YSC4230: Programming Language
Design and Implementation

Week 9: Types and Type Checking

[lya Sergey

ilya.sergey@yale-nus.edu.sg

mailto:ilya.sergey@yale-nus.edu.sg

(Untyped) Lambda Calculus

» The lambda calculus is a minimal programming language.

— Note: we're writing (fun x -> e) lambda-calculus notation: A x. e

» It has variables, functions, and function application.
— That'’s it!
— It's Turing Complete.
— It's the foundation for a /ot of research in programming languages.
— Basis for “functional” languages like Scala, OCaml, Haskell, etc.

Abstract syntax in OCaml:

type exp =
| Var of var (* variables *)
| Fun of var * exp (* functions: funx = e)

| App of exp * exp (* function application *)

Concrete syntax: exp 1=
X variables
fun x = exp functions
exp; exp; function application
(exp) parentheses

More Examples

Pairs and zero-checking

Recap: Operational Semantics of Lambda Calculus

Substitution function (in Math):

x{v/x} = v (replace the free x by v)
Viv/IX} =y (assuming y # X)
(fun x = exp)iv/x} = (fun x = exp) (x is bound in exp)
(funy = exp){v/x} = ({funy = exp{v/x}) (assuming y # x)
(e e){v/x} = (e{v/x} e,{v/x}) (substitute everywhere)

Examples:

(Xy) {(fun z = z 2)/y}
= X(funz — z z2)

(fun x = x y){(funz = z 2)/y}
= funx = x (funz — z 2)

(fun x = x){(fun z = z z)/x}
= funx = X // X is not free!

Free Variables and Scoping

letadd =funx = funy = x+vy
let inc = add 1

The result of add 1 is a function

After calling add, we can’t throw away its argument (or its local variables) because
those are needed in the function returned by add.

We say that the variable x is free infuny = x +y
— Free variables are defined in an outer scope

We say that the variable y is bound by “fun y” and its scope is the body “x + y”
in the expression funy = X +vy

A term with no free variables is called closed.

A term with one or more free variables is called open.

Free Variable Calculation

» An OCaml function to calculate the set of free variables in a lambda expression:

let rec free_vars (e:exp) : VarSet.t =

begin match e with
Var x -> VarSet.singleton x
Fun(x, body) -> VarSet.remove x (free_vars body)
App(el, e2) -> VarSet.union (free_vars el) (free_vars e2)
end

* A lambda expression e is closed if free_vars e returns VarSet.empty

 |n mathematical notation:

fv(x) X}
fv(fun x = exp) = fv(exp) \ {x} (‘x”is a bound in exp)
fv(exp; exp,) fv(exp;) u fv(exp,)

Operational Semantics

» Specified using just two inference rules with judgments of the form exp | val

//

— Read this notation a as “program exp evaluates to value va

— This is call-by-value semantics: function arguments are evaluated before substitution

vl v

“Values evaluate to themselves”

expy I fun x = exp;) expy v exp;{v/x} | w

exp; exp, b w

“To evaluate function application: Evaluate the function to a value, evaluate the
argument to a value, and then substitute the argument for the function. ”

Variable Capture

* Note that if we try to naively "substitute" an open term, a bound variable might
capture the free variables:

Note: X is free

in (fun z = X)
(fun x = (X y)){(fun z = Xx)/y}
= funx — (X (fun z -> X))

free X is
“captured”!!

» Usually not the desired behaviour

— This property is sometimes called "dynamic scoping"

The meaning of "x" is determined by where it is bound dynamically,
not where it is bound statically.

— Some languages (e.g. emacs lisp) are implemented with this as a "feature"
— But: it leads to hard-to-debug scoping issues

Alpha Equivalence

* Note that the names of bound variables don't matter to the semantics
— i.e. it doesn't matter which variable names you use, as long as you use them consistently:

(funx > yx) isthe "same" as (funz — vy z)

the choice of "x" or "z" is arbitrary, so long as we consistently rename them

Two terms that differ only by consistent renaming of
bound variables are called alpha equivalent

e The names of free variables do matter:
(fun X = y X) is not the "same" as (fun X = z x)

Intuitively: y an z can refer to different things from some outer scope

Students who cheat by “renaming variables” are
trying to exploit alpha equivalence...

Fixing Substitution

» Consider the substitution operation:

e, {e,/x}

» To avoid capture, we define substitution to pick an alpha equivalent version
of e; such that the bound names of e, don't mention the free names of e,.

— Then do the "naive" substitution.

For example: (fun x = (x y)){(fun z = x)/y}

= (fun x’ = (X' (fun z = x)) rename X to x'
This is fine:

(fun X = (X y)){(fun x = Xx)/y}
= (fun x = (X (fun X = X))
= (funa — (a (fun b — b))

Demo: Implementing the Interpreter

» https://github.com/ysc3208/week-08-lambda

» lambda.ml — untyped lambda-calculus

* lambda_int.ml — untyped lambda-calculus with integers
» stlc.ml — simply-typed lambda-calculus

https://github.com/ysc3208/week-08-lambda

Adding Integers to Lambda Calculus

exp =
N constant integers
exp; + exp; binary arithmetic operation
val ::=
fun x = exp functions are values
n integers are values
n{v/x} = n constants have no free vars.
(€7 + ex){v/x} = (e1{v/x} + e){v/x}) substitute everywhere

expq b Ny exp2 l n,

exp; + expy b (n1 [+] n2)

NN

Object-level ‘+’ Meta-level '+’

Semantic Analysis

Variable Scoping

» Consider the problem of determining whether a programmer-declared variable is in scope.

* Issues:
— Which variables are available at a given point in the program?
— Shadowing — is it permissible to re-use the same identifier, or is it an error?

» Example: The following program is syntactically correct but not well-formed.

Why?
int fact(int x) {
var acc = 1;
while EX = Oi { . Q: Can we solve this problem
icf = acclz R by changing the parser to rule
\ e ’ out such programs?

return acc;

Need for Static Semantic Analysis

 Recall the interpreter from the Eval2 module in lambda_int.ml:

let rec eval env e =
match e with

Add (el, e2) ->

(match (eval env el, eval env e2) with

(IntV 11, IntV 12) -> IntV (il + 12)

-> failwith "tried to add non-integers")

 The interpreter might fail at runtime.

— Not all operations are defined for all values (e.g. 3/0, 3 + true, ...)

« A compiler can’t generate sensible code for this case.

— A naive implementation might “add” an integer and a function pointer

Semantic Analysis

* The semantic analysis phase

* Resolve symbol occurrences to declarations / binders
ex.c:3:11: error: ‘1’ undeclared (first use 1n this function)

* Type-check AST

ex.c:4:5: warning: assignment makes integer from pointer without a cast

* Main data structure manipulated by semantic analysis: symbol table

* Mapping from symbols to information about those symbols (its type, location in source text, ...)

* Symbol table is used to help translation into IR

e Semantic analysis may also decorate AST (e.g., attach type information to expressions, or replace
symbols with references to their symbol table entry).

* Semantic analysis may not be a separate phase — e.g., may be incorporated into IR translation

Warm-Up: Scope-Checking Lambda Calculus

» Consider how to identity “well-scoped” lambda calculus terms
— Recall the free variable calculation
— Given: G, a set of variable identifiers, e, a term of the l[ambda calculus

— Judgment: G+ e means “the free variables of e are included in G” (fv(e) € G)

fv(x) X}
fvfun x = exp) = fv(exp) \ {x} (‘x”is a bound in exp)
fv(exp; exp,) fv(expq) U fv(exp,)

X e G , .
“the variable x is free”
G - X
GHhe GHhe , ,
B - “G contains the free variables of e; and e,”
GHe e
Guix}tre

“x is available in the function body”
Grfunx — e

Scope-Checking Code

» Compare the OCaml code to the inference rules:

— structural recursion over syntax

— the check either “succeeds” or "fails"

let rec scope_check (g:VarSet.t) (e:exp) : unit =

begin match e with
Var x -> if VarSet.member x g then () else failwith (x A "not in scope")
App(el, e2) -> ignore (scope_check g e1); scope_check g e2
Fun(x, e) -> scope_check (VarSet.union g (VarSet.singleton x)) e
end

X6 bren Gre Guixlte

G F X GFe e GFfunx e

Semantic Analysis via Types

What is a Type?

o Intrinsic view (Church-style): a type is syntactically part of a program.
* A program that cannot be typed is not a program at all

* Types do not have inherent meaning — they are just used to define the syntax of a program

* Extrinsic view (Curry-style): a type is a property of a program.
* For any program and every type, either the program has that type or not
* A program may have multiple types

* A program may have no types

Why Types?

Type checking (ensuring that the program is ascribed a “correct” type) catches errors at compile time,
eliminating a class of mistakes that would otherwise lead to run-time errors, provided type information

Type inference derives type information from the code (think function parameters in OCaml vs Java)

Type information is sometimes necessary for code generation
* Floating-point + is not the same instruction as integer + is not the same as pointer/integer +
* pointer/integer compiled differently depending on pointer type

* Assignment x = y compiled differently if y is an int or a struct

What is a type system?

- A type system consists of a system of judgements and inference rules
- (Extrinsic view) A judgement is a claim, which may or may not be valid

* 3 :int - "3 has type integer”

* (1 +2) : bool - “(1+2) has type boolean”

- Inference rules are used to derive valid judgements from other valid judgements.

ADD
|_611th |_621th

|—61—|—€22th

Read: “If e; and e; have type int, so does e; + e

- Type system might involve many different kinds of judgement

- Well-typed expressions
- Well-formed types
- Well-formed statements

Inference Rules, General Form

- An inference rule consists of a list of premises .Ji, ..., J,, and one conclusion J (optionally: a
side-condition):

Ji Jo .. J,
SIDE-CONDITION

- Side-condition: additional premise, but not a judgement

- Read top-down: If J; and J; and ... and J,, are valid, and the side condition holds, then Jis
valid.

- Read bottom-up: To prove Jis valid, sufficient to prove .J;, Js, ... J,, are valid

Simply-typed Lambda Calculus with Integers

For the language in “stlc.ml” we have five inference rules:

VAR ADD
x:T € G Gt e :int GFe,:int
GHi:int Grx:T GF e +e,:int
G x:TrHe:S Gre :T->5 Gre: T
G+ fun (x:T)->e :T->S GHeje,:S

Note how these rules correspond to the OCaml code.

Exercise

Implement the rest of the function “typecheck” in stlc.ml

25

