
Ilya Sergey

ilya.sergey@yale-nus.edu.sg

Week 8: First-Class Functions

YSC4230: Programming Language
Design and Implementation

mailto:ilya.sergey@yale-nus.edu.sg

Recap: Parsing in OCaml via Menhir

Practical Issues

• https://github.com/ysc4230/week-07-more-parsing

• Dealing with source file location information
– In the lexer and parser
– In the abstract syntax

– See range.ml, ast.ml
– Check the parse tree (printing via driver.ml)

• Lexing comments / strings

https://github.com/ysc4230/week-07-more-parsing

• You can get verbose parser debugging information by doing:
– menhir --explain …

– or, if using ocamlbuild:
ocamlbuild –use-menhir -yaccflag -–explain …

• The result is a <parsername>.conflicts file that contains a description of the error
– The parser items of each state use the ‘.’ just as described above

• The flag --dump generates a full description of the automaton

• Example: see start_parser.mly

Menhir output

• Conflict 1:
• Operator precedence

• Conflict 2:
• Parsing if-then-else statements

Shift/Reduce conflicts

• Conflict 1:
• Operator precedence (State 13)
• Resolving by changing the grammar (see good_parser.ml)

• Conflict 2:
• Parsing if-then-else statements

Shift/Reduce conflicts

From Menhir Manual http://gallium.inria.fr/~fpottier/menhir/manual.pdf

5.3 Inlining
It is well-known that the following grammar of arithmetic expressions does not work as expected: that is, in
spite of the priority declarations, it has shift/reduce conflicts.

%token < int > INT
%token PLUS TIMES
%left PLUS
%left TIMES

%%

expression:
| i = INT { i }
| e = expression; o = op; f = expression { o e f }

op:
| PLUS { (+) }
| TIMES { (*) }

The trouble is, the precedence level of the production expression ! expression op expression is undefined, and
there is no sensible way of defining it via a %prec declaration, since the desired level really depends upon the
symbol that was recognized by op: was it PLUS or TIMES?

The standard workaround is to abandon the definition of op as a separate nonterminal symbol, and to inline
its definition into the definition of expression, like this:

expression:
| i = INT { i }
| e = expression; PLUS; f = expression { e + f }
| e = expression; TIMES; f = expression { e * f }

This avoids the shift/reduce conflict, but gives up some of the original specification’s structure, which,
in realistic situations, can be damageable. Fortunately, Menhir offers a way of avoiding the conflict without
manually transforming the grammar, by declaring that the nonterminal symbol op should be inlined:

expression:
| i = INT { i }
| e = expression; o = op; f = expression { o e f }

%inline op:
| PLUS { (+) }
| TIMES { (*) }

The %inline keyword causes all references to op to be replaced with its definition. In this example, the definition
of op involves two productions, one that develops to PLUS and one that expands to TIMES, so every production
that refers to op is effectively turned into two productions, one that refers to PLUS and one that refers to TIMES.
After inlining, op disappears and expression has three productions: that is, the result of inlining is exactly the
manual workaround shown above.

In some situations, inlining can also help recover a slight efficiency margin. For instance, the definition:

%inline plist(X):
| xs = loption(delimited(LPAREN, separated_nonempty_list(COMMA, X), RPAREN)) { xs }

effectively makes plist(X) an alias for the right-hand side loption(. . .). Without the %inline keyword, the
language recognized by the grammar would be the same, but the LR automaton would probably have one
more state and would perform one more reduction at run time.

16 20200624

From Menhir Manual http://gallium.inria.fr/~fpottier/menhir/manual.pdf

5.3 Inlining
It is well-known that the following grammar of arithmetic expressions does not work as expected: that is, in
spite of the priority declarations, it has shift/reduce conflicts.

%token < int > INT
%token PLUS TIMES
%left PLUS
%left TIMES

%%

expression:
| i = INT { i }
| e = expression; o = op; f = expression { o e f }

op:
| PLUS { (+) }
| TIMES { (*) }

The trouble is, the precedence level of the production expression ! expression op expression is undefined, and
there is no sensible way of defining it via a %prec declaration, since the desired level really depends upon the
symbol that was recognized by op: was it PLUS or TIMES?

The standard workaround is to abandon the definition of op as a separate nonterminal symbol, and to inline
its definition into the definition of expression, like this:

expression:
| i = INT { i }
| e = expression; PLUS; f = expression { e + f }
| e = expression; TIMES; f = expression { e * f }

This avoids the shift/reduce conflict, but gives up some of the original specification’s structure, which,
in realistic situations, can be damageable. Fortunately, Menhir offers a way of avoiding the conflict without
manually transforming the grammar, by declaring that the nonterminal symbol op should be inlined:

expression:
| i = INT { i }
| e = expression; o = op; f = expression { o e f }

%inline op:
| PLUS { (+) }
| TIMES { (*) }

The %inline keyword causes all references to op to be replaced with its definition. In this example, the definition
of op involves two productions, one that develops to PLUS and one that expands to TIMES, so every production
that refers to op is effectively turned into two productions, one that refers to PLUS and one that refers to TIMES.
After inlining, op disappears and expression has three productions: that is, the result of inlining is exactly the
manual workaround shown above.

In some situations, inlining can also help recover a slight efficiency margin. For instance, the definition:

%inline plist(X):
| xs = loption(delimited(LPAREN, separated_nonempty_list(COMMA, X), RPAREN)) { xs }

effectively makes plist(X) an alias for the right-hand side loption(. . .). Without the %inline keyword, the
language recognized by the grammar would be the same, but the LR automaton would probably have one
more state and would perform one more reduction at run time.

16 20200624

• Parser generators, like menhir often support precedence and associativity declarations.
– Hints to the parser about how to resolve conflicts.
– See: good-parser.mly

• Pros:
– Avoids having to manually resolve those ambiguities by manually introducing extra nonterminals

(see parser.mly)
– Easier to maintain the grammar

• Cons:
– Can’t as easily re-use the same terminal (if associativity differs)
– Introduces another level of debugging

• Limits:
– Not always easy to disambiguate the grammar based on just precedence and associativity.

Precedence and Associativity Declarations

• Consider this grammar:

S ⟼ if (E) S
S ⟼ if (E) S else S
S ⟼ X = E
E ⟼ …

• Is this grammar OK?

• Consider how to parse:

 if (E1) if (E2) S1 else S2

• This is known as the “dangling else” problem.

• What should the “right” answer be?

• How do we change the grammar?

Conflict 2: Ambiguity in Real Languages

• Want to rule out:

 if (E1) if (E2) S1 else S2

• Observation: An un-matched ‘if’ should not appear as the ‘then’ clause of a containing ‘if’.

S ⟼ M | U // M = “matched”, U = “unmatched”
U ⟼ if (E) S // Unmatched ‘if ’
U ⟼ if (E) M else U // Nested if is matched
M ⟼ if (E) M else M // Matched ‘if ’
M ⟼ X = E // Other statements

• See: else-resolved-parser.mly

How to Disambiguate if-then-else

• Ambiguity arises because the ‘then’ branch is not well bracketed:

if (E1) { if (E2) { S1 } } else S2 // unambiguous
if (E1) { if (E2) { S1 } else S2 } // unambiguous

• So: could just require brackets
– But requiring them for the else clause too leads to ugly code for chained if-statements:

 How about a compromise? Allow unbracketed else
 block only if the body is ‘if ’:

Alternative: Use { }

if (c1) {
 …
} else {
 if (c2) {

 } else {
 if (c3) {

 } else {

 }
 }
}

if (c1) {

} else if (c2) {

} else if (c3) {

} else {

}

Benefits:
• Less ambiguous
• Easy to parse
• Enforces good style

HW4: Oat v.1

• Simple C-like Imperative Language
 – supports 64-bit integers, arrays, strings
 – top-level, mutually recursive procedures
 – scoped local, imperative variables

• See examples in hw4programs folder

• How to design/specify such a language?

Oat

Oat v.1 Language Specification

YSC3208: Programming Language Design and Implementation

1 Grammar
The following grammar defines the Oat syntax. All binary operations are left associative with precedence
levels indicated numerically. Higher precedence operators bind tighter than lower precedence ones.

prog ::= prog
| decl1 .. decli

decl ::= global declarations
| gdecl
| fdecl

gdecl ::= global variable declarations
| global id = gexp;

arg ::= arg
| t id

args ::= args
| arg1, .. , argn

fdecl ::= function declaration
| retty id(args) block

block ::= blocks
| {stmt1 .. stmtn}

t ::= types
| int
| bool
| ref

ref ::= reference types
| string
| t[]

F ::= function types
| (t0, .. , tn) ! retty

1

• Resolving parsing errors

• Compiling non-static arrays to LLVMlite

Oat Design Considerations

Untyped lambda calculus
Substitution
Evaluation

First-Class Functions

• Languages like OCaml, Scala, Haskell, Scheme, Python, C#, Java 8, Swift
• Functions can be passed as arguments (e.g. map or fold)
• Functions can be returned as values (e.g. compose)
• Functions nest: inner function can refer to variables bound in the outer function

let add = fun x -> fun y -> x + y
let inc = add 1
let dec = add -1  

let compose = fun f -> fun g -> fun x -> f (g x)
let id = compose inc dec  

• How do we implement such functions?
– in an interpreter? in a compiled language?

“Functional” languages

• The lambda calculus is a minimal programming language.
– Note: we’re writing (fun x -> e) lambda-calculus notation: λ x. e

• It has variables, functions, and function application.
– That’s it!

– It’s Turing Complete.

– It’s the foundation for a lot of research in programming languages.

– Basis for “functional” languages like Scala, OCaml, Haskell, etc.

Abstract syntax in OCaml:

Concrete syntax:

(Untyped) Lambda Calculus

type exp =
 | Var of var (* variables *)
 | Fun of var * exp (* functions: fun x → e *)
 | App of exp * exp (* function application *)

exp ::=
 | x variables
 | fun x → exp functions
 | exp1 exp2 function application

 | (exp) parentheses

let add = fun x → fun y → x + y
let inc = add 1

• The result of add 1 is a function

• After calling add, we can’t throw away its argument (or its local variables) because
those are needed in the function returned by add.

• We say that the variable x is free in fun y → x + y
– Free variables are defined in an outer scope

• We say that the variable y is bound by “fun y” and its scope is the body “x + y”
in the expression fun y → x + y 

• A term with no free variables is called closed.

• A term with one or more free variables is called open.

Free Variables and Scoping

• The only values of the lambda calculus are (closed) functions:

• To substitute a (closed) value v for some variable x in an expression e
– Replace all free occurrences of x in e by v.

– In OCaml: written subst v x e

– In Math: written e{v/x}

• Function application is interpreted by substitution:

 (fun x → fun y → x + y) 1
 = subst 1 x (fun y → x + y)
 = (fun y → 1 + y)

Values and Substitution

val ::=
 | fun x → exp functions are values

Note: for the sake of
examples we may
add integers and
arithmetic operations to
the “pure” untyped
lambda calculus.

• Substitution function (in Math):

 x{v/x} = v (replace the free x by v)
 y{v/x} = y (assuming y ≠ x)
(fun x → exp){v/x} = (fun x → exp) (x is bound in exp)
(fun y → exp){v/x} = (fun y → exp{v/x}) (assuming y ≠ x)
 (e1 e2){v/x} = (e1{v/x} e2{v/x}) (substitute everywhere)

• Examples:

(x y) {(fun z → z z)/y}
 = x (fun z → z z)

(fun x → x y){(fun z → z z)/y}
 = fun x → x (fun z → z z) 

(fun x → x){(fun z → z z)/x}
 = fun x → x // x is not free!

Operational Semantics of Lambda Calculus

Demo: Programming in Lambda Calculus

22

• https://github.com/ysc4230/week-08-lambda-2021

• lambda.ml – untyped lambda-calculus
• lambda_int.ml – untyped lambda-calculus with integers
• stlc.ml – simply-typed lambda-calculus

https://github.com/ysc4230/week-08-lambda-2021

• An OCaml function to calculate the set of free variables in a lambda expression:

• A lambda expression e is closed if free_vars e returns VarSet.empty
• In mathematical notation:

 fv(x) = {x}
 fv(fun x → exp) = fv(exp) \ {x} (‘x’ is a bound in exp)
 fv(exp1 exp2) = fv(exp1) ∪ fv(exp2)

Free Variable Calculation

let rec free_vars (e:exp) : VarSet.t =
 begin match e with
 | Var x -> VarSet.singleton x
 | Fun(x, body) -> VarSet.remove x (free_vars body)
 | App(e1, e2) -> VarSet.union (free_vars e1) (free_vars e2)
 end

• Note that if we try to naively "substitute" an open term, a bound variable might
capture the free variables:

 
 (fun x → (x y)){(fun z → x)/y}
 = fun x → (x (fun z -> x)) 
 
 
 

• Usually not the desired behaviour
– This property is sometimes called "dynamic scoping"

The meaning of "x" is determined by where it is bound dynamically,
not where it is bound statically.

– Some languages (e.g. emacs lisp) are implemented with this as a "feature"

– But: it leads to hard-to-debug scoping issues

Variable Capture

Note: x is free
in (fun z → x)

 free x is
 “captured“!!

• Note that the names of bound variables don't matter to the semantics
– i.e. it doesn't matter which variable names you use, as long as you use them consistently:

 (fun x → y x) is the "same" as (fun z → y z)
 the choice of "x" or "z" is arbitrary, so long as we consistently rename them

• The names of free variables do matter:
 (fun x → y x) is not the "same" as (fun x → z x) 
 
Intuitively: y an z can refer to different things from some outer scope

Alpha Equivalence

Two terms that differ only by consistent renaming of
bound variables are called alpha equivalent

Students who cheat by “renaming variables” are
trying to exploit alpha equivalence…

• Consider the substitution operation:

e1{e2/x}

• To avoid capture, we define substitution to pick an alpha equivalent version
of e1 such that the bound names of e1 don't mention the free names of e2.
– Then do the "naïve" substitution.

For example: (fun x → (x y)){(fun z → x)/y}

 = (fun x’ → (x' (fun z → x)) 
This is fine:

 (fun x → (x y)){(fun x → x)/y}

 = (fun x → (x (fun x → x))
= (fun a → (a (fun b → b))

Fixing Substitution

rename x to x'

• Specified using just two inference rules with judgments of the form exp ⇓ val
– Read this notation a as “program exp evaluates to value val”

– This is call-by-value semantics: function arguments are evaluated before substitution

Operational Semantics

v ⇓ v

exp1 ⇓ (fun x → exp3) exp2 ⇓ v exp3{v/x} ⇓ w

exp1 exp2 ⇓ w

“Values evaluate to themselves”

“To evaluate function application: Evaluate the function to a value, evaluate the
argument to a value, and then substitute the argument for the function. ”

Demo: Implementing the Interpreter

28

• https://github.com/ysc4230/week-08-lambda-2021

• lambda.ml – untyped lambda-calculus
• lambda_int.ml – untyped lambda-calculus with integers
• stlc.ml – simply-typed lambda-calculus

https://github.com/ysc4230/week-08-lambda-2021

Adding Integers to Lambda Calculus

exp1 ⇓ n1 exp2 ⇓ n2

exp1 + exp2 ⇓ (n1 ⟦+⟧ n2)

exp ::=
 | …
 | n constant integers
 | exp1 + exp2 binary arithmetic operation

val ::=
 | fun x → exp functions are values
 | n integers are values

n{v/x} = n constants have no free vars.
(e1 + e2){v/x} = (e1{v/x} + e2{v/x}) substitute everywhere

Object-level ‘+’ Meta-level ‘+’

Semantic Analysis via Types

Next Week

30

