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Intermediate Representations



• We have seen a simple syntax-directed translation 
– Input syntax uniquely determines the output, no complex analysis or code transformation is done.  
– It works fine for simple languages. 

But… 
• The resulting code quality is poor. 
• Richer source language features are hard to encode 

– Structured data types, objects, first-class functions, etc. 
• It’s hard to optimize the resulting assembly code. 

– The representation is too concrete – e.g. it has committed to using certain registers and the stack 
– Only a fixed number of registers 
– Some instructions have restrictions on where the operands are located 

• Control-flow is not structured: 
– Arbitrary jumps from one code block to another 
– Implicit fall-through makes sequences of code non-modular 

(i.e. you can’t rearrange sequences of code easily) 
• Retargeting the compiler to a new architecture is hard. 

– Target assembly code is hard-wired into the translation

Why do something else?



• Abstract machine code: hides details of the target architecture  

• Allows machine independent code generation and optimization. 

Intermediate Representations (IR’s)

x86

Java 
Byte-
code

ArmOptimization

IRAST
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• Goal: get program closer to machine code without losing the 
information needed to do analysis and optimizations 

• In practice, multiple intermediate representations 
might be used (for different purposes)

Multiple IR’s

AST MIR

Optimizations

HIR

Optimization Optimization



• Easy translation target (from the level above) 
• Easy to translate (to the level below) 
• Narrow interface 

– Fewer constructs means simpler phases/optimizations 

• Example: Source language might have “while”, “for”, and “foreach” loops  
(and maybe more variants) 

– IR might have only “while” loops and sequencing 
– Translation eliminates “for” and “foreach” 

 
 
 

– Here the notation ⟦cmd⟧ denotes the “translation” or “compilation” of the command cmd.  

What makes a good IR?

⟦for(pre; cond; post) {body}⟧ 
 =  
   ⟦pre; while(cond) {body;post}⟧



• High-level IR’s   
– Abstract syntax + new node types not generated by the parser 

• e.g. Type checking information or disambiguated syntax nodes 
– Typically preserves the high-level language constructs 

• Structured control flow, variable names, methods, functions, etc. 
• May do some simplification (e.g. convert for to while) 

– Allows high-level optimizations based on program structure 
• e.g. inlining “small” functions, reuse of constants, etc. 

– Useful for semantic analyses like type checking 

• Low-level IR’s 
– Machine dependent assembly code + extra pseudo-instructions 

• e.g. a pseudo instruction for interfacing with garbage collector or memory allocator (parts of the language runtime 
system) 

• e.g. (on x86) a imulq instruction that doesn’t restrict register usage 
– Source structure of the program is lost: 

• Translation to assembly code is straightforward  
– Allows low-level optimizations based on target architecture 

• e.g. register allocation, instruction selection, memory layout, etc. 

• What’s in between?

IR’s at the extreme



• Intermediate between AST (abstract syntax) and assembly 
• May have unstructured jumps, abstract registers, or memory locations 
• Convenient for translation to high-quality machine code 

– Example: all intermediate values are named to facilitate optimizations that attempt to minimize stack/register usage

Mid-level IR’s: Many Varieties

– Triples:    OP a b  
• Useful for instruction selection on X86 via “graph tiling” (a way to better utilise registers) 

– Quadruples:  a = b OP c      (RISC-like “three address form”) 
– SSA: variant of quadruples where each variable is assigned exactly once 

• Easy dataflow analysis for optimization 
• e.g. LLVM: industrial-strength IR, based on SSA 

– Stack-based: 
• Easy to generate 
• e.g. Java Bytecode, UCODE

• Many examples:



• Develop an IR in detail… starting from the very basic. 

• Start: a (very) simple intermediate representation for the arithmetic language     
– Very high level 
– No control flow  

• Goal: A simple subset of the LLVM IR 
– LLVM = “Low-level Virtual Machine” 
– Used in HW3+ 

• Add features needed to compile rich source languages

Growing an IR



Simple let-based IR



• Fundamental problem:  
– Compiling complex & nested expression forms to simple operations. 

 
 
 
 
 
 
 
 
 
 
 

• Idea: name intermediate values, make order of evaluation explicit. 
– No nested operations.

Eliminating Nested Expressions

((1 + X4) + (3 + (X1 * 5)))Source

Add(Add(Const 1, Var X4),  
    Add(Const 3, Mul(Var X1,  
                     Const 5)))

AST

?IR



• Given this: 
 
 

• Translate to this desired SLL form: 
let tmp0 = add 1L varX4 in                                                                                                                                   
let tmp1 = mul varX1 5L in                                                                                                                                   
let tmp2 = add 3L tmp1 in                                                                                                                                  
let tmp3 = add tmp0 tmp2 in                                                                                                                                       
tmp3  
 

• Translation makes the order of evaluation explicit. 
• Names intermediate values 
• Note: introduced temporaries are never modified

Translation to SLL

Add(Add(Const 1, Var X4),  
    Add(Const 3, Mul(Var X1,  
                     Const 5)))



• IR1: Expressions 
– simple arithmetic expressions, immutable global variables 

• IR2: Commands 
– global mutable variables 
– commands for update and sequencing 

• IR3: Local control flow  
– conditional commands & while loops 
– basic blocks

Intermediate Representations



Demo: IR1 and IR2

• https://github.com/ysc4230/week-03-intermediate-2021 

• Definitions: ir1.ml, ir2.ml  

• Using IRs: ir_by_hand.ml  
 
 

https://github.com/ysc4230/week-03-intermediate-2021


• A sequence of instructions that is always executed starting at the first instruction 
and always exits at the last instruction. 

– Starts with a label that names the entry point of the basic block. 
– Ends with a control-flow instruction (e.g. branch or return) the “link” 
– Contains no other control-flow instructions 
– Contains no interior label used as a jump target 

• Basic blocks can be arranged into a control-flow graph 

– Nodes are basic blocks 
– There is a directed edge from node A to node B if the control flow instruction at the end 

of basic block A might jump to the label of basic block B. 

IR3: Basic Blocks



Demo: IR3

• https://github.com/ysc4230/week-03-intermediate-2021 

• Definitions: ir3.ml  
 

https://github.com/ysc4230/week-03-intermediate-2021


LLVM



• Open-Source Compiler Infrastructure 
– see llvm.org for full documentation 

• Created by Chris Lattner (advised by Vikram Adve) at UIUC 
– LLVM: An infrastructure for Multi-stage Optimization, 2002 
– LLVM: A Compilation Framework for Lifelong Program Analysis and Transformation, 2004 

• 2005: Adopted by Apple for XCode 3.1 
• Front ends: 

– llvm-gcc  (drop-in replacement for gcc) 
– Clang: C, objective C, C++ compiler supported by Apple 
– various languages: Swift, ADA, Scala, Haskell, … 

• Back ends: 
– x86 / Arm / Power / etc.

Low-Level Virtual Machine (LLVM)



LLVM Compiler Infrastructure

LLVM

frontends 
like 

'clang'

llc 
backend 
code gen  

jit

Optimisations/ 
Transformations

Typed SSA 
IR

Analysis

[Lattner et al.]



• LLVM offers a textual representation of its IR  
– files ending in .ll

Example LLVM Code

#include <stdio.h> 
#include <stdint.h> 

int64_t factorial(int64_t n) { 
  int64_t acc = 1; 
  while (n > 0) { 
    acc = acc * n; 
    n = n - 1; 
  } 
  return acc; 
}

factorial64.c

define @factorial(%n) { 
  %1 = alloca  
  %acc = alloca  
  store %n,  %1 
  store 1,  %acc 
  br label %start 

start: 
  %3 = load %1 
  %4 = icmp sgt %3, 0 
  br %4, label %then, label %else 

then: 
  %6 = load %acc 
  %7 = load %1 
  %8 = mul %6, %7 
  store %8, %acc 
  %9 = load %1 
  %10 = sub %9, 1 
  store %10, %1 
  br label %start 

else: 
  %12 = load %acc 
  ret %12 
}

factorial-pretty.ll



• Decorates values with type information 
  i64  
  i64*  
  i1 (boolean) 

• Permits numeric identifiers 

• Has alignment annotations  
(padding for some specified number of bytes) 

• Keeps track of  entry edges for each block: 
 preds = %5, %0

Real LLVM 
; Function Attrs: nounwind ssp 
define i64 @factorial(i64 %n) #0 { 
  %1 = alloca i64, align 8 
  %acc = alloca i64, align 8 
  store i64 %n, i64* %1, align 8 
  store i64 1, i64* %acc, align 8 
  br label %2 

; <label>:2                          ; preds = %5, %0 
  %3 = load i64* %1, align 8 
  %4 = icmp sgt i64 %3, 0 
  br i1 %4, label %5, label %11 

; <label>:5                          ; preds = %2 
  %6 = load i64* %acc, align 8 
  %7 = load i64* %1, align 8 
  %8 = mul nsw i64 %6, %7 
  store i64 %8, i64* %acc, align 8 
  %9 = load i64* %1, align 8 
  %10 = sub nsw i64 %9, 1 
  store i64 %10, i64* %1, align 8 
  br label %2 

; <label>:11                         ; preds = %2 
  %12 = load i64* %acc, align 8 
  ret i64 %12 
}

factorial.ll



%6 = load %acc
%7 = load %1
%8 = mul %6, %7
store %8, %acc
%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

then:

%12 = load %acc
ret %12

else:

Example Control-flow Graph

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

start:

define @factorial(%n) {

}

define @factorial(%n) { 
  %1 = alloca  
  %acc = alloca  
  store %n,  %1 
  store 1,  %acc 
  br label %start 

start: 
  %3 = load %1 
  %4 = icmp sgt %3, 0 
  br %4, label %then, label %else 

then: 
  %6 = load %acc 
  %7 = load %1 
  %8 = mul %6, %7 
  store %8, %acc 
  %9 = load %1 
  %10 = sub %9, 1 
  store %10, %1 
  br label %start 

else: 
  %12 = load %acc 
  ret %12 
}

%1 = alloca 
%acc = alloca 
store %n,  %1
store 1,  %acc
br label %start

entry:



• LLVM enforces (some of) the basic block invariants syntactically. 
• Representation in OCaml: 

 
 
 
 

• A control flow graph is represented as a list of labeled basic blocks with these invariants: 
– No two blocks have the same label 
– All terminators mention only labels that are defined among the set of basic blocks 
– There is a distinguished, unlabelled, entry block:

LL Basic Blocks and Control-Flow Graphs

type block = {
insns : (uid * insn) list;
term  : (uid * terminator)

}

type cfg = block * (lbl * block) list



• Several kinds of storage: 
– Local variables (or temporaries):    %uid
– Global declarations (e.g. for string constants):   @gid
– Abstract locations:  references to (stack-allocated) storage created by the alloca instruction 
– Heap-allocated structures created by external calls (e.g. to malloc) 

• Local variables: 
– Defined by the instructions of the form %uid = … 
– Must satisfy the single static assignment invariant 

• Each %uid appears on the left-hand side of an assignment only once in the entire control flow graph. 
– The value of a %uid remains unchanged throughout its lifetime 
– Analogous to “let %uid = e in …” in OCaml 

• Intended to be an abstract version of machine registers. 

• We’ll see later how to extend SSA to allow richer use of local variables 
– phi nodes

LL Storage Model: Locals



• The alloca instruction allocates stack space and returns a reference to it. 
– The returned reference is stored in local:  
      %ptr = alloca typ
– The amount of space allocated is determined by the type 

• The contents of the slot are accessed via the load and store instructions: 
 
 %acc = alloca i64 ; allocate a storage slot 
store i64 4230, i64* %acc.      ; store the integer value 4230  
%x = load i64, i64* %acc       ; load the value 4230 into %x 

• Gives an abstract version of stack slots

LL Storage Model: alloca



Structured Data



• Consider C-style structures like those below. 

• How do we represent Point and Rect values?

Compiling Structured Data

struct Point { int x; int y; };  

struct Rect  { struct Point ll, lr, ul, ur };  

struct Rect mk_square(struct Point ll, int len) {
  struct Rect square;
  square.ll = square.lr = square.ul = square.ur = ll;
  square.lr.x += len;
  square.ul.y += len;
  square.ur.x += len;
  square.ur.y += len;
  return square;
}



struct Point { int x; int y;}; 

• Store the data using two contiguous words of memory. 
• Represent a Point value p as the address of the first word. 

 

struct Rect  { struct Point ll, lr, ul, ur };
• Store the data using 8 contiguous words of memory. 

 
 

• Compiler needs to know the size of the struct at compile time to allocate the needed storage space. 
• Compiler needs to know the shape of the struct at compile time to index into the structure.

Representing Structs

x yp

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare



• Consider:  ⟦square.ul.y⟧ =  (x86.operand, x86.insns) 

• Assume that %rcx holds the base address of square  

• Calculate the offset relative to the base pointer of the data: 
– ul = sizeof(struct Point) + sizeof(struct Point)

– y   = sizeof(int) 

• So:    ⟦square.ul.y⟧ = (ans,  Movq 20(%rcx) ans)

Assembly-level Member Access

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare

struct Point { int x; int y; }; 

struct Rect  { struct Point ll, lr, ul, ur };



• How to lay out non-homogeneous structured data?

Padding & Alignment 

struct Example { 
  int x; 
  char a;
  char b; 
  int y; 
};

x a b

a y

a yb

32-bit boundaries

Padding

x

x

y

b

Not 32-bit  
aligned



When we do an assignment in C as in: 

struct Rect mk_square(struct Point ll, int elen) {
  struct Square res;
  res.lr = ll; 

... 

then we copy all of the elements out of the source and put them  
in the target.  Same as doing word-level operations: 

struct Rect mk_square(struct Point ll, int elen) {
  struct Square res;
  res.lr.x = ll.x;
  res.lr.y = ll.x;
  ... 

• For really large copies, the compiler uses something like memcpy 
(which is implemented using a loop in assembly).

Copy-in/Copy-out



• Similarly, when we call a procedure, we copy arguments in, and copy results out. 
– Caller sets aside extra space in its frame to store results that are bigger than will fit in %rax. 
– We do the same with scalar values such as integers or doubles. 

• Sometimes, this is termed "call-by-value". 
– This is bad terminology. 
– Copy-in/copy-out is more accurate. 

• Benefit: locality 
• Problem:  expensive for large records… 

• In C:  can opt to pass pointers to structs:  “call-by-reference” 

• Languages like Java and OCaml always pass non-word-sized objects by reference.

C Procedure Calls



• The caller passes in the address of the point and the address of the result (1 word each). 

• Note that returning references to stack-allocated data can cause problems. 
– This space might be reclaimed when foo() is done 
– Need to allocate storage in the heap…

Call-by-Reference
void mkSquare(struct Point *ll, int elen,
              struct Rect *res) {
  res->lr = res->ul = res->ur = res->ll = *ll;
  res->lr.x += elen;
  res->ur.x += elen; 
  res->ur.y += elen;
  res->ul.y += elen;
}

void foo() {
  struct Point origin = {0,0};
  struct Square unit_sq;
  mkSquare(&origin, 1, &unit_sq);
}



Working with Arrays



• Space is allocated on the stack for buf. 
– Note, without the ability to allocated stack space dynamically (C’s alloca function) 

need to know size of buf at compile time… 

• buf[i] is really just  
(base_of_array) + i * elt_size

Arrays
void foo() { void foo() {
  char buf[27];       char buf[27];

  buf[0] = 'a';          *(buf) = 'a';
  buf[1] = 'b';          *(buf+1) = 'b';
  ...          ...
  buf[25] = 'z';          *(buf+25) = 'z';
  buf[26] = 0;          *(buf+26) = 0;
}        }



• In C,  int M[4][3] yields an array with 4 rows and 3 columns. 
• Laid out in row-major order: 

 
 

• In Fortran, arrays are laid out in column major order.  
 
 

• In ML and Java, there are no multi-dimensional arrays:  
– (int array) array  is represented as an array of pointers to arrays of ints. 

• Why is knowing these memory layout strategies important?

Multi-Dimensional Arrays

M[0][0] M[0][1] M[0][2] M[1][0] M[1][1] M[1][2] M[2][0] …

M[0][0] M[1][0] M[2][0] M[3][0] M[0][1] M[1][1] M[2][1] …



• Safe languages (e.g. Java, C#, ML but not C, C++) check array indices to 
ensure that they’re in bounds. 

– Compiler generates code to test that the computed offset is legal 

• Needs to know the size of the array… where to store it? 
– One answer:  Store the size before the array contents. 

 
 
 

• Other possibilities: 
– Pascal: only permit statically known array sizes  (very unwieldy in practice) 
– What about multi-dimensional arrays?

Array Bounds Checks

Size=7 A[0] A[1] A[2] A[3] A[4] A[5] A[6]
arr



• Example: Assume %rax holds the base pointer (arr) and %ecx holds the array index i.  
To read a value from the array arr[i]: 
 
  movq -8(%rax) %rdx                          // load size into rdx 
  cmpq %rdx %rcx    //  compare index to bound 
  j l __ok      //  jump if  0 <= i < size 
  callq __err_oob            //  test failed, call the error handler 
__ok:   

movq (%rax, %rcx, 8) dest //  do the load from the array access 

• Clearly more expensive: adds move, comparison & jump 
– More memory traffic 
– Hardware can improve performance: executing instructions in parallel, branch prediction 

• These overheads are particularly bad in an inner loop 
• Compiler optimisations can help remove the overhead 

– e.g. In a for loop, if bound on index is known, only do the test once

Array Bounds Checks (Implementation)



• A string constant "foo" is represented as global data: 
   _string42: 102 111 111 0  

• C uses null-terminated strings 
• Strings are usually placed in the text segment so they are read only.   

– allows all copies of the same string to be shared. 

• Rookie mistake (in C): write to a string constant. 
 
 
 
Attempting to modify the string literal is undefined behaviour. 

• Instead, must allocate space on the heap:

C-style Strings

char *p = "foo”;
p[0] = 'b’;

char *p = (char *)malloc(4 * sizeof(char));
strncpy(p, “foo”, 4);   /* include the null byte */
p[0] = 'b’;



Tagged Datatypes



• In C: 

• In OCaml: 

• Associate an integer tag with each case: sun = 0, mon = 1, … 
– C lets programmers choose the tags 

• OCaml datatypes can also carry data: 

• Representation: a foo value is a pointer to a pair:  (tag, data) 
• Example: tag(Bar) = 0, tag(Baz) = 1 
                     ⟦let f = Bar(3)⟧ =  

                     ⟦let g = Baz(4, f)⟧ = 

C-style Enumerations / ML-style datatypes

0 3f

enum Day {sun, mon, tue, wed, thu, fri, sat} today;

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type foo = Bar of int | Baz of int * foo

1 4 fg



• Consider the C statement: 

switch (e) {
case sun: s1; break;
case mon: s2; break;
…
case sat: s3; break;

}  

• How to compile this? 
– What happens if some of the break statements are omitted?  

(Control falls through to the next branch.)

Switch Compilation



⟦switch(e) {case tag1: s1; case tag2 s2; …}⟧ = 

• Each $tag1…$tagN is just a constant int 
tag value. 

• Note: ⟦break;⟧ 
(within the switch branches) is: 
 
  br %merge  

 Cascading ifs and Jumps

%tag = ⟦e⟧;
br label %l1  

l1: %cmp1 = icmp eq %tag, $tag1  
br %cmp1 label %b1, label %l2

b1: ⟦s1⟧
br label %l2                   

l2: %cmp2 = icmp eq %tag, $tag2  
br %cmp2 label %b2, label %l3

b2: ⟦s2⟧
br label %l3

…
lN: %cmpN = icmp eq %tag, $tagN  

br %cmpN label %bN, label %merge
bN: ⟦sN⟧

br label %merge

merge: 



• Nested if-then-else works OK in practice if # of branches is small  
– (e.g. < 16 or so). 

• For more branches, use better data structures to organise the jumps: 
– Create a table of pairs (v1, branch_label) and loop through 
– Or, do binary search rather than linear search 
– Or, use a hash table rather than binary search 

• One common case: the tags are dense in some range  
[min…max] 

– Let N = max – min 
– Create a branch table  Branches[N] where Branches[i] = branch_label for tag i. 
– Compute tag = ⟦e⟧ and then do an indirect jump: J Branches[tag] 

• Common to use heuristics to combine these techniques.

Alternatives for Switch Compilation



• ML-style match statements are like C’s switch statements except: 
– Patterns can bind variables 
– Patterns can nest 

 
 

• Compilation strategy: 
– “Flatten” nested patterns into 

matches against one constructor 
at a time. 

– Compile the match against the 
tags of the datatype as for C-style switches. 

– Code for each branch additionally must  copy data from ⟦e⟧ to the variables bound in the patterns. 

• There are many opportunities for optimisations, many papers about “pattern-match compilation” 
– Many of these transformations can be done at the AST level  

ML-style Pattern Matching

match e with 
| Bar(z) -> e1  
| Baz(y, Bar(w)) -> e2
| _ -> e3

match e with 
| Bar(z) -> e1  
| Baz(y, tmp) -> 
     (match tmp with

| Bar(w) -> e2
| Baz(_, _) -> e3)



Datatypes in LLVM IR



• LLVM’s IR is uses types to describe the structure of data. 
 
 
 
 
 
 
 
 
 
 
 

• <#elts> is an integer constant >= 0 
• Structure types can be named at the top level: 

 

• Such structure types can be recursive

Structured Data in LLVM

t ::=  
void
i1 | i8 | i64 N-bit integers 
[<#elts> x t] arrays 
fty function types
{t1, t2, … , tn} structures 
t* pointers 
%Tident named (identified) type 

fty ::= Function Types 
 t (t1, .., tn)    return, argument types

%T1 = type {t1, t2, … , tn}



• A static array of 4230 integers:    [ 4230 x i64 ]  

• A two-dimensional array of integers: [ 3 x [ 4 x i64 ] ]  

• Structure for representing dynamically-allocated arrays with their length: 
     { i64 , [0 x i64] }

– There is no array-bounds check; the static type information is only used for calculating pointer offsets. 

• C-style linked lists (declared at the top level): 
    %Node = type { i64, %Node*}  

• Structs from the C program shown earlier: 
   %Rect = { %Point, %Point, %Point, %Point }  

%Point = { i64, i64 }

Example LL Types



• LLVM provides the getelementptr instruction to compute pointer values 
– Given a pointer and a “path” through the structured data pointed to by that pointer, 

getelementptr computes an address 
– This is the abstract analog of the X86 LEA (load effective address). It does not access memory. 
– It is a “type indexed” operation, since the size computations depend on the type 

 
 
 

• Example: access the x component of the first point of a rectangle: 
 
 

• The first is i32 0 a “step through” the pointer to, e.g., %square, with offset 0.

getelementptr

insn ::= …
|  getelementptr t* %val, t1 idx1, t2 idx2 ,… 

%tmp1 = getelementptr %Rect* %square, i32 0, i32 0
%tmp2 = getelementptr %Point* %tmp1, i32 0, i32 0

See “Why is the extra 0 index required?”: https://llvm.org/docs/GetElementPtr.html#why-is-the-extra-0-index-required

https://llvm.org/docs/GetElementPtr.html#why-is-the-extra-0-index-required


GEP Example*
struct RT {

int A;
int B[10][20];
int C;

}
struct ST {

struct RT X;
int Y;
struct RT Z;

}
int *foo(struct ST *s) {
  return &s[1].Z.B[5][13];
}

%RT = type { i32, [10 x [20 x i32]], i32 }
%ST = type { %RT, i32, %RT }
define i32* @foo(%ST* %s) {
entry:

%arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13
ret i32* %arrayidx

}

*adapted from the LLVM documentation: see http://llvm.org/docs/LangRef.html#getelementptr-instruction 

1. %s is a pointer to an (array of) %ST structs, 
suppose the pointer value is ADDR

2. Compute the index of the 1st element by 
adding size_ty(%ST).

3. Compute the index of the Z field by 
adding size_ty(%RT) + 
size_ty(i32) to skip past X and Y.

4. Compute the index of the B field by 
adding size_ty(i32) to skip past A.

5. Index into the 2d array.

Final answer:  ADDR + size_ty(%ST) + size_ty(%RT) + size_ty(i32)  
   + size_ty(i32) + 5*20*size_ty(i32) + 13*size_ty(i32)

http://llvm.org/docs/LangRef.html#getelementptr-instruction


• GEP never dereferences the address it’s calculating: 
– GEP only produces pointers by doing arithmetic 
– It doesn’t actually traverse the links of a data structure 

• To index into a deeply nested structure, one has to “follow the pointer” by 
loading from the computed pointer

getelementptr



1. Translate high level language types into an LLVM representation type. 
– For some languages (e.g. C) this process is straight forward 

• The translation simply uses platform-specific alignment and padding 
– For other languages, (e.g. OO languages) there might be a fairly complex 

elaboration. 
• e.g. for OCaml, arrays types might be translated to pointers to length-indexed 

structs. 
⟦int array⟧  =  { i32, [0 x i32]}* 

2. Translate accesses of the data into getelementptr operations: 
– e.g. for OCaml array size access: 

⟦length a⟧ =         
%1 = getelementptr {i32, [0 x i32]}* %a, i32 0, i32 0

Compiling Data Structures via LLVM



• What if the LLVM IR’s type system isn’t expressive enough? 
– e.g. if the source language has subtyping, perhaps due to inheritance 
– e.g. if the source language has polymorphic/generic types 

• LLVM IR provides a bitcast instruction 
– This is a form of (potentially) unsafe cast.  Misuse can cause serious bugs 

(segmentation faults, or silent memory corruption)

Type Casting

%rect2 = type { i64, i64 }          ; two-field record
%rect3 = type { i64, i64, i64 }     ; three-field record

define @foo() {
  %1 = alloca %rect3     ; allocate a three-field record
  %2 = bitcast %rect3* %1 to %rect2*    ; safe cast
  %3 = getelementptr %rect2* %2, i32 0, i32 1  ; allowed
  …
}



• Clone https://github.com/ysc3208/week-04-llvm-demo 

• Check struct.c and its LLVM representations

Demo: Compiling to LLVM

https://github.com/ysc3208/week-04-llvm-demo


• LLVMLite Specification 

• Overview of HW3 

• Lexical Analysis

Next Week


