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Optimizations

» The code generated by our Oat compiler so far is pretty inefficient.

— Lots of redundant moves.

— Lots of unnecessary arithmetic instructions.

define 164 @foo(164 % wl) {

» Consider this OAT program: % w2 = alloca 164
% x5 = alloca 164
% y10 = alloca 164
: : %_214 = alloca 164
INt fOO(Int W){ store 164 % wl, 164*% %_w2
var X =3 + 5 %_bop4 = add 164 3, 5
. store 164 % s bop4, 164% % X5
vary =x - w, % X7 = load 164, 164* % x5
varz=V - 0; % w8 = load 164, 164* %_w2
y %_bop9 = mul 164 %_XxX7, %_w8

return z * 4; store 164 %_bop9, 164 % _y10
_vyil2 = load 164, 164* %
_bopl3 = sub 164 %_yl12, 0
store 164 %_bopl3, 164* %_214
~ 216 = load 164, 164* % 714
_bopl7 = mul 164 %_z16, 4
ret 164 %_bopl7

}
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Optimized vs Non-Optimized Output

define 164 @foo(164 % wl) {

}

O

% w2 = alloca 164

x5 = alloca 164

_y10 = alloca 164

214 = alloca 164

store 164 % wl, 164* % w2
%_bop4 = add 164 3, 5

store 164 %_bop4, 164* %_x5
x7 = load 164, 164* % x5
w8 = load 164, 164* % w2
_bop9 = mul 164 %_XxX7, %_
store 164 %_bop9, 164* %_y10
_y12 = load 164, 164* %_yl10
_bopl3 = sub 164 %_yl1l2, 0
store 164 % _bopl3, 164* %_z14
216 = load 164, 164* % _z14
_bopl7 = mul 164 %_z16, 4
ret 164 %_bopl7
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_foo:

zext
.globl

pushq
mov(q
subq
mov(q
mov(q
pushq
mov(q
pushq
mov(q
pushq
mov(q
pushq
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
addqg
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
imulq
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
subq
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
mov(q
imulq
mov(q
mov(q
mov(q
popqg
retq

_foo

Y%rbp

%rsp, Y%rbp
$136, %rsp

Y%rdi, Y%rax

Y%rax, -8(%rbp)
$0

%rsp, -16(%rbp)
$0

%rsp, -24(%rbp)
$0

%rsp, -32(%rbp)
$0

%rsp, -40(%rbp)
-8(%rbp), Y%rcx
-16(%rbp), Yerax
%rCX, (Yorax)

$3, %rax

$5, %rex

Y%rcX, Yorax
%rax, -56(%rbp)
-56(%rbp), Y%rcx
-24(%rbp), Yerax
%rCX, (Yorax)
-24(%rbp), Yerax
(%rax), Yrcx
%rcX, -72(%rbp)
-16(%rbp), Y%rax
(%rax), Yorcx
%rcXx, -80(%rbp)
-72(%rbp), Yerax
-80(%rbp), Y%rcx
Y%rcX, Yorax
Y%rax, -88(%rbp)
-88(%rbp), Y%rcx
-32(%rbp), Y%rax
%rCX, (Yorax)
-32(%rbp), Y%rax
(%rax), Yrcx
%rcX, -104(%rbp)
-104(%rbp), Y%rax
$0, %rcx

Y%rcX, Yorax
Y%rax, -112(%rbp)
-112(%rbp), %rcx
-40(%rbp), Yerax
%rCX, (Yorax)
-40(%rbp), Yerax
(%rax), Yrcx
%rcX, -128(%rbp)
-128(%rbp), Yorax
$4, %rcx

Y%rcX, Yorax
Y%rax, -136(%rbp)
-136(%rbp), Y%rax
%rbp, %rsp
Y%rbp

Optimized code:

foo:
pushg %rbp
movqg 9rsp, %rbp
movq %rdi, Y%rax
shlg $5, %rax
popg Yerbp
retq

Code above generated by
clang —O3

Function foo may be inlined by the
compiler, so it can be implemented
by just one instruction!



Why do we need optimizations?

To help programmers...
— They write modular, clean, high-level programs

— Compiler generates efficient, high-performance assembly

Programmers don’t write optimal code

High-level languages make avoiding redundant computation inconvenient or impossible
— e.g. Allll =Al]D] + 1

Architectural independence
— Optimal code depends on features not expressed to the programmer
— Modern architectures assume optimization

Different kinds of optimizations:
— Time: improve execution speed
— Space: reduce amount of memory needed
— Power: lower power consumption (e.g. to extend battery life)



Some Caveats

» Optimization are code transformations:
Advanced

— They can be applied at any stage of the compiler COMPILER DESIGN

— They must be safe (?) IMPLEMENTATION

— they shouldn’t change the meaning of the program. e
Steven S. Muchnick

» In general, optimizations require some program analysis:

— To determine if the transformation really is safe

— To determine whether the transformation is cost effective

» This course: most common and valuable performance optimizations

— See Muchnick (optional text) for ~10 chapters about optimization Ry e oL



High level

Mid level

| ow level

When to apply optimization

AST

IR

Canonical IR

Abstract assembly

Assembly

Inlining

Function specialization
Constant folding

Constant propagation

Value numbering

Dead code elimination
Loop-invariant code motion
Common sub-expression elimination
Strength Reduction

Constant folding & propagation
Branch prediction / optimization

Register allocation

Loop unrolling

Cache optimization



A good place to have a break



Where to Optimize?

» Usual goal: improve time performance
» Problem: many optimizations trade space for time

» Example: [oop unrolling

— Idea: rewrite a loop like (why?):
for(int 1=0; I<100; i=1+1) {
s =s + alil;

}

— Into a loop like:
for(int 1=0; 1<99; I=1+2){
s =s + alil;
S =S+ a[i+1],
}
» Tradeofts:

— Increasing code space slows down whole program a tiny bit
(extra instructions to manage) but speeds up the loop a lot

— For frequently executed code with long loops: generally a win

— Interacts with instruction cache and branch prediction hardware

» Complex optimizations may never pay off!



Writing Fast Programs In Practice

Pick the right algorithms and data structures.

These have a much bigger impact on performance that compiler optimizations.
Reduce # of operations
Reduce memory accesses

Minimize indirection

Then turn on compiler optimizations

Profile to determine program hot spots

Evaluate whether the algorithm/data structure design works

...1f so: “tweak” the source code until the optimizer does “the right thing” to the machine code



Safety

» Whether an optimization is safe depends on the programming language semantics.

— Languages that provide weaker guarantees to the programmer permit more optimizations but
have more ambiguity in their behaviour.

— e.g. In C, loading from initialized memory is undefined, so the compiler can do anything.

» Example: loop-invariant code motion

— Idea: hoist invariant code out of a loop

while (b) { Z = Y/X;

Z = Y/X; while (b) {

//'y, X not updated //'y, X not updated
¥ ¥

 Is this more efficient?

 Is this safe?



The Zoo of Optimizations



Constant Folding

Idea: If operands are known at compile type, perform the operation statically.

iNtx=2+3)"y 2 Intx=5%y
b & false -> false

Performed at every stage of optimization... Why?

Constant expressions can be created by translation or earlier optimizations

Example: A[2] might be compiled to:
MEMIMEM[A]+2 *4] = MEM[MEMIA] + 8]



Constant Folding Conditionals

if (true) S > S
if (false) S >
if (frue) Selse S’ =S
if (false) Selse S =28
while (false) S >
if (2>3)S > ;



Algebraic Simplification

More general form of constant folding
— Take advantage of mathematically sound simplification rules

Identities:

— a*1=>a a*0=>0

— a+0=>a a—-0=->a
— blfalse 2> b b&true=>Db

Reassociation & commutativity:
— (@a+1)+2=2>a+(1+2)>a+3
- 2+a)+42>@+2)+42a+(2+4)>a+6

Strength reduction: (replace expensive op with cheaper op)
- a*4 -> a<<?2
— a*7 > (a<<3)—a
— a/ 32767 - (a>>15) + (a >> 30)

Note: must be careful with floating point (due to rounding)
and integer arithmetic (due to overflow/undertlow)



Constant Propagation

 If the value is known to be a constant, replace the use of the variable by the constant
» Value of the variable must be propagated forward from the point of assignment

» This is a substitution operation

» Example:

Int X =5;

iNty=x*2; 2inty=5"2;2inty=10;

intz=aly]; = intz=aly]; @ intz=aly]; = intz =a[10];

» To be most effective, constant propagation should be interleaved with constant folding



Copy Propagation

 If one variable is assigned to another, replace uses of the assigned variable with
the copied variable.

* Need to know where copies of the variable propagate.

» Interacts with the scoping rules of the language.

» Example:
X =Y, K=Y
if (x>1){ -> if(y>1){
X =X*f(x—1); Xx=y 1y—1);
} }

» Can make the first assignment to x dead code (that can be eliminated).



Dead Code Elimination

« [If a side-effect free statement can never be observed, it is safe to eliminate the statement.

X =y*y // X 1s dead!
// X never used =>

A variable is dead if it is never used after it is defined.

— Computing such definition and use information is an important component of compiler

* Dead variables can be created by other optimizations...



Unreachable/Dead Code

Basic blocks not reachable by any trace leading from the starting basic block are
unreachable and can be deleted.

— Performed at the IR or assembly level

Dead code: similar to unreachable blocks.

— A value might be computed but never subsequently used.

Code for computing the value can be dropped

But only if it’s pure, 1.e. it has no externally visible side effects

— Externally visible effects: raising an exception, modifying a global variable, going into an
infinite loop, printing to standard output, sending a network packet, launching a rocket

— Note: Pure functional languages (e.g. Haskell) make reasoning about the safety of
optimizations (and code transformations in general) easier!



Inlining

* Replace a call with the body of the function itself with arguments rewritten to be local variables:
» Example in Oat code:

int g(int x) { return x + pow(x); }

int pow(inta){intb=1;intn=0;
while (n < a) {b =2 * b};
return b; }

9

int g(int x) {

iNnta=x;intb=1;intn=0;
while (n<a){b =2 * b}; tmp = b;
return x + tmp;

}
 May need to rename variable names to avoid name capture int g(int x) (1 +1(x) )
— Example of what can go wrong? Int f(int a) (a + X)
* Best done at the AST or relatively high-level IR. -2
*  When is it profitable? const int x = 3;
— Eliminates the stack manipulation, jump, etc. Intg(intx) (1T + (iInta=x;a+x))

— Can increase code size.
— Enables further optimizations



Code Specialization

Idea: create specialized versions of a function that is called from different places
with different arguments.

Example: specialize function f in:

class Aimplements | {int m() {...} }
class B implements | { int m() {...} }

int f(1 x) { x.m(); } // don’t know which m
A a =new A(); f(a); // know it's A.m
B b =new B(); f(b); // Know it's B.m

f_A would have code specialized to dispatch to A.m

f_B would have code specialized to dispatch to B.m

You can also inline methods when the run-time type is known statically

— Often just one class implements a method.



Common Subexpression Elimination (CSE)

» In some sense it’s the opposite of inlining: fold redundant computations together

» Example:

ali] =a[i] + 1 compiles to:
[a+1"4] =[a +1"4] + 1

Common subexpression elimination removes the redundant add and multiply:
t=a+1"4;[tf] =[t] + 1

» For safety, you must be sure that the shared expression always has the same value in both places!



Unsafe Common Subexpression Elimination

» Example: consider this OAT function:

unit f(int[] a, int[] b, int[] c) {
Intj=...;inti=...;intk=...;
bfj] = ali] + 1;
clk] = ali];
return;

» The optimization that shares the expression a[i] is unsafe... why?

unit f(int[] a, int[] b, Int[] c) {
Intj=...;iInt1=...;iIntk=...;
t = ali;
b[j] =t + 1;
c[k] =1;
return;



Loop Optimizations



Loop Optimizations

» Most program execution time occurs in loops.
— The 90/10 rule of thumb holds here too. (90% of the execution time is spent in 10% of the code)

» Loop optimizations are very important, effective, and numerous

— Also, concentrating effort to improve loop body code is usually a win



Loop Invariant Code Motion (revisited)

* Another form of redundancy elimination.

 If the result of a statement or expression does not change during the loop and
it’s pure, it can be hoisted outside the loop body.

» Often useful for array element-addressing code

— so-called invariant code

for (i = 0; 1 < a.length; i++) {
/* a not modified in the body */

}
. A
t = a.length; -
PR A

/* same body as above */

}



Strength Reduction (revisited)

Strength reduction can work for loops too
Idea: replace expensive operations (multiplies, divides) by cheap ones (adds and subtracts)

For loops, create a dependent induction variable:

Example:
for (inti1=0;i<n;i++) {a[i*3] =1; } // stride by 3

D 4
int ] =0;
for (int 1 = 0; i<n; 1++) {

afj] =1;

j =]+ 3; // replace multiply by add
}



Loop Unrolling (revisited)

» Branches can be expensive, unroll loops to avoid them.
for (inti=0;i<n;i++){S}

W
for (int i=0; i < n-3; i+=4) {S;S;S;S};
for ( - i<n; i++) { S } // left over iterations

» With k unrollings, eliminates (k-1)/k conditional branches

— So for the above program, it eliminates % of the branches

» Space-time tradeoff:

— Not a good idea for large S or small n



Optimization Effectiveness



Optimization Effectiveness?

S 300%
EI 250% O LLVM-memZ2reg .LLVM-OI a
E 500 @LLVvM-03 ® GCC-03
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Y%speedup = | —o0—o———— - X 100%
optimized time
Example:
base time = 2s
optimized time = 1s = 100% speedup
Example:
base time = 1.2s
optimized time = 0.87s = 38% speedup

Graph taken from:

Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic.

Formal Verification of SSA-Based Optimizations for LLVM.

In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation (PLDI), 2013



Optimization Effectiveness?
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*  mem2reg: promotes alloca’ed stack slots to temporaries to enable register allocation
» Analysis:
— mem?2reg alone (+ back-end optimizations like register allocation) yields ~78% speedup on average

— -0l yields ~100% speedup
(so all the rest of the optimizations combined account for ~22%)

— -03 yields ~120% speedup
« Hypothetical program that takes 10 sec. (base time):
— MemZ2reg alone: expect ~5.6 sec

— -O1: expect ~5 sec
— -03: expect ~4.5 sec



Code Analysis



Motivating Code Analyses

There are lots of things that might influence the safety/applicability of an optimization

— What algorithms and data structures can help?

How do you know what is a loop?

How do you know an expression is invariant (constant)?
How do you know if an expression has no side effects?
How do you keep track of where a variable is defined?
How do you know where a variable is used?

How do you know if two reference values may be aliases of one another?

32



Moving Towards Register Allocation

The Oat compiler currently generates as many temporary variables as it needs

— These are the %uids you should be very familiar with by now.

Current compilation strategy:
— Each %uid maps to a stack location.
— This yields programs with many loads/stores to memory.

— Very inefficient.

Ideally, we’d like to map as many %uid’s as possible into registers.
— Eliminate the use of the alloca instruction?
— Only 16 max registers available on 64-bit X86

— %rsp and %rbp are reserved and some have special semantics, so really only 10 or 12 available

— This means that a register must hold more than one slot

When is this safe?

33



Liveness

» Observation: %uid1 and %uid2 can be assigned to the same register if their
values will not be needed at the same time.

— What does it mean for an %uid to be “needed”?

— Ans: its contents will be used as a source operand in a later instruction.

 Such a variable is called “/ive”

» Two variables can share the same register if they are not live at the same time.

34



Scope vs. Liveness

* We can already get some coarse liveness information from variable scoping.
» Consider the following OAT program:

int f(int x) {
var a =0;
if (x>0){
varb =X * X;
a=b+Db;
Y

varc =a * X;
return C;

}

» Note that due to Oat’s scoping rules, variables b and ¢ can never be live at the same time.
— C’s scope is disjoint from b’s scope

» So, we could assign b and ¢ to the same alloca’ed slot and potentially to the same register.

35



But Scope 1s too Coarse

» Consider this program:

int f(int x) {
inta=x+2;, «— x is live
ntb=a"a; «— 3 and x are live
intc=b+X; «—— b and x are live
return c; «— cis live

» The scopes of a, b, ¢, x all overlap — they’re all in scope at the end of the block.

 But, a, b, c are never live at the same time.

— So they can share the same stack slot / register

36



Live Variable Analysis

A variable v is /ive at a program point if v is defined before the program point and used after it.

[Liveness 1s defined in terms of where variables are defined and where variables are used

Liveness analysis: Compute the live variables between each statement.
— May be conservative (i.e. it may claim a variable is live when it isn’t) so because that’s a safe approximation

— To be usetul, it should be more precise than simple scoping rules.

Liveness analysis is one example of dataflow analysis

— Other examples: Available Expressions, Reaching Definitions, Constant-Propagation Analysis, ...

37



Control-flow Graphs Revisited

» For the purposes of dataflow analysis, we use the control-flow graph (CFG) intermediate form.

» Recall that a basic block is a sequence of instructions such that:
— There is a distinguished, labeled entry point (no jumps into the middle of a basic block)

— There is a (possibly empty) sequence of non-control-flow instructions

— The block ends with a single control-flow instruction (jump, conditional branch, return, etc.)

* A control flow graph

— Nodes are blocks
— There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the entry label of B2

— There are no “dangling” edges — there is a block for every jump target.
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Dataflow over CFGs

» For precision, it is helpful to think of the “fall through” between
sequential instructions as an edge of the control-flow graph too.

— Different implementation tradeoffs in practice...

Fall-through edges

Move
Move
Sinop Binop in-edges
If l
! i N
Unop l Instr
Jump / i \
Unop
Basic block CFG l, out-edges
Jump

“Exploded” CFG 39



Liveness is Associated with Edges

\ l / Live: a, b

Instr

/ l N\, Live: b d,e

This is useful so that the same register can be used for different
temporaries in the same statement.

Example: a=Db+ 1

l Live: b
Register Allocate:

Compiles to: Mov a, b a =2 eax, b 2 eax

l Live: a ﬁ

Add a, T Add eax, T

l Live: a (maybe) l



Next Lecture

Liveness analysis, formally

Other Dataflow Analyses

A general algebraic framework for defining DFAs
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