YSC4230: Programming Language **Design and Implementation**

Week 9: Types and Type Checking

ilya.sergey@yale-nus.edu.sg

Ilya Sergey

(Untyped) Lambda Calculus

- The **lambda calculus** is a minimal programming language.
 - Note: we're writing (fun x -> e) lambda-calculus notation: λ x. e
- It has variables, functions, and function application.
 - That's it!
 - It's Turing Complete.
 - It's the foundation for a *lot* of research in programming languages.
 - Basis for "functional" languages like Scala, OCaml, Haskell, etc.

Abstract syntax in OCaml:

type exp =I Var of var(* variablesI Fun of var * exp(* functions: fun $x \rightarrow e^{-x}$)I App of exp * exp(* function application *)

Concrete syntax:

exp ::= |x| $|fun x \rightarrow exp$ $|exp_1 exp_2$ |(exp)

programming language. nbda-calculus notation: λ x. e

ch in programming languages. e Scala, OCaml, Haskell, etc.

variables p functions function application parentheses

Pairs and zero-checking

More Examples

Recap: Operational Semantics of Lambda Calculus

• Substitution function (in Math):

$$x\{v/x\} = v$$

$$y\{v/x\} = y$$

(fun x \rightarrow exp) $\{v/x\}$ = (fun x \rightarrow exp)
(fun y \rightarrow exp) $\{v/x\}$ = (fun y \rightarrow exp $\{e_1, e_2\}$
(e_1, e_2) $\{v/x\}$ = ($e_1\{v/x\}, e_2\{v/x\}$

• Examples:

$$(x y) \{(fun z \rightarrow z z)/y\} = x (fun z \rightarrow z z)$$

$$(fun x \rightarrow x y) \{(fun z \rightarrow z z)/y\}$$

= fun x \rightarrow x (fun z \rightarrow z z)

$$(fun x \rightarrow x) \{ (fun z \rightarrow z z)/x \}$$

= fun x \rightarrow x // x is no

(replace the free x by v) (assuming $y \neq x$) (x is bound in exp) {v/x}) (assuming $y \neq x$) {s}) (substitute everywhere)

ot free!

Free Variables and Scoping

let add = fun x \rightarrow fun y \rightarrow x + y let inc = add 1

- The result of **add 1** is a function
- After calling add, we can't throw away its argument (or its local variables) because those are needed in the function returned by add.
- We say that the variable x is free in fun $y \rightarrow x + y$ – Free variables are defined in an outer scope
- We say that the variable y is *bound* by "fun y" and its scope is the body "x + y" • in the expression fun $y \rightarrow x + y$
- A term with no free variables is called *closed*.
- A term with one or more free variables is called open.

Free Variable Calculation

lacksquare

let rec free_vars (e:exp) : VarSet.t = begin match e with I Var x -> VarSet.singleton x I Fun(x, body) -> VarSet.remove x (free_vars body) I App(e1, e2) -> VarSet.union (free_vars e1) (free_vars e2) end

- •
- In mathematical notation: \bullet

fv(x) $= \{x\}$ $fv(fun x \rightarrow exp) = fv(exp) \setminus \{x\}$ ('x' is a bound in exp) $fv(exp_1 exp_2) = fv(exp_1) \cup fv(exp_2)$

An OCaml function to calculate the set of free variables in a lambda expression:

A lambda expression e is *closed* if free_vars e returns VarSet.empty

Operational Semantics

- Specified using just two inference rules with judgments of the form exp \Downarrow val - Read this notation a as "program exp evaluates to value val"
- - This is *call-by-value* semantics: function arguments are evaluated before substitution

$$v \downarrow \downarrow$$

"Values evaluate to themselves"

$\exp_1 \Downarrow (\operatorname{fun} x \rightarrow \exp_3)$ ex

"To evaluate function application: Evaluate the function to a value, evaluate the argument to a value, and then substitute the argument for the function."

V

$$v_2 \Downarrow v$$
 $exp_3\{v/x\} \Downarrow w$

 $\exp_1 \exp_2 \Downarrow w$

Variable Capture

capture the free variables:

Note: **x** is free in (fun $z \rightarrow x$)

 $(fun x \rightarrow (x y)) \{(fun z \rightarrow x)/y\}$ = fun $x \rightarrow (x (fun z \rightarrow x))$

- Usually *not* the desired behaviour \bullet
 - This property is sometimes called "dynamic scoping" The meaning of "x" is determined by where it is bound dynamically, not where it is bound statically.
 - Some languages (e.g. emacs lisp) are implemented with this as a "feature"
 - But: it leads to hard-to-debug scoping issues

Note that if we try to naively "substitute" an open term, a bound variable might

Alpha Equivalence

Note that the names of bound variables don't matter to the semantics $(fun x \rightarrow y x)$ is the "same" as $(fun z \rightarrow y z)$ the choice of "x" or "z" is arbitrary, so long as we consistently rename them

> Two terms that differ only by consistent renaming of bound variables are called *alpha equivalent*

The names of *free* variables **do** matter: (fun $x \rightarrow y x$) is *not* the "same" as (fun $x \rightarrow z x$)

Intuitively: y an z can refer to different things from some outer scope

– i.e. it doesn't matter which variable names you use, as long as you use them consistently:

Students who cheat by "renaming variables" are trying to exploit alpha equivalence...

Fixing Substitution

Consider the substitution operation: lacksquare

- ullet
 - Then do the "naïve" substitution.
- For example: $(fun x \rightarrow (x y)) \{(fun z \rightarrow x)/y\}$ = $(fun x' \rightarrow (x' (fun z \rightarrow x)))$

This is fine:

- $(fun x \rightarrow (x y)) \{(fun x \rightarrow x)/y\}$
- = $(fun x \rightarrow (x (fun x \rightarrow x)))$
- = (fun a \rightarrow (a (fun b \rightarrow b))

 $e_1\{e_2/x\}$

To avoid capture, we define substitution to pick an alpha equivalent version of e_1 such that the bound names of e_1 don't mention the free names of e_2 .

rename x to x¹

Demo: Implementing the Interpreter

- https://github.com/ysc3208/week-08-lambda ullet
- lambda.ml lacksquare

ullet

stlc.ml

– untyped lambda-calculus lambda_int.ml – untyped lambda-calculus with integers simply-typed lambda-calculus

Adding Integers to Lambda Calculus

exp ::=
| ...
| n
| exp₁ + exp₂
val ::=
| fun x
$$\rightarrow$$
 exp
| n
 $n\{v/x\} = n$
(e₁ + e₂){v/x} = (e₁{v/x} + e₂{v

$$\exp_1 \Downarrow n_1 e^{2}$$

$$exp_1 + exp_2 \Downarrow (n$$

Object-level '+'

constant integers binary arithmetic operation

functions are values integers are values

v/x})

constants have no free vars. substitute everywhere

$xp2 \Downarrow n_2$

(n1 [[+]] n2)

Meta-level '+'

Semantic Analysis

Variable Scoping

- \bullet
- Issues: ${\color{black}\bullet}$
 - Which variables are available at a given point in the program?
 - Shadowing is it permissible to re-use the same identifier, or is it an error?
- Example: The following program is syntactically correct but not well-formed. Why?

Consider the problem of determining whether a programmer-declared variable is in scope.

Q: Can we solve this problem by changing the parser to rule out such programs?

Need for Static Semantic Analysis

```
let rec eval env e =
  match e with
    Add (e1, e2) ->
   (match (eval env e1, eval env e2) with
       (IntV i1, IntV i2) -> IntV (i1 + i2)
_ -> failwith "tried to add non-integers")
```

- The interpreter might fail at runtime. - Not all operations are defined for all values (e.g. 3/0, 3 + true, ...)
- A compiler can't generate sensible code for this case. – A naïve implementation might "add" an integer and a function pointer

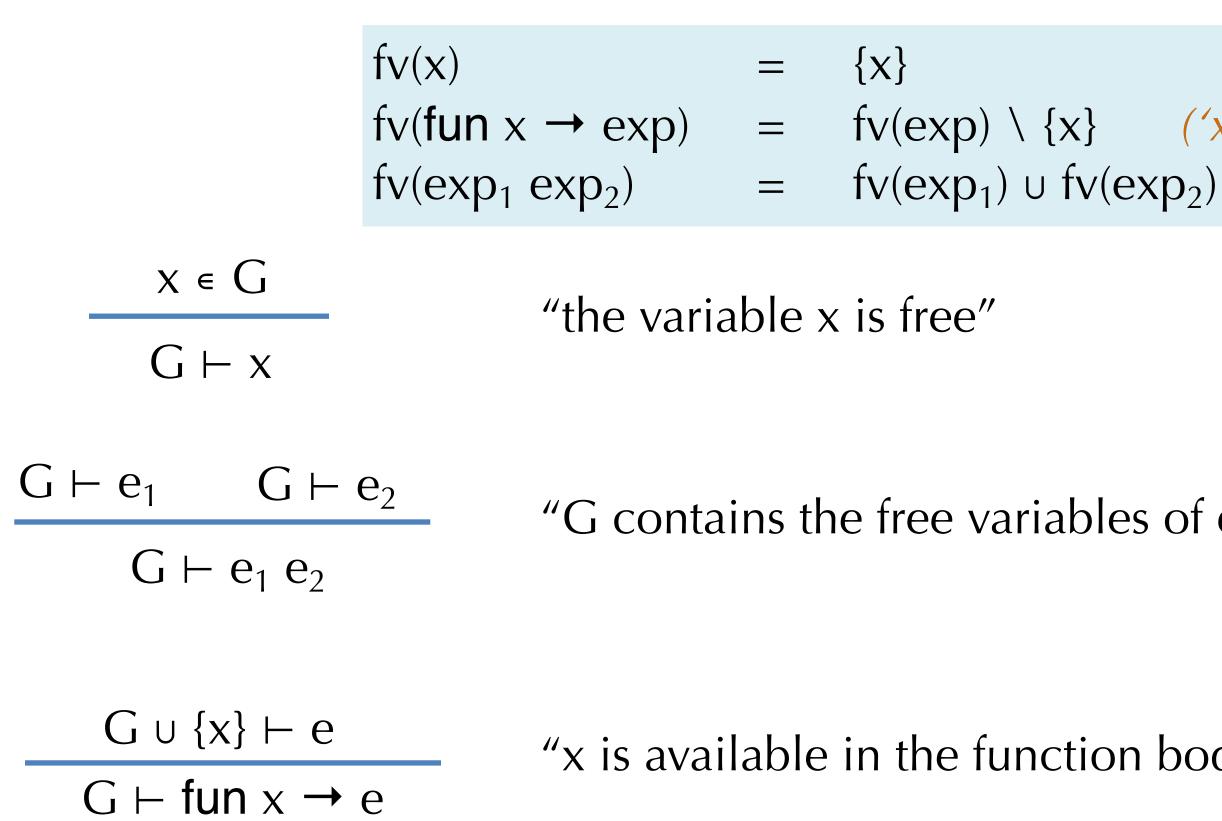
• Recall the interpreter from the Eval2 module in lambda_int.ml:

Semantic Analysis

- The semantic analysis phase
 - Resolve symbol occurrences to declarations / binders ex.c:3:11: error: 'i' undeclared (first use in this function)
 - Type-check AST ex.c:4:5: warning: assignment makes integer from pointer without a cast
- Main data structure manipulated by semantic analysis: *symbol table* lacksquare
 - Mapping from symbols to information about those symbols (its type, location in source text, ...)
 - Symbol table is used to help translation into IR
 - Semantic analysis may also decorate AST (e.g., attach type information to expressions, or replace symbols with references to their symbol table entry).
 - Semantic analysis may not be a separate phase e.g., may be incorporated into IR translation

Warm-Up: Scope-Checking Lambda Calculus

- Consider how to identify "well-scoped" lambda calculus terms \bullet
 - Recall the free variable calculation
 - Given: G, a set of variable identifiers, e, a term of the lambda calculus



"x is available in the function body"

- Judgment: $G \vdash e$ means "the free variables of e are included in G" (fv(e) \subseteq G)

 $\{X\}$ $fv(fun x \rightarrow exp) = fv(exp) \setminus \{x\}$ ('x' is a bound in exp)

"G contains the free variables of e_1 and e_2 "

Scope-Checking Code

- Compare the OCaml code to the inference rules: ullet
 - structural recursion over syntax
 - the check either "succeeds" or "fails"

```
let rec scope_check (g:VarSet.t) (e:exp) : unit =
  begin match e with
   I Var x \rightarrow if VarSet.member x g then () else failwith (x ^ "not in scope")
   I App(e1, e2) -> ignore (scope_check g e1); scope_check g e2
   I Fun(x, e) -> scope_check (VarSet.union g (VarSet.singleton x)) e
  end
```

$$x \in G$$
 $G \vdash e_1$ $G \vdash e_2$ $G \cup \{x\} \vdash e$ $G \vdash x$ $G \vdash e_1 e_2$ $G \vdash fun x \rightarrow e$

Semantic Analysis via Types

- **Intrinsic view (Church-style)**: a type is syntactically part of a program. \bullet
 - A program that cannot be typed is not a program at all
 - Types do not have inherent meaning they are just used to define the syntax of a program
- *Extrinsic view (Curry-style)*: a type is a property of a program. \bullet
 - For any program and every type, either the program has that type or not
 - A program may have multiple types
 - A program may have no types

What is a Type?

- *Type checking* (ensuring that the program is ascribed a "correct" type) catches errors at compile time, eliminating a class of mistakes that would otherwise lead to run-time errors, provided type information
- Type inference derives type information from the code (think function parameters in OCaml vs Java)
- *Type information* is sometimes necessary for code generation
 - Floating-point + is not the same instruction as integer + is not the same as pointer/integer +
 - pointer/integer compiled differently depending on pointer type
 - Assignment x = y compiled differently if y is an **int** or a **struct**

What is a type system?

- A type system consists of a system of judgements and inference rules • (Extrinsic view) A judgement is a *claim*, which may or may not be valid
 - $\vdash 3$: int "3 has type integer"
 - $\vdash (1+2)$: bool "(1+2) has type boolean"

Read: "If e_1 and e_2 have type int, so does $e_1 + e_2$ "

- Type system might involve many different kinds of judgement
 - Well-typed expressions
 - Well-formed types

. . .

Well-formed statements

Inference rules are used to derive valid judgements from other valid judgements.

ADD $\vdash e_1: \mathsf{int} \vdash e_2: \mathsf{int}$ $\vdash e_1 + e_2$: int

Inference Rules, General Form

side-condition):

- Side-condition: additional premise, but not a judgement
- valid.
- Read bottom-up: To prove J is valid, sufficient to prove J_1 , J_2 , ... J_n are valid

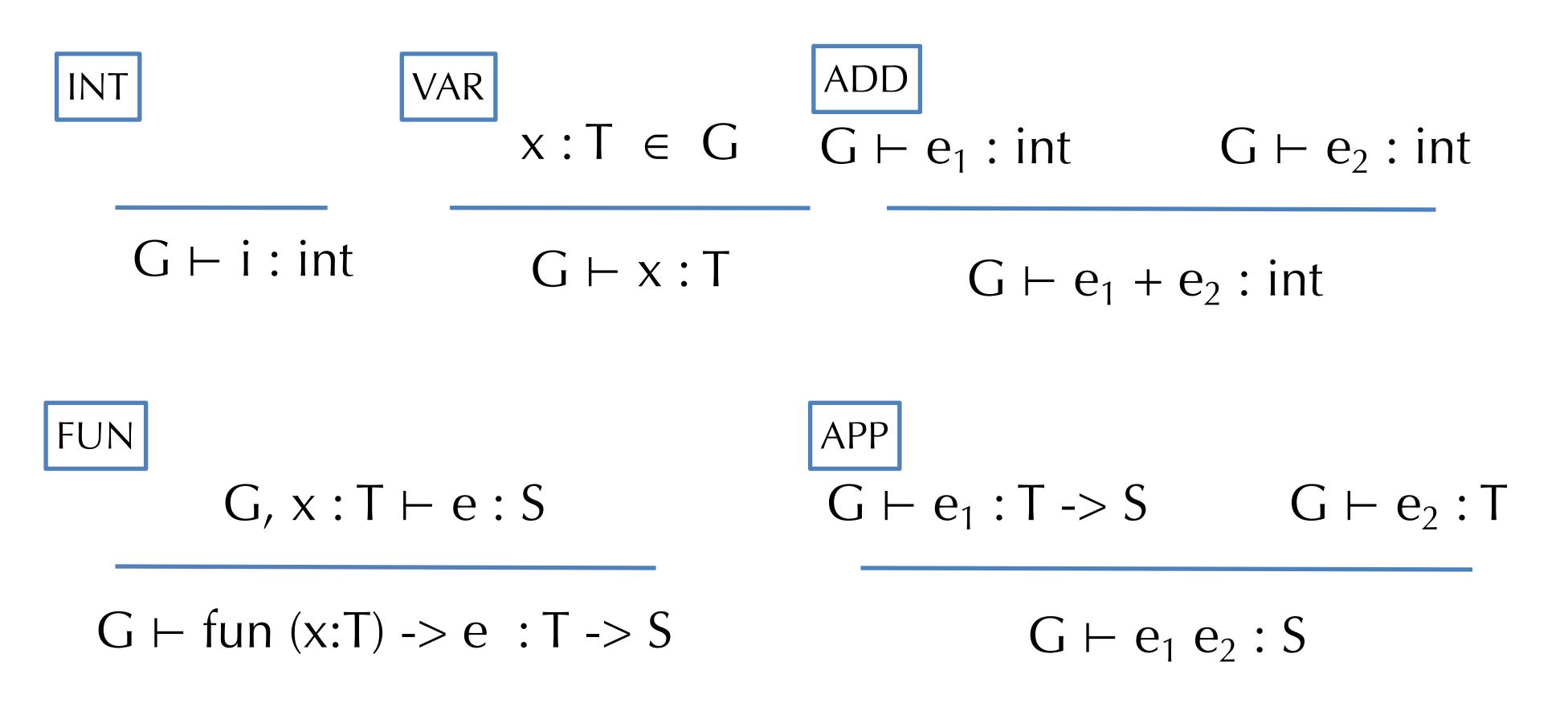
• An *inference rule* consists of a list of premises $J_1, ..., J_n$ and one conclusion J (optionally: a

---- Side-condition

• Read top-down: If J_1 and J_2 and ... and J_n are valid, and the side condition holds, then J is

Simply-typed Lambda Calculus with Integers

For the language in "stlc.ml" we have five inference rules:



Note how these rules correspond to the OCaml code.

Implement the rest of the function "typecheck" in stlc.ml •

Exercise