
Ilya Sergey

ilya.sergey@yale-nus.edu.sg

Week 11: Code Optimizations

YSC4230: Programming Language  
Design and Implementation

mailto:ilya.sergey@yale-nus.edu.sg

Optimizations
• The code generated by our Oat compiler so far is pretty inefficient.

– Lots of redundant moves.

– Lots of unnecessary arithmetic instructions. 

• Consider this OAT program:

int foo(int w) {

 var x = 3 + 5;

 var y = x * w;

 var z = y - 0;

 return z * 4;

}

frontend.ml

???

Optimized code:

• Code above generated by 
clang –O3

• Function foo may be inlined by the
compiler, so it can be implemented
by just one instruction!

_foo:

 pushq %rbp

 movq %rsp, %rbp

 movq %rdi, %rax

 shlq $5, %rax

 popq %rbp

 retq

.text

.globl	 _foo

_foo:

pushq	 %rbp

movq	 %rsp, %rbp

subq	 $136, %rsp

movq	 %rdi, %rax

movq	 %rax, -8(%rbp)

pushq	 $0

movq	 %rsp, -16(%rbp)

pushq	 $0

movq	 %rsp, -24(%rbp)

pushq	 $0

movq	 %rsp, -32(%rbp)

pushq	 $0

movq	 %rsp, -40(%rbp)

movq	 -8(%rbp), %rcx

movq	 -16(%rbp), %rax

movq	 %rcx, (%rax)

movq	 $3, %rax

movq	 $5, %rcx

addq	 %rcx, %rax

movq	 %rax, -56(%rbp)

movq	 -56(%rbp), %rcx

movq	 -24(%rbp), %rax

movq	 %rcx, (%rax)

movq	 -24(%rbp), %rax

movq	 (%rax), %rcx

movq	 %rcx, -72(%rbp)

movq	 -16(%rbp), %rax

movq	 (%rax), %rcx

movq	 %rcx, -80(%rbp)

movq	 -72(%rbp), %rax

movq	 -80(%rbp), %rcx

imulq	 %rcx, %rax

movq	 %rax, -88(%rbp)

movq	 -88(%rbp), %rcx

movq	 -32(%rbp), %rax

movq	 %rcx, (%rax)

movq	 -32(%rbp), %rax

movq	 (%rax), %rcx

movq	 %rcx, -104(%rbp)

movq	 -104(%rbp), %rax

movq	 $0, %rcx

subq	 %rcx, %rax

movq	 %rax, -112(%rbp)

movq	 -112(%rbp), %rcx

movq	 -40(%rbp), %rax

movq	 %rcx, (%rax)

movq	 -40(%rbp), %rax

movq	 (%rax), %rcx

movq	 %rcx, -128(%rbp)

movq	 -128(%rbp), %rax

movq	 $4, %rcx

imulq	 %rcx, %rax

movq	 %rax, -136(%rbp)

movq	 -136(%rbp), %rax

movq	 %rbp, %rsp

popq	 %rbp

retq	

backend.ml

Optimized vs Non-Optimized Output

Why do we need optimizations?
• To help programmers…

– They write modular, clean, high-level programs

– Compiler generates efficient, high-performance assembly 

• Programmers don’t write optimal code 

• High-level languages make avoiding redundant computation inconvenient or impossible

– e.g. A[i][j] = A[i][j] + 1  

• Architectural independence

– Optimal code depends on features not expressed to the programmer

– Modern architectures assume optimization 

• Different kinds of optimizations:

– Time: improve execution speed

– Space: reduce amount of memory needed

– Power: lower power consumption (e.g. to extend battery life)

Some Caveats

• Optimization are code transformations:

– They can be applied at any stage of the compiler

– They must be safe (?) 

– they shouldn’t change the meaning of the program. 

• In general, optimizations require some program analysis:

– To determine if the transformation really is safe

– To determine whether the transformation is cost effective 

• This course: most common and valuable performance optimizations

– See Muchnick (optional text) for ~10 chapters about optimization

When to apply optimization
• Inlining

• Function specialization

• Constant folding

• Constant propagation

• Value numbering

• Dead code elimination

• Loop-invariant code motion

• Common sub-expression elimination

• Strength Reduction

• Constant folding & propagation

• Branch prediction / optimization

• Register allocation

• Loop unrolling

• Cache optimization

Assembly

Abstract assembly

Canonical IR

IR

AST

H
ig

h
le

ve
l

M
id

 le
ve

l
Lo

w
 le

ve
l

A good place to have a break

Where to Optimize?
• Usual goal: improve time performance

• Problem: many optimizations trade space for time

• Example: Loop unrolling

– Idea: rewrite a loop like (why?):  

 for(int i=0; i<100; i=i+1) { 
 s = s + a[i]; 
 }

– Into a loop like:  
 for(int i=0; i<99; i=i+2){ 
 s = s + a[i];  
 s = s + a[i+1]; 
 }

• Tradeoffs:

– Increasing code space slows down whole program a tiny bit  

(extra instructions to manage) but speeds up the loop a lot

– For frequently executed code with long loops: generally a win

– Interacts with instruction cache and branch prediction hardware

• Complex optimizations may never pay off!

Writing Fast Programs In Practice

• Pick the right algorithms and data structures.

– These have a much bigger impact on performance that compiler optimizations.

– Reduce # of operations

– Reduce memory accesses

– Minimize indirection 

• Then turn on compiler optimizations

• Profile to determine program hot spots

• Evaluate whether the algorithm/data structure design works

• …if so: “tweak” the source code until the optimizer does “the right thing” to the machine code

Safety

• Whether an optimization is safe depends on the programming language semantics.

– Languages that provide weaker guarantees to the programmer permit more optimizations but

have more ambiguity in their behaviour.

– e.g. In C, loading from initialized memory is undefined, so the compiler can do anything. 

• Example: loop-invariant code motion

– Idea: hoist invariant code out of a loop

• Is this more efficient?

• Is this safe?

while (b) {

 z = y/x;

 …			 // y, x not updated

}

z = y/x;

while (b) {

 …			 // y, x not updated

}

The Zoo of Optimizations

Constant Folding
• Idea: If operands are known at compile type, perform the operation statically. 

 int x = (2 + 3) * y ➔ int x = 5 * y

 b & false ➔ false  

• Performed at every stage of optimization… Why? 

• Constant expressions can be created by translation or earlier optimizations 
 
Example: A[2] might be compiled to:  
MEM[MEM[A] + 2 * 4] ➔ MEM[MEM[A] + 8]

Constant Folding Conditionals

if (true) S 			 ➔ S

if (false) S 			 ➔ ;

if (true) S else S’ 	 ➔ S

if (false) S else S’ ➔ S’

while (false) S 		 ➔ ;

if (2 > 3) S 			 ➔ ;

Algebraic Simplification
• More general form of constant folding

– Take advantage of mathematically sound simplification rules 

• Identities:

– a * 1 ➔ a			 a * 0 ➔ 0

– a + 0 ➔ a			 a – 0 ➔ a

– b | false ➔ b		 b & true ➔ b 

• Reassociation & commutativity:

– (a + 1) + 2 ➔ a + (1 + 2) ➔ a + 3

– (2 + a) + 4 ➔ (a + 2) + 4 ➔ a + (2 + 4) ➔ a + 6  

• Strength reduction: (replace expensive op with cheaper op)

– a * 4 		 ➔ 		 a << 2

– a * 7 		 ➔ 		 (a << 3) – a

– a / 32767 	 ➔ 		 (a >> 15) + (a >> 30) 

• Note: must be careful with floating point (due to rounding)  
 and integer arithmetic (due to overflow/underflow)

Constant Propagation

• If the value is known to be a constant, replace the use of the variable by the constant 

• Value of the variable must be propagated forward from the point of assignment 

• This is a substitution operation 

• Example:

int x = 5;

int y = x * 2; ➔ int y = 5 * 2; ➔ int y = 10;

int z = a[y]; ➔ int z = a[y]; ➔ int z = a[y]; ➔ int z = a[10]; 

• To be most effective, constant propagation should be interleaved with constant folding

Copy Propagation
• If one variable is assigned to another, replace uses of the assigned variable with

the copied variable.

• Need to know where copies of the variable propagate.

• Interacts with the scoping rules of the language. 

• Example:

x = y;							 x = y;

if (x > 1) {			 ➔ 		 if (y > 1) {

 x = x * f(x – 1);			 x = y * f(y – 1);

}								 } 

• Can make the first assignment to x dead code (that can be eliminated).

Dead Code Elimination

• If a side-effect free statement can never be observed, it is safe to eliminate the statement. 

x = y * y // x is dead!

…				 // x never used ➔ …

x = z * z									 x = z * z 

• A variable is dead if it is never used after it is defined.

– Computing such definition and use information is an important component of compiler 

• Dead variables can be created by other optimizations…

Unreachable/Dead Code

• Basic blocks not reachable by any trace leading from the starting basic block are
unreachable and can be deleted.

– Performed at the IR or assembly level 

• Dead code: similar to unreachable blocks.

– A value might be computed but never subsequently used. 

• Code for computing the value can be dropped 

• But only if it’s pure, i.e. it has no externally visible side effects

– Externally visible effects: raising an exception, modifying a global variable, going into an
infinite loop, printing to standard output, sending a network packet, launching a rocket

– Note: Pure functional languages (e.g. Haskell) make reasoning about the safety of
optimizations (and code transformations in general) easier!

Inlining

• Replace a call with the body of the function itself with arguments rewritten to be local variables:

• Example in Oat code: 

 int g(int x) { return x + pow(x); }

 int pow(int a) { int b = 1; int n = 0;  

 while (n < a) {b = 2 * b};  
 return b; }

 ➔

 int g(int x) {  

 int a = x; int b = 1; int n = 0; 
 while (n < a) {b = 2 * b}; tmp = b;  
 return x + tmp;

 }  

• May need to rename variable names to avoid name capture

– Example of what can go wrong?

• Best done at the AST or relatively high-level IR.

• When is it profitable?

– Eliminates the stack manipulation, jump, etc.

– Can increase code size.

– Enables further optimizations

int g(int x) (1 + f(x))

Int f(int a) (a + x)

➔

const int x = 3;

int g(int x) (1 + (int a = x; a + x))

Code Specialization
• Idea: create specialized versions of a function that is called from different places

with different arguments.

• Example: specialize function f in: 

class A implements I { int m() {…} }

class B implements I { int m() {…} }

int f(I x) { x.m(); }	 	 // don’t know which m

A a = new A(); f(a);			 // know it’s A.m

B b = new B(); f(b);			 // know it’s B.m

• f_A would have code specialized to dispatch to A.m

• f_B would have code specialized to dispatch to B.m

• You can also inline methods when the run-time type is known statically

– Often just one class implements a method.

Common Subexpression Elimination (CSE)

• In some sense it’s the opposite of inlining: fold redundant computations together

• Example:  

 a[i] = a[i] + 1 compiles to:

 [a + i*4] = [a + i*4] + 1  

Common subexpression elimination removes the redundant add and multiply:

 

 t = a + i*4; [t] = [t] + 1

• For safety, you must be sure that the shared expression always has the same value in both places!

unit f(int[] a, int[] b, int[] c) {

int j = …; int i = …; int k = …;

 	 t = a[i];

b[j] = t + 1;

c[k] = t;

return;

}

unit f(int[] a, int[] b, int[] c) {

int j = …; int i = …; int k = …;

b[j] = a[i] + 1;

c[k] = a[i];

return;

}

Unsafe Common Subexpression Elimination
• Example: consider this OAT function:

• The optimization that shares the expression a[i] is unsafe… why?

Loop Optimizations

Loop Optimizations

• Most program execution time occurs in loops.

– The 90/10 rule of thumb holds here too. (90% of the execution time is spent in 10% of the code)

• Loop optimizations are very important, effective, and numerous

– Also, concentrating effort to improve loop body code is usually a win

• Another form of redundancy elimination.

• If the result of a statement or expression does not change during the loop and

it’s pure, it can be hoisted outside the loop body.

• Often useful for array element-addressing code

– so-called invariant code

for (i = 0; i < a.length; i++) {

 /* a not modified in the body */

}

t = a.length;

for (i =0; i < t; i++) {

 /* same body as above */

}

Loop Invariant Code Motion (revisited)

Hoisted loop-
invariant

expression

Strength Reduction (revisited)
• Strength reduction can work for loops too

• Idea: replace expensive operations (multiplies, divides) by cheap ones (adds and subtracts)

• For loops, create a dependent induction variable:

• Example:

 for (int i = 0; i<n; i++) { a[i*3] = 1; } // stride by 3

 int j = 0;
 for (int i = 0; i<n; i++) {
 a[j] = 1;
 j = j + 3; // replace multiply by add

 }

Loop Unrolling (revisited)

• Branches can be expensive, unroll loops to avoid them.

 for (int i=0; i < n; i++) { S }

 for (int i=0; i < n-3; i+=4) {S;S;S;S};

 for (; i<n; i++) { S } // left over iterations

• With k unrollings, eliminates (k-1)/k conditional branches

– So for the above program, it eliminates ¾ of the branches

• Space-time tradeoff:

– Not a good idea for large S or small n

Optimization Effectiveness

Optimization Effectiveness?

0%
50%

100%
150%
200%
250%
300%

sp
ee

du
p

ov
er

 L
LV

M
-O

0

LLVM-mem2reg LLVM-O1
LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr

mesa art
ammp

equake
parser

twolf
bzip2 mcf

hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

Graph taken from:

Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 
Formal Verification of SSA-Based Optimizations for LLVM.

In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation (PLDI), 2013

%speedup =
base time

optimized time
- 1 x 100%

Example:

 base time = 1.2s

 optimized time = 0.87s ⇒ 38% speedup

Example:

 base time = 2s

 optimized time = 1s ⇒ 100% speedup

Optimization Effectiveness?

• mem2reg: promotes alloca’ed stack slots to temporaries to enable register allocation

• Analysis:

– mem2reg alone (+ back-end optimizations like register allocation) yields ~78% speedup on average

– -O1 yields ~100% speedup  

 (so all the rest of the optimizations combined account for ~22%)

– -O3 yields ~120% speedup

• Hypothetical program that takes 10 sec. (base time):

– Mem2reg alone: expect ~5.6 sec

– -O1: expect ~5 sec

– -O3: expect ~4.5 sec

0%
50%

100%
150%
200%
250%
300%

sp
ee

du
p

ov
er

 L
LV

M
-O

0

LLVM-mem2reg LLVM-O1
LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr

mesa art
ammp

equake
parser

twolf
bzip2 mcf

hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

Code Analysis

31

Motivating Code Analyses

• There are lots of things that might influence the safety/applicability of an optimization

– What algorithms and data structures can help? 

• How do you know what is a loop?

• How do you know an expression is invariant (constant)?

• How do you know if an expression has no side effects?

• How do you keep track of where a variable is defined?

• How do you know where a variable is used?

• How do you know if two reference values may be aliases of one another?

32

Moving Towards Register Allocation
• The Oat compiler currently generates as many temporary variables as it needs

– These are the %uids you should be very familiar with by now. 

• Current compilation strategy:

– Each %uid maps to a stack location.

– This yields programs with many loads/stores to memory.

– Very inefficient. 

• Ideally, we’d like to map as many %uid’s as possible into registers.

– Eliminate the use of the alloca instruction?

– Only 16 max registers available on 64-bit X86

– %rsp and %rbp are reserved and some have special semantics, so really only 10 or 12 available

– This means that a register must hold more than one slot 

• When is this safe?
33

Liveness

• Observation: %uid1 and %uid2 can be assigned to the same register if their
values will not be needed at the same time.

– What does it mean for an %uid to be “needed”?

– Ans: its contents will be used as a source operand in a later instruction. 

• Such a variable is called “live” 

• Two variables can share the same register if they are not live at the same time.

34

Scope vs. Liveness
• We can already get some coarse liveness information from variable scoping.

• Consider the following OAT program: 

int f(int x) {

 				 var a = 0;

 				 if (x > 0) {

 				 var b = x * x;

 				 a = b + b;

 				 }

 				 var c = a * x;

 				 return c;

}

• Note that due to Oat’s scoping rules, variables b and c can never be live at the same time.

– c’s scope is disjoint from b’s scope 

• So, we could assign b and c to the same alloca’ed slot and potentially to the same register.

35

• Consider this program: 

int f(int x) {

 int a = x + 2;

 int b = a * a;

 int c = b + x;

 return c;

} 

• The scopes of a, b, c, x all overlap – they’re all in scope at the end of the block.

• But, a, b, c are never live at the same time.

– So they can share the same stack slot / register

But Scope is too Coarse

36

x is live
a and x are live
b and x are live
c is live

Live Variable Analysis

• A variable v is live at a program point if v is defined before the program point and used after it. 

• Liveness is defined in terms of where variables are defined and where variables are used

• Liveness analysis: Compute the live variables between each statement.

– May be conservative (i.e. it may claim a variable is live when it isn’t) so because that’s a safe approximation

– To be useful, it should be more precise than simple scoping rules.

• Liveness analysis is one example of dataflow analysis

– Other examples: Available Expressions, Reaching Definitions, Constant-Propagation Analysis, …

37

Control-flow Graphs Revisited

• For the purposes of dataflow analysis, we use the control-flow graph (CFG) intermediate form. 

• Recall that a basic block is a sequence of instructions such that:

– There is a distinguished, labeled entry point (no jumps into the middle of a basic block)

– There is a (possibly empty) sequence of non-control-flow instructions

– The block ends with a single control-flow instruction (jump, conditional branch, return, etc.) 

• A control flow graph

– Nodes are blocks

– There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the entry label of B2

– There are no “dangling” edges – there is a block for every jump target.

38

Dataflow over CFGs
• For precision, it is helpful to think of the “fall through” between

sequential instructions as an edge of the control-flow graph too.

– Different implementation tradeoffs in practice…

39

Move

Binop

If

Unop

Jump

Basic block CFG

Move

Binop

If

Unop

Jump

“Exploded” CFG

Fall-through edges

in-edges

out-edges

Instr

Liveness is Associated with Edges

• This is useful so that the same register can be used for different
temporaries in the same statement.

• Example: a = b + 1

• Compiles to:  

40

Instr

Live: a, b

Live: b, d, e

Mov a, b

Add a, 1

Live: b

Live: a

Live: a (maybe)

Mov eax, eax

Add eax, 1

Register Allocate:

a ! eax, b ! eax

Next Lecture

• Liveness analysis, formally 

• Other Dataflow Analyses

• A general algebraic framework for defining DFAs

41

