)

• 1996: Xavier Leroy, Jérôme Vouillon, and Didier Rémy
– Add an object system to create OCaml
– Add native code compilation

• Many updates, extensions, since…
• 2005: Microsoft’s F# language is a descendent of OCaml
• 2013: ocaml.org

OCaml’s History

• ocaml – the top-level interactive loop
• ocamlc – the bytecode compiler
• ocamlopt – the native code compiler
• ocamldep – the dependency analyser
• ocamldoc – the documentation generator
• ocamllex – the lexer generator
• ocamlyacc – the parser generator
• ocamlbuild – a compilation manager

• menhir – a more modern parser generator
• dune – a more compilation manager (build tool)
• utop – a more fully-featured interactive top-level

• opam – package manager

OCaml Toolchain

• Functional & (Mostly) “Pure”
– Programs manipulate values rather than issue commands
– Functions are first-class entities
– Results of computation can be “named” using let
– Has relatively few “side effects” (imperative updates to memory)

• Strongly & Statically typed
– Compiler type-checks every expression of the program, issues errors if it

can’t prove that the program is type safe
– Good support for type inference & generic (polymorphic) types
– Rich user-defined “algebraic data types” with pervasive use of pattern matching
– Very strong and flexible module system for constructing large projects

Distinguishing Characteristics

Example: Imperative BST
*NQFSBUJWF #45

ìāÇ� Ù Z ²¸{� �
j .¸{� ¸� É ¥ ² ì e Ù Z Ü � � e Ù Z ì Ü � � e Ù Z ì Ü � � Ê
j *�Z�

Z²{ Ù Z ì Ü � � � É Ù Z ²¸{� Ê Ü � �
¬ � ì ¥ ² ß � Ü ì «�ā þZ ¬÷� ì Ü � � �

¬ � ì q ÷ Ü Ü � ² ì � Ü � � ì Ü � � ¥ ²
¬ � ì q¸²ì ¥²÷� � Ü � � ì Ü ÷ � ¥ ²
ÿ£ ¥ ¬� � q¸²ì ¥²÷� {¸

¯Zìq£ � É � q ÷ Ü Ü � ² ì Ê ÿ¥ì£
j *�Z� −�

É � q ÷ Ü Ü � ² ì Ê w � .¸{� É «�ā x Ü � � þZ¬÷� x Ü � � *�Z� x Ü � � *�Z� Ê
j .¸{� É « x þ x ¬ � � ì x Ü ¥ � £ ì Ê −�

¥ � « � «�ā ì£�² h��¥²
þ w � þZ ¬÷� â
q¸²ì ¥²÷� w � � Z ¬ ß � â

�²{ � ¬ ß � ¥ � « «�ā ì£�²
q ÷ Ü Ü � ² ì w � ¬ � � ì

� ¬ ß �
q ÷ Ü Ü � ² ì w � Ü ¥ � £ ì

{¸²�

Example: Functional BST
'VODUJPOBM #45

ìāÇ� Ù Z ì Ü � � �
j .¸{� ¸� É ¥ ² ì e Ù Z e Ù Z ì Ü � � e Ù Z ì Ü � � Ê
j *�Z�

¬ � ì Ü�q ¥ ² ß � Ü ì «�ā þZ ¬÷� ì Ü � � �
¯Zìq£ ì Ü � � ÿ¥ì£
j *�Z� −� .¸{� É «�ā x þZ¬÷� x *�Z� x *�Z� Ê
j .¸{� É « x þ x ¬ � � ì x Ü ¥ � £ ì Ê −�

¥ � « � «�ā ì£�²
.¸{� É « x þZ¬÷� x ¬ � � ì Ü ¥ � £ ì Ê

� ¬ ß � ¥ � « «�ā ì£�²
.¸{� É « x þ x ¥ ² ß � Ü ì «�ā þZ ¬÷� ¬ � � ì x Ü ¥ � £ ì Ê

� ¬ ß �
.¸{� É « x þ x ¬ � � ì x ¥ ² ß � Ü ì «�ā þZ ¬÷� Ü ¥ � £ ì Ê

• Types:
– int, bool, int32, int64, char, string, built-in lists, tuples, records, functions

• Concepts:
– Pattern matching
– Recursive functions over algebraic (i.e. tree-structured) datatypes

• Libraries:
– Int32, Int64, List, Printf, Format

Most Important OCaml Features for PLDI

• How to represent programs as data structures.

• How to write programs that process programs.

Interpreters

• Consider this implementation of factorial in a hypothetical programming
language that we’ll call “SIMPLE”
 (Simple IMperative Programming LanguagE):

• We need to describe the constructs of this SIMPLE
– Syntax: which sequences of characters count as a legal “program”?
– Semantics: what is the meaning (behavior) of a legal “program”?

Everyone’s Favorite Function

 X = 6;
 ANS = 1;
 whileNZ (x) {
 ANS = ANS * X;
 X = X + -1;
 }

Today’s example:
 SIMPLE interpreter written in OCaml

Course project:
 OAT ⇒ LLVM ⇒ x86asm compiler written in OCaml

Clang compiler:
 C/C++ ⇒ LLVM ⇒ x86asm compiler written in C++

Metacircular interpreter:
 lisp interpreter written in lisp

”Object” vs. “Meta” language

Object language:
the language (syntax / semantics)
being described or manipulated

Metalanguage:
the language (syntax / semantics) used
to describe some object language

Grammar for a Simple Language

<exp> ::=
 | <X>
 | <exp> + <exp>
 | <exp> * <exp>
 | <exp> < <exp>
 | <integer constant>
 | (<exp>)

<cmd> ::=
 | skip
 | <X> = <exp>
 | ifNZ <exp> { <cmd> } else { <cmd> }
 | whileNZ <exp> { <cmd> }
 | <cmd>; <cmd>

BNF grammars are
themselves domain-specific
metalanguages for describing
the syntax of other languages…

• Concrete syntax (grammar) for the Simple language:
– Written in “Backus-Naur form”
– <exp> and <cmd> are nonterminals
– ‘::=‘ , ‘|’ , and <…> symbols are part of the metalanguage
– keywords, like ‘skip’ and ‘ifNZ’ and symbols, like ‘{‘ and ‘+’

are part of the object language

• Need to represent the abstract syntax
(i.e. hide the irrelevant of the concrete syntax)

• Implement the operational semantics
(i.e. define the behavior, or meaning, of the program)

Demo: Interpreters in OCaml

• https://github.com/ysc4230/week-01-simple

• Interpreting expressions

• Translating Simple programs to OCaml programs

https://github.com/ysc3208/week-01-simple

• Basics X86 Assembly

• C memory layout

• Implementing calls and returns via call stacks

Next Week

