YSC4230: Programming Language
Design and Implementation

[lya Sergey
ilya.sergey @yale-nus.edu.sg
ilyasergey.net/YSC4230/

mailto:ilya.sergey@yale-nus.edu.sg

Interpreters and Compilers

https://www.youtube.com/watch?v= C5AHaSImOA

(From Episode 6 of the classic 1983 television series, Bits and Bytes)

https://www.youtube.com/watch?v=_C5AHaS1mOA

Week 1: Introduction

Why PLDI?

* You will learn:
— How programs we write end up being executed
— Practical applications of Programming Language theory
— Lexing/Parsing/Interpreters

— How high-level languages are implemented in machine language

— (A subset of) Intel x86 architecture
— More about common compilation tools like GCC and LLVM

— How to better understand program code

— A little about programming language semantics & types (math behind programs)
— Advanced functional programming in OCaml (yay!)
— How to manipulate complex data structures

— How to be a better programmer

* Expect this to be a very challenging, implementation-oriented course (duh!)

— Programming projects can take tens of hours per week...

Administrivia

Instructor: [lya Sergey
Lectures (F2F): Wednesdays, 9am-12pm,
Elm Common Lounge

Office hours: Mondays, 3:30pm-5:00pm (please, email me upfront)
#RC3-01-03E, Cendana

E-mail: ilya.sergey @yale-nus.edu.sg
Web site: https://ilyasergey.net/YSC4230
GitHub: https://github.com/ysc4230

Please, email me your GitHub name to access the code!

mailto:ilya.sergey@yale-nus.edu.sg
https://ilyasergey.net/YSC4230
https://github.com/ysc4230

Course Policies

Prerequisites: YSC1212 and YSC2229

— Significant programming experience
— Familiarity with data Structures
— HWI1 will refresh your knowledge of OCaml

Grading:
* 85%: coding projects: Compiler

— Groups of 2 students (except the 1st one)
— Implemented in OCaml

e 10%: paper-based research project (individual)
— Writing a short review on a state-of-the-art paper in PLDI

* Lecture attendance is crucial (5% of the final grade)
— Active participation (asking questions, etc.) is encouraged

Homework Projects

e Six homework assignments (each graded out of 100 points)
— HW1: OCaml Programming
— HW2: X86lite interpreter
— HW3: LLVMlite compiler
— HWH4: Lexing, Parsing, simple compilation
— HWS5: Higher-level Features
— HW6: Analysis and Optimisations

* Goal: build a complete compiler from a high-level, type-safe language to x86 assembly.

General Advice

* Morning class: most of us are sleepy at 9am.
Try to make class livelier by asking questions and participating in discussions!

Homework Policies

Homework (except HW1) should be done individually or in pairs

Late projects:
— up to 24 hours late: 10 point penalty
— up to 48 hours late: 20 point penalty

— after 48 hours: not accepted (sorry)

Submission policy:
— Projects that don’t compile will get no credit

— Partial credit will be awarded according to the guidelines in the project description

Fair work-split policy:
— In group projects it is expected each member to contribute non-trivial amount of code
(not comments, blank lines or trivial code permutations);

— I will use GitHub contribution tracking for this; please, make sure your email is properly
configure with GitHub so this accounting would work;

— “Freeloaders” will be penalised at my discretion.

Academic Integrity

“low level” and “high level” discussions across groups are fine
— “Low level”: “how do you debug your LLVM output?”, “what is the meaning of this x86 operation?”

— “High level”: “What is a lattice in a data flow analysis?”, drawing boxes on a whiteboard.

“mid level” discussions / code sharing between teams are not permitted

— “Mid-level”: “how does your type checker implementation work on lambdas?”
Adopting/translating code parts from the internet is not permitted (I will know)
General principle: When in doubt, ask the instructor!

Penalties for cheating:
— First strike: O points to the whole team for the homework

— Second strike: F for the module, case is passed to the Academic Integrity Committee

Getting Help

» Office Hours (#RC3-01-03E, Cendana):
Mondays 15:30-17:00 (preferred)
Wednesdays 17:15-18:30
Please, email me upfront!

- E-mail policy: questions about homework assignments sent less than
24 hours before submission deadline won’t be answered.

» Exception: bug reports.

11

Peer Tutor

tram.hoang@u.yale-nus.edu.sg

Tram Hoang

TBA

e Office Hours and Location

Resources

modern
compiler
implementation

e Course textbook: (recommended, not required) Gl

— Modern compiler implementation in ML (Appel)

* Additional compilers books:

Compilers

andre. . appel Principles, Techniques, & Tools

— Compilers — Principles, Techniques & Tools

: B ";*; Second Edition
(Aho, Lam, Sethi, Ullman) CQ,,'L‘Q'!EES 3G ,_
and Tools -

* a.k.a. “The Dragon Book”

s

v

— Advanced Compiler Design & Implementation (Muchnick) i

e About Ocaml: .

Alfred V. Aho 3 4
Rd\'i Scthi : :

— Real World Ocaml LS efrey . Ukman
(Minsky, Madhavapeddy, Hickey) “
* realworldocaml.org (\]|

Real WOrld

— Introduction to Objective Caml (Hickey)

Yaron Minsky, Anil Madhavapeddy
& Jason Hickey

OCaml, again!

 OCaml is a dialect of ML — “Meta Language”
— It was designed to enable easy manipulation abstract syntax trees

— Type-safe, mostly pure, functional language with support for polymorphic
(generic) algebraic datatypes, modules, and mutable state

— The OCaml compiler itself is well engineered
* you can study its source!

— It is the right tool for this job

e T
v

— First two projects will help you get up to speed programming

e Forgot about OCaml after YSC2229?

— See “Introduction to Objective Caml” by Jason Hickey
* book available on the module web page, referred to in HW1

HW1: Hellocaml

* Homework 1 is available on Canvas
— Individual project — no groups (the only in this module)
— Due: Wednesday, 25 August 2021 at 2:00am
— Topic: OCaml programming, an introduction to basic interpreters

— Those who took YSC1212 with Prof. Danvy will find it very familiar

e Recommended software:

— VSCode + OCaml extension
— See the prerequisites page for the full setup

Any questions?

What is a Compiler, formally?

What is a Compiler?

* A compiler is a program that translates from one programming language to another.

* Typically: high-level source code to low-level machine code (object code)

— Not always: Source-to-source translators, Java bytecode compiler, GWT Java = Javascript

High-level Code

4

Low-level Code

Historical Aside

This is an old problem!
Until the 1950’s: computers were programmed in assembly.

* Assembly is a textual representation of machine codes

1951—1952: Grace Hopper

— developed the A-O system (Arithmetic Language version 0)
for the UNIVAC I

— She later contributed significantly to the design of COBOL

1957: FORTRAN compiler built at IBM
— Team led by John Backus

1960’s: development of the first
bootstrapping compiler for LISP

1980s: ML / LCF
1984: Standard ML
1987: Caml
1991: Caml Light

1995: Caml Special Light
1996: Objective Caml
Today: thousands of languages (most little used) [2005: F# (Microsoft)

2015: Reason ML

See https://en.wikipedia.org/wiki/Tombstone diagram

1970’s: language/compiler design blossomed

— Some better designed than others...

https://en.wikipedia.org/wiki/Tombstone_diagram

Source Code

* Optimized for human readability
— Expressive: matches human ideas of grammar / syntax / meaning
— Redundant: more information than needed (why?)

— Abstract: exact computation on CPU possibly not fully determined by code
 Example C source:

#include <stdio.h>

int factorial(int n) {
int acc = 1;
while (n > 0) {
acC = accC * n;
n=n-1;
J

return acg,

}

int main (int argc, char *argv[]) {
printf("factorial (6) = %d\n", factorial(6));
}

_factorial:
BB#0:
pushl
movl
subl
movl
movl
movl
LBBO 1:
cmpl
jle
BB#2:
movl
imull
movl
movl

subl

movl

jmp
LBBO 3:

movl

addl

popl
retl

%ebp

%esp, Y%ebp

$8, %esp

8 (%ebp), Yoeax
%eax, -4 (%ebp)
$1, -8(%ebp)

$0, -4 (%ebp)
LBBO 3

-8 (%ebp), %eax
-4(%ebp), %eax
%eax, -8 (%ebp)
-4(%ebp), %eax
$1, %eax

%eax, -4 (%ebp)
LBBO 1

-8 (%ebp), %eax
$8, %esp
%ebp

LLow-Level Code

* Optimized for Hardware
— Mimics the logic of a particular processor (CPU): x86, Arm
— Machine code hard for people to read
— Redundancy, ambiguity reduced
— Abstractions & information about intent is lost

* Assembly language

— strong correspondence between the instructions in the
language and the architecture's machine code instructions

— text representation of the machine language

— Etymology: internal instructions of a computer are
“assembled” into the actual form used by the machine

* Figure at left shows (unoptimised) 32-bit code for
the factorial function written in x86 assembly

How to translate?

e Source code — Machine code mismatch

* Some languages are farther from machine code than others:
— Consider: C, C++, Java, Lisp, ML, Haskell, R, Python, JavaScript

* Goals of translation:
— Source level expressiveness for the task
— Best performance for the concrete computation
— Reasonable translation efficiency (< O(n3))
— Maintainable code

— Correctness!

Correct Compilation

* Programming languages describe computation precisely...
— therefore, translation can be precisely described

— a compiler must be correct with respect to the source and target language semantics.

* Correctness is important!
— Broken compilers generate broken code.
— Hard to debug source programs if the compiler is incorrect.

— Failure has dire consequences for development cost, security, etc.

* This course: some techniques for building correct compilers

— Finding and Understanding Bugs in C Compilers,
Yang et al. PLDI 2011

— There is much ongoing research about proving compilers correct.
(search for CompCert, Verified Software Toolchain, or Vellvm)

Specifying Compilers

Program in C

Finclude <stdio.h>

define IN 1 /# inside a word =/
define OUT 0 /# outside a word »/

main()

{

int ¢, nl, nw, nc, state;

state = OUT;
nl = nw = nc = 0;
while ((c = getchar()) != EOF) {
++NC;
if (¢ == ’‘\n’)
++nl;
if (c ==’ "’ || ¢ == ’\n’ 1|
state = OUT;
else if (state == OUT) {
state = IN;
+4+NW;
}

}
printf("%¥d %d %d\n", nl, nw, nc);

/# count lines, words, and characters in input =/|

c == ’\t’)

compile

Program in x86 Assembly

792415C0
792415C1
792415C3
792415C6
792415C8
792415CB
792415CD
792415CF
792415D2
792415D4
792415D7
792415DA
792415DC

55

89E>S
8B45
DB28
8B4D
DB29
DEC1
8B55
DB3A
DB68
DB69
DEC1
DB7A

08

10

OA
OA

OA

push ebp

mov ebp, esp

mov eax, [ebp+0x08]
fld tword [eax]

mov ecx, [ebp+0x0C]
fld tword [ecx]
faddp

mov edx, [ebp+0x10]
fstp tword [edx]

fld tword [eax+0x0A]
fld tword [ecx+0x0A]
faddp

fstp tword [edx+0x0A]
pop ebp

ret Ox000C

ffffffff
/; /‘/’{,,,,.r/,'lff ffff
it Lenreereet

§id T T

Program P in C Program compile(P) in x86 Assembly

nclude <s o.n>
define IN 1 /% inside a word =/ 4 792415¢0 >3 push ebp
define OUT 0 /% outside a word »/ l 792415C1 89ES mov ebp’ €sp
/+ count lines, words, and characters in input #/ CO mpl e f92435¢3 BE4S 08 moV eax, [ebp+0x08]
Laciats ' ’ 792415C6 DB28 f1d tword [eax]
{ 792415C8 884D 0OC mov ecx, [ebp+0x0C]
108 S Why B 10, WEREES 792415CB DB29 f1d tword [ecx]
state = OUT; 792415CD DEC1 faddp
hily e = catiucll] s moxl | 792415CF 8855 10 mov edx, [ebp+0x10]
++nc; 792415D2 DB3A fstp tword [edx]
i 792415D4 DB68 OA f1d tword [eax+0x0A]
if (c ==’ * il ¢ == "\n’ |} ¢ == "\t’) 79241507 DB69 0A fld tword [ecx+0x0A]
elseszzt?s:azgris ouT) { 792415DA DEC1 faddp
state = IN; 792415DC DB7A OA fstp tword [edx+0x0A]
g el 792415DF 5D pop ebp
} 792415E0 Cc2 0cC00 ret 0x000C
printf("%d %d %d\n", nl, nw, nc);
)

interpret-as-C interpret-as-x86

(Result P input) = Re) = @X% — Resultcompile(P), input)

4 go 06 00
’//I’/'I’I/f.'/f.’.’!f/ff :
peed 4L

| o SIGARORE e

Compiler Specification:

For any program P, and any input,
the result of interpreting P with input in C is the same as
the result of executing compilation of P with input in x86 Assembly.

or, equivalently

Correctness Theorem:

YV B input, interpretc(P, input) = executexge(compile(P), input)

Idea: Translate in Steps

 Compile via a series of program representations

* Intermediate representations are optimised for program manipulation of various kinds:
— Semantic analysis: type checking, error checking, etc.

— Optimisation: dead-code elimination, common subexpression elimination, function inlining,
register allocation, etc.

— Code generation: instruction selection

* Representations are more machine specific, less language specific as translation proceeds

Simplified Compiler Pipeline

Source Code

(Character stream)
if (b==0)a=0;

Front End

(machine independent)

Token Stream

Abstract Syntax Tree

Middle End

compiler dependent
Intermediate Code (& 1%)

Back End

Assembly Code (machine dependent)

CMP ECX, O
SETBZ EAX

Typical Compiler Stages

token stream

abstract syntax

abstract syntax
annotated abstract syntax
intermediate code
control-flow graph

interference graph

A A

assembly

l—Y_l

Compiler Passes Representations of the program

* Optimisations may be done at many of these stages
* Different source language features may require more/different stages

* Assembly code is not the end of the story (processors may optimise, too)

Compilation and Execution

Source code foo.c
gcc =S5
Assembly Code foo.s
as
Object Code foo.o
Library code 1d
Fully-resolved machine Code foo

_ (Usually: gcc -o foo foo.c)

Executable image

Compiler Demo

https://github.com/ysc4230/week-01-simple-2021

See factorial.c in the project root

(use hexdump to see binary files)

https://github.com/ysc4230/week-01-simple-2021

Short-term Plan

* Rest of today:
— Refresher / background on OCaml

— “object language” vs. “meta language”

— Build a simple interpreter

e Next week:

— Diving into x86 Assembly programming

OCaml for Compiler Hackers

ML's History

* 1971: Robin Milner starts the LCF Project at Stanford
— “logic of computable functions”

 1973: At Edinburgh, Milner implemented his
theorem prover and dubbed it “Meta Language” — ML

e 1984: ML escaped into the wild and became
“Standard ML”

— SML ‘97 newest version of the standard

— There is a whole family of SML compilers:
* SML/N]J - developed at AT&T Bell Labs
* MLton - whole program, optimizing compiler
e Poly/ML
* Moscow ML
* ML Kit compiler

* MLj - SML to Java bytecode compiler
e ML 2000: failed revised standardization

* sML: successor ML - discussed intermittently

e 2014: sml-family.org + definition on GitHub

OCaml’s History

. . . i
The Formel project at the Institut National de Rechereche en oG,y

COMPILER

Informatique et en Automatique (INRIA)

1987: Guy Cousineau re-implemented a variant of ML

— Implementation targeted the ,'_RE\“ mE
“Categorical Abstract Machine” (CAM) '

— As a pun, “CAM-ML’ became “CAML’
1991: Xavier Leroy and Damien Doligez wrote Caml-light

MWL NI .“!
Nuaceo gravemente alla salute

— Compiled CAML to a virtual machine with simple bytecode (much faster!)

1996: Xavier Leroy, Jérome Vouillon, and Didier Rémy
— Add an object system to create OCaml

— Add native code compilation

Many updates, extensions, since...

2005: Microsoft’s F# language is a descendent of OCaml
2013: ocaml.org

OCaml Toolchain

ocaml — the top-level interactive loop

ocamlc — the bytecode compiler

ocamlopt — the native code compiler

ocamldep — the dependency analyser

ocamldoc — the documentation generator

ocamllex — the lexer generator

ocamlyacc — the parser generator

ocamlbuild — a compilation manager

menhir — a more modern parser generator

dune — a more compilation manager (build tool)
utop — a more fully-featured interactive top-level

opam — package manager

Distinguishing Characteristics

* Functional & (Mostly) “Pure”
— Programs manipulate values rather than issue commands
— Functions are first-class entities
— Results of computation can be “named” using let

— Has relatively few “side effects” (imperative updates to memory)

» Strongly & Statically typed

— Compiler type-checks every expression of the program, issues errors if it
can’t prove that the program is type safe

— Good support for type inference & generic (polymorphic) types
— Rich user-defined “algebraic data types” with pervasive use of pattern matching
— Very strong and flexible module system for constructing large projects

Example: Imperative BST

type 'a node =
| Node of (int * "a ref ™ 'a tree
| Leaf
and 'a tree = ('a node) ref
let insert key value tree =
let current = ref tree in
let continue = ref true in
while !continue do
match (! current) with
| Leaf —>
(!current) := Node (key, ref value, ref Leaf, ref Leaf)
| Node (k, v, left, right) —>
if k = key then begin

*

‘a tree)

v := value;
continue := false;
end else if k < key then
current := left
else
current := right

done

Example: Functional BST

type 'a tree =
| Node of (int * 'a ™ "a tree * ’'a tree)
| Leaf
let rec insert key value tree =
match tree with
| Leaf —> Node (key, value, Leaf, Leaf)
| Node (k, v, left, right) —>
if k = key then
Node (k, value, left right)
else if k < key then
Node (k, v, insert key value left, right)
else
Node (k, v, left, insert key value right)

Most Important OCaml Features for PLDI

* Types:

— int, bool, int32, int64, char, string, built-in lists, tuples, records, functions

* Concepts:
— Pattern matching

— Recursive functions over algebraic (i.e. tree-structured) datatypes

e |.ibraries:
— Int32, Int64, List, Printf, Format

Interpreters

 How to represent programs as data structures.

* How to write programs that process programs.

Olivier Danvy

Science (Computer Science)

Professor

Email: danvy@yale-nus.edu.sg

VIEW CURRICULUM VITAE

BIO RESEARCH PUBLICATIONS TEACHING MODULES

Prof Danvy is interested in all aspects of programming languages, from
their logic and semantics to their implementation, including programming,
transforming programs, program transformations, and reasoning about
programs and about program transformations (forone man’s program is
another program's data). As a Scheme programmr:h_e |s'f|I|r |t"
parentheses and he is not afraid to use them. Also, for several years
now, he has become convinced that the Coq Proof Assistant is the
greatest thing since sliced bread and that it has the potential to
transcend Computer Science college education, so watch this space. He
IS also interested in scientific communication.

Everyone’s Favorite Function

* Consider this implementation of factorial in a hypothetical programming
language that we’ll call “SIMPLE”
(Simple IMperative Programming LanguagE):

X = 6;

ANS = 1;

whileNZ (x) {
ANS = ANS * X;
X=X+ -1

e We need to describe the constructs of this SIMPLE

— Syntax: which sequences of characters count as a legal “program”?

— Semantics: what is the meaning (behavior) of a legal “program”?

”Object” vs. “Meta” language

Object language:
the language (syntax / semantics)
being described or manipulated

Today’s example:
SIMPLE

Course project:
OAT = LLVM = x86asm

Clang compiler:
C/C++ = LLVM = x86asm

Metacircular interpreter:
lisp

Metalanguage:
the language (syntax / semantics) used
to describe some object language

interpreter written in OCaml

compiler written in OCaml

compiler written in C+ +

interpreter written in lisp

Grammar for a Simple Language

<exp> ::=

<X>

<exp> + <exp>
<exp> * <exp>
<exp> < <exp>
<integer constant >
(<exp>)

<cmd> ::=

skip

<X> = <exp>

ifNZ <exp> { <cmd> } else { <cmd> }
whileNZ <exp> { <cmd> }

<cmd>; <cmd>

BNF grammars are

themselves domain-specific
metalanguages for describing
the syntax of other languages...

* Concrete syntax (grammar) for the Simple language:
— Wiritten in “Backus-Naur form”

— <exp> and <cmd> are nonterminals

4
[2K J

— keyworda

4

)

4

’,and <...> symbols are part of the metalanguage

s, like ‘skip’ and ‘ifNZ’ and symbols, like ‘{“ and ‘+’

are part of the object language

* Need to represent the abstract syntax
(i.e. hide the irrelevant of the concrete syntax)

* Implement the operational semantics
(i.e. define the behavior, or meaning, of the program)

Demo: Interpreters in OCaml

* https://github.com/ysc4230/week-01-simple

* Interpreting expressions

* Translating Simple programs to OCaml programs

https://github.com/ysc3208/week-01-simple

Next Week

* Basics X86 Assembly
 C memory layout

 Implementing calls and returns via call stacks

