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Intermediate Representations



• We have seen a simple syntax-directed translation

– Input syntax uniquely determines the output, no complex analysis or code transformation is done. 

– It works fine for simple languages. 

But…

• The resulting code quality is poor.

• Richer source language features are hard to encode


– Structured data types, objects, first-class functions, etc.

• It’s hard to optimize the resulting assembly code.


– The representation is too concrete – e.g. it has committed to using certain registers and the stack

– Only a fixed number of registers

– Some instructions have restrictions on where the operands are located


• Control-flow is not structured:

– Arbitrary jumps from one code block to another

– Implicit fall-through makes sequences of code non-modular 

(i.e. you can’t rearrange sequences of code easily)

• Retargeting the compiler to a new architecture is hard.


– Target assembly code is hard-wired into the translation

Why do something else?



• Abstract machine code: hides details of the target architecture  

• Allows machine independent code generation and optimization. 

Intermediate Representations (IR’s)

x86

Java 
Byte-
code

ArmOptimization

IRAST



x86

Java 
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• Goal: get program closer to machine code without losing the 
information needed to do analysis and optimizations 

• In practice, multiple intermediate representations 
might be used (for different purposes)

Multiple IR’s

AST MIR

Optimizations

HIR

Optimization Optimization



• Easy translation target (from the level above)

• Easy to translate (to the level below)

• Narrow interface


– Fewer constructs means simpler phases/optimizations 

• Example: Source language might have “while”, “for”, and “foreach” loops  
(and maybe more variants)


– IR might have only “while” loops and sequencing

– Translation eliminates “for” and “foreach” 

 
 
 

– Here the notation ⟦cmd⟧ denotes the “translation” or “compilation” of the command cmd.  

What makes a good IR?

⟦for(pre; cond; post) {body}⟧

 =  
   ⟦pre; while(cond) {body;post}⟧



• High-level IR’s  

– Abstract syntax + new node types not generated by the parser


• e.g. Type checking information or disambiguated syntax nodes

– Typically preserves the high-level language constructs


• Structured control flow, variable names, methods, functions, etc.

• May do some simplification (e.g. convert for to while)


– Allows high-level optimizations based on program structure

• e.g. inlining “small” functions, reuse of constants, etc.


– Useful for semantic analyses like type checking 

• Low-level IR’s

– Machine dependent assembly code + extra pseudo-instructions


• e.g. a pseudo instruction for interfacing with garbage collector or memory allocator (parts of the language runtime 
system)


• e.g. (on x86) a imulq instruction that doesn’t restrict register usage

– Source structure of the program is lost:


• Translation to assembly code is straightforward	 

– Allows low-level optimizations based on target architecture


• e.g. register allocation, instruction selection, memory layout, etc. 

• What’s in between?

IR’s at the extreme



• Intermediate between AST (abstract syntax) and assembly

• May have unstructured jumps, abstract registers, or memory locations

• Convenient for translation to high-quality machine code


– Example: all intermediate values are named to facilitate optimizations that attempt to minimize stack/register usage

Mid-level IR’s: Many Varieties

– Triples:    OP a b 

• Useful for instruction selection on X86 via “graph tiling” (a way to better utilise registers)


– Quadruples:  a = b OP c      (RISC-like “three address form”)

– SSA: variant of quadruples where each variable is assigned exactly once


• Easy dataflow analysis for optimization

• e.g. LLVM: industrial-strength IR, based on SSA


– Stack-based:

• Easy to generate

• e.g. Java Bytecode, UCODE

• Many examples:



• Develop an IR in detail… starting from the very basic. 

• Start: a (very) simple intermediate representation for the arithmetic language    

– Very high level

– No control flow 


• Goal: A simple subset of the LLVM IR

– LLVM = “Low-level Virtual Machine”

– Used in HW3+


• Add features needed to compile rich source languages

Growing an IR



Simple let-based IR



• Fundamental problem: 

– Compiling complex & nested expression forms to simple operations. 

 
 
 
 
 
 
 
 
 
 
 

• Idea: name intermediate values, make order of evaluation explicit.

– No nested operations.

Eliminating Nested Expressions

((1 + X4) + (3 + (X1 * 5)))Source

Add(Add(Const 1, Var X4),  
    Add(Const 3, Mul(Var X1,  
                     Const 5)))

AST

?IR



• Given this: 
 
 

• Translate to this desired SLL form:

let tmp0 = add 1L varX4 in                                                                                                                                   

let tmp1 = mul varX1 5L in                                                                                                                                   

let tmp2 = add 3L tmp1 in                                                                                                                                  

let tmp3 = add tmp0 tmp2 in                                                                                                                                       

tmp3  
 

• Translation makes the order of evaluation explicit.

• Names intermediate values

• Note: introduced temporaries are never modified

Translation to SLL

Add(Add(Const 1, Var X4),  
    Add(Const 3, Mul(Var X1,  
                     Const 5)))



• IR1: Expressions

– simple arithmetic expressions, immutable global variables


• IR2: Commands

– global mutable variables

– commands for update and sequencing


• IR3: Local control flow 

– conditional commands & while loops

– basic blocks

Intermediate Representations



Demo: IR1 and IR2

• https://github.com/ysc4230/week-03-intermediate-2021 

• Definitions: ir1.ml, ir2.ml  

• Using IRs: ir_by_hand.ml  
 
 

https://github.com/ysc4230/week-03-intermediate-2021


• A sequence of instructions that is always executed starting at the first instruction 
and always exits at the last instruction.


– Starts with a label that names the entry point of the basic block.

– Ends with a control-flow instruction (e.g. branch or return) the “link”

– Contains no other control-flow instructions

– Contains no interior label used as a jump target


• Basic blocks can be arranged into a control-flow graph


– Nodes are basic blocks

– There is a directed edge from node A to node B if the control flow instruction at the end 

of basic block A might jump to the label of basic block B. 

IR3: Basic Blocks



Demo: IR3

• https://github.com/ysc4230/week-03-intermediate-2021 

• Definitions: ir3.ml  
 

https://github.com/ysc4230/week-03-intermediate-2021


LLVM



• Open-Source Compiler Infrastructure

– see llvm.org for full documentation


• Created by Chris Lattner (advised by Vikram Adve) at UIUC

– LLVM: An infrastructure for Multi-stage Optimization, 2002

– LLVM: A Compilation Framework for Lifelong Program Analysis and Transformation, 2004


• 2005: Adopted by Apple for XCode 3.1

• Front ends:


– llvm-gcc  (drop-in replacement for gcc)

– Clang: C, objective C, C++ compiler supported by Apple

– various languages: Swift, ADA, Scala, Haskell, …


• Back ends:

– x86 / Arm / Power / etc.

Low-Level Virtual Machine (LLVM)



LLVM Compiler Infrastructure

LLVM

frontends

like


'clang'

llc

backend

code gen  

jit

Optimisations/

Transformations

Typed SSA

IR

Analysis

[Lattner et al.]



• LLVM offers a textual representation of its IR 

– files ending in .ll

Example LLVM Code

#include <stdio.h>

#include <stdint.h>


int64_t factorial(int64_t n) {

  int64_t acc = 1;

  while (n > 0) {

    acc = acc * n;

    n = n - 1;

  }

  return acc;

}

factorial64.c

define @factorial(%n) {

  %1 = alloca 

  %acc = alloca 

  store %n,  %1

  store 1,  %acc

  br label %start


start:

  %3 = load %1

  %4 = icmp sgt %3, 0

  br %4, label %then, label %else


then:

  %6 = load %acc

  %7 = load %1

  %8 = mul %6, %7

  store %8, %acc

  %9 = load %1

  %10 = sub %9, 1

  store %10, %1

  br label %start


else:

  %12 = load %acc

  ret %12

}

factorial-pretty.ll



• Decorates values with type information 
  i64  
  i64*  
  i1 (boolean) 

• Permits numeric identifiers 

• Has alignment annotations  
(padding for some specified number of bytes) 

• Keeps track of  entry edges for each block: 
 preds = %5, %0

Real LLVM 
; Function Attrs: nounwind ssp

define i64 @factorial(i64 %n) #0 {

  %1 = alloca i64, align 8

  %acc = alloca i64, align 8

  store i64 %n, i64* %1, align 8

  store i64 1, i64* %acc, align 8

  br label %2


; <label>:2                          ; preds = %5, %0

  %3 = load i64* %1, align 8

  %4 = icmp sgt i64 %3, 0

  br i1 %4, label %5, label %11


; <label>:5                          ; preds = %2

  %6 = load i64* %acc, align 8

  %7 = load i64* %1, align 8

  %8 = mul nsw i64 %6, %7

  store i64 %8, i64* %acc, align 8

  %9 = load i64* %1, align 8

  %10 = sub nsw i64 %9, 1

  store i64 %10, i64* %1, align 8

  br label %2


; <label>:11                         ; preds = %2

  %12 = load i64* %acc, align 8

  ret i64 %12

}

factorial.ll



%6 = load %acc

%7 = load %1
%8 = mul %6, %7
store %8, %acc

%9 = load %1
%10 = sub %9, 1
store %10, %1
br label %start

then:

%12 = load %acc

ret %12

else:

Example Control-flow Graph

%3 = load %1
%4 = icmp sgt %3, 0
br %4, label %then, label %else

start:

define @factorial(%n) {

}

define @factorial(%n) {

  %1 = alloca 

  %acc = alloca 

  store %n,  %1

  store 1,  %acc

  br label %start


start:

  %3 = load %1

  %4 = icmp sgt %3, 0

  br %4, label %then, label %else


then:

  %6 = load %acc

  %7 = load %1

  %8 = mul %6, %7

  store %8, %acc

  %9 = load %1

  %10 = sub %9, 1

  store %10, %1

  br label %start


else:

  %12 = load %acc

  ret %12

}

%1 = alloca 
%acc = alloca 
store %n,  %1
store 1,  %acc

br label %start

entry:



• LLVM enforces (some of) the basic block invariants syntactically.

• Representation in OCaml: 

 
 
 
 

• A control flow graph is represented as a list of labeled basic blocks with these invariants:

– No two blocks have the same label

– All terminators mention only labels that are defined among the set of basic blocks

– There is a distinguished, unlabelled, entry block:

LL Basic Blocks and Control-Flow Graphs

type block = {

insns : (uid * insn) list;

term  : (uid * terminator)


}

type cfg = block * (lbl * block) list



• Several kinds of storage:

– Local variables (or temporaries):    %uid

– Global declarations (e.g. for string constants):   @gid

– Abstract locations:  references to (stack-allocated) storage created by the alloca instruction

– Heap-allocated structures created by external calls (e.g. to malloc) 

• Local variables:

– Defined by the instructions of the form %uid = …

– Must satisfy the single static assignment invariant


• Each %uid appears on the left-hand side of an assignment only once in the entire control flow graph.

– The value of a %uid remains unchanged throughout its lifetime

– Analogous to “let %uid = e in …” in OCaml 

• Intended to be an abstract version of machine registers. 

• We’ll see later how to extend SSA to allow richer use of local variables

– phi nodes

LL Storage Model: Locals



• The alloca instruction allocates stack space and returns a reference to it.

– The returned reference is stored in local: 

      %ptr = alloca typ

– The amount of space allocated is determined by the type 

• The contents of the slot are accessed via the load and store instructions: 
 
	 %acc = alloca i64				 ; allocate a storage slot 
store i64 4230, i64* %acc.      	 ; store the integer value 4230  
%x = load i64, i64* %acc	       ; load the value 4230 into %x 

• Gives an abstract version of stack slots

LL Storage Model: alloca



Structured Data



• Consider C-style structures like those below. 

• How do we represent Point and Rect values?

Compiling Structured Data

struct Point { int x; int y; };  

struct Rect  { struct Point ll, lr, ul, ur };  

struct Rect mk_square(struct Point ll, int len) {

  struct Rect square;

  square.ll = square.lr = square.ul = square.ur = ll;

  square.lr.x += len;

  square.ul.y += len;

  square.ur.x += len;

  square.ur.y += len;

  return square;

}



struct Point { int x; int y;}; 

• Store the data using two contiguous words of memory.

• Represent a Point value p as the address of the first word. 

 

struct Rect  { struct Point ll, lr, ul, ur };

• Store the data using 8 contiguous words of memory. 

 
 

• Compiler needs to know the size of the struct at compile time to allocate the needed storage space.

• Compiler needs to know the shape of the struct at compile time to index into the structure.

Representing Structs

x yp

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare



• Consider:  ⟦square.ul.y⟧ =  (x86.operand, x86.insns) 

• Assume that %rcx holds the base address of square  

• Calculate the offset relative to the base pointer of the data:

– ul = sizeof(struct Point) + sizeof(struct Point)

– y   = sizeof(int) 

• So:    ⟦square.ul.y⟧ = (ans,  Movq 20(%rcx) ans)

Assembly-level Member Access

ll.x ll.y lr.x lr.y ul.x ul.y ur.x ur.ysquare

struct Point { int x; int y; }; 

struct Rect  { struct Point ll, lr, ul, ur };



• How to lay out non-homogeneous structured data?

Padding & Alignment 

struct Example { 

  int x; 

  char a;

  char b; 

  int y; 

};

x a b

a y

a yb

32-bit boundaries

Padding

x

x

y

b

Not 32-bit  
aligned



When we do an assignment in C as in: 

struct Rect mk_square(struct Point ll, int elen) {
  struct Square res;
  res.lr = ll; 

... 

then we copy all of the elements out of the source and put them 

in the target.  Same as doing word-level operations: 

struct Rect mk_square(struct Point ll, int elen) {
  struct Square res;
  res.lr.x = ll.x;
  res.lr.y = ll.x;
  ... 

• For really large copies, the compiler uses something like memcpy 
(which is implemented using a loop in assembly).

Copy-in/Copy-out



• Similarly, when we call a procedure, we copy arguments in, and copy results out.

– Caller sets aside extra space in its frame to store results that are bigger than will fit in %rax.

– We do the same with scalar values such as integers or doubles. 

• Sometimes, this is termed "call-by-value".

– This is bad terminology.

– Copy-in/copy-out is more accurate. 

• Benefit: locality

• Problem:  expensive for large records… 

• In C:  can opt to pass pointers to structs:  “call-by-reference” 

• Languages like Java and OCaml always pass non-word-sized objects by reference.

C Procedure Calls



• The caller passes in the address of the point and the address of the result (1 word each). 

• Note that returning references to stack-allocated data can cause problems.

– This space might be reclaimed when foo() is done

– Need to allocate storage in the heap…

Call-by-Reference
void mkSquare(struct Point *ll, int elen,

              struct Rect *res) {

  res->lr = res->ul = res->ur = res->ll = *ll;

  res->lr.x += elen;

  res->ur.x += elen; 

  res->ur.y += elen;

  res->ul.y += elen;

}


void foo() {

  struct Point origin = {0,0};

  struct Square unit_sq;

  mkSquare(&origin, 1, &unit_sq);

}



Working with Arrays



• Space is allocated on the stack for buf.

– Note, without the ability to allocated stack space dynamically (C’s alloca function) 

need to know size of buf at compile time… 

• buf[i] is really just  
(base_of_array) + i * elt_size

Arrays
void foo() {				 void foo() {

  char buf[27];		       char buf[27];


  buf[0] = 'a';	          *(buf) = 'a';

  buf[1] = 'b';	          *(buf+1) = 'b';

  ...				          ...

  buf[25] = 'z';	          *(buf+25) = 'z';

  buf[26] = 0;	          *(buf+26) = 0;

}					        }




• In C,  int M[4][3] yields an array with 4 rows and 3 columns.

• Laid out in row-major order: 

 
 

• In Fortran, arrays are laid out in column major order.  
 
 

• In ML and Java, there are no multi-dimensional arrays: 

– (int array) array  is represented as an array of pointers to arrays of ints. 

• Why is knowing these memory layout strategies important?

Multi-Dimensional Arrays

M[0][0] M[0][1] M[0][2] M[1][0] M[1][1] M[1][2] M[2][0] …

M[0][0] M[1][0] M[2][0] M[3][0] M[0][1] M[1][1] M[2][1] …



• Safe languages (e.g. Java, C#, ML but not C, C++) check array indices to 
ensure that they’re in bounds.


– Compiler generates code to test that the computed offset is legal 

• Needs to know the size of the array… where to store it?

– One answer:  Store the size before the array contents. 

 
 
 

• Other possibilities:

– Pascal: only permit statically known array sizes  (very unwieldy in practice)

– What about multi-dimensional arrays?

Array Bounds Checks

Size=7 A[0] A[1] A[2] A[3] A[4] A[5] A[6]
arr



• Example: Assume %rax holds the base pointer (arr) and %ecx holds the array index i.  
To read a value from the array arr[i]: 
 
	 	 movq -8(%rax) %rdx                          // load size into rdx 
	 	 cmpq %rdx %rcx	 	 	 	 //  compare index to bound 
	 	 j l __ok	 	 	 	 	 	 //  jump if  0 <= i < size 
	 	 callq __err_oob		 	 	         //  test failed, call the error handler 
__ok:	   

movq (%rax, %rcx, 8) dest 		 //  do the load from the array access 

• Clearly more expensive: adds move, comparison & jump

– More memory traffic

– Hardware can improve performance: executing instructions in parallel, branch prediction


• These overheads are particularly bad in an inner loop

• Compiler optimisations can help remove the overhead


– e.g. In a for loop, if bound on index is known, only do the test once

Array Bounds Checks (Implementation)



• A string constant "foo" is represented as global data:

   _string42: 102 111 111 0  

• C uses null-terminated strings

• Strings are usually placed in the text segment so they are read only.  


– allows all copies of the same string to be shared. 

• Rookie mistake (in C): write to a string constant. 
 
 
 
Attempting to modify the string literal is undefined behaviour.


• Instead, must allocate space on the heap:

C-style Strings

char *p = "foo”;

p[0] = 'b’;

char *p = (char *)malloc(4 * sizeof(char));

strncpy(p, “foo”, 4);   /* include the null byte */

p[0] = 'b’;



Tagged Datatypes



• In C: 

• In OCaml: 

• Associate an integer tag with each case: sun = 0, mon = 1, …

– C lets programmers choose the tags 

• OCaml datatypes can also carry data: 

• Representation: a foo value is a pointer to a pair:  (tag, data)

• Example: tag(Bar) = 0, tag(Baz) = 1

                     ⟦let f = Bar(3)⟧ =  

                     ⟦let g = Baz(4, f)⟧ = 

C-style Enumerations / ML-style datatypes

0 3f

enum Day {sun, mon, tue, wed, thu, fri, sat} today;

type day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

type foo = Bar of int | Baz of int * foo

1 4 fg



• Consider the C statement: 

switch (e) {

case sun: s1; break;

case mon: s2; break;

…

case sat: s3; break;


}  

• How to compile this?

– What happens if some of the break statements are omitted?  

(Control falls through to the next branch.)

Switch Compilation



⟦switch(e) {case tag1: s1; case tag2 s2; …}⟧ = 

• Each $tag1…$tagN is just a constant int 
tag value.


• Note: ⟦break;⟧ 
(within the switch branches) is: 
 
  br %merge  

 Cascading ifs and Jumps

%tag = ⟦e⟧;

br label %l1  

l1: %cmp1 = icmp eq %tag, $tag1  

br %cmp1 label %b1, label %l2


b1: ⟦s1⟧
br label %l2                   


l2: %cmp2 = icmp eq %tag, $tag2  

br %cmp2 label %b2, label %l3


b2: ⟦s2⟧
br label %l3


…

lN: %cmpN = icmp eq %tag, $tagN  


br %cmpN label %bN, label %merge

bN: ⟦sN⟧

br label %merge


merge: 



• Nested if-then-else works OK in practice if # of branches is small 

– (e.g. < 16 or so). 

• For more branches, use better data structures to organise the jumps:

– Create a table of pairs (v1, branch_label) and loop through

– Or, do binary search rather than linear search

– Or, use a hash table rather than binary search 

• One common case: the tags are dense in some range  
[min…max]


– Let N = max – min

– Create a branch table  Branches[N] where Branches[i] = branch_label for tag i.

– Compute tag = ⟦e⟧ and then do an indirect jump: J Branches[tag]


• Common to use heuristics to combine these techniques.

Alternatives for Switch Compilation



• ML-style match statements are like C’s switch statements except:

– Patterns can bind variables

– Patterns can nest 

 
 

• Compilation strategy:

– “Flatten” nested patterns into 

matches against one constructor 
at a time.


– Compile the match against the 
tags of the datatype as for C-style switches.


– Code for each branch additionally must  copy data from ⟦e⟧ to the variables bound in the patterns. 

• There are many opportunities for optimisations, many papers about “pattern-match compilation”

– Many of these transformations can be done at the AST level  

ML-style Pattern Matching

match e with 

| Bar(z) -> e1  
| Baz(y, Bar(w)) -> e2

| _ -> e3

match e with 

| Bar(z) -> e1  
| Baz(y, tmp) -> 

     (match tmp with


| Bar(w) -> e2

| Baz(_, _) -> e3)



Datatypes in LLVM IR



• LLVM’s IR is uses types to describe the structure of data. 
 
 
 
 
 
 
 
 
 
 
 

• <#elts> is an integer constant >= 0

• Structure types can be named at the top level: 

 

• Such structure types can be recursive

Structured Data in LLVM

t ::=  

void

i1 | i8 | i64			 N-bit integers

[<#elts> x t]			 arrays

fty function types
{t1, t2, … , tn}			 structures

t*						 pointers

%Tident				 named (identified) type


fty ::=			 Function Types

 t (t1, .., tn)    return, argument types

%T1 = type {t1, t2, … , tn}



• A static array of 4230 integers:	 	 	 	 [ 4230 x i64 ]  

• A two-dimensional array of integers:	 [ 3 x [ 4 x i64 ] ]  

• Structure for representing dynamically-allocated arrays with their length: 
	 	 	 	 	 { i64 , [0 x i64] }


– There is no array-bounds check; the static type information is only used for calculating pointer offsets. 

• C-style linked lists (declared at the top level): 
	 	 	 	 %Node = type { i64, %Node*}  

• Structs from the C program shown earlier: 
	 	 	 %Rect = { %Point, %Point, %Point, %Point }  

%Point = { i64, i64 }

Example LL Types



• LLVM provides the getelementptr instruction to compute pointer values

– Given a pointer and a “path” through the structured data pointed to by that pointer, 

getelementptr computes an address

– This is the abstract analog of the X86 LEA (load effective address). It does not access memory.

– It is a “type indexed” operation, since the size computations depend on the type 

 
 
 

• Example: access the x component of the first point of a rectangle: 
 
 

• The first is i32 0 a “step through” the pointer to, e.g., %square, with offset 0.

getelementptr

insn ::= …

|  getelementptr t* %val, t1 idx1, t2 idx2 ,… 

%tmp1 = getelementptr %Rect* %square, i32 0, i32 0

%tmp2 = getelementptr %Point* %tmp1, i32 0, i32 0

See “Why is the extra 0 index required?”: https://llvm.org/docs/GetElementPtr.html#why-is-the-extra-0-index-required

https://llvm.org/docs/GetElementPtr.html#why-is-the-extra-0-index-required


GEP Example*
struct RT {


int A;

int B[10][20];

int C;


}

struct ST {


struct RT X;

int Y;

struct RT Z;


}

int *foo(struct ST *s) {

  return &s[1].Z.B[5][13];

}

%RT = type { i32, [10 x [20 x i32]], i32 }

%ST = type { %RT, i32, %RT }

define i32* @foo(%ST* %s) {

entry:


%arrayidx = getelementptr %ST* %s, i32 1, i32 2, i32 1, i32 5, i32 13

ret i32* %arrayidx


}

*adapted from the LLVM documentation: see http://llvm.org/docs/LangRef.html#getelementptr-instruction 

1. %s is a pointer to an (array of) %ST structs, 
suppose the pointer value is ADDR

2. Compute the index of the 1st element by 
adding size_ty(%ST).

3. Compute the index of the Z field by 
adding size_ty(%RT) + 
size_ty(i32) to skip past X and Y.

4. Compute the index of the B field by 
adding size_ty(i32) to skip past A.

5. Index into the 2d array.

Final answer:  ADDR + size_ty(%ST) + size_ty(%RT) + size_ty(i32)  
   + size_ty(i32) + 5*20*size_ty(i32) + 13*size_ty(i32)

http://llvm.org/docs/LangRef.html#getelementptr-instruction


• GEP never dereferences the address it’s calculating:

– GEP only produces pointers by doing arithmetic

– It doesn’t actually traverse the links of a data structure


• To index into a deeply nested structure, one has to “follow the pointer” by 
loading from the computed pointer

getelementptr



1. Translate high level language types into an LLVM representation type.

– For some languages (e.g. C) this process is straight forward


• The translation simply uses platform-specific alignment and padding

– For other languages, (e.g. OO languages) there might be a fairly complex 

elaboration.

• e.g. for OCaml, arrays types might be translated to pointers to length-indexed 

structs. 
⟦int array⟧  =  { i32, [0 x i32]}*


2. Translate accesses of the data into getelementptr operations:

– e.g. for OCaml array size access: 

⟦length a⟧ =         
%1 = getelementptr {i32, [0 x i32]}* %a, i32 0, i32 0

Compiling Data Structures via LLVM



• What if the LLVM IR’s type system isn’t expressive enough?

– e.g. if the source language has subtyping, perhaps due to inheritance

– e.g. if the source language has polymorphic/generic types 

• LLVM IR provides a bitcast instruction

– This is a form of (potentially) unsafe cast.  Misuse can cause serious bugs 

(segmentation faults, or silent memory corruption)

Type Casting

%rect2 = type { i64, i64 }          ; two-field record

%rect3 = type { i64, i64, i64 }     ; three-field record


define @foo() {

  %1 = alloca %rect3     ; allocate a three-field record

  %2 = bitcast %rect3* %1 to %rect2*    ; safe cast

  %3 = getelementptr %rect2* %2, i32 0, i32 1  ; allowed

  …

}



• Clone https://github.com/ysc3208/week-04-llvm-demo 

• Check struct.c and its LLVM representations

Demo: Compiling to LLVM

https://github.com/ysc3208/week-04-llvm-demo


• LLVMLite Specification 

• Overview of HW3 

• Lexical Analysis

Next Week


