YSC4230: Programming Language Design and Implementation

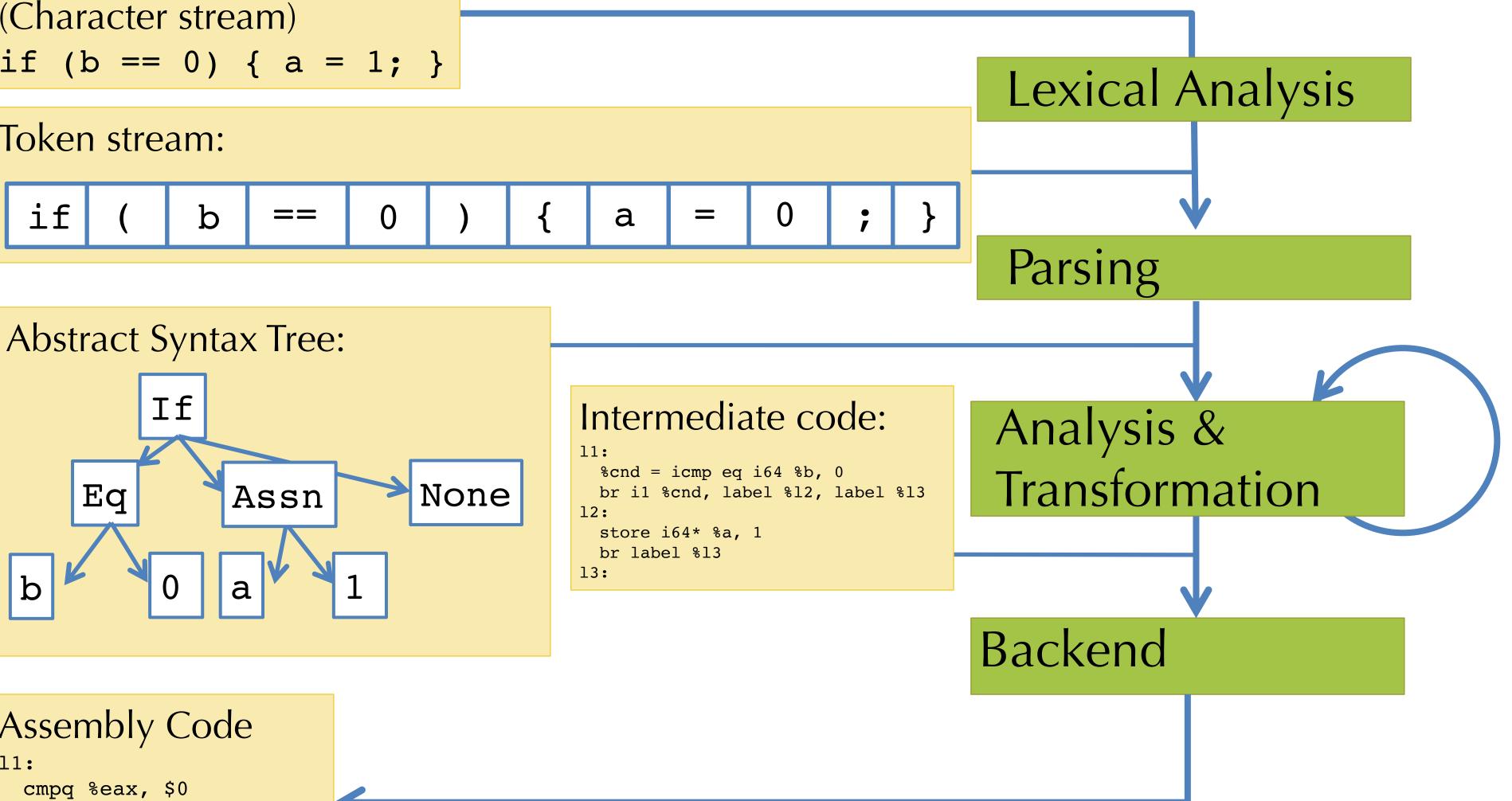
Week 7: Parsing, Continued

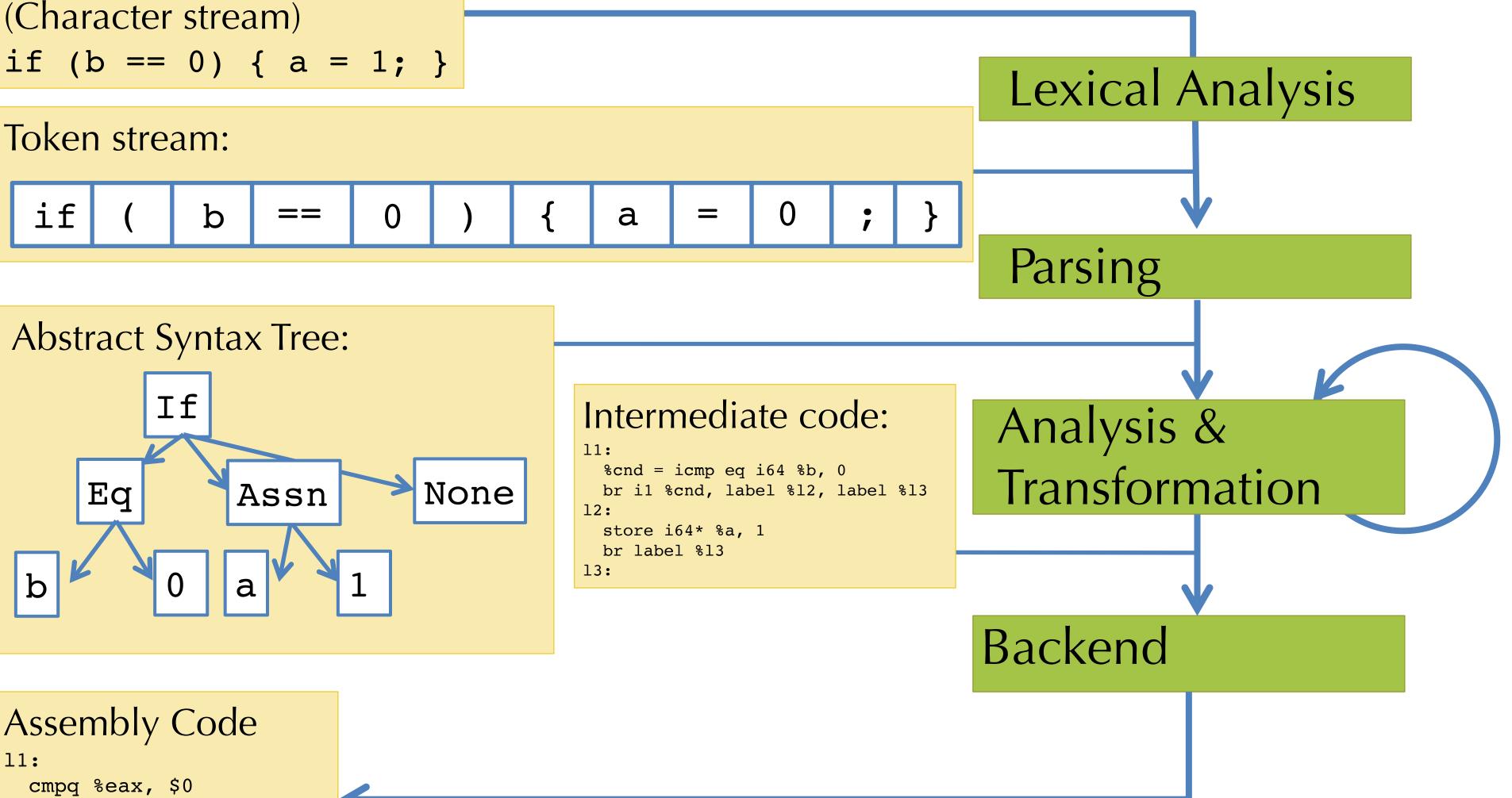
Ilya Sergey

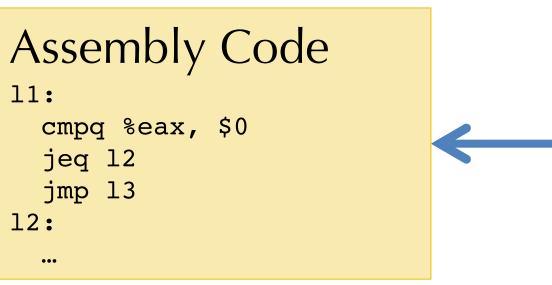
ilya.sergey@yale-nus.edu.sg

Compilation in a Nutshell

Source Code (Character stream) if (b == 0) { a = 1; }

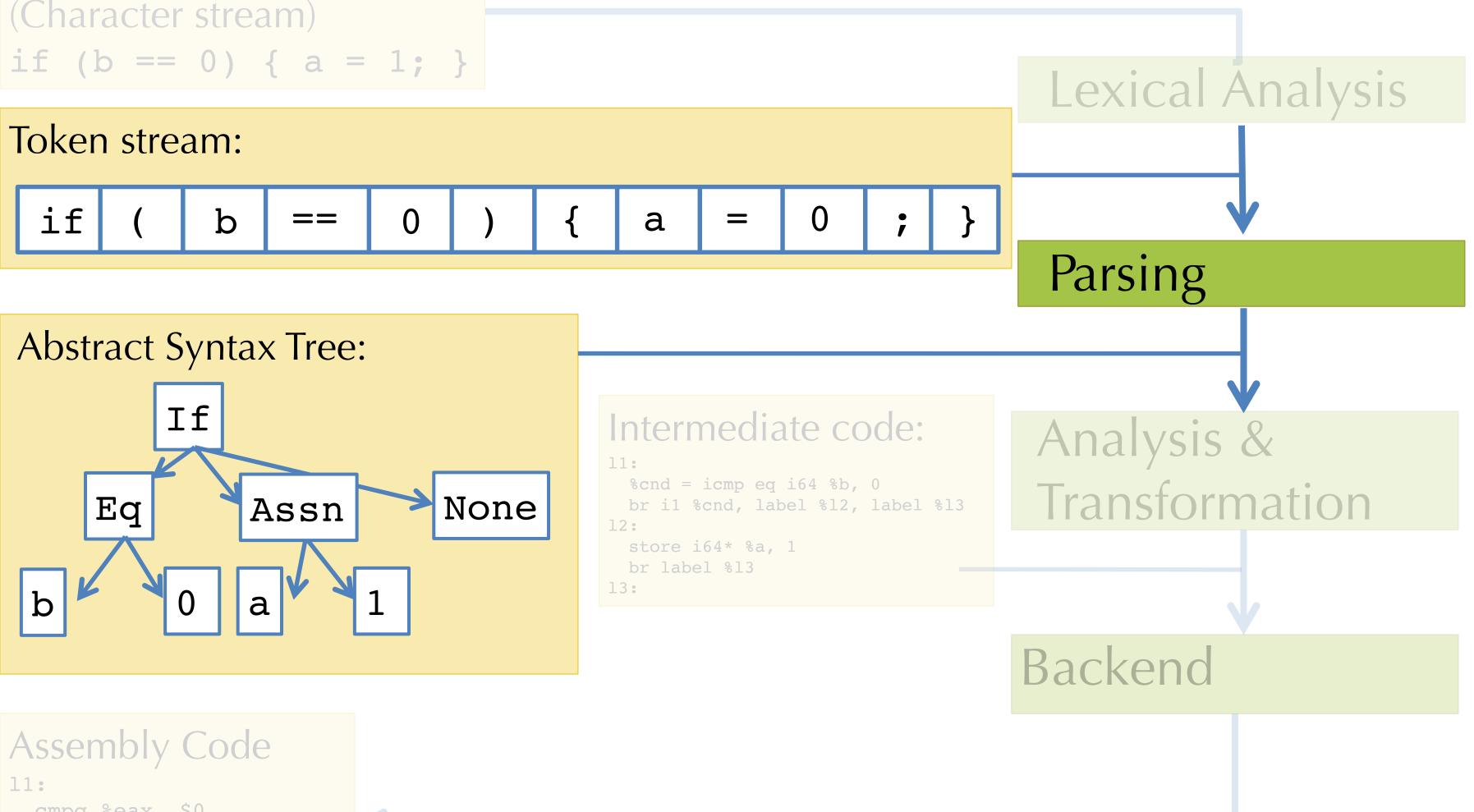


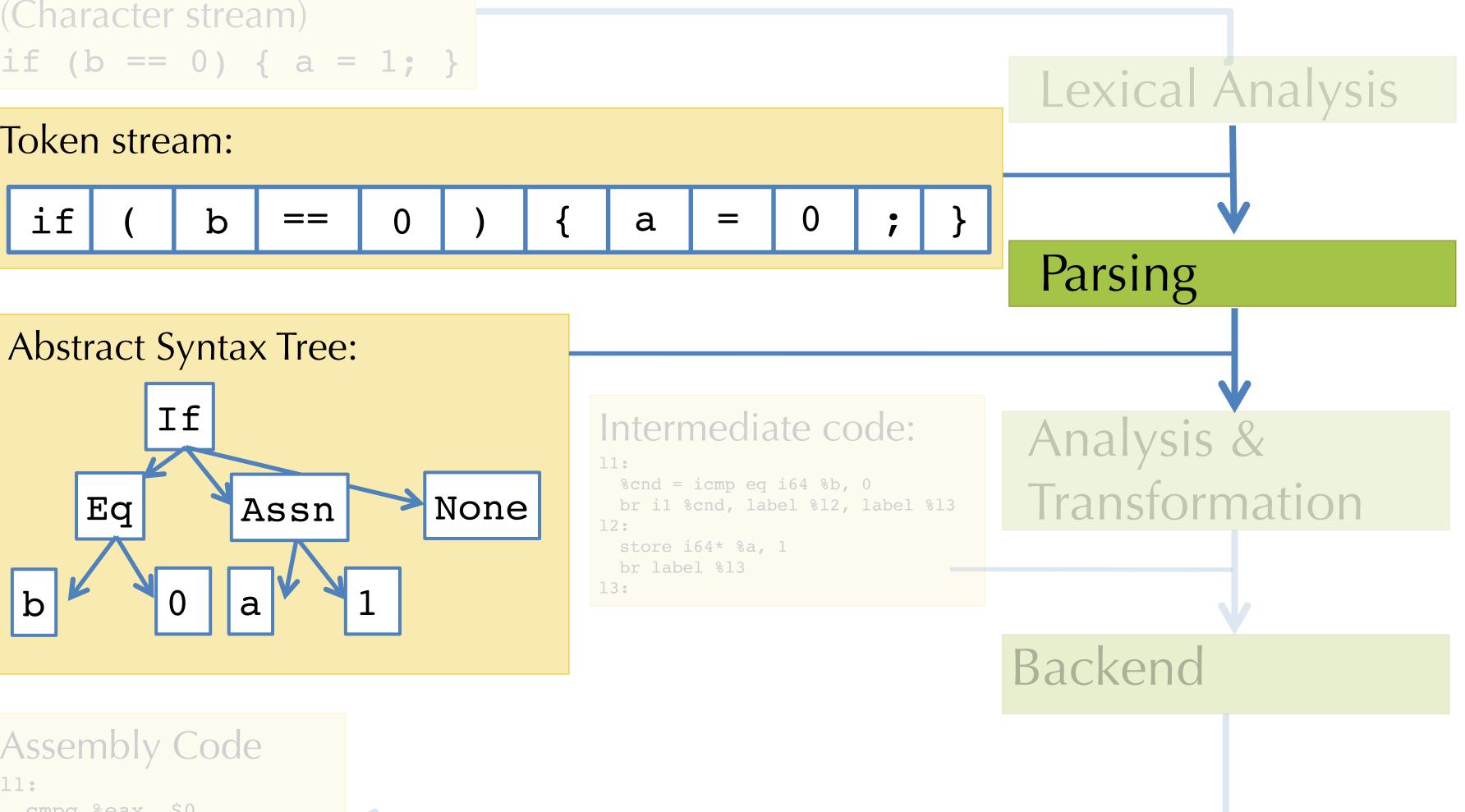


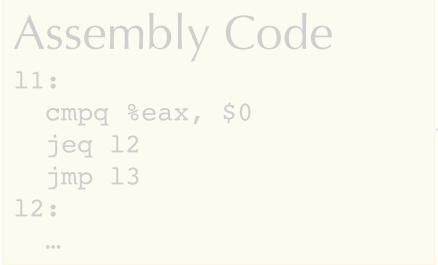


This week: Parsing

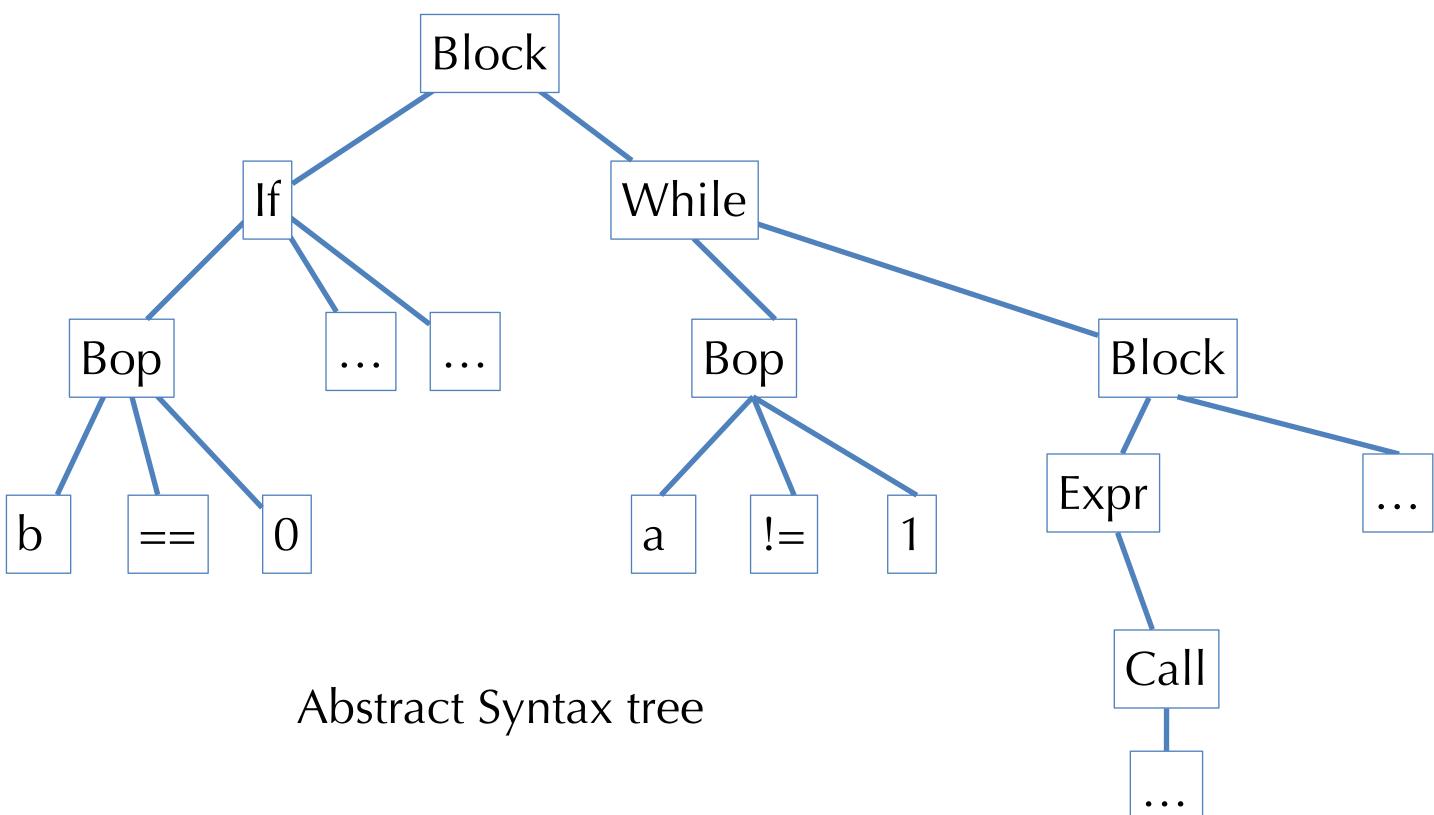
Source Code (Character stream)







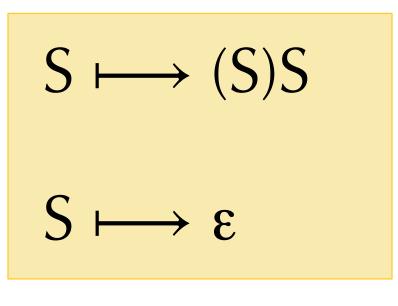
Parsing: Finding Syntactic Structure



Source input

Context-Free Grammars

Here is a specification of the language of balanced parens:



- The definition is *recursive* S mentions itself.
- Example: $S \mapsto (S)S \mapsto ((S)S)S \mapsto ((\epsilon)S)S \mapsto ((\epsilon)S)\epsilon \mapsto ((\epsilon)\epsilon)\epsilon = (())$
- You can replace the "nonterminal" S by one of its definitions anywhere
- A context-free grammar *accepts* a string iff there is a derivation from the start symbol

Note: Once again we have to take care to distinguish meta-language elements (e.g. "S" and " \mapsto ") from object-language elements (e.g. "(").*

Idea: "derive" a string in the language by starting with S and *rewriting* according to the rules:

* And, since we're writing this description in English, we are careful distinguish the meta-meta-language (e.g. words) from the meta-language and object-language (e.g. symbols) by using quotes.

CFGs Mathematically

- A Context-free Grammar (CFG) consists of
 - A set of *terminals* (e.g., a lexical token or ε)
 - A set of *nonterminals* (e.g., S and other syntactic variables)
 - A designated nonterminal called the *start symbol*
 - A set of *productions*: LHS \mapsto RHS
 - LHS is a nonterminal
 - RHS is a *string* of terminals and nonterminals
- Example: The balanced parentheses language:

- $S \longmapsto (S)S$
- $S \mapsto \varepsilon$

Context Free Grammars: Summary

- Context-free grammars allow concise specifications of programming languages. – An unambiguous CFG specifies how to parse: convert a token stream to a (parse tree) – Ambiguity can (often) be removed by encoding precedence and associativity in the grammar.
- Even with an unambiguous CFG, there may be more than one derivation – Though in this case all derivations correspond to the same abstract syntax tree.
- Still to come: how to *find* a derivation that matches the string of tokens? – But first, let's see some tools: menhir

Demo: Parsing for Boolean Logic

- <u>https://github.com/ysc4230/week-06-parsing</u>
- Definitions:
 - ast.ml
 - parser.mly
 - lexer.mll
 - range.ml
- Running: main.ml

• What about precedence of binary connectives? Associativity?

LL & LR Parsing

Searching for derivations

Consider finding left-most derivations

• Look at only one input symbol at a time.

Partly-derived String	Look-ahea
<u>S</u>	(
$\mapsto \underline{\mathbf{E}} + \mathbf{S}$	(
\mapsto (<u>S</u>) + S	1
$\mapsto (\underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$	1
$\mapsto (1 + \underline{\mathbf{S}}) + \mathbf{S}$	2
$\longmapsto (1 + \underline{\mathbf{E}} + \mathbf{S}) + \mathbf{S}$	2
$\mapsto (1 + 2 + \underline{\mathbf{S}}) + \mathbf{S}$	(
$\mapsto (1 + 2 + \underline{\mathbf{E}}) + S$	(
$\mapsto (1 + 2 + (\underline{\mathbf{S}})) + \mathbf{S}$	3
$\longmapsto (1 + 2 + (\underline{\mathbf{E}} + S)) + S$	3
\longmapsto	

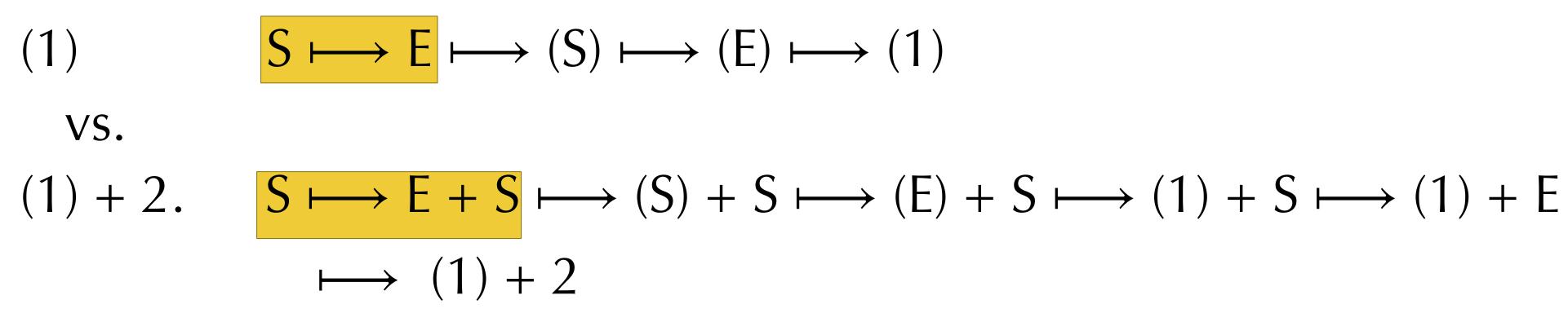
 $S \longmapsto E + S \mid E$ $E \mapsto number \mid (S)$

ad

Parsed/Unparsed Input (1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5(1 + 2 + (3 + 4)) + 5

There is a problem

- We want to decide which production to apply based on the look-ahead symbol.
- But, there is a choice:

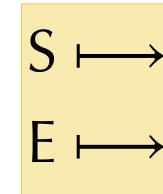


• Given the only one look-ahead symbol: '(' it isn't clear whether to pick $S \mapsto E$ or $S \mapsto E + S$ first.

 $S \longmapsto E + S \mid E$ $E \mapsto number \mid (S)$

Grammar is the problem

- LL(1)means
 - <u>L</u>eft-to-right scanning
 - Left-most derivation,
 - <u>1</u> lookahead symbol
- This language isn't "LL(1)"
- Is it LL(k) for some k?
- What can we do?



Not all grammars can be parsed "top-down" with only a single lookahead symbol. • **Top-down**: starting from the start symbol (root of the parse tree) and going down

> $S \mapsto E + S \mid E$ $E \mapsto number \mid (S)$

Making a grammar LL(1)

- symbol after the first expression.
- choice, so add a new non-terminal S' at the decision point:

$$S \mapsto E + S \mid E$$

 $E \mapsto number \mid (S)$

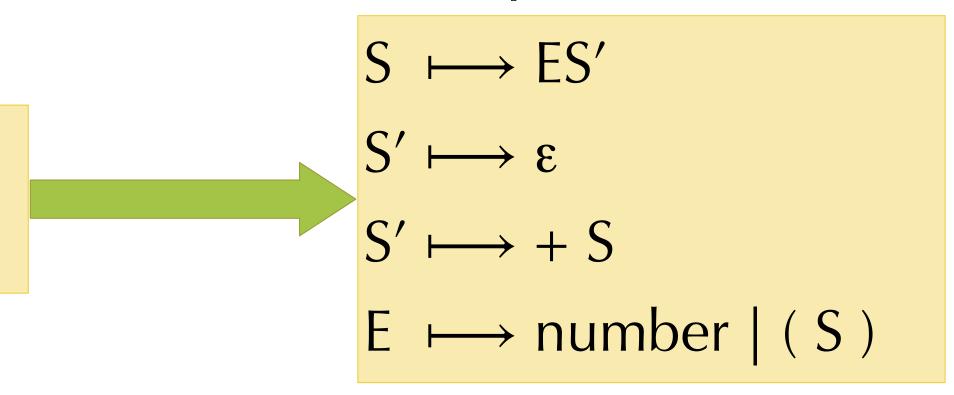
• Also need to eliminate left-recursion. Why?

$$S \longmapsto S + E \mid E$$

 $E \mapsto number \mid (S)$

• *Problem:* We can't decide which S production to apply until we see the

• Solution: "Left-factor" the grammar. There is a common S prefix for each



5 min break

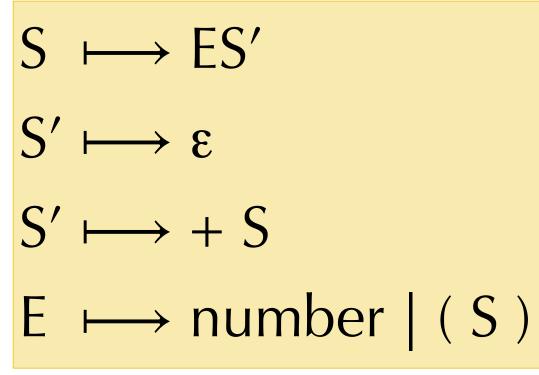
LL(1) Parse of the input string

• Look at only one input symbol at a time.

Look-ahead	
((
((
1	(
1	(.
+	(
2	(
2	(
+	(
(
((
3	(
	((1 1 + 2 2 + (((

Parsed/Unparsed Input

- (1 + 2 + (3 + 4)) +
- (1 + 2 + (3 + 4)) + 5
- (1 + 2 + (3 + 4)) + 5
- (1 + 2 + (3 + 4)) + 5
- (1 + 2 + (3 + 4)) + 5
- (1 + 2 + (3 + 4)) + 5
- (1 + 2 + (3 + 4)) + 5
- (1 + 2 + (3 + 4)) + 5
- (1 + 2 + (3 + 4)) + 5
- (1 + 2 + (3 + 4)) + 5
- (1 + 2 + (3 + 4)) + 5



Predictive Parsing

- Given an LL(1) grammar:

 - Top-down parsing = predictive parsing
 - Driven by a predictive parsing table: nonterminal * input token \rightarrow production

	number	+	()	\$ (EOF)
Т	$\longmapsto S\$$		$\longmapsto S\$$		
S	$\mapsto E S'$		$\mapsto E S'$		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
E	\mapsto num.		\mapsto (S)		

• Note: it is convenient to add a special end-of-file token \$ and a start symbol T (top-level) that requires \$.

– For a given nonterminal, the look-ahead symbol uniquely determines the production to apply.

 $S \longrightarrow ES'$ $S' \longmapsto \varepsilon$ $S' \longmapsto + S$ E \longmapsto number | (S)

How do we construct the parse table?

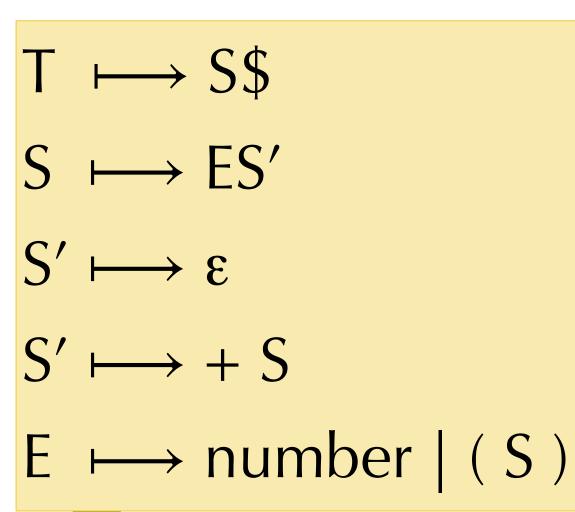
- Consider a given production: $A \rightarrow \gamma$
- Construct the set of all input tokens that may appear *first* in strings that can be derived from γ – Add the production $\rightarrow \gamma$ to the entry (A, token) for each such token.
- If γ can derive ϵ (the empty string), then we construct the set - Add the production $\rightarrow \varepsilon$ to the entry (A, token) for each such token.
- Note: if there are two different productions for a given entry, the grammar is not LL(1)

of all input tokens that may *follow* the nonterminal A in the grammar.

- First(T) = First(S)
- First(S) = First(E)
- $First(S') = \{ + \}$
- First(E) = { number, '(' }
- Follow(S') = Follow(S)
- Follow(S) = { \$, ')' } \cup Follow(S')

	number	+	()	\$ (EOF)
Т	$\longmapsto S\$$		\longmapsto S\$		
S	$\longmapsto E S'$		$\longmapsto E S'$		
S'		$\mapsto + S$		$\longmapsto \epsilon$	$\mapsto \epsilon$
E	\mapsto num.		$\longmapsto (S)$		

Example



Note: we want the *least* solution to this system of set equations... a *fixpoint* computation. More on these later in the course.

Converting the table to code

- Define n mutually recursive functions
 - one for each nonterminal A: parse_A
 - Assuming the stream of tokens is globally available, the type of parse_A is unit -> ast, if A is not an auxiliary nonterminal
 - Parse functions for auxiliary nonterminals (e.g. S') take extra ast's as inputs, one for each nonterminal in the "factored" prefix.
- Each function "peeks" at the lookahead token and then follows the production rule in the corresponding entry.
 - Consume terminal tokens from the input stream
 - Call parse_X to create sub-tree for nonterminal X
 - If the rule ends in an auxiliary nonterminal, call it with appropriate ast's.
 (The auxiliary rule is responsible for creating the ast after looking at more input.)
 - Otherwise, this function builds the ast tree itself and returns it.

Demo: LL(1) Parsing

- <u>https://github.com/ysc4230/week-06-parsing</u>
- ll1_parser.ml
- Hand-generated LL(1) code for the table below. \bullet

	number	+	()	\$ (EOF)
Т	$\longmapsto S$ \$		$\mapsto S$ \$		
S	$\mapsto E S'$		⊢→E S'		
S'		\mapsto + S		$\mapsto \epsilon$	$\mapsto \epsilon$
E	\mapsto num.		\mapsto (S)		

- Top-down parsing that finds the leftmost derivation. lacksquare
- lacksquare
- Problems: \bullet
 - Grammar must be LL(1)
 - Can extend to LL(k) (it just makes the table bigger)
 - Grammar cannot be left recursive (parser functions will loop!)
 - There are CF grammars that cannot be transformed to LL(k)
- Is there a better way? \bullet

LL(1) Summary

Language Grammar \Rightarrow LL(1) grammar \Rightarrow prediction table \Rightarrow recursive-descent parser

Bottom-up Parsing (LR Parsers)

- LR(k) parser:
 - <u>L</u>eft-to-right scanning
 - <u>**R</u>ightmost derivation**</u>
 - <u>**k**</u> lookahead symbols
- LR grammars are more expressive than LL

 - Easier to express programming language syntax (no left factoring)
- Technique: "Shift-Reduce" parsers
 - Work bottom up instead of top down
 - Construct right-most derivation of a program in the grammar
 - Used by many parser generators (e.g. yacc, ocamlyacc, merlin, etc.)
 - Better error detection/recovery

Can handle left-recursive (and right recursive) grammars; virtually all programming languages

S

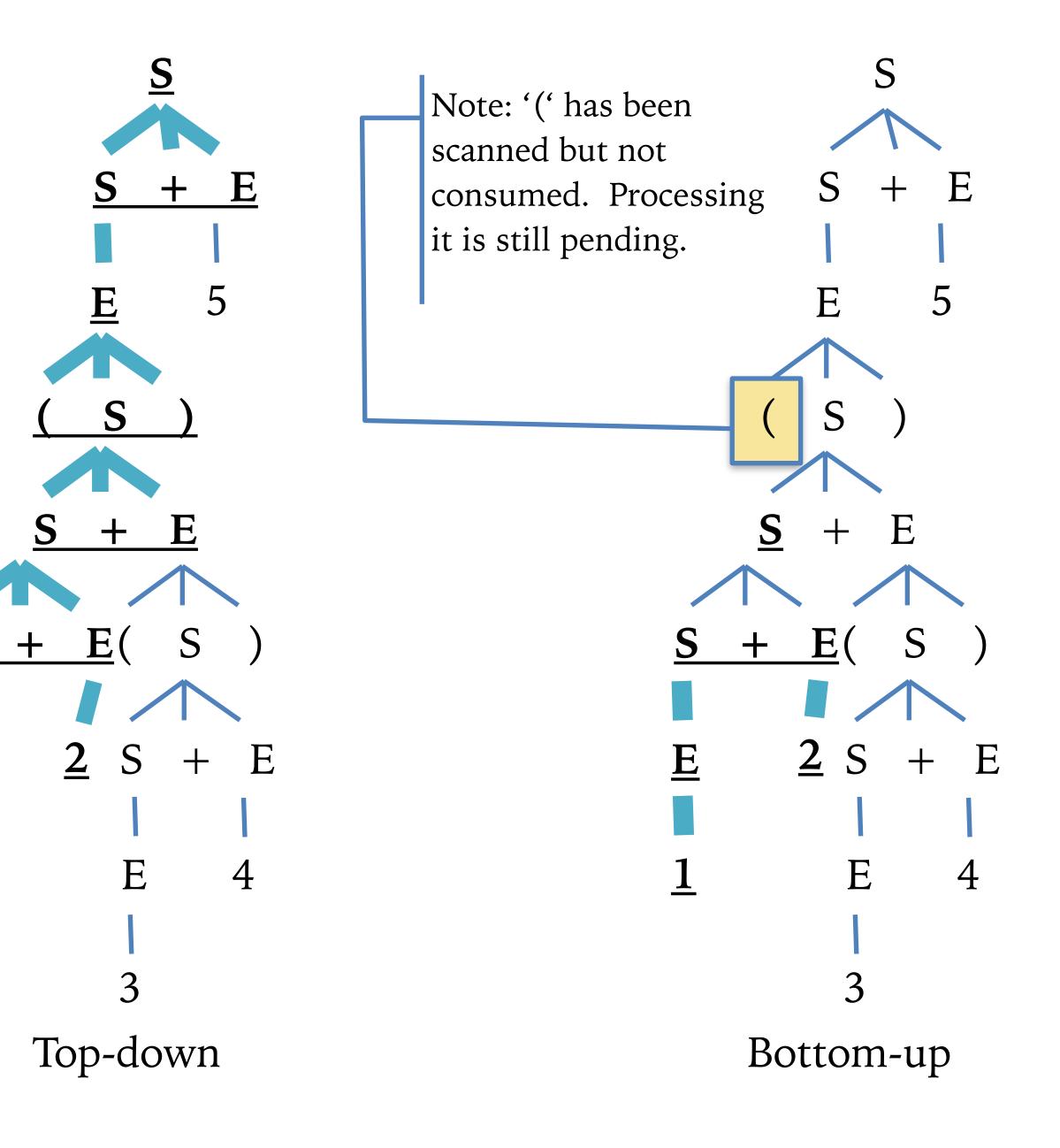
<u>E</u>

Consider the left-recursive grammar:

 $S \mapsto S + E \mid E$ $E \mapsto number \mid (S)$

- (1 + 2 + (3 + 4)) + 5
- What part of the tree must we know after scanning just "(1 + 2")?
- In top-down, must be able to guess which productions to use...

Top-down vs. Bottom up

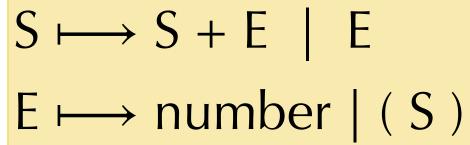


Progress of Bottom-up Parsing

Reductions	Scanned
$(1 + 2 + (3 + 4)) + 5 \longleftarrow$	
$(\mathbf{\underline{E}} + 2 + (3 + 4)) + 5 \longleftarrow$	(
$(\underline{\mathbf{S}} + 2 + (3 + 4)) + 5 \longleftarrow$	(1
$(S + \underline{E} + (3 + 4)) + 5 \longleftarrow$	(1 + 2
$(\underline{\mathbf{S}} + (3 + 4)) + 5 \longleftarrow$	(1 + 2
$(S + (\underline{E} + 4)) + 5 \longleftarrow$	(1 + 2 + (
$(S + (\underline{S} + 4)) + 5 \longleftarrow$	(1 + 2 + (
$(S + (S + \underline{E})) + 5 \longleftarrow$	(1 + 2 + (
$(S + (\underline{S})) + 5 \longleftarrow$	(1 + 2 + (
$(S + \underline{E}) + 5 \longleftarrow$	(1 + 2 + (
$(\underline{\mathbf{S}}) + 5 \longleftarrow$	(1 + 2 + 0)
<u>E</u> + 5 ← − −	(1 + 2 + 0)
<u>S</u> + 5 ← − −	(1 + 2 + 0)
S + <u>E</u> ← →	(1 + 2 + 0)
S	

Rightmost derivation

Input Remaining (1 + 2 + (3 + 4)) + 51 + 2 + (3 + 4)) + 5+2 + (3 + 4)) + 5+(3+4))+5+(3+4))+5(+ 4)) + 5(3 (3 (+ 4)) + 5(3 + 4))) + 5)) + 5 (3 + 4)(3 + 4)) + 5 (3 + 4)) + 5 (3 + 4))+ 5 (3 + 4))+ 5 (3 + 4)) + 5



Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of *shift* and *reduce* operations:
- Shift: move look-ahead token to the stack

Stack Input (1 + 2 + (3 +1 + 2 + (3 ++2 + (3 +(1)+2 + (3 +(E (S+2 + (3 +(S + 2 + (3 + 3)(S + 2)+(3 + 4)

• Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a production. (pop γ , push X)

Action
shift (
shift 1
reduce: $E \mapsto number$
reduce: $S \mapsto E$
shift +
shift 2
reduce: $E \mapsto number$

Simple LR parsing with no look-ahead.

LR(0) Grammars

LR Parser States

- Goal: know what set of reductions are legal at any given point.
- - Parser state is computed by a DFA that reads the stack σ .
- Example: LR(0) parsing

 - But, helpful for understanding how the shift-reduce parser works.

Idea: Summarise all possible stack prefixes a as a finite parser state. – Accept states of the DFA correspond to unique reductions that apply.

– <u>Left-to-right scanning</u>, <u>Right-most derivation</u>, <u>zero</u> look-ahead tokens – Too weak to handle many language grammars (e.g. the "sum" grammar)

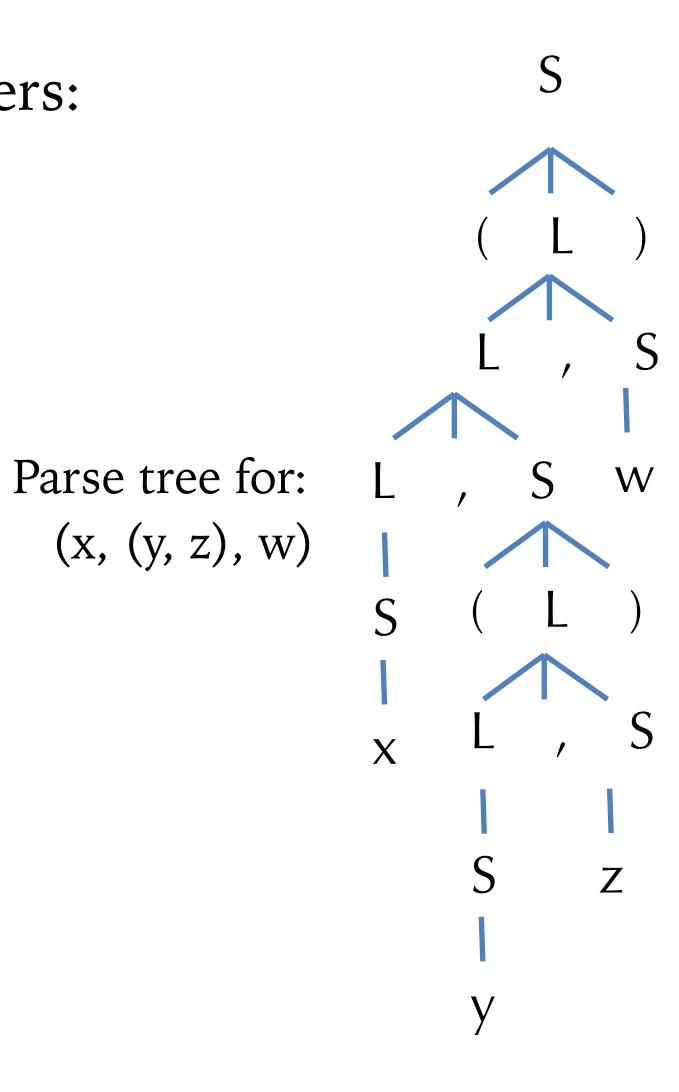
Example LR(0) Grammar: Tuples

• Example grammar for non-empty tuples and identifiers:

 $S \mapsto (L) \mid id$ $L \mapsto S \qquad | \quad L, S$

- Example strings:
 - X
 - (x,y)
 - -((((x))))
 - -(x, (y, z), w)
 - -(x, (y, (z, w)))

(x, (y, z), w)



Shift/Reduce Parsing

- Parser state:
 - Stack of terminals and nonterminals.
 - Unconsumed input is a string of terminals
 - Current derivation step is stack + input
- Parsing is a sequence of **shift** and **reduce** operations:
- Shift: move look-ahead token to the stack: e.g.
 Stack Input

 (x, (y, z), w)
 x, (y, z), w)
- Reduce: Replace symbols y at top of stac production. (pop y, push X): e.g.
 Stack Input (x , (y, z), w) (S , (y, z), w)

$$S \longmapsto (L) \mid id$$

 $L \longmapsto S \mid L, S$

Action shift (shift x

• Reduce: Replace symbols γ at top of stack with nonterminal X such that $X \mapsto \gamma$ is a

Action reduce $S \mapsto id$ reduce $L \mapsto S$

Example Run

Stack Input (x, (y, x, (y, z) , (y, z), , (y, z), , (y, z), (y, z), w (L, (y, z), w) (L, (y , z), w) (L, (S , z), w) (L, (L , z), w) (L, (L, z), w) (L, (L, z), w) (L, (L, S), w) (L, (L), w) (L, (L) , W) (L, S , W) , W) w) (L, w (L, S

(X

(S

(L

(L,

(L

(L,

(L

(L)

S

z),	w)
z), v	w)
, W	r)
, W	r)
W)
N)	
r)	

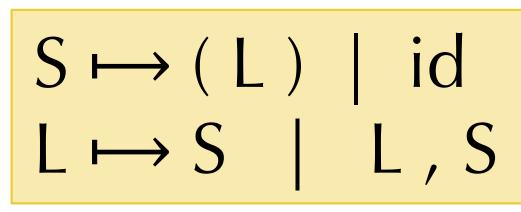
Action shift (shift x reduce $S \mapsto id$ reduce $L \mapsto S$ shift, shift (shift y reduce $S \mapsto id$ reduce $L \mapsto S$ shift, shift z reduce $S \mapsto id$ reduce $L \mapsto L$, S shift) reduce $S \mapsto (L)$ reduce $L \mapsto L$, S shift, shift w reduce $S \mapsto id$ reduce $L \mapsto L$, S shift) reduce $S \mapsto (L)$

Action Selection Problem

- Given a stack σ and a look-ahead symbol b, should the parser:
 - Shift b onto the stack (new stack is σb)
 - Reduce a production $X \mapsto \gamma$, assuming that $\sigma = \alpha \gamma$ (new stack is αX)?
- Sometimes the parser can reduce but shouldn't
 - For example, $X \mapsto \epsilon$ can always be reduced
 - Sometimes the stack can be reduced in different ways (reduce/reduce conflict)
- Main idea: decide what to do based on a prefix a of the stack plus the look-ahead symbol. \bullet – The prefix a is different for different possible reductions
- since in productions $X \mapsto \gamma$ and $Y \mapsto \beta$, γ and β might have different lengths.
- Main goal: know what set of reductions are legal at any point. – How do we keep track?

LR(0) States

- upcoming reductions.
- separator "." somewhere in the right-hand-side



- Example items: $S \mapsto .(L)$ or $S \mapsto (.L)$ or $L \mapsto S$.
- Intuition: \bullet
 - Stuff before the '.' is already on the stack (beginnings of possible γ 's to be reduced)
 - Stuff after the '.' is what might be seen next
 - The prefixes α are represented by the state itself

• An LR(0) *state* is a *set* of *items* keeping track of progress on possible

• An LR(0) *item* is a production from the language with an extra

Constructing the DFA: Start state & Closure

- First step: Add a new production $S' \mapsto S$ to the grammar
- Start state of the DFA = empty stack, so it contains the item: $S' \mapsto .S\$$
- Closure of a state: ullet
 - in the state just after the '.'
 - The added items have the '.' located at the beginning (no symbols for those items have been added to the stack yet)
 - Note that newly added items may cause yet more items to be added to the state... keep iterating until a *fixed point* is reached.
- Example: $CLOSURE({S' \mapsto .S}) = {S' \mapsto .S}, S \mapsto .(L), S \mapsto .id}$
- that might be reduced next.

 $S' \mapsto S\$$ $S \mapsto (L) \mid id$ $L \mapsto S \mid L, S$

- Adds items for all productions whose LHS nonterminal occurs in an item

Resulting "closed state" contains the set of all possible productions

Example: Constructing the DFA

$$S' \mapsto .S$$

First, we construct a state with the initial item $S' \mapsto .S$ •

$$S' \mapsto S$$

$$S \mapsto (L) | id$$

$$L \mapsto S | L, S$$

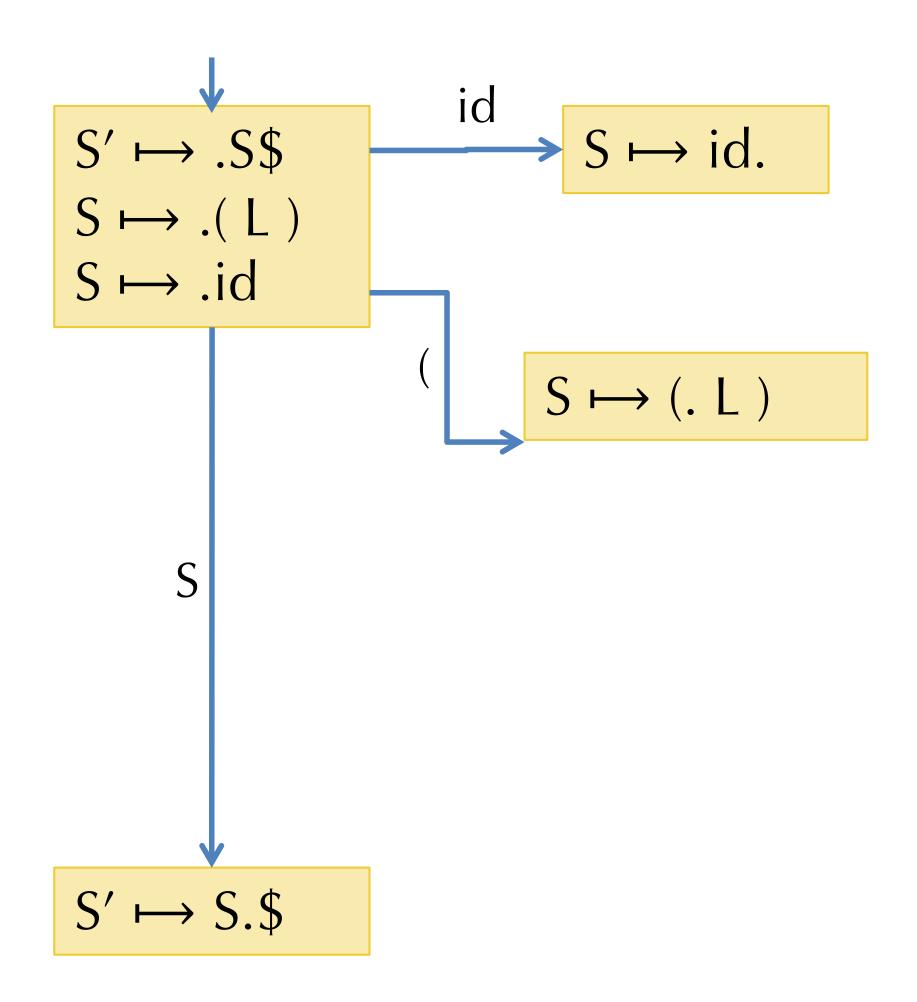
$$S' \mapsto .S\$$$
$$S \mapsto .(L)$$
$$S \mapsto .id$$

- Next, we take the closure of that state: \bullet $CLOSURE(\{S' \mapsto .S\}\}) = \{S' \mapsto .S\}, S \mapsto .(L), S \mapsto .id\}$
- In the set of items, the nonterminal S appears after the '.'
- So we add items for each S production in the grammar ullet

$$S' \mapsto S$$

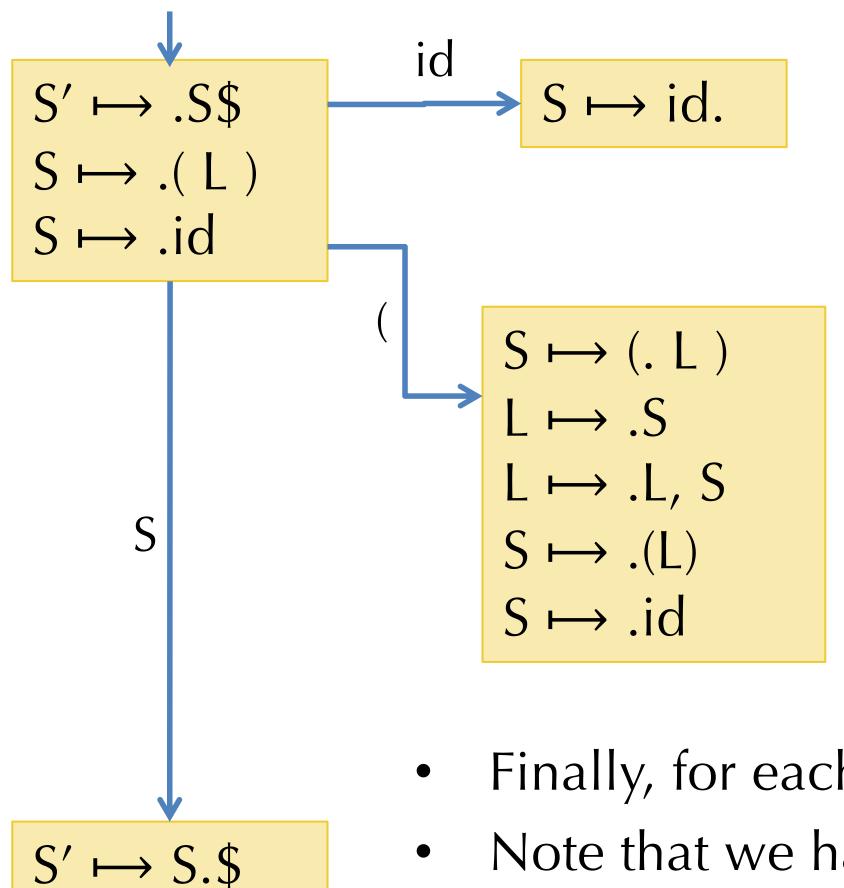
$$S \mapsto (L) | id$$

$$L \mapsto S | L, S$$



 $S' \mapsto S\$$ $S \mapsto (L) | id$ $L \mapsto S | L, S$

- Next we add the transitions:
- First, we see what terminals and nonterminals can appear after the '.' in the source state.
 - Outgoing edges have those label.
- The target state (initially) includes all items from the source state that have the edge-label symbol after the '.', but we advance the '.' (to simulate shifting the item onto the stack)



- Note that we have to perform two iterations to compute $CLOSURE({S \mapsto (.L)})$
 - First iteration adds $L \mapsto .S$ and $L \mapsto .L$, S
 - Second iteration adds S \mapsto .(L) and S \mapsto .id

$$S' \mapsto S$$

$$S \mapsto (L) \mid id$$

$$L \mapsto S \mid L, S$$

Finally, for each new state, we take the closure.



S $L \mapsto L, S.$

- Current state: run the DFA on the stack.
- If a reduce state is reached, reduce
- Otherwise, if the next token matches an outgoing edge, shift.
- If no such transition, it is a parse error.

Using the DFA

- Run the parser stack through the DFA. •
- The resulting state tells us which productions might be reduced next.

 - If not in a reduce state, then shift the next symbol and transition according to DFA. – If in a reduce state, $X \mapsto y$ with stack ay, pop y and push X.
- *Optimization*: No need to re-run the DFA from beginning every step \bullet - Store the state with each symbol on the stack: e.g. $_1(_3(_3L_5)_6)$ – On a reduction $X \mapsto \gamma$, pop stack to reveal the state too: From stack $_1(_3(_3L_5)_6)$ reduce $S \mapsto (L)$ to reach stack $_1(_3)$ e.g.
- - Next, push the reduction symbol: e.g. to reach stack $_1(_3S)$
 - Then take just one step in the DFA to find next state: $_1(_3S_7)$

Implementing the Parsing Table

- Represent the parser automaton as a table of shape: state * (terminals + nonterminals)
- Entries for the "action table" specify two kinds of actions:
 - Shift and goto state n

State

- Reduce using reduction $X\longmapsto \gamma$
 - First pop y off the stack to reveal the state
 - Look up X in the "goto table" and goto that state

Terminal Symbol

Action table

ools	Nonterminal Symbols
	Goto table

Example Parse Table

	()	id	,	\$	S	L
1	s3		s2			g4	
2	S⊷→id	S⊷→id	S⊷→id	S⊷→id	S⊷→id		
3	s3		s2			g7	g5
4					DONE		
5		s6		s8			
6	$S \longmapsto (L)$						
7	$L \longmapsto S$	$L \longmapsto S$	$L \longmapsto S$	$L\longmapstoS$	$L\longmapstoS$		
8	s3		s2			g9	
9	$L \mapsto L,S$						

sx = shift and goto state x gx = goto state x

• Parse the token stream: (x, (y, z), w)\$

Stream	Action (accordin
(x, (y, z), w)\$	s3
x, (y, z), w)\$	s2
, (y, z), w)\$	Reduce: $S \mapsto id$
, (y, z), w)\$	g7 (from state 3
, (y, z), w)\$	Reduce: $L \mapsto S$
, (y, z), w)\$	g5 (from state 3
, (y, z), w)\$	s8
(y, z), w)\$	s3
y, z), w)\$	s2
	(x, (y, z), w) x, (y, z), w) , (y, z), w) (y, z), w)

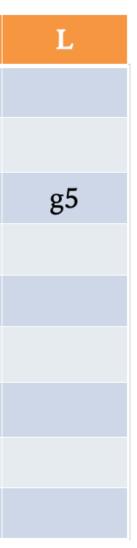
Example

ng to table)

follow S)

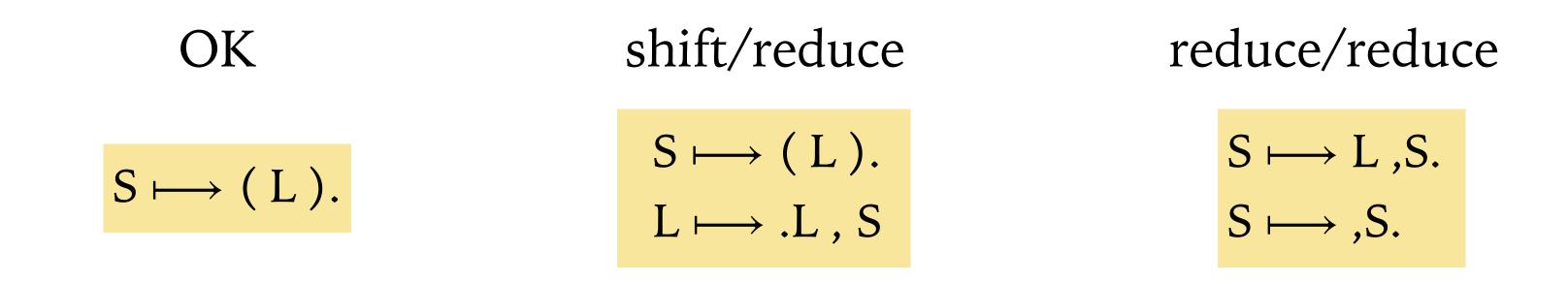
follow L)

	()	id	9	\$	S
1	s3		s2			g4
2	S⊷→id	S⊷→id	S⊷→id	S⊷→id	S⊷→id	
3	s3		s2			g7
4					DONE	
5		s6		s8		
6	$S\longmapsto (L)$					
7	$L\longmapstoS$	$L\longmapstoS$	$L\longmapstoS$	$L\longmapstoS$	$L\longmapstoS$	
8	s3		s2			g9
9	$L \mapsto L,S$	$L \mapsto L,S$	$L \mapsto L,S$	$L \mapsto L,S$	$L \longmapsto L,S$	



LR(0) Limitations

- An LR(0) machine only works if states with reduce actions have a single reduce action.
 In such states, the machine always reduces (ignoring lookahead)
- With more complex grammars, the DFA construction will yield states with shift/reduce and reduce/reduce conflicts:



• Such conflicts can often be resolved by using a look-ahead symbol: LR(1)

- Consider the left associative and right associative "sum" grammars: \bullet left right $S \mapsto S + E \mid E$ $S \longmapsto E + S \mid E$ $E \mapsto number \mid (S)$ $E \mapsto number | (S)$
- One is LR(0) the other isn't... which is which and why? What kind of conflict do you get? Shift/reduce or Reduce/reduce?
- \bullet

Examples

Ambiguities in associativity/precedence usually lead to shift/reduce conflicts.

- Algorithm is similar to LR(0) DFA construction:
 - LR(1) state = set of LR(1) items
 - An LR(1) item is an LR(0) item + a set of look-ahead symbols: $A \mapsto a.\beta$, L
- LR(1) closure is a little more complex:
- Form the set of items just as for LR(0) algorithm.
- Whenever a new item $C \mapsto .\gamma$ is added because $A \mapsto \beta.C\delta$, L is already in the set, we need to compute its look-ahead set M:
 - 1. The look-ahead set M includes FIRST(δ) (the set of terminals that may start strings derived from δ)
 - 2. If δ can derive ϵ (it is nullable), then the look-ahead M also contains L

Example Closure in LR(1)

 $S' \longrightarrow S$ \$

- Start item: $S' \mapsto .S$, {}
- Since S is to the right of a '.', add: $S \longmapsto .E + S$, {\$} $S \longmapsto .E$, $\{\$\}$
- Need to keep closing, since E appears to the right of a '.' in LE + S':

$E \mapsto$.number	,	$\{+\}$
$E \mapsto$.(S)	,	$\{+\}$

- Because E also appears to the right of '.' in '.E' we get: • $E \mapsto .number, \{\$\}$ $E \mapsto .(S) , \{\$\}$
- All items are distinct, so we're done

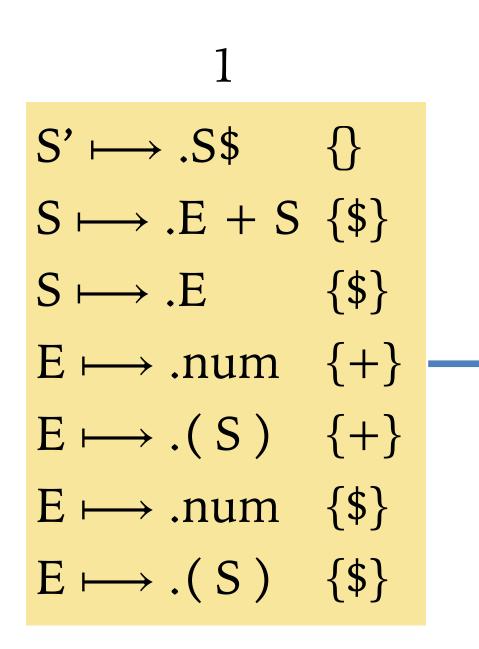
 $S \mapsto E + S \mid E$ $E \mapsto number \mid (S)$

Note: {\$} is FIRST(\$)

Note: + added for reason 1

Note: \$ added for reason 2

Using the DFA

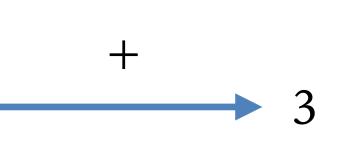


Choice between shift and reduce is resolved.

2 $S \longmapsto E + S \{ \}$ $S \mapsto E.$ {\$}

E

- The behaviour is determined if:
 - There is no overlap among the look-ahead sets for each reduce item, and
 - None of the look-ahead symbols appear to the right of a '.'



	+	\$	E
1			g2
2	s3	$S \longmapsto E$	

Fragment of the Action & Goto tables

LR variants

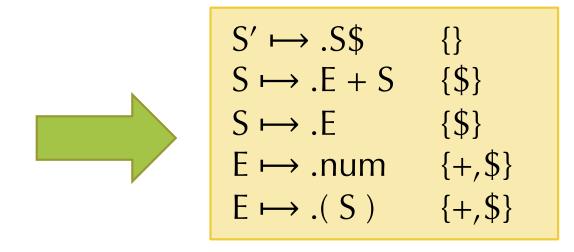
- ullet– DFA + stack is a push-down automaton (recall CIS 262)
- In practice, LR(1) tables are big. – Modern implementations (e.g. menhir) directly generate code
- LALR(1) = "Look-ahead LR"lacksquare
 - ahead sets:

 $S' \mapsto .S\$$ {} $S \mapsto .E + S \{\$\}$ $S \mapsto .E$ {\$} $E \mapsto .num \{+\}$ $\mathsf{E} \longmapsto .(\mathsf{S}) \qquad \{+\}$ $E \mapsto .num \{\$\}$ $E \mapsto .(S)$ {\$}

- Results in a much smaller parse table and works well in practice
- This is the usual technology for automatic parser generators: yacc, ocamlyacc
- GLR = "Generalized LR" parsing
 - Efficiently compute the set of *all* parses for a given input
 - Later passes should disambiguate based on other context

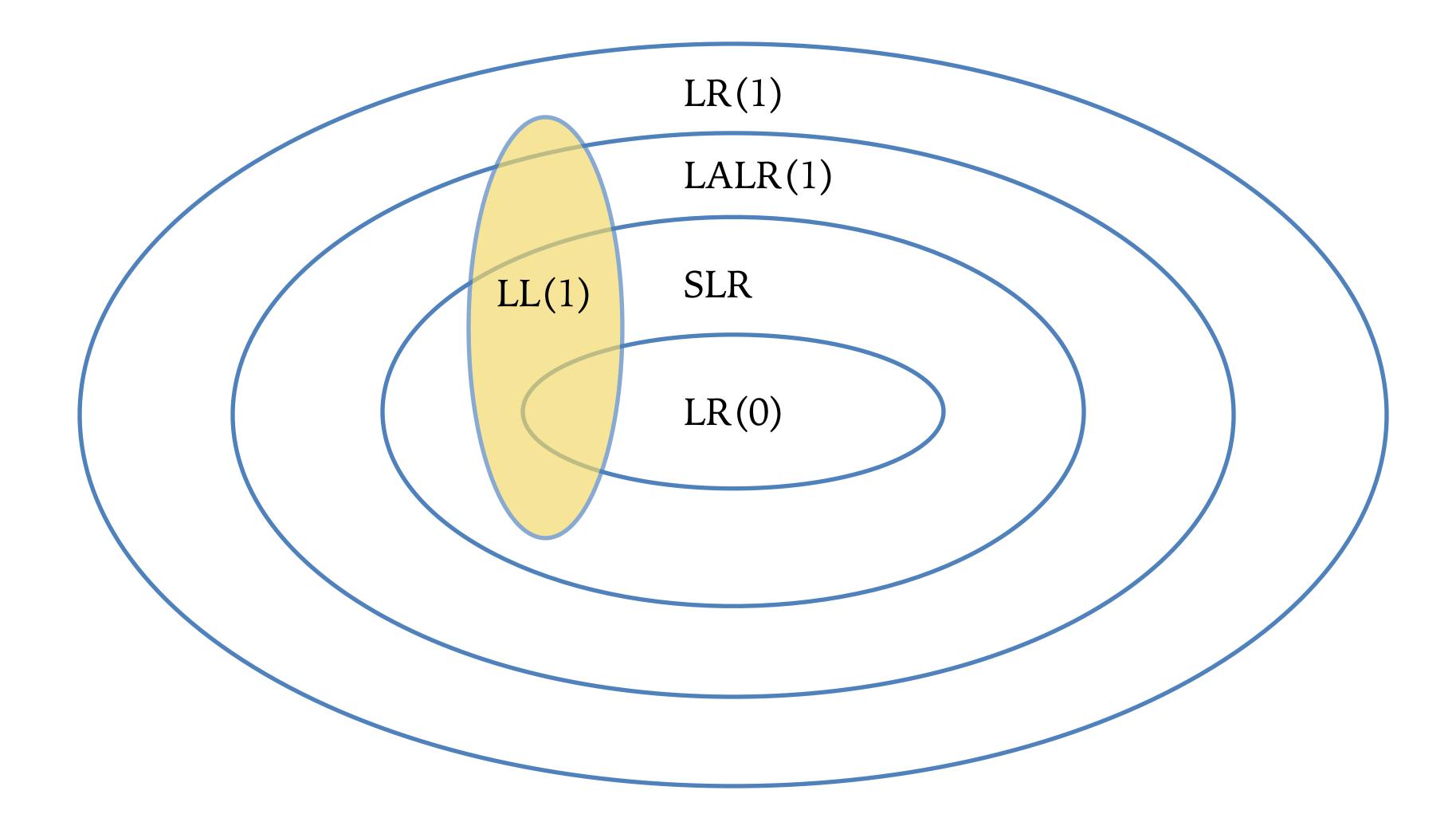
LR(1) gives maximal power out of a 1 look-ahead symbol parsing table

– Merge any two LR(1) states whose items are identical except for the look-



- Such merging can lead to nondeterminism (e.g. reduce/reduce conflicts), but

Classification of Grammars



Parsing in OCaml via Menhir

Practical Issues

- <u>https://github.com/ysc4230/week-07-more-parsing</u>
- Dealing with source file location information
 - In the lexer and parser
 - In the abstract syntax
 - See range.ml, ast.ml
 - Check the parse tree (printing via driver.ml)
- Lexing comments / strings

Menhir output

- You can get verbose parser debugging information by doing:
 - menhir --explain ...
 - or, if using ocamlbuild:
- The parser items of each state use the '.' just as described above
- The flag --dump generates a full description of the automaton
- Example: see start parser.mly

• The result is a <parsername>.conflicts file that contains a description of the error

Shift/Reduce conflicts

- Conflict 1:
 - Operator precedence (State 13)

- Conflict 2:
 - Parsing if-then-else statements

Shift/Reduce conflicts

- Conflict 1: lacksquare
 - Operator precedence (State 13)
 - Resolving by changing the grammar (see good_parser.ml)

- Conflict 2:
 - Parsing if-then-else statements

From Menhir Manual

Inlining 5.3

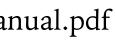
It is well-known that the following grammar of arithmetic expressions does not work as expected: that is, in spite of the priority declarations, it has shift/reduce conflicts.

%token < *int* > *INT* %token PLUS TIMES %left *PLUS* %left *TIMES*

%%

expression: $i = INT \{ i \}$ $e = expression; o = op; f = expression \{ o e f \}$ *op*: PLUS { (+) } TIMES { (*) }

The trouble is, the precedence level of the production *expression* \rightarrow *expression op expression* is undefined, and there is no sensible way of defining it via a %prec declaration, since the desired level really depends upon the symbol that was recognized by *op*: was it *PLUS* or *TIMES*?



From Menhir Manual

The standard workaround is to abandon the definition of *op* as a separate nonterminal symbol, and to inline its definition into the definition of *expression*, like this:

expression:

| i = INT { i }
| e = expression; PLUS; f = expression | e = expression; TIMES; f = expression

This avoids the shift/reduce conflict, but gives up some of the original specification's structure, which, in realistic situations, can be damageable. Fortunately, Menhir offers a way of avoiding the conflict without manually transforming the grammar, by declaring that the nonterminal symbol *op* should be inlined:

expression:

| i = INT { i }
| e = expression; o = op; f = expression **%inline** *op*:

| PLUS { (+) }
| TIMES { (*) }

The **%inline** keyword causes all references to *op* to be replaced with its definition. In this example, the definition of *op* involves two productions, one that develops to *PLUS* and one that expands to *TIMES*, so every production that refers to *op* is effectively turned into two productions, one that refers to *PLUS* and one that refers to *TIMES*. After inlining, op disappears and expression has three productions: that is, the result of inlining is exactly the manual workaround shown above.

$$\left\{ \begin{array}{c} e+f \\ e & f \end{array} \right\}$$

Oat

- Simple C-like Imperative Language
 - supports 64-bit integers, arrays, strings
 - top-level, mutually recursive procedures
 - scoped local, imperative variables
- See examples in *hw4programs* folder
- How to design/specify such a language?

Oat v.1 Language Specification

YSC3208: Programming Language Design and Implementation

Grammar

The following grammar defines the Oat syntax. All binary operations are *left associative* with precedence levels indicated numerically. Higher precedence operators bind tighter than lower precedence ones. g

$$\begin{array}{cccc} prog & ::= & prog \\ & \mid & decl_1 \dots decl_i \\ \\ decl & ::= & glob \\ & \mid & gdecl \\ & \mid & fdecl \end{array}$$

bal declarations