YSC4230: Programming Language
Design and Implementation

Week 13: Register Allocation
Current Research in PLDI
Wrap-Up

[lya Sergey

ilya.sergey@yale-nus.edu.sg

mailto:ilya.sergey@yale-nus.edu.sg

Previous Lectures: Liveness

» A variable v is /ive at a program point if v is defined before the program point and used after it.

« Liveness is defined in terms of where variables are defined and where variables are used

» Liveness analysis: Compute the live variables between each statement.
— May be conservative (i.e. it may claim a variable is live when it isn’t) so because that’s a safe approximation

— To be usetul, it should be more precise than simple scoping rules.

Simple Liveness Analysis Algorithm

for all n, in[n] := @, out[n] := @
repeat until no change in ‘in’ and ‘out’
for all n
out[n] := U cquccrniin[n’
in[n] := use[n] U (out[n] - def[n])

end

end

» Finds a fixpoint of the in and out equations.

Example Liveness Analysis

» Example flow graph:

e=1;
while(x>0) {

*

Z=¢e"e;
y=e"X;
X=X-—1;
if (x & 1) {
e =2
} else{
=Y,
)

}

return X;

out:

o

out:

def: e

use:

def:

def:

use: X

out:

Example Liveness Analysis

Each iteration update:
out[n] := Un’Esucc[n]in[n’]

in[n] := use[n] U (out[n] - def[n])

e Jteration 1:

in[2] = X
in[3] = e
in[4] = x
in[5] = e,x
in[6] = x
in|7] = x
in[8] =z
in[9] =y

(showing only updates
that make a change) i

out:

|

N
out;:

def: e

use:

def: e
use: y

def:

use: X

out:

Example Liveness Analysis

Each iteration update:
out[n] := Un’Esucc[n]in[n’]

in[n] := use[n] U (out[n] - def[n])

e Jteration 2:

out[1]= x
in[1] = x
out[2] = e,x
in[2] = e,x
out[3] = e,x
in[3] = e,x
out[5] = x
out[6] = x
out|7] = zy
in[7] = x,z,y
out[8] = x
in[8] = x,z
out[9] = x
in[9] = x,y

o,

out: x

def: e

use:

,1n: e,x

1

it x>0

def:

use: X

out: e,x

def:

use: X

Example Liveness Analy51s

Each iteration update:

out[n] := Un’Esucc [n]in [n’]

in[n] := use[n] U (out[n] - def[n])

e Jteration 3:

out[1]=e,x

out[6]= x,y,z
in[6]= x,y,z

out|7]= x,y,z

out[8]=e,x

out[9]= e,x

ﬁ e =1 def: e
use:

out: e,x
,1n: e,x
qif X > (| def:
use: X
In: X
ret X def:
use: X
def: e

use:y out: e, x

Example Liveness Analysis

lln X
Each iteration update: ﬁ =1 |defe

use:
out [Il] L= Un’Esucc[n]ln [Il’] out: e x

in[n] := use[n] U (out[n] - def[n]) ,Tn: e,x
qif X > () | def:
use: X

* Jteration 4: |

INn: X
f)ut[S] = X,V,Z ret x| def
in[5]= e,x,z e

def: e

use:y out: e,x

Example Liveness Analysis

lln X
Each iteration update: ﬁ e=1 ¢
out[n] L= Un»ESucc[n]in[Il’] out: e,x
in[n] := use[n] U (out[n] - def[n]) ,Tn: e,x
qif X > (0 | def
use: X

* Jteration 5: |

IN: X
out[3]= e,x,z ot x| def

use: X

Done!

def: e

use:y out: e,x

(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:

1. A domain of dataflow values S

— e.g. L =the powerset of all variables

— Think of ¢ € L as a property, then “z € ¢” means “z has the property” l 0

2. For each node n, a flow functionF,: L — L -
— So far we’ve seen F,(f) = gen|[n] U (¢ - kill[n]) l F (0)
— So: out[n] = F,(in[n])

— “If £ is a property that holds before the node n, then F,(¢) holds after n”

3. A combining operator I

e, 0
— “If we know either €, or £, holds on entry \ / :
to node n, we know at most ¢; n ¢,”
- in[n] - I_ln’Eplred[n]OUt[n’] l’g1 ; gz

N

10

Generic Iterative (Forward) Analysis

for all n, in[n] := T, out[n] :=T

repeat until no change
for all n
in[n] := ﬂn,epred[n]out[n’]
out[n] := F, (in[n])
end

end

* Here, T € L (“top”) represents having the “maximum” amount of information.

— Having “more” information enables more optimizations
— “Maximum” amount could be inconsistent with the constraints, so we can’t keep it. :-(

— Iteration refines the answer, eliminating inconsistencies

11

Structure of L

The domain has structure that reflects the “amount” of information for each dataflow value.

Some dataflow values are more informative than others:
— Write ¢; C ¢, whenever ¢, provides at least as much information as ¢;.

— The dataflow value ¢, is “better” for enabling optimizations.

Example 1: for available expressions analysis, larger sets of nodes are more informative.

— Having a larger set of nodes (equivalently, expressions) available means that there is more opportunity for
common subexpression elimination.

— So: ¢;C{¢,ifand only if ¢; C ¢,

Example 2: for liveness analysis, smaller sets of variables are more informative.

— Having smaller sets of variables live across an edge means that there are fewer conflicts
for register allocation assignments.

— So: ¢;Cc{ifandonlyif ¢, 2 ¢,

L as a Partial Order

L is a partial order defined by the ordering relation C.

A partial order is an ordered set.

Some of the elements might be incomparable.
— That is, there might be ¢, ¢, € L such that neither ¢; C ¢, nor ¢, C ¢,

Properties of a partial order:
— Reflexivity: € C £
— Transitivity: £, C £, and £, C £5 implies 2, C £,
— Anti-symmetry: £, € £, and £, C £, implies £, = 0,

Examples:
— Integers ordered by <
— Types ordered by <:
— Sets ordered by C or 2

13

Subsets of {a,b,c} ordered by C

Partial orders are often presented as a Hasse diagram.

A
{a,c} {b,c} .
S~ ©
1C} £
\
1a} {b}

order C is C meet M is n join U is u

14

Meets and Joins

The combining operator 1 is called the “meet” operation.

[t constructs the greatest lower bound:
— ¢;n¢, € ¢ and ¢, N, C ¢,

“the meet is a lower bound”
— If¢ Cc ¢, and¢ C ¢, then¢ C ¢, n¢,

“there is no greater lower bound”

Dually, the L operator is called the “join” operation.

[t constructs the least upper bound:
— ¢, C ¢,ut¢, and ¢, C ¢, U4,
“the join is an upper bound”
— If¢, c ¢ and¢, C ¢ then{¢,u¢, C ¢

“there is no smaller upper bound”

A partial order that has all meets and joins is called a /attice.

— If it has just meets, it’s called a meet semi-lattice.

15

Another Way to Describe the (Forward) Algorithm

» Algorithm repeatedly computes (for each node n):
« out[n] := F,(in[n])

* Equivalently: out[n] := Fn(ﬂn,epred[n]out[n’])

— By definition of in[n]

» We can write this as a simultaneous update of the vector of out|n] values:
— Let x,, = out|n]
— LetX = (x4, X, ..., X,) it’s avector of points in L corresponding to CFG nodes

o F(X) — (F1(ﬂjepred[1]OUt[j])/ F2(|—|jepred[2]OUt[j])/ Ry Fn<|_|jepred[n]OUt[j]))

* Any solution to the constraints is a fixpoint X of F
— i.e. F(X) =X

16

Iteration Computes Fixpoints

Let X, = (T,T, ..., T)

Each loop through the algorithm apply F to the old vector:
X; = F(Xp)
X, = F(X;)

Fk+1(X) = F(F(X))
A fixpoint is reached when Fx(X) = Fk+1(X)

— That’s when the algorithm stops.

Wanted: a maximal fixpoint

— Because that one is more informative/useful for performing optimizations

17

Monotonicity & Termination

Each flow function F, maps lattice elements to lattice elements; to be sensible is should be monotonic:

F: S — J is monotonic iff:
¢, C ¢, implies that F(¢;) C F(¢,)

— Intuitively: “If you have more information entering a node, then you have more information leaving the node.”

Monotonicity lifts point-wise to the function: F: L — L"

— vector (X, Xy, ..., X,) & (Vy, Vo, .-, V) iff x; C v, for each i

Note that F is consistent: F(X;) C X,

— So each iteration moves at least one step down the lattice (for some component of the vector)
— ...CF(F(Xp)) EF(Xp) T X,

Therefore, # steps needed to reach a fixpoint is at most the height H of L times the number of nodes:
O(Hn) — height of the lattice

18

Building Lattices?

» Information about individual nodes or variables can be lifted pointwise:

— If L is a lattice, then sois {f: X — L } where fC g if and only if
f(x) C g(x) for all x e

» Like types, the dataflow lattices are static approximations to the dynamic behavior:

— Could pick a lattice based on subtyping:

Any
Aliased /\
. . Bool
— Or other information: T
Unaliased /"\ /\
Zero True False

» Points in the lattice are sometimes called dataflow “facts”

19

T — S$
S — EY
S"— ¢

S"— + S

More on Fixpoint Solutions

Remember constructing LL(1) parse tables

E — number | (S

— S$

—— E S’

——> NuMm.

o First(T) =

First(S)

o First(S) = First(E)

(
(

o First(S") ={ + }
(

o First(E) = { number, ‘(‘ }

——F S’

e Follow(S’) = Follow(S)
e Follow(S) ={ §,

Y 1 u Follow(S)

—m---

Then: we want the least
solution to this system of
set equations... a fixpoint
computation. More on
these later in the course.

Now: This solution is
obtained by starting from
taking all First/Follow as &
and then iterating the
equations until fixpoint is
reached.

20

Dataflow Analysis: Summary

* Many dataflow analyses fit into a common framework.

» Key idea: iterative solution of a system of equations over a lattice of facts (constraints).
— Iteration terminates if flow functions are monotonic.

— Solution is obtained as the greatest fixpoint is reached via the meet operation ().

» In the literature, sometimes the definition of the analysis lattice is reversed:
— The most useful/precise information is represented by the bottom element ()

— Solution is obtained as the least fixpoint via iterative application of join operator (L)

— The two definitions are equivalent modulo the (semi-)lattice direction.

21

Implementation

See HW6
Generic analysis is to be defined in solver.ml

Control-Flow Graphs are defined in cfg.ml
Analysis example: liveness.ml

Printing analysis results, e.g., liveness:

./printanalysis.native -live llprograms/analysis2.1l

22

Register Allocation Problem

» Given: an IR program that uses an unbounded number of temporaries
— e.g. the uids of our LLVM programs

» Find: a mapping from temporaries to machine registers such that
— program semantics is preserved (i.e. the behaviour is the same)
— register usage is maximised
— moves between registers are minimised

— calling conventions / architecture requirements are obeyed

» Stack Spilling
— If there are k registers available and m > k temporaries are live at the same time,
then not all of them will fit into registers.

— So: “spill” the excess temporaries to the stack.

23

Linear-Scan Register Allocation

e =d + a
f =b + c
f =f +Db

IfZ e Goto _LO

d=e + £
Goto L1;
d=e - £
g =d

e =d + a
f =b + ¢
f =f + Db

Linear-Scan Register Allocation

e =d + a
f =b + c
f =f + Db

IfZ e Goto _LO

d=e + £

Goto L1;
_LO:

d=e - £
L1l:

abcdefg

Linear-Scan Register Allocation

Idea: sweep the program top-down,
allocating registers for live variables and evicting non-live ones.

26

Linear-Scan Register Allocation

a bcdef g

Linear-Scan Register Allocation

a bcdef£fg

Free Registers

R

0

R, lEl R,

Linear-Scan Register Allocation

a bcde f g

Free Registers

R

0

R, Il R,

Linear-Scan Register Allocation

abcdefaqg Free Registers

‘R, R, (R R,

Linear-Scan Register Allocation

abcdefaqg Free Registers

Linear-Scan Register Allocation

abcdefaqg Free Registers

Linear-Scan Register Allocation

abcdefaqg Free Registers

Linear-Scan Register Allocation

abcdefaqg Free Registers

Linear-Scan Register Allocation

abcdefaqg Free Registers

Linear-Scan Register Allocation

abcdefaqg Free Registers

Linear-Scan Register Allocation

abcdefag Free Registers

R, R, Il R,

Linear-Scan Register Allocation

abcdefg Free Registers

Linear-Scan Register Allocation

Simple, greedy register-allocation strategy:

1. Compute liveness information: live(x)

— recall: 1ive(x) is the set of uids that are live on entry to x's definition

2. Let regs be the set of usable registers

— usually reserve a couple for spill code (offloading to stack) [our implementation uses rax,rcx]|

3. Maintain “layout” uid loc that maps uids to locations

— locations include registers and stack slots n, starting at n=0

4. Scan through the program. For each instruction that defines a uid x
— used={r | reg r = uid loc(y) st.ye live(x)}

— avallable = regs - used

— Ifavailable is empty: // no registers available, spill
uid loc(x) := slot n ; n=n+1
— Otherwise, pick r in available: // choose an available register

uid loc(x) := reg r

39

Linear-Scan Register Allocation

» Advantages

— Very efficient (after computing live intervals, runs in linear time)
— Produces good code in many instances.
— Allocation step works in one pass; can generate code during iteration.

— Often used in JIT compilers like Java HotSpot.

o Pitfalls

— Doesn’t always choose a very good strategy due to greediness.

— Doesn’t work well with branching.

40

Linear Scan and Branching

return c

// live ={ }
b =1
// live ={b} // live ={b}
a=>b + 1 d =Db + 2
//live={a, b} //live={d b}
c =a-+b c =d+ Db
//live={a, c} // live={d, c}
print(a) print(d)
// live = { c} // live = { c}

return c

41

[.et’s have a short break

Graph Colouring

Register Allocation via Colour Graphs

Basic process:
1. Compute liveness information for each temporary (%uid).

2. Create an interference graph:

— Nodes are temporary variables (%uids).

— There is an edge between node n and m if n is [ive at the same time as m

3. Try to colour the graph

— Each colour corresponds to a register

4. In case Step 3 fails, “spill” a temporary to the stack and repeat the whole process.

5. Rewrite the program to use registers

44

Interference Graphs

* Nodes of the graph are $uids

* Edges connect variables that /interfere with each other

— Two variables interfere if their live ranges intersect (i.e. there is an edge in the control-flow graph
across which they are both live).

* Register assignment is a graph colouring.

— A graph colouring assigns each node in the graph a colour (register)

— Any two nodes connected by an edge must have different colours.

* Example:

// live = {%a}

bl add 132 %a, 2
// Iive = {%a, %bl} [@ sa %sans

\O

%c = mult 132 %$bl, %bl

// live = {%a, %c} ‘
b2 = add 132 sc, 1 SACRO

= 3c,

/live = {3a, 6b2.} Interference Graph 2-Colouring of the graph:
sans = mult 132 3b2, 3a red = 18

// live = {$ans} vellow = r9

return %ans;
45

Register Allocation Questions

» Can we efficiently find a k-colouring of the graph whenever possible?

— Answer: in general the problem is NP-complete (it requires search)

— But, we can do an efficient approximation using heuristics.

» How do we assign registers to colours?

— If we do this in a smart way, we can eliminate many redundant MOV instructions.

» What do we do when there aren’t enough colours/registers?

— We have to use stack space, but how do we do this effectively?

46

Colouring a Graph: Kempe’s Algorithm

Kempe [1879] provides this algorithm for K-coloring a graph.
[t’s a recursive algorithm that works in three steps:

Step 1: Find a node with degree < K and cut it out of the graph.

— Remove the nodes and edges.

— This is called simplifying the graph

Step 2: Recursively K-colour the remaining subgraph

Step 3: When remaining graph is coloured, there must be at least one free colour available

for the deleted node (since its degree was < K). Pick such a colour.

47

Example: 3-colour this Graph

Recursing Down the Simplified Graphs

43

Example: 3-colour this Graph

Assigning colours on the way back up.

49

Failure of the Algorithm

» If the graph cannot be coloured, it will simplify to a graph where every node has
at least K neighbours.

— This can happen even when the graph is K-colourable!

— This is a symptom of NP-hardness (it requires search)

» Example: When trying to 3-colour this graph:

-g

50

Spilling

Idea: If we can’t K-colour the graph, we need to store one temporary variable on the
stack.

Which variable to spill?

— Pick one that isn’t used very frequently

— Pick one that isn’t used in a (deeply nested) loop

— Pick one that has high interference (since removing it will make the graph easier to colour)

In practice: some weighted combination of these criteria

When colouring:
— Mark the node as spilled

— Remove it from the graph

— Keep recursively colouring

Spilling, Pictorially

» Select a node to spill
» Mark it and remove it from the graph

» Continue colouring

O

Lo

52

Optimistic Colouring

Sometimes it is possible to colour a node marked for spilling.

— If we get “lucky” with the choices of colours made earlier.

Example: When 2-colouring this graph, we don’t have a node with degree < 2

=

- > »|

Even though the node was marked for spilling, we can colour it.

So: on the way down, mark for spilling, but don’t actually spill...

53

Precoloured Nodes

» Some variables must be pre-assigned to registers.

E.g. on X86 the multiplication instruction: IMul must define %rax

— The “Call” instruction should kill the caller-save registers %rax, %rcx, %rdx.

— Any temporary variable live across a call interferes with the caller-save registers.

 To properly allocate temporaries, we treat registers as nodes in the
interference graph with pre-assigned colours.

Pre-coloured nodes can’t be removed during simplification.

Trick: Treat pre-coloured nodes as having “infinite” degree in the interference graph —
this guarantees they won’t be simplified.

When the graph is empty except the pre-coloured nodes, we have reached the point
where we start colouring the rest of the nodes.

Picking Good Colours

» When choosing colours during the colouring phase, any choice is semantically correct,
but some choices are better for performance.

» Example:
stl = 3t2

— Iftl and t2 can be assigned the same register (colour) then this move is redundant and can be eliminated.

* A simple colour choosing strategy that helps eliminate such moves:

— Add a new kind of “move related” edge between the nodes for t1 and t2 in the interference graph.

— When choosing a colour for t1 (or t2), if possible pick a colour of an already coloured node reachable by a
move-related edge.

55

Example Colour Choice

Consider 3-colouring this graph, where the dashed edge indicates
that there is a Mov from one temporary to another.

Move
related

edge

After colouring the rest, we have a choice:

— Picking yellow is better than red because it will eliminate a move.

56

Coalescing Interference Graphs

* A more aggressive strategy is to coalesce nodes of the interference graph if they are
connected by move-related edges.

— Coalescing the nodes forces the two temporaries to be assigned the same register.

» Idea: interleave simplification and coalescing to maximize the number of moves that
can be eliminated.

» Problem: coalescing can sometimes increase the degree of a node.

b w

Conservative Coalescing

» Two strategies are guaranteed to preserve the k-colorability of the interference graph.

* Brigg’s strategy: It's safe to coalesce x &y if the resulting node will have fewer than k
neighbours (with degree > k).

« George’s strategy: We can safely coalesce x &y if for every neighbour t of x,
either t already interferes with y or t has degree < k.

58

Complete Register Allocation Algorithm

1. Build interference graph (pre-colour nodes as necessary).
— Add move related edges

2. Reduce the graph (building a stack of nodes to color).

a. Simplity the graph as much as possible without removing nodes that are move-related (i.e. have a move-related neighbour).
Remaining nodes are high degree or move-related.

b. Coalesce move-related nodes using Brigg’s or George’s strategy.
Coalescing can reveal more nodes that can be simplified, so repeat 2.a and 2.b until no node can be simplified or coalesced.
d. If no nodes can be coalesced freeze (remove) a move-related edge and keep trying to simplify/coalesce.

3. If there are non-precoloured nodes left, mark one for spilling, remove it from the graph and continue
doing step 2.

4. When only pre-coloured node remain, start colouring (popping simplified nodes off the top of the
stack).

a. If a node must be spilled, insert spill code as on slide “Example Spill Code” and rerun the whole register allocation algorithm,
starting at step 1.

59

Was 1t worth i1t?

Demo: Register allocation in HW6

60

For HW6

HW 6 implements two naive register allocation strategies:
no reg layout: spill all registers to the stack

greedy layout: puts the first few uids in available registers and spills the
rest. It uses liveness information to recycle available registers when their
current value becomes dead (see the slides above).

Your job: do “better” than these via graph colouring.

Quality Metric:
— the total number of memory accesses in x86 program, which is the sum of:
* the number of Ind2 and Ind3 operands
» the number of Push and Pop instructions

— shorter code is better

Another break?

Current Research in PLDI

63

Validating Compilers

» The job of a compiler is to translate from the syntax of one language to another,
but preserve the semantics.

» Compiler correctness is critical

— Trustworthiness of every component built in a compiled language depends on
trustworthiness of the compiler

« Compilers tend to be well-engineered and well-tested,
but that does not mean they are bug-free.

Testing Compilers

Finding and Understanding Bugs in C Compilers.Yang et al. PLDI 2011

79 bugs:
25 critical

Random test-case
generation /
s D o

Source >

Programs L e
\ J\

{8 other C compilers}

325 bugs in
total

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr

University of Utah, School of Computing _
{jxyang, chenyang, eeide, regehr }@cs.utah.edu (I n PLDI 2011)

The striking thing about our CompCert results is
that the middle-end bugs we found in all other
compilers are absent.

Compilers should lbe correct.

To improve the quality of C compilers, we As of early 2011, the
created Csmith, a randomized test-case
generation tool, and spent three years
using it to find compiler bugs.

under-development version
of CompCert is the only compiler we have tested
for which Csmith cannot find wrong-code errors.
This is not for lack of trying: we have devoted
about six CPU-years to the task.

During this period we reported more than
325 previously unknown bugs to

| The apparent unbreakability of CompCert
compiler developers.

supports a strong argument that developing
compiler optimizations within a proof framework,
where safety checks are explicit and machine-
checked, has tangible benetfits for compiler users.

Verified Compilation

CompCert (2006-now):

Optimising C Compiler,

proved correct end-to-end

with machine-checked proof in Coq

- -

N

Xavier Leroy ,
(Coq ;
I N RIA \\‘??‘:/ " Other

I A\

_ —— \)
ty;ifr\sgf(er ‘ 2N : \Iang e esz 4 Type Graph Printing to asm PI'O.gr ammed
simplifier (CIIL) ’\\ mini-ML) //7~ ______ reconstruction coloring syntax in Caml
S /
\ /
AN /
\ /

PowerPC
— QI — — — e o ——— - o —_—— - - - ——
assembly
____ e Y n] - - Layout of the Generation of _
- \\@i/ / Initial p| Stackpre . GrGhoonakiiclion; Validation || Validation Linearization P activation Power PC
<" Program \ v translation allocation instruction recognition of the CFG record instructions ' Programmed and
/ .
‘. prover \ /! proved in Coq
4 Model< R Constant Common Register allocation by Data Machine Memory
(\‘ Dataflow analyses > tion > bexoressions | rah colorin — structures rithmeti model I
N checker P ¢ X propagatio subexpressions graph coloring (Maps, Sets) arithmetic ode
‘o a alyzer I
>
N~ /
~
_—
~ . /

—y
L]
L]
--_———

C language /

CompCert /’

Compiler

Comparing Behaviours

» Consider two programs P1 and P2 possibly in different languages.

— e.g. P1 is an Oat program, P2 is its compilation to LL

» The semantics of the languages associate to each program a set of observable behaviours:
B(P1) and B(P2)

* Note: |B(P)| = 1 if P is deterministic, > 1 otherwise

What i1s Observable?

» For C-like languages:

observable behavior ::=

terminates(st) (i.e. observe the final state)
diverges

goeswrong

» For pure functional languages:

observable behavior ::=

terminates(v) (i.e. observe the final value)
diverges

goeswrong

What about 1/0?

» Add a trace of input-output events performed:

| (finite traces)

t et
| e T (finite and infinite traces)

coind. T

observable behavior ::=

terminates(t, st) (end in state st after trace t)
diverges(T) (loop, producing trace T)
goeswrong(t)

Examples

Pl:
print(1); / st = terminates(out(1)::[],st)
P2:
print(1); print(2); / st
= terminates(out(1)::out(2)::[],st)
P3:
WHILE true DO print(1) END / st
= diverges(out(1)::out(1)::...)

So B(Pl) = B(P2) # B(P3)

Bisimulation

» Two programs P1 and P2 are bisimilar whenever:

B(P1) = B(P2)

* The two programs are completely indistinguishable.

» But... this is often too strong in practice.

Compilation Reduces Nondeterminism

» Some languages (like C) have underspecified behaviours:

— Example: order of evaluation of expressions f{() + g()

» Concurrent programs often permit nondeterminism

— Classic optimizations can reduce this nondeterminism

— Example:
a:=x+1;b:=x+1 | | X:=Xx+1
VS.
a:=x+1;b:=a | | X :=Xx+1

» LLVM explicitly allows nondeterminism:
— undef values (not part of LLVM lite)

Backward Simulation

* Program P2 can exhibit fewer behaviours than P1:

B(P1) 2 B(P2)
» All of the behaviours of P2 are permitted by P1, though some of them may have been eliminated.

 Also called refinement.

Related Research Topics

/5

Automated Parallelisation

Moore’s law: processor advances double speed every 18 months
Moore’s law ended in 2006 for single-threaded applications
Started to hit fundamental limits in how small transistors can be
Processor manufacturers shifted to multi-core processors

Need new compiler technology to take advantage of multi-core —
automatically find and exploit opportunities for parallel execution

/6

Program Analysis

» The goal of a program analysis is to answer questions about the run-time behaviour of software

» In compilers: data flow analysis, control flow analysis

— Typical goal: determine whether an optimisation is safe

» Research in program analysis has shifted to more sophisticated properties:

— Numerical analyses, e.g., find geometric regions that contain reachable values for integer variables.
Can be used to verity absence of buffer overflows.

— Shape analyses — determine whether a data structure in the heap is a list, a tree, a graph,...
Can be used to verify memory safety.

— Resource analyses — e.g., find a conservative upper bound on the run-time complexity of a loop.
Can be used to find timing side-channel attacks.

— Concurrency analysis: find all data races in a multi-threaded program.

* Industrial program analysis:
— Static Driver Verifier (Microsoft): finds bugs in device driver code
— Infer (Facebook): proves memory safety & finds race conditions

— Astrée (AbsInt): static analyser for safety-critcal embedded code (e.g.,automotive& aerospace applications)

Program Verification and Synthesis

» Verification: Given a program and a specification, prove that the program satisfies the specification

» Synthesis: Given a specification, find a program that satisfies the specification

— Kind of a “compilation on steroids” from language of specifications to a programming language

vold swap(loc x, loc vy)

/8

{ X»aAyw»b}

vold swap(loc x, loc vy)

{ X»aAyw»b}
vold swap(loc x, loc vy)

{ X b Ay a}

"X and y are different memory locations”

{ x » a[x]y » b}

vold swap(loc x, loc vy)

{ x » b[x]y » a }

{(xJ» a x[y]» b }
void swap(loc loc

'{I—)b*l—)a}'

{ x »[@x y ~»[b]?}

vold swap(loc x, loc vy)

{ x »[b]x y »[a)?}

let a2 = *x;
let b2 = *y;
{ Xm» a2 xyw» b2 }
27?

{ Xp» b2 xyw» a2}

let a2 = *x:

let b2 = *y;

*X = b2;
{ X » b2 xyw» b2 }
?7?

{ Xp» b2 xyw» a2}

let a2 = *x:
let b2 = *y;
*X = b2;
*y = a2;
{ X » b2 xyw» a2 }

?7?

{ X » b2 xyw» a2 }

let a2 = *x;
let b2 = *y;
*x = b2;
*y = az;
{ X» b2 xyw» a2}
27?

{ Xp» b2 xyw» a2}

X P2 kywr» a2 EH Xw» D2 *xy e al

let a2 = *x;
let b2 = *y;
*x = b2;
*y = az;
{ X » b2 xyw» a2}
?27?

{ Xp» b2 xyw» a2}

x|—>b2>|<yn—>a2l—x|->b2>|<yn—>a2¢

volid swap(loc Xx,

let a2 =

let b2 =

* X

*Y

b2;

az;

loc y) {
*X;

*Yi:

Transforming Entailment

P - Q

[here exists a program ¢, such that
for any initial state satistying P,
¢, after it terminates,
will transtform to a state satistying Q.

XP4d

"Proof’™: *x

X P 4)

42

ae GV(,RQ) Yy Is fresh

s {emp} = {emp} | skip (Emp) by LD QY
[({xPpaxP}w»{Q}|let y = *x; c
EV(I, B Q) nVars(R) = @ Vars(e) € |
[{P}=»{Q}]|c [{xpexPlm{xpexQ}|c
(Frame) (Write)

[{P«R}»{QxR}|c [{xp-sxPlw{xpesQ}|*x = e; c

(xmaxymb)
vold swap(loc x, loc vy)

{xPpbxyra]

{X,Y};{XI—)G*yI—)b}w {XI—)b*yHa} | 27

[xv,a2}; {xpalx«ypbl » {xpbxyral} | 22

(Read)
{Xy}, {xpaxypb} =» {Xpbxypa} | let a2 = *x; 2?2

{x,v,a2,b2}; {xm»aZxywrbl} = {Xpblxymalj | 22

(Read)
{x,ya2}; {xmalxypb} » {Xpbsyralj | let b2 = *y; 22

(Read)
{Xy},{xpaxypb} » {Xpbsxypa} | let a2 = *x; ??

{x,v,a2,b2}; {xpDb2xymrbl} ~» {Xpblxymalj | 22

(Write)
{x,y,a2,b2}; {xm»a2«yrb2} = {xepblsxywral}l | x = b2; 2?2

(Read)
Ixva2}, {xpal«ypb} = {xpbsxyral} | let b2 = *y; 2?2

(Read)

{Xy},{xpasxypb} » {Xpbsxypa} | let a2 = *x; ??

{x,y,a2,b2}; {yr b2}~ {yral} | 22

(Frame)
{x,v,a2,b2}; {xpDb2sxymrbl} ~» {Xpblxymalj | 22
(Write)
{x,v,a2,b2}; {xmpa2«ympbl} = {xepblxymralj | *x = b2; 2?2
(Read)
Ix,y,a2}; {xpalsypb} » {xpbsxypral} | let b2 = *y; 22
(Read)

{IXy}ti{xpaxypb} = {Xpbsxypa} | let a2 = *x; 2?2

{x,v,a2,b2}; {yral} » {yral} | 22

(Write)
{xya2,b2}; {yr»bl} ~» {ywral} | »y = a2; 22

(Frame)
(xy,a2,b2}: {xpb2symb2} = {xmpb2xymal} | 22
(Write)
{x,y,a2,b2}; {xmalxypbl} = {xpblxymral}l | *x = b2; 2?2
(Read)
Ixva2}, {xpals«ypb} = {xpbsxyral} | let b2 = *y; 2?2
(Read)

{Xy},{xpasxypb} » {Xpbsxypa} | let a2 = *x; ?2?

{x,v,a2,b2}; {emp} =~ {emp} | 22

(Frame)

{xya2b2};{yral} » {yral} | 22

(Write)
{x,v,a2,b2};{yrbl} = {yral} | xy = a2; 22

(Frame)
{x,v,a2,b2}; {x+»b2xymb2} = {Xepblxymalj | 22
(Write)
{x,y,a2,b2}; {xmpa2xyrb2} = {xepblsymrall | xx = b2; ??
(Read)
{xya2};{xwalxypbj =~ {xXpbsymalj | let b2 = *y; 22
(Read)

{Xy},{xpasxypb} » {Xpbsxypa} | let a2 = *x; ??

(Emp)
{xvy,a2,b2}; {emp} =~ {emp} | skip

(Frame)

{xy,a2,b2}; {yral} ~» {ywal} | 22

(Write)
{x,y,a2,b2}; {yr b2} = {ywral} ||+xy = a2;| 22

(Frame)

{x,v,a2,b2}; {x+»b2xymb2} = {Xpblxymalj | 22

(xy,a2,b2}; {xrpa2+yrb2} = {xpblsymall} | ??

(

(xya2}i {x»alsyrb} = {xmbsymal) | (Lot b2 = +y)
(

(xy}i{xpasypb} ~ {xebsyma} | [let az = *x;]??

(Write)

Read)

Read)

vold swap(loc x,

let a2 =

let b2 =

* X

*Y

b2;

az:;

loc vy) {
*X;

*Yi:

What Can be Synthesised

Group Description Code Code/Spec | Time T-phase T-inv T-fail T-com T-all | T-IS
swap two 12 0.9% <0.1 <01 <01 <01 <0.1 <0.1
Integers min of two? 10 0.7x 0.1 0.1 01 <0.1 0.1 0.2
length!+ 21 1.2x 0.4 0.9 0.5 0.4 0.6 14 | 29x
max! 27 1.7x 0.6 0.8 0.5 0.4 0.4 0.8 | 20x
min 27 1.7x 0.5 0.9 0.5 0.4 0.5 1.2 | 49x
| singleton” 11 0.8x <0.1 <01 <01 <01 <0.1 <0.1
Linked dispose 11 28x | <0.1 <01 <01 <01 <01 <0.1
List initialize 13 1.4x <0.1 0.1 01 <0.1 01 <0.1
copy” 35 2.5% 0.2 0.3 0.3 0.1 0.2 -
append’ 19 1.1x 0.2 0.3 0.3 0.2 0.3 0.7
delete® 44 2.6X 0.7 0.5 0.3 0.2 0.3 0.7
prepend? 11 0.3x 0.2 1.4 83.5 0.1 0.1 - 48x
Sorted insert! 58 1.2% 48 : : : 5.0 - | ex
list insertion sort! 28 1.3x 1.1 1.8 1.3 1.2 1.2 742 | 82x
size 38 2.7% 0.2 0.3 0.2 0.2 0.2 0.3
dispose 16 4.0x <0.1 <01 <01 <01 <01 <0.1
Tree copy 55 3.9x 0.4 49.8 - 0.8 1.4 -
flatten w/append | 48 4.0x 0.4 0.6 0.5 0.4 0.4 0.6
flatten w/acc 35 1.9x 0.6 1.7 0.7 0.5 0.6 -
insert? 58 1.2x 31.9 - - - - - 11x
BST rotate left! 15 0.1x 37.7 - - - - - 0.5
rotate right! 15 0.1x 17.2 - - - - - 0.8x

I From (Qiu and Solar-Lezama 2017)

2 From (Leino and Milicevic 2012)

3 From (Qiu et al. 2013)

105

More Program Synthesis

Excel® FlashFill

H ©- s Roster - Excel

File Home Insert Page Layout Formulas ACROBAT Q Tell me what you want to do

Get External Data Get & Transform Connections Sort & Filter Dutlin

B3 v X v A Margo

T Excel sees §
patterns

:Earlene McCarty a n d
Jon Voigt
Mia Arnold

pe shows a
preview

e First Last

—r

Nam
Margo Her

O 00O N O N & W N =

ol
o

‘Carmela Hahn

—
—

‘Denis Horning
Johnathan Swope

d
N

Delia Cochran

=] =
HW

‘Marguerite Cervantes

-l
(o)

Liliana English

wlh
(o)}

‘Wendy Stephenson

106

Final Project

» Choose one of the 30+ papers (seminal ones or state of the art in PLDI research)

* Topics:
— Low-Level and Intermediate-Level Languages
— Interpreters and Program Transformations
— Lexing and Parsing
— Types and Type Systems
— Code Analysis and Optimisations
— Verified Compilers

— Miscellanea (language design, compiler testing, program synthesis)

» Write a report summarising the paper:

— Problem, motivation

— Ideas, contributions

— (Most important) Evaluation
« Developed example using paper’s theory (paper-and-pencil), or
« Report on using the system/tool, or

« A survey of the follow-up works and the paper’s impact
107

Wrapping Up

Why YSC4230?

* We have learned (hopefully):

— How high-level languages are implemented in machine language
— (A subset of) Intel x86 architecture
— (A subset of) LLVM

— Lexing and parsing

— Lambda-calculus and its extensions
— A little about programming language semantics and type systems

— How to implement a type checker

— How to implement a program analyser

— Practical applications of theory (logic, proofs, automata, graphs, lattices)
— How to represent complex data structures in memory

— How to write large working programs in OCaml

— How to be a better programmer

109

Where else is this stuff applicable?

» Understanding hardware/software interface

— Different devices have different instruction sets, programming models

* General programming
— In C/C+ +, better understanding of how the compiler works can help you generate better code.
— Ability to read assembly/LLVM output from compiler
— Experience with functional programming gives you different ways to think about solving a problem

— Knowledge of type systems helps you understand type errors in Java, Scala, OCaml, etc.

» Writing domain specific languages
— lex/yacc very useful for little utilities
— understanding abstract syntax specification
— understanding typing rules

— being able to write your own interpreter and compiler

110

Stuff we didn’t Cover

We skipped stuff at every level...

Concrete syntax/parsing:
— Much more to the theory of parsing... LR (*)
— Good syntax is art not science!

Source language features:

— Exceptions, advanced type systems, type inference, dependent types, concurrency

Intermediate languages:

— Intermediate language design, bytecode, bytecode interpreters, just-in-time compilation (JIT)

Compilation:

— Continuation-passing transformation, analyses for SSA, compiling OO classes,
lambda-lifting, closure conversion

Analysis and Optimisations:
— Abstract interpretation, cache optimization, instruction selection/optimization

Runtime support:
— memory management, garbage collection

111

Where to go from here?

» Conferences (proceedings available on the web):
— Programming Language Design and Implementation (PLDI)
— Principles of Programming Languages (POPL)
— Object Oriented Programming Systems, Languages & Applications (OOPSLA)
— International Conference on Functional Programming (ICFP)

— European Symposium on Programming (ESOP)

« Programming Language Mentoring Workshops (PLMW)
— Aftfiliated with POPL/PLDI/OOPSLA/ICFP

» Technologies / Open Source Projects
— Yacc, lex, bison, flex, ...
— LLVM - low level virtual machine
— Java virtual machine (JVM), Microsoft’s Common Language Runtime (CLR)
— Languages: OCaml, F#, Haskell, Scala, Go, Rust, ... Coq, Agda, ...?

112

her Reading

SOFTWARE

Logical Foundations

Ty p e S a n d : . . Benjamin

SOFTWARE
| s - ' Arthur Az
. 1.5 : . o Chris C
Programming B Advanced Topics in Types ang o
- Programming Languages Michael G :
1 " 0g3ramming LangHases i Programming Language
dnguages o AR A S . . :
| AERESTR oe W Foundations
‘. P AN VIS : ' Brent Yor
’ Benjamin C. Pierce :”'t'.' D
. ; - oris D'Antoni, Andrew W. Appel,
Yersion 6.1 o Arthur Azevedo de Amorim Arthur Chargueraud, Michael
,’ Chris Casinghino) Clarkson, Anthony Cowley, Jeffrey
Marco Gaboardi Foster, Dmitri Garbuzov, Michael

Hicks, Ranjit Jhala, Ori Lahav, Greg

o BE— Michael Greenberg Morrisett, Jennifer Paykin, Mukund

: . : \)< ' > : Catalin Hritcu Raghothaman, Chung-Chieh Shan,
Ben]am"‘ c' P'erce s 15 % ; Vilhelm Sj6berg Leonid Spesivtsev, Philip Wadler,
oty . . o : d Tol h Stephanie Weirich, Li-Yao Xia, and
Andrew Tolmac Steve Zdancewic
Brent Yorgey
e
[oomos]

Version 6.1 (2021-08-11 15:14, Coq 8.12 or later)

-
Y

https://softwarefoundations.cis.upenn.edu/

113

Further Reading - Analysis

Principles
of Program
Analysis

INTRODUCTION
TO STATIC ANALYSIS

AN ABSTRACT INTERPRETATION PERSPECTIVE

XAVIER RIVAL AND KWANGKEUN YI

114

Further Reading - Compilation Techniques

Simon L. Peyton Jones
The o

Implementation .
of Functional ‘

Programming
Languages

Compiling with
Continuations

Andrew W. Appel

-
,'} -
P >
-~

C.A.R.HOARE SERIES EDITOR

115

PL Classes at NUS School of Computing

e (CS4215: Programming Language Implementation

* semantics, type systems, automatic memory management, dynamic linking
and just-in-time compilation, as features of modern execution systems

» (CS5218: Principles and Practice of Program Analysis

» foundations of static program analysis, abstract interpretation, lattice
theory, analysis of higher-order languages

» CS6215: Advanced Topics in Program Analysis

* symbolic execution, model checking, state-of-the-art industrial analysis tools,
performance analysis

116

The End

Thanks!

