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  %cnd = icmp eq i64 %b, 0 
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Compilation in a Nutshell
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Last Week: Lexing



• Regular expressions precisely describe sets of strings. 

• A regular expression R has one of the following forms:

– ε   Epsilon stands for the empty string

– ‘a’   An ordinary character stands for itself

– R1 | R2  Alternatives, stands for choice of R1 or R2
– R1R2   Concatenation, stands for R1 followed by R2
– R*   Kleene star, stands for zero or more repetitions of R  

• Useful extensions:

– “foo”   Strings, equivalent to 'f''o''o'


– R+   One or more repetitions of R,  equivalent to RR*


– R?   Zero or one occurrences of R, equivalent to (ε|R)


– ['a'-'z'] One of a or b or c or … z, equivalent to (a|b|…|z)


– [^'0'-'9'] Any character except 0 through 9


– R as x  Name the string matched by R as x

Regular Expressions



• Recognise the keyword  “if”:   ”if”

• Recognise a digit:  ['0'-'9']

• Recognise an integer literal:  '-'?['0'-'9']+

• Recognise an identifier:  

 (['a'-'z']|['A'-'Z'])(['0'-'9']|'_'|['a'-'z']|['A'-'Z'])*  

• In practice, it’s useful to be able to name regular expressions: 

let lowercase = ['a'-'z']

let uppercase = ['A'-'Z']

let character = uppercase | lowercase

Example Regular Expressions



• Consider the input string:     ifx = 0

– Could lex as:		 	 	 	          or as:   

• Regular expressions alone are ambiguous, need a rule to choose between the options above

• Most languages choose “longest match”


– So the 2nd option above will be picked

– Note that only the first option is “correct” for parsing purposes 

• Conflicts: arise due to two tokens whose regular expressions have a shared prefix

– Ties broken by giving some matches higher priority

– Example: keywords have priority over identifiers

– Usually specified by order the rules appear in the lex input file

     

How to Match?

if x = 0 ifx = 0



• Reads a list of regular expressions:  R1,…,Rn , one per token.

• Each token has an attached “action” Ai  

(just a piece of code to run when the regular expression is matched) 
 
 
 
 
 
 
 
 
 

• Generates scanning code that:

1. Decides whether the input is of the form (R1|…|Rn)*

2. Whenever the scanner matches a (longest) token, it runs the associated action 

rule token = parse

| '-'?digit+		    	                   { Int (Int32.of_string (lexeme lexbuf)) }

| '+'  	                   { PLUS }

| 'if'    		  	               { IF }

| character (digit|character|'_')*	    { Ident (lexeme lexbuf) }

| whitespace+		                   { token lexbuf }

Lexer Generators

token

regular expressions actions



• Most Tools:  lex, ocamllex, flex, etc.:

– Table-based 

– Deterministic Finite Automata (DFA)

– Goal: Efficient, compact representation, high performance 

• Other approaches:

– Brzozowski derivatives

– Idea: directly manipulate the (abstract syntax of) the regular expression

– Compute partial “derivatives” 


• Regular expression that is “left-over” after seeing the next character

– Elegant, purely functional, implementation (very cool!)

– See “Regular-expression derivatives re-examined” (2009) by Owens et al.

Implementation Strategies



• Consider the regular expression: ‘”’[^’”’]*’”’

• An automaton (DFA) can be represented as: 

– A transition table: 
 
 
 
 
 

– A graph:

Finite Automata

" Non-"

0 1 ERROR
1 2 1
2 ERROR ERROR

0 1 2
" "

Non-"



• Can we build a finite automaton for every regular expression?

– Yes! (But the full theory is outside of the scope of this module)


• Strategy: consider every possible regular expression  
(by induction on the structure of the regular expressions):

RE to Finite Automaton?

What about?


R1|R2

'a' a

ε

R1R2

R1 R2
??



• A finite set of states, a start state, and accepting state(s)

• Transition arrows connecting states


– Labeled by input symbols

– Or ε (which does not consume input)


• Nondeterministic: two arrows leaving the same state may have the same label

Nondeterministic Finite Automata

a

b

ε

ε

b

a

a



• Converting regular expressions to NFAs is easy.

• Assume each NFA has one start state, unique accept state

RE to NFA?

‘a’

ε

R1R2

a

R1 R2ε



• Alternatives and Kleene star are easy with NFAs

RE to NFA (cont’d)

R1

R2ε

ε

ε

ε

R1|R2

R*
R

ε ε

ε

ε



• DFA: 

– Action of the automaton for each input is fully determined

– Automaton accepts if the input is consumed upon reaching an accepting state

– Obvious table-based implementation 

 

• NFA: 

– Automaton potentially has a choice at every step

– Automaton accepts an input string if there exists a way to reach an accepting state

– Less obvious how to implement efficiently

DFA versus NFA



• Idea:  Run all possible executions of the NFA “in parallel”

• Keep track of a set of possible states:  “finite fingers”

• Consider: -?[0-9]+  

 

• NFA representation: 
 
 
 
 

• DFA representation:

NFA to DFA conversion (Intuition)

1 2 3
[0-9] ε

[0-9]

0

ε

-

{1}

{2,3}{0,1}

-
[0-9]

[0-9]
[0-9]



• Take each regular expression Ri and it’s action Ai

• Compute the NFA formed by (R1 | R2 | … | Rn)


– Remember the actions associated with the accepting states of the Ri

• Compute the DFA for this big NFA


– There may be multiple accept states (why?)

– A single accept state may correspond to one or more actions (why?)


• Compute the minimal equivalent DFA

– There is a standard algorithm due to Myhill & Nerode


• Produce the transition table

• Implement longest match:


– Start from initial state

– Follow transitions, remember last accept state entered (if any)

– Accept input until no transition is possible (i.e. next state is “ERROR”)

– Perform the highest-priority action associated with the last accept state;  

if no accept state there is a lexing error

Summary of Lexer Generator Behavior



• Many existing implementations: lex, Flex, Jlex, ocamllex, …

– For example ocamllex program


• see lexlex.mll, olex.mll, piglatin.mll 

• Error reporting:

– Associate line number/character position with tokens

– Use a rule to recognise ‘\n’ and increment the line number

– The lexer generator itself usually provides character position info. 

• Sometimes useful to treat comments specially

– Nested comments: keep track of nesting depth 

• Lexer generators are usually designed to work closely with parser generators…

Lexer Generators in Practice
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Block

Expr

Call

…

…

Bop

a != 1b == 0

Bop … …

If While

Block

{

  if (b == 0) a = b;

  while (a != 1) {

    print_int(a);

    a = a – 1;

  }

}

Source input

Abstract Syntax tree

Parsing: Finding Syntactic Structure 



• Input: 	 stream of tokens 	 	 (generated by lexer)

• Output: 	abstract syntax tree

• Strategy:


– Parse the token stream to traverse the “concrete” syntax

– During traversal, build a tree representing the “abstract” syntax 

• Why abstract?  Consider these three different concrete inputs: 

a + b

(a + ((b)))

((a) + (b))  

• Note: parsing doesn’t check many things:

– Variable scoping, type agreement, correct initialisation, …

Syntactic Analysis (Parsing): Overview

Bop

a + b

Same abstract syntax tree



• First question: how to describe language syntax precisely and conveniently?

• Last time: we described tokens using regular expressions


– Easy to implement, efficient DFA representation

– Why not use regular expressions on tokens to specify programming language syntax? 

• Limits of regular expressions:

– DFA’s have only finite # of states

– So… DFA’s can’t “count”  (why is it a problem?)


• For example, consider the language of all strings that contain balanced parentheses – easier 
than most programming languages, but not regular (needs a stack to keep track of “(“ and “)”). 

• So: we need more expressive power than DFA’s 

Specifying Language Syntax



Context-Free Grammars



• Here is a specification of the language of balanced parens: 
 
 
 
 

• The definition is recursive – S mentions itself. 

• Idea: “derive” a string in the language by starting with S and rewriting according to the rules:
– Example:   S ⟼  (S)S ⟼ ((S)S)S ⟼ ((ε)S)S ⟼ ((ε)S)ε ⟼ ((ε)ε)ε = (()) 

• You can replace the “nonterminal” S by one of its definitions anywhere

• A context-free grammar accepts a string iff there is a derivation from the start symbol

S ⟼ (S)S


S ⟼ ε

Note: Once again we have to take 
care to distinguish meta-language 
elements (e.g. “S” and “⟼”)  from 
object-language  elements (e.g. “(“ ).*

* And, since we’re writing this description in English, we are careful 
distinguish the meta-meta-language (e.g. words) from the meta-language and 
object-language (e.g. symbols) by using quotes.

Context-Free Grammars



• A Context-free Grammar (CFG) consists of 

– A set of terminals		 (e.g., a lexical token or ε)

– A set of nonterminals	 (e.g., S and other syntactic variables)

– A designated nonterminal called the start symbol

– A set of productions:      LHS ⟼ RHS


• LHS is a nonterminal

• RHS is a string of terminals and nonterminals 

• Example:   The balanced parentheses language: 
 
 
 
 

• How many terminals?  How many nonterminals? Productions? 

CFGs Mathematically

S ⟼ (S)S


S ⟼ ε



• A grammar that accepts parenthesised sums of numbers: 
 
 
 
 
 
	 	 e.g.:  (1 + 2 + (3 + 4)) + 5 

• Note the vertical bar ‘|’ is shorthand for multiple productions: 

	 S ⟼ E + S	 	 	 	 4 productions

	 S ⟼ E	 	 	 	 	 2 nonterminals: S, E

	 E ⟼ number	 	 	 4 terminals: (, ), +, number

	 E ⟼ (S)		 	 	 	 Start symbol: S

Another Example: Sum Grammar

S  ⟼  E + S  |   E


E  ⟼  number  |   ( S )



• Example: derive (1 + 2 + (3 + 4)) + 5

• S ⟼ E + S


⟼ (S) + S

⟼ (E + S) + S	 	
⟼ (1 + S) + S	 	 	 	 	 	
⟼ (1 + E + S) + S	 	 	 	 	 

⟼ (1 + 2 + S) + S	 	 	 	 	       
⟼ (1 + 2 + E) + S	 	 	 	 	 

⟼ (1 + 2 + (S)) + S	 	 	 	 

⟼ (1 + 2 + (E + S)) + S	 	 	 	 

⟼ (1 + 2 + (3 + S)) + S	 	 	 

⟼ (1 + 2 + (3 + E)) + S	 	 	 

⟼ (1 + 2 + (3 + 4)) + S

⟼ (1 + 2 + (3 + 4)) + E   


⟼ (1 + 2 + (3 + 4)) + 5	 	 	 	   

Derivations in CFGs

For arbitrary strings α, β, γ and

production rule   A ⟼ β

a single step of the derivation is:


              αAγ  ⟼   αβγ

( substitute β for an occurrence of A)

In general, there are many possible derivations for a given string


Note: Underline indicates symbol being expanded.


S  ⟼  E + S  |   E


E  ⟼  number  |   ( S )



• Tree representation of the derivation

• Leaves of the tree are terminals


– In-order (DFS) traversal yields the input 
sequence of tokens


• Internal nodes: nonterminals 

• No information about the order of the 

derivation steps 

• (1 + 2 + (3 + 4)) + 5     

Parse Tree

S ⟼ E + S  |  E


E ⟼ number | ( S )

From Derivations to Parse Trees

4

S

E   +   S

(    S    ) E

E   +   S 5

1 E   +   S

2 E

(    S    )

E   +   S

3 E



• Parse tree:

“concrete syntax”

• Abstract syntax tree (AST): 
 
 
 
 
 
 
 
 
 
 
 
 

• Hides, or abstracts, 
unneeded information.

+

1 +

+ 5

2 +

3 4

4

S

E   +   S

(    S    ) E

E   +   S 5

1 E   +   S

2 E

(    S    )

E   +   S

3 E

From Parse Trees to Abstract Syntax



• Productions of the grammar “fire” non-deterministically.

• They can be applied in any order. 

• There are two standard orders:

– Leftmost derivation: Find the left-most nonterminal and apply a production to it.

– Rightmost derivation: Find the right-most nonterminal and apply a production there. 

• Note that for this grammar both strategies (and any other)  
yield the same parse tree!


– Parse tree doesn’t contain the information about what order the productions were applied.

Derivation Orders



• Leftmost derivation:	 	 	 	 Rightmost derivation:


• S ⟼ E + S      S ⟼ E + S


⟼ (S) + S	 	 	 	 	 	   ⟼ E + E


⟼ (E + S) + S	 	 	 	 	   ⟼ E + 5
⟼ (1 + S) + S	 	 	 	 	   ⟼ (S) + 5
⟼ (1 + E + S) + S	 	 	 	   ⟼ (E + S) + 5


⟼ (1 + 2 + S) + S	 	 	 	   ⟼ (E + E + S) + 5
⟼ (1 + 2 + E) + S	 	 	 	   ⟼ (E + E + E) + 5


⟼ (1 + 2 + (S)) + S	 	 	 	   ⟼ (E + E + (S)) + 5


⟼ (1 + 2 + (E + S)) + S	    	 	   ⟼ (E + E + (E + S)) + 5


⟼ (1 + 2 + (3 + S)) + S	 	 	   ⟼ (E + E + (E + E)) + 5


⟼ (1 + 2 + (3 + E)) + S	 	 	   ⟼ (E + E + (E + 4)) + 5


⟼ (1 + 2 + (3 + 4)) + S	 	   	   ⟼ (E + E + (3 + 4)) + 5

⟼ (1 + 2 + (3 + 4)) + E       ⟼ (E + 2 + (3 + 4)) + 5

⟼ (1 + 2 + (3 + 4)) + 5	 	   	   ⟼ (1 + 2 + (3 + 4)) + 5

Example: Left- and rightmost derivations

S ⟼ E + S  |  E


E ⟼ number | ( S )

(1 + 2 + (3 + 4)) + 5



• Some care is needed when defining CFGs to avoid loops

• Consider: 

 
 

• This grammar has nonterminal definitions that are “nonproductive”: 

– (i.e. they don’t mention any terminal symbols) 

– There is no finite derivation starting from S, so the language is empty.


• Consider: 

• This grammar is productive, but again there is no finite derivation starting from S, so the language is 
empty. One can easily generalise these examples to a “chain” of many nonterminals, which can be 
harder to find in a large grammar 

• Upshot:  be aware of “vacuously empty” CFG grammars.

– Every nonterminal should eventually rewrite to an alternative that contains only terminal symbols.

Loops and Termination

S ⟼   E


E ⟼   S

S ⟼   ( S )



Associativity, ambiguity, and precedence 

Grammars for Programming Languages



Leftmost derivation: 
S ⟼ E + S  
	 ⟼ 1 + S	   
	 ⟼ 1 + E + S  
	 ⟼ 1 + 2 + S 	  
	 ⟼ 1 + 2 + E	  
	 ⟼ 1 + 2 + 3

Rightmost derivation: 
S ⟼ E + S  

 ⟼ E + E + S  

 ⟼ E + E + E 

 ⟼ E + E + 3 

 ⟼ E + 2 + 3 

 ⟼ 1 + 2 + 3 

S  

E   +   S

1 E   +   S

2 E

3
Parse Tree

3

+

1 +

2

AST

S ⟼ E + S  |  E


E ⟼ number | ( S )

Consider the input:    1 + 2 + 3


Associativity



• This grammar makes ‘+’  right associative…

• The abstract syntax tree is the same for both  

                          1 + 2 + 3 and 1 + (2 + 3)

• Note that the grammar is right recursive… 

 
 

• How would you make ‘+’ left associative?  

• What are the trees for “1 + 2 + 3”?

Associativity

S ⟼ E + S  |  E


E ⟼ number | ( S )



• Consider this grammar: 
 

• Claim: it accepts the same set of strings as the previous one.

• What’s the difference?

• Consider these two leftmost derivations for 1 + 2 + 3:


– S ⟼ S + S ⟼ 1 + S ⟼ 1 + S + S ⟼ 1 + 2 + S ⟼ 1 + 2 + 3


– S ⟼ S + S ⟼ S + S + S ⟼ 1 + S + S ⟼ 1 + 2 + S ⟼ 1 + 2 + 3 

• One derivation gives left 
associativity, the other gives 
right associativity to ‘+’


– Which is which?

Ambiguity

S  ⟼   S + S   |  ( S )  |  number

+

+ 3

1 2

AST 1

+

1 +

2 3
AST 2



• The ‘+’ operation is associative, so it doesn’t matter which tree we pick.  
Mathematically,   x + (y + z) = (x + y) + z


– But, some operations aren’t associative.    Examples?

– Some operations are only left (or right) associative.  Examples? 

• Moreover, if there are multiple operations, ambiguity in the grammar leads to 
ambiguity in their precedence


• Consider:   
 

• Input: 1 + 2 * 3

– One parse = (1 + 2) * 3 = 9

– The other = 1 + (2 * 3) = 7

Precedence

*

+ 3

1 2

+

1 *

2 3

vs.

S  ⟼   S + S   |   S * S  |  ( S )  |  number



• We can often eliminate ambiguity by adding nonterminals and allowing recursion  
only on the left (or right) .


• Higher-precedence operators go farther from the start symbol.

• Example:   

 

• To disambiguate:  

– Decide (following math) to make ‘*’ higher precedence than ‘+’

– Make ‘+’ left associative

– Make ‘*’ right associative


• Note:

– S2 corresponds to ‘atomic’ 

expressions

Eliminating Ambiguity

S  ⟼   S + S   |   S * S  |  ( S )  |  number

S0  ⟼   S0 + S1 |   S1


S1  ⟼   S2 * S1   |   S2


S2  ⟼   number  | ( S0 ) 



• Context-free grammars allow concise specifications of programming languages.

– An unambiguous CFG specifies how to parse: convert a token stream to a (parse tree)


– Ambiguity can (often) be removed by encoding precedence and associativity in the grammar. 

• Even with an unambiguous CFG, there may be more than one derivation 

– Though in this case all derivations correspond to the same abstract syntax tree. 

• Still to come:  how to find a derivation that matches the string of tokens?

– But first, let’s see some tools: menhir

Context Free Grammars: Summary



• https://github.com/ysc4230/week-06-parsing 

• Definitions:  

- ast.ml 
- parser.mly  
- lexer.mll 
- range.ml


• What about precedence of binary connectives? Associativity?

• Running: main.ml

Demo: Parsing for Boolean Logic

https://github.com/ysc4230/week-06-parsing

