
Ilya Sergey

ilya.sergey@yale-nus.edu.sg

Week 11: Code Optimizations

YSC4230: Programming Language  
Design and Implementation

mailto:ilya.sergey@yale-nus.edu.sg


Optimizations
• The code generated by our Oat compiler so far is pretty inefficient. 
– Lots of redundant moves. 
– Lots of unnecessary arithmetic instructions. 

• Consider this OAT program:

int foo(int w) {
  var x = 3 + 5;
  var y = x * w;
  var z = y - 0;
  return z * 4;
}

frontend.ml



???

Optimized code: 

• Code above generated by 
clang –O3  

• Function foo may be inlined by the 
compiler, so it can be implemented 
by just one instruction!

_foo:             
        pushq   %rbp
        movq    %rsp, %rbp
        movq    %rdi, %rax
        shlq    $5, %rax
        popq    %rbp
        retq

.text

.globl _foo
_foo:

pushq %rbp
movq %rsp, %rbp
subq $136, %rsp
movq %rdi, %rax
movq %rax, -8(%rbp)
pushq $0
movq %rsp, -16(%rbp)
pushq $0
movq %rsp, -24(%rbp)
pushq $0
movq %rsp, -32(%rbp)
pushq $0
movq %rsp, -40(%rbp)
movq -8(%rbp), %rcx
movq -16(%rbp), %rax
movq %rcx, (%rax)
movq $3, %rax
movq $5, %rcx
addq %rcx, %rax
movq %rax, -56(%rbp)
movq -56(%rbp), %rcx
movq -24(%rbp), %rax
movq %rcx, (%rax)
movq -24(%rbp), %rax
movq (%rax), %rcx
movq %rcx, -72(%rbp)
movq -16(%rbp), %rax
movq (%rax), %rcx
movq %rcx, -80(%rbp)
movq -72(%rbp), %rax
movq -80(%rbp), %rcx
imulq %rcx, %rax
movq %rax, -88(%rbp)
movq -88(%rbp), %rcx
movq -32(%rbp), %rax
movq %rcx, (%rax)
movq -32(%rbp), %rax
movq (%rax), %rcx
movq %rcx, -104(%rbp)
movq -104(%rbp), %rax
movq $0, %rcx
subq %rcx, %rax
movq %rax, -112(%rbp)
movq -112(%rbp), %rcx
movq -40(%rbp), %rax
movq %rcx, (%rax)
movq -40(%rbp), %rax
movq (%rax), %rcx
movq %rcx, -128(%rbp)
movq -128(%rbp), %rax
movq $4, %rcx
imulq %rcx, %rax
movq %rax, -136(%rbp)
movq -136(%rbp), %rax
movq %rbp, %rsp
popq %rbp
retq

backend.ml

Optimized vs Non-Optimized Output



Why do we need optimizations?
• To help programmers… 
– They write modular, clean, high-level programs 
– Compiler generates efficient, high-performance assembly 

• Programmers don’t write optimal code 

• High-level languages make avoiding redundant computation inconvenient or impossible 
– e.g.   A[i][j] = A[i][j] + 1  

• Architectural independence 
– Optimal code depends on features not expressed to the programmer 
– Modern architectures assume optimization 

• Different kinds of optimizations: 
– Time: improve execution speed 
– Space: reduce amount of memory needed 
– Power: lower power consumption (e.g. to extend battery life)



Some Caveats

• Optimization are code transformations: 
– They can be applied at any stage of the compiler 
– They must be safe (?) 

– they shouldn’t change the meaning of the program. 

• In general, optimizations require some program analysis: 
– To determine if the transformation really is safe 
– To determine whether the transformation is cost effective 

• This course: most common and valuable performance optimizations 
– See Muchnick (optional text) for ~10 chapters about optimization



When to apply optimization
• Inlining 
• Function specialization 
• Constant folding 
• Constant propagation 
• Value numbering 
• Dead code elimination 
• Loop-invariant code motion 
• Common sub-expression elimination 
• Strength Reduction 
• Constant folding & propagation 
• Branch prediction / optimization 
• Register allocation 
• Loop unrolling 
• Cache optimization

Assembly

Abstract assembly

Canonical IR

IR

AST

H
ig

h 
le

ve
l

M
id

 le
ve

l
Lo

w
 le

ve
l



A good place to have a break



Where to Optimize?
• Usual goal:  improve time performance 
• Problem: many optimizations trade space for time 
• Example:  Loop unrolling 
– Idea: rewrite a loop like (why?):   

          for(int i=0; i<100; i=i+1) { 
            s = s + a[i]; 
          } 

– Into a loop like:   
          for(int i=0; i<99; i=i+2){ 
            s = s + a[i];  
            s = s + a[i+1]; 
          } 

• Tradeoffs: 
– Increasing code space slows down whole program a tiny bit  

(extra instructions to manage) but speeds up the loop a lot 
– For frequently executed code with long loops: generally a win 
– Interacts with instruction cache and branch prediction hardware 

• Complex optimizations may never pay off!



Writing Fast Programs In Practice

• Pick the right algorithms and data structures. 
– These have a much bigger impact on performance that compiler optimizations. 
– Reduce # of operations 
– Reduce memory accesses 
– Minimize indirection 

• Then turn on compiler optimizations 

• Profile to determine program hot spots 
• Evaluate whether the algorithm/data structure design works 
• …if so: “tweak” the source code until the optimizer does “the right thing” to the machine code



Safety

• Whether an optimization is safe depends on the programming language semantics. 
– Languages that provide weaker guarantees to the programmer permit more optimizations but 

have more ambiguity in their behaviour. 
– e.g. In C, loading from initialized memory is undefined, so the compiler can do anything. 

• Example: loop-invariant code motion 

– Idea: hoist invariant code out of a loop 

• Is this more efficient? 
• Is this safe?

while (b) {
  z = y/x;
  … // y, x not updated
}

z = y/x;
while (b) {
  … // y, x not updated
}



The Zoo of Optimizations



Constant Folding
• Idea: If operands are known at compile type, perform the operation statically. 

          int x = (2 + 3) * y  ➔  int x = 5 * y
          b  & false   ➔  false  

• Performed at every stage of optimization… Why? 

• Constant expressions can be created by translation or earlier optimizations 
 
Example: A[2] might be compiled to:   
MEM[MEM[A] + 2 * 4]    ➔   MEM[MEM[A] + 8]



Constant Folding Conditionals

if (true) S ➔ S
if (false) S  ➔ ;
if (true) S else S’ ➔ S
if (false) S else S’     ➔ S’
while (false) S ➔ ;
if (2 > 3) S ➔ ;



Algebraic Simplification
• More general form of constant folding 
– Take advantage of mathematically sound simplification rules 

• Identities: 
– a * 1 ➔ a a * 0 ➔ 0
– a + 0 ➔ a a – 0 ➔ a
– b | false ➔ b b & true ➔ b 

• Reassociation & commutativity: 
– (a + 1) + 2 ➔ a + (1 + 2) ➔ a + 3
– (2 + a) + 4 ➔ (a + 2) + 4 ➔ a + (2 + 4) ➔ a + 6  

• Strength reduction:  (replace expensive op with cheaper op) 
– a * 4 ➔ a << 2
– a * 7 ➔ (a << 3) – a
– a / 32767 ➔ (a >> 15) + (a >> 30) 

• Note: must be careful with floating point (due to rounding)  
          and integer arithmetic (due to overflow/underflow)



Constant Propagation

• If the value is known to be a constant, replace the use of the variable by the constant 

• Value of the variable must be propagated forward from the point of assignment 

• This is a substitution operation 

• Example: 
int x = 5;
int y = x * 2;  ➔ int y = 5 * 2; ➔ int y = 10; 
int z = a[y];   ➔  int z = a[y];  ➔ int z = a[y];  ➔ int z = a[10]; 

• To be most effective, constant propagation should be interleaved with constant folding



Copy Propagation
• If one variable is assigned to another, replace uses of the assigned variable with 

the copied variable. 
• Need to know where copies of the variable propagate. 
• Interacts with the scoping rules of the language. 

• Example: 
x = y; x = y;
if (x > 1) { ➔       if (y > 1) {
  x = x * f(x – 1);                x = y * f(y – 1);
}       } 

• Can make the first assignment to x dead code (that can be eliminated).



Dead Code Elimination

• If a side-effect free statement can never be observed, it is safe to eliminate the statement. 

x  = y * y         // x is dead!
…    // x never used  ➔ … 
x = z * z x = z * z 

• A variable is dead if it is never used after it is defined. 
– Computing such definition and use information is an important component of compiler 

• Dead variables can be created by other optimizations…



Unreachable/Dead Code

• Basic blocks not reachable by any trace leading from the starting basic block are 
unreachable and can be deleted. 
– Performed at the IR or assembly level 

• Dead code: similar to unreachable blocks. 
– A value might be computed but never subsequently used. 

• Code for computing the value can be dropped 

• But only if it’s pure, i.e. it has no externally visible side effects 

– Externally visible effects: raising an exception, modifying a global variable, going into an 
infinite loop, printing to standard output, sending a network packet, launching a rocket 

– Note: Pure functional languages (e.g. Haskell) make reasoning about the safety of 
optimizations (and code transformations in general) easier!



Inlining

• Replace a call with the body of the function itself with arguments rewritten to be local variables: 
• Example in Oat code: 

     int g(int x) { return x + pow(x); }
     int pow(int a) { int b = 1; int n = 0;  

                       while (n < a) {b = 2 * b};  
                       return b; }

     ➔ 
     int g(int x) {  

 int a = x; int b = 1; int n = 0; 
 while (n < a) {b = 2 * b}; tmp = b;  
 return x + tmp;

     }  

• May need to rename variable names to avoid name capture  
– Example of what can go wrong?   

• Best done at the AST or relatively high-level IR. 
• When is it profitable? 
– Eliminates the stack manipulation, jump, etc. 
– Can increase code size. 
– Enables further optimizations

int g(int x) ( 1 + f(x) ) 
Int f(int a) (a + x) 
➔ 
const int x = 3; 
int g(int x) ( 1 + (int a = x; a + x) )



Code Specialization
• Idea: create specialized versions of a function that is called from different places 

with different arguments. 
• Example: specialize function f in: 

class A implements I { int m() {…} }
class B implements I { int m() {…} }
int f(I x) { x.m(); }                  // don’t know which m
A a = new A(); f(a);        // know it’s A.m
B b = new B(); f(b);        // know it’s B.m

• f_A would have code specialized to dispatch to A.m
• f_B would have code specialized to dispatch to B.m
• You can also inline methods when the run-time type is known statically 
– Often just one class implements a method.



Common Subexpression Elimination (CSE)

• In some sense it’s the opposite of inlining: fold redundant computations together 
• Example:  

       a[i] = a[i] + 1  compiles to:    

       [a + i*4] = [a + i*4] + 1  

Common subexpression elimination removes the redundant add and multiply: 
 

   t = a + i*4; [t] = [t] + 1

• For safety, you must be sure that the shared expression always has the same value in both places!



unit f(int[] a, int[] b, int[] c) {
int j = …; int i = …; int k = …;

  t = a[i];
b[j] = t + 1; 
c[k] = t; 
return; 

}

unit f(int[] a, int[] b, int[] c) {
int j = …; int i = …; int k = …;
b[j] = a[i] + 1;
c[k] = a[i]; 
return; 

}

Unsafe Common Subexpression Elimination
• Example: consider this OAT function:

• The optimization that shares the expression a[i] is unsafe… why?



Loop Optimizations



Loop Optimizations

• Most program execution time occurs in loops. 
– The 90/10 rule of thumb holds here too. (90% of the execution time is spent in 10% of the code) 

• Loop optimizations are very important, effective, and numerous 
– Also, concentrating effort to improve loop body code is usually a win



• Another form of redundancy elimination. 
• If the result of a statement or expression does not change during the loop and 

it’s pure, it can be hoisted outside the loop body. 
• Often useful for array element-addressing code 
– so-called invariant code 

for (i = 0; i < a.length; i++) { 
   /* a not modified in the body */ 
}

t = a.length;
for (i =0; i < t; i++) { 
  /* same body as above */  
}

Loop Invariant Code Motion (revisited)

Hoisted loop-
invariant 

expression



Strength Reduction (revisited)
• Strength reduction can work for loops too 
• Idea: replace expensive operations (multiplies, divides) by cheap ones (adds and subtracts) 
• For loops, create a dependent induction variable: 

• Example: 
        for (int i = 0; i<n; i++) { a[i*3] = 1; }  // stride by 3

        int j = 0;
         for (int i = 0; i<n; i++) {
             a[j] = 1;
             j = j + 3; // replace multiply by add

         }



Loop Unrolling (revisited)

• Branches can be expensive, unroll loops to avoid them. 
        for (int i=0; i < n; i++) { S }

        for (int i=0; i < n-3; i+=4) {S;S;S;S};
        for (       ; i<n; i++) { S } // left over iterations 

• With k unrollings, eliminates (k-1)/k conditional branches 
– So for the above program, it eliminates ¾ of the branches 

• Space-time tradeoff:  
– Not a good idea for large S or small n



Optimization Effectiveness



Optimization Effectiveness?

0%
50%

100%
150%
200%
250%
300%

sp
ee

du
p 

ov
er

 L
LV

M
-O

0 

LLVM-mem2reg LLVM-O1
LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr

mesa art
ammp

equake
parser

twolf
bzip2 mcf

hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean

Graph taken from: 
Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, and Steve Zdancewic. 
Formal Verification of SSA-Based Optimizations for LLVM.  
In Proc. 2013 ACM SIGPLAN Conference on Programming Languages Design and Implementation (PLDI), 2013

%speedup =
base time

optimized time
- 1 x 100%

Example:     
 base time = 1.2s     
 optimized time = 0.87s          ⇒          38% speedup

Example:     
 base time = 2s     
 optimized time = 1s               ⇒          100% speedup



Optimization Effectiveness?

• mem2reg: promotes alloca’ed stack slots to temporaries to enable register allocation 
• Analysis: 
– mem2reg alone  (+ back-end optimizations like register allocation) yields ~78% speedup on average 
– -O1 yields ~100% speedup    

 (so all the rest of the optimizations combined account for ~22%) 
– -O3 yields ~120% speedup 

• Hypothetical program that takes 10 sec. (base time): 
– Mem2reg alone:  expect ~5.6 sec 
– -O1: expect ~5 sec 
– -O3: expect ~4.5 sec

0%
50%

100%
150%
200%
250%
300%

sp
ee

du
p 

ov
er

 L
LV

M
-O

0 

LLVM-mem2reg LLVM-O1
LLVM-O3 GCC-O3

go
compress ijpeg gzip vpr

mesa art
ammp

equake
parser

twolf
bzip2 mcf

hmmer

libquantum lbm milc sjeng
h264ref

Geo. mean



Code Analysis

31



Motivating Code Analyses

• There are lots of things that might influence the safety/applicability of an optimization 
– What algorithms and data structures can help? 

• How do you know what is a loop? 
• How do you know an expression is invariant (constant)? 
• How do you know if an expression has no side effects? 
• How do you keep track of where a variable is defined? 
• How do you know where a variable is used? 
• How do you know if two reference values may be aliases of one another?

32



Moving Towards Register Allocation
• The Oat compiler currently generates as many temporary variables as it needs  
– These are the %uids you should be very familiar with by now. 

• Current compilation strategy: 
– Each %uid maps to a stack location. 
– This yields programs with many loads/stores to memory. 
– Very inefficient. 

• Ideally, we’d like to map as many %uid’s as possible into registers. 
– Eliminate the use of the alloca instruction? 
– Only 16 max registers available on 64-bit X86 
– %rsp and %rbp are reserved and some have special semantics, so really only 10 or 12 available 
– This means that a register must hold more than one slot 

• When is this safe?
33



Liveness

• Observation: %uid1 and %uid2 can be assigned to the same register if their 
values will not be needed at the same time. 
– What does it mean for an %uid to be “needed”?   
– Ans: its contents will be used as a source operand in a later instruction. 

• Such a variable is called “live” 

• Two variables can share the same register if they are not live at the same time.

34



Scope vs. Liveness
• We can already get some coarse liveness information from variable scoping. 
• Consider the following OAT program: 

int f(int x) {
      var a = 0; 
      if (x > 0) {
            var b = x * x;
            a = b + b;
      }
      var c = a * x; 
      return c;

}

• Note that due to Oat’s scoping rules, variables b and c can never be live at the same time. 
– c’s scope is disjoint from b’s scope 

• So, we could assign b and c to the same alloca’ed slot and potentially to the same register.

35



• Consider this program: 

int f(int x) {
  int a = x + 2;
  int b = a * a;
  int c = b + x;
  return c;
} 

• The scopes of a, b, c, x all overlap – they’re all in scope at the end of the block. 
• But, a, b, c are never live at the same time. 
– So they can share the same stack slot / register

But Scope is too Coarse 

36

x is live
a and x are live
b and x are live
c is live



Live Variable Analysis

• A variable v is live at a program point if v is defined before the program point and used after it. 

• Liveness is defined in terms of where variables are defined and where variables are used 

• Liveness analysis: Compute the live variables between each statement. 
– May be conservative (i.e. it may claim a variable is live when it isn’t) so because that’s a safe approximation 
– To be useful, it should be more precise than simple scoping rules. 

• Liveness analysis is one example of dataflow analysis 

– Other examples: Available Expressions, Reaching Definitions, Constant-Propagation Analysis, …

37



Control-flow Graphs Revisited

• For the purposes of dataflow analysis, we use the control-flow graph (CFG) intermediate form. 

• Recall that a basic block is a sequence of instructions such that: 
– There is a distinguished, labeled entry point (no jumps into the middle of a basic block) 
– There is a (possibly empty) sequence of non-control-flow instructions 
– The block ends with a single control-flow instruction (jump, conditional branch, return, etc.) 

• A control flow graph  
– Nodes are blocks 
– There is an edge from B1 to B2 if the control-flow instruction of B1 might jump to the entry label of B2 
– There are no “dangling” edges – there is a block for every jump target. 

38



Dataflow over CFGs
• For precision, it is helpful to think of the “fall through” between 

sequential instructions as an edge of the control-flow graph too. 
– Different implementation tradeoffs in practice…

39

Move

Binop

If

Unop

Jump

Basic block CFG

Move

Binop

If

Unop

Jump

“Exploded” CFG

Fall-through edges

in-edges 

out-edges

Instr



Liveness is Associated with Edges

• This is useful so that the same register can be used for different 
temporaries in the same statement. 

• Example:   a = b + 1

• Compiles to:   

40

Instr

Live: a, b

Live:  b, d, e

Mov a, b

Add a, 1

Live: b

Live: a

Live: a (maybe)

Mov eax, eax

Add eax, 1

Register Allocate: 
a ! eax, b ! eax



Next  Lecture

• Liveness analysis, formally 

• Other Dataflow Analyses 

• A general algebraic framework for defining DFAs

41


