
Ilya Sergey

ilya.sergey@yale-nus.edu.sg

Week 9: Types and Type Checking

YSC4230: Programming Language  
Design and Implementation

mailto:ilya.sergey@yale-nus.edu.sg

• The lambda calculus is a minimal programming language.

– Note: we’re writing (fun x -> e) lambda-calculus notation: λ x. e

• It has variables, functions, and function application.

– That’s it!

– It’s Turing Complete.

– It’s the foundation for a lot of research in programming languages.

– Basis for “functional” languages like Scala, OCaml, Haskell, etc.

Abstract syntax in OCaml:

Concrete syntax:

(Untyped) Lambda Calculus

type exp =

 | Var of var (* variables *)

 | Fun of var * exp (* functions: fun x → e *)

 | App of exp * exp (* function application *)

exp ::=

 | x variables

 | fun x → exp functions

 | exp1 exp2 function application

 | (exp) parentheses

Pairs and zero-checking

More Examples

3

• Substitution function (in Math): 
 
 x{v/x} = v (replace the free x by v) 
 y{v/x} = y (assuming y ≠ x) 
(fun x → exp){v/x} = (fun x → exp) (x is bound in exp) 
(fun y → exp){v/x} = (fun y → exp{v/x}) (assuming y ≠ x) 
 (e1 e2){v/x} = (e1{v/x} e2{v/x}) (substitute everywhere)

• Examples: 

(x y) {(fun z → z z)/y}

 = x (fun z → z z)

(fun x → x y){(fun z → z z)/y}

 = fun x → x (fun z → z z) 

(fun x → x){(fun z → z z)/x}

 = fun x → x // x is not free!

Recap: Operational Semantics of Lambda Calculus

let add = fun x → fun y → x + y

let inc = add 1

• The result of add 1 is a function

• After calling add, we can’t throw away its argument (or its local variables) because
those are needed in the function returned by add.

• We say that the variable x is free in fun y → x + y

– Free variables are defined in an outer scope 

• We say that the variable y is bound by “fun y” and its scope is the body “x + y”  
in the expression fun y → x + y 

• A term with no free variables is called closed. 

• A term with one or more free variables is called open.

Free Variables and Scoping

• An OCaml function to calculate the set of free variables in a lambda expression: 
 

• A lambda expression e is closed if free_vars e returns VarSet.empty

• In mathematical notation: 

 
 
 fv(x) = {x} 
 fv(fun x → exp) = fv(exp) \ {x} (‘x’ is a bound in exp) 
 fv(exp1 exp2) = fv(exp1) ∪ fv(exp2)

Free Variable Calculation

let rec free_vars (e:exp) : VarSet.t =

 begin match e with

 | Var x -> VarSet.singleton x

 | Fun(x, body) -> VarSet.remove x (free_vars body)

 | App(e1, e2) -> VarSet.union (free_vars e1) (free_vars e2)

 end

• Specified using just two inference rules with judgments of the form exp ⇓ val

– Read this notation a as “program exp evaluates to value val”

– This is call-by-value semantics: function arguments are evaluated before substitution

Operational Semantics

v ⇓ v

exp1 ⇓ (fun x → exp3) exp2 ⇓ v exp3{v/x} ⇓ w

exp1 exp2 ⇓ w

“Values evaluate to themselves”

“To evaluate function application: Evaluate the function to a value, evaluate the 
argument to a value, and then substitute the argument for the function. ”

• Note that if we try to naively "substitute" an open term, a bound variable might
capture the free variables:

 
 (fun x → (x y)){(fun z → x)/y} 
 = fun x → (x (fun z -> x)) 
 
 
 

• Usually not the desired behaviour

– This property is sometimes called "dynamic scoping"  

The meaning of "x" is determined by where it is bound dynamically, 
not where it is bound statically.

– Some languages (e.g. emacs lisp) are implemented with this as a "feature"

– But: it leads to hard-to-debug scoping issues

Variable Capture

Note: x is free  
in (fun z → x)

 free x is 
 “captured“!!

• Note that the names of bound variables don't matter to the semantics

– i.e. it doesn't matter which variable names you use, as long as you use them consistently:

 (fun x → y x) is the "same" as (fun z → y z)

 the choice of "x" or "z" is arbitrary, so long as we consistently rename them

 
 
 
 

• The names of free variables do matter: 
 (fun x → y x) is not the "same" as (fun x → z x) 
 
Intuitively: y an z can refer to different things from some outer scope

Alpha Equivalence

Two terms that differ only by consistent renaming of
bound variables are called alpha equivalent

Students who cheat by “renaming variables” are

trying to exploit alpha equivalence…

• Consider the substitution operation:  

e1{e2/x}  

• To avoid capture, we define substitution to pick an alpha equivalent version
of e1 such that the bound names of e1 don't mention the free names of e2.

– Then do the "naïve" substitution. 

For example: (fun x → (x y)){(fun z → x)/y}

 = (fun x’ → (x' (fun z → x)) 
This is fine:

 (fun x → (x y)){(fun x → x)/y}

 = (fun x → (x (fun x → x))

= (fun a → (a (fun b → b))

Fixing Substitution

rename x to x'

Demo: Implementing the Interpreter

• https://github.com/ysc3208/week-08-lambda  

• lambda.ml – untyped lambda-calculus

• lambda_int.ml – untyped lambda-calculus with integers

• stlc.ml – simply-typed lambda-calculus

https://github.com/ysc3208/week-08-lambda

Adding Integers to Lambda Calculus

exp1 ⇓ n1 exp2 ⇓ n2

exp1 + exp2 ⇓ (n1 ⟦+⟧ n2)

exp ::=

 | …

 | n constant integers

 | exp1 + exp2 binary arithmetic operation

val ::=

 | fun x → exp functions are values

 | n integers are values

n{v/x} = n constants have no free vars.

(e1 + e2){v/x} = (e1{v/x} + e2{v/x}) substitute everywhere

Object-level ‘+’ Meta-level ‘+’

Semantic Analysis

• Consider the problem of determining whether a programmer-declared variable is in scope.

• Issues:

– Which variables are available at a given point in the program?

– Shadowing – is it permissible to re-use the same identifier, or is it an error?

• Example: The following program is syntactically correct but not well-formed.  
 Why?

Variable Scoping

int fact(int x) {

 var acc = 1;

 while (x > 0) {

 acc = acc * y;

 x = q - 1;

 }

 return acc;

}

Q: Can we solve this problem  
by changing the parser to rule

out such programs?

Need for Static Semantic Analysis
• Recall the interpreter from the Eval2 module in lambda_int.ml: 

 let rec eval env e =  
 match e with  
 | …  
 | Add (e1, e2) ->  
 (match (eval env e1, eval env e2) with  
 | (IntV i1, IntV i2) -> IntV (i1 + i2)  
 | _ -> failwith "tried to add non-integers")  
 | …  

• The interpreter might fail at runtime.

– Not all operations are defined for all values (e.g. 3/0, 3 + true, …) 

• A compiler can’t generate sensible code for this case.

– A naïve implementation might “add” an integer and a function pointer

• The semantic analysis phase

• Resolve symbol occurrences to declarations / binders 

 ex.c:3:11: error: ‘i’ undeclared (first use in this function)

• Type-check AST 

 ex.c:4:5: warning: assignment makes integer from pointer without a cast  

• Main data structure manipulated by semantic analysis: symbol table

• Mapping from symbols to information about those symbols (its type, location in source text, ...)

• Symbol table is used to help translation into IR

• Semantic analysis may also decorate AST (e.g., attach type information to expressions, or replace

symbols with references to their symbol table entry).

• Semantic analysis may not be a separate phase – e.g., may be incorporated into IR translation

Semantic Analysis

• Consider how to identify “well-scoped” lambda calculus terms

– Recall the free variable calculation

– Given: G, a set of variable identifiers, e, a term of the lambda calculus

– Judgment: G ⊢ e means “the free variables of e are included in G” (fv(e) ⊆ G)

Warm-Up: Scope-Checking Lambda Calculus

x ∊ G

G ⊢ x
“the variable x is free”

G ⊢ e1 G ⊢ e2

G ⊢ e1 e2

“G contains the free variables of e1 and e2”

G ∪ {x} ⊢ e
G ⊢ fun x → e

“x is available in the function body”

fv(x) = {x} 
fv(fun x → exp) = fv(exp) \ {x} (‘x’ is a bound in exp) 
fv(exp1 exp2) = fv(exp1) ∪ fv(exp2)

• Compare the OCaml code to the inference rules:

– structural recursion over syntax

– the check either “succeeds” or ”fails"

Scope-Checking Code

let rec scope_check (g:VarSet.t) (e:exp) : unit =

 begin match e with

 | Var x -> if VarSet.member x g then () else failwith (x ^ "not in scope")

 | App(e1, e2) -> ignore (scope_check g e1); scope_check g e2

 | Fun(x, e) -> scope_check (VarSet.union g (VarSet.singleton x)) e

 end

x ∊ G

G ⊢ x

G ⊢ e1 G ⊢ e2

G ⊢ e1 e2

G ∪ {x} ⊢ e

G ⊢ fun x → e

Semantic Analysis via Types

• Intrinsic view (Church-style): a type is syntactically part of a program.

• A program that cannot be typed is not a program at all

• Types do not have inherent meaning – they are just used to define the syntax of a program  

• Extrinsic view (Curry-style): a type is a property of a program.

• For any program and every type, either the program has that type or not

• A program may have multiple types

• A program may have no types

What is a Type?

• Type checking (ensuring that the program is ascribed a “correct” type) catches errors at compile time,
eliminating a class of mistakes that would otherwise lead to run-time errors, provided type information 

• Type inference derives type information from the code (think function parameters in OCaml vs Java) 

• Type information is sometimes necessary for code generation

• Floating-point + is not the same instruction as integer + is not the same as pointer/integer +

• pointer/integer compiled differently depending on pointer type

• Assignment x = y compiled differently if y is an int or a struct

Why Types?

What is a type system?8IBU JT B UZQF TZTUFN

p � ìāÇ� ßāßì�¯ q¸²ß¥ßìß ¸� Z ßāßì�¯ ¸� ª÷{��¯�²ìß Z²{ ¥²��Ü�²q� Ü÷¬�ß
p É�ĀìÜ¥²ß¥q þ¥�ÿÊ � ª÷{��¯�²ì ¥ß Z q¬Z¥¯x ÿ£¥q£ ¯Zā ¸Ü ¯Zā ²¸ì h� þZ¬¥{

p ! 3 : int � Öî £Zß ìāÇ� ¥²ì���Ü×
p ! (1 + 2) : bool � ÖÉ¾ÏôÊ £Zß ìāÇ� h¸¸¬�Z²×

p ²��Ü�²q� Ü÷¬�ß ZÜ� ÷ß�{ ì¸ {�Ü¥þ� þZ¬¥{ ª÷{��¯�²ìß �Ü¸¯ ¸ì£�Ü þZ¬¥{ ª÷{��¯�²ìßÌ

���
! 21 : int ! 22 : int

! 21 + 22 : int

?�Z{w Ö � 21 Z²{ 22 £Zþ� ìāÇ� intx ß¸ {¸�ß 21 + 22×

p DāÇ� ßāßì�¯ ¯¥�£ì ¥²þ¸¬þ� ¯Z²ā {¥���Ü�²ì «¥²{ß ¸� ª÷{��¯�²ì
p O�¬¬¤ìāÇ�{ �ĀÇÜ�ßß¥¸²ß
p O�¬¬¤�¸Ü¯�{ ìāÇ�ß
p O�¬¬¤�¸Ü¯�{ ßìZì�¯�²ìß
p ÌÌÌ

Inference Rules, General Form*OGFSFODF SVMFT
 HFOFSBMMZ

p �² ¥²��Ü�²q� Ü÷¬� q¸²ß¥ßìß ¸� Z ¬¥ßì ¸� ÇÜ�¯¥ß�ß C1, ..., CM Z²{ ¸²� q¸²q¬÷ß¥¸² C É¸Çì¥¸²Z¬¬āw Z
ß¥{�¤q¸²{¥ì¥¸²Êw

C1 C2 · · · CM

C
A!��¤�2/�!E!2/

p A¥{�¤q¸²{¥ì¥¸²w Z{{¥ì¥¸²Z¬ ÇÜ�¯¥ß�x h÷ì ²¸ì Z ª÷{��¯�²ì
p ?�Z{ ì¸Ç¤{¸ÿ²w � C1 Z²{ C2 Z²{ ÌÌÌ Z²{ CM ZÜ� þZ¬¥{x Z²{ ì£� ß¥{� q¸²{¥ì¥¸² £¸¬{ßx ì£�² C ¥ß

þZ¬¥{Ì
p ?�Z{ h¸ìì¸¯¤÷Çw D¸ ÇÜ¸þ� C ¥ß þZ¬¥{x ß÷��¥q¥�²ì ì¸ ÇÜ¸þ� C1x C2x ÌÌÌ CM ZÜ� þZ¬¥{

• For the language in “stlc.ml” we have five inference rules:

• Note how these rules correspond to the OCaml code.

Simply-typed Lambda Calculus with Integers

G ⊢ i : int

G ⊢ e1 : int G ⊢ e2 : int

G ⊢ e1 + e2 : int

x : T ∈ G

G ⊢ x : T

G, x : T ⊢ e : S

G ⊢ fun (x:T) -> e : T -> S

G ⊢ e1 : T -> S G ⊢ e2 : T

G ⊢ e1 e2 : S

INT VAR ADD

FUN APP

• Implement the rest of the function “typecheck” in stlc.ml

Exercise

25

