
Ilya Sergey

ilya.sergey@yale-nus.edu.sg

Week 13: Register Allocation 
Current Research in PLDI


Wrap-Up

YSC4230: Programming Language  
Design and Implementation

mailto:ilya.sergey@yale-nus.edu.sg


Previous Lectures: Liveness

• A variable v is live at a program point if v is defined before the program point and used after it. 

• Liveness is defined in terms of where variables are defined and where variables are used


• Liveness analysis: Compute the live variables between each statement.

– May be conservative (i.e. it may claim a variable is live when it isn’t) so because that’s a safe approximation

– To be useful, it should be more precise than simple scoping rules.



Simple Liveness Analysis Algorithm

for all n, in[n] := Ø, out[n] := Ø

repeat until no change in ‘in’ and ‘out’

	 for all n

	 	  out[n] := ∪n’∈succ[n]in[n’]

	 	  in[n] := use[n] ∪ (out[n] - def[n])

	 end

end


• Finds a fixpoint of the in and out equations.

3



Example Liveness Analysis
• Example flow graph: e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e 
use: 

e = 1;

while(x>0) {

  z = e * e; 
  y = e * x;

  x = x – 1;

  if (x & 1) {

    e = z;

  } else {

    e = y;

  }

}

return x;

x = x - 1

def:  
use: x

6

def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9

4

in:

in:

in:

in:

in:

in:

in:in:

in:

out:

out:

out:

out:

out:

out: out:

out:



Example Liveness Analysis
Each iteration update: 
out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])


• Iteration 1:

in[2] = x 
in[3] = e 
in[4] = x

in[5] = e,x 
in[6] = x 
in[7] = x

in[8] = z

in[9] = y


(showing only updates 
that make a change)

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e 
use: 

x = x - 1

def:  
use: x

6

def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9

4

in:

in: x

in: x

in: e,x

in: x

in: x

in: yin: z

in: e

out:

out:

out:

out:

out:

out: out:

out:



Example Liveness Analysis
Each iteration update: 
out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])


• Iteration 2:

out[1]= x

in[1] = x

out[2] = e,x 
in[2] = e,x 
out[3] = e,x 
in[3] = e,x 
out[5] = x 
out[6] = x 
out[7] = z,y 
in[7] = x,z,y

out[8] = x

in[8] = x,z

out[9] = x

in[9] = x,y

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e 
use: 

x = x - 1

def:  
use: x

6

def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9

4

in: x

in: e,x

in: x

in: e,x

in: x

in: x,y,z

in: x,yin: x,z

in: e,x

out: x

out: e,x

out: e,x

out: x

out: x

out: x out: x

out: y,z



Example Liveness Analysis
Each iteration update: 
out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])


• Iteration 3:

out[1]= e,x

out[6]= x,y,z 
in[6]= x,y,z

out[7]= x,y,z

out[8]= e,x

out[9]= e,x

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e 
use: 

x = x - 1

def:  
use: x

6

def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9

4

in: x

in: e,x

in: x

in: e,x

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x

out: x,y,z

out: e,x out: e,x

out: x,y,z



Example Liveness Analysis
Each iteration update: 
out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])


• Iteration 4:

out[5]= x,y,z 
in[5]= e,x,z

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e 
use: 

x = x - 1

def:  
use: x

6

def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z



Example Liveness Analysis
Each iteration update: 
out[n] := ∪n’∈succ[n]in[n’]

in[n] := use[n] ∪ (out[n] - def[n])


• Iteration 5:

out[3]= e,x,z


Done!

e = 1

if x > 0

ret xz = e * e

y = e * x

if (x & 1)

e = z e = y

1

2

3

5

7

8

def: e 
use: 

x = x - 1

def:  
use: x

6

def:  
use: x

def: z  
use: e

def: y 
use: e,x

def: x  
use: x

def:  
use: x

def: e  
use: z

def: e  
use: y

9

4

in: x

in: e,x

in: x

in: e,x,z

in: x,y,z

in: x,y,z

in: x,yin: x,z

in: e,x

out: e,x

out: e,x

out: e,x,z

out: x,y,z

out: x,y,z

out: e,x out: e,x

out: x,y,z



(Forward) Dataflow Analysis Framework

A forward dataflow analysis can be characterized by:


1. A domain of dataflow values L  


– e.g. L = the powerset of all variables


– Think of  ℓ ∈ L  as a property, then “z ∈ ℓ” means “z has the property”


2. For each node n, a flow function Fn : L → L

– So far we’ve seen Fn(ℓ) = gen[n] ∪ (ℓ - kill[n])

– So:  out[n] = Fn(in[n])

– “If ℓ is a property that holds before the node n,  then Fn(ℓ) holds after n”


3. A combining operator ⨅

– “If we know either ℓ1 or ℓ2 holds on entry 

 to node n, we know at most ℓ1 ⨅ ℓ2”


– in[n] := ⨅n’∈pred[n]out[n’]

10

n

ℓ

Fn(ℓ)

n

ℓ1 ℓ2

ℓ1 ⨅ ℓ2



Generic Iterative (Forward) Analysis

• Here, ⟙ ∈ L (“top”) represents having the “maximum” amount of information.


– Having “more” information enables more optimizations

– “Maximum” amount could be inconsistent with the constraints, so we can’t keep it. :-(

– Iteration refines the answer, eliminating inconsistencies

11

for all n, in[n] := ⟙, out[n] := ⟙

repeat until no change

	 for all n


	 	   in[n] := ⨅n’∈pred[n]out[n’]


	 	   out[n] := Fn(in[n])

	 end

end



Structure of L 
• The domain has structure that reflects the “amount” of information  for each dataflow value. 

• Some dataflow values are more informative than others:

– Write ℓ1 ⊑ ℓ2 whenever ℓ2 provides at least as much information as ℓ1.

– The dataflow value ℓ2 is “better” for enabling optimizations. 

• Example 1: for available expressions analysis, larger sets of nodes are more informative.

– Having a larger set of nodes (equivalently, expressions) available means that there is more opportunity for 

common subexpression elimination.

– So: ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊆ ℓ2  

• Example 2: for liveness analysis, smaller sets of variables are more informative.

– Having smaller sets of variables live across an edge means that there are fewer conflicts  

for register allocation assignments.

– So:   ℓ1 ⊑ ℓ2 if and only if ℓ1 ⊇ ℓ2 

12



L as a Partial Order
• L is a partial order defined by the ordering relation ⊑.


• A partial order is an ordered set. 

• Some of the elements might be incomparable.

– That is, there might be ℓ1, ℓ2 ∈ L such that neither ℓ1 ⊑ ℓ2 nor ℓ2 ⊑ ℓ1 

• Properties of a partial order:

– Reflexivity:   ℓ ⊑ ℓ


– Transitivity:  ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ3 implies ℓ1 ⊑ ℓ2


– Anti-symmetry: ℓ1 ⊑ ℓ2 and ℓ2 ⊑ ℓ1 implies ℓ1 = ℓ2 

• Examples:

– Integers ordered by ≤

– Types ordered by <:

– Sets ordered by ⊆ or ⊇

13



Subsets of {a,b,c} ordered by ⊆ 

14

{a,b,c}

{a,c}

{c}

{b,c}

{a,b}      

   {a}

 {  }   

  {b}

ℓ1 ⊑ ℓ2 
ℓ1

ℓ2

= ⟙ 

= ⟘ 

order ⊑ is ⊆ meet ⨅ is ∩ join ⨆ is ∪ 

Partial orders are often presented as a Hasse diagram.

H
ei

gh
t i

s 
3



Meets and Joins
• The combining operator ⨅ is called the “meet” operation.

• It constructs the greatest lower bound:

– ℓ1 ⨅ ℓ2   ⊑  ℓ1   and   ℓ1 ⨅ ℓ2   ⊑  ℓ2       

 “the meet is a lower bound”

– If ℓ   ⊑  ℓ1   and ℓ   ⊑  ℓ2  then ℓ   ⊑   ℓ1 ⨅ ℓ2          

 “there is no greater lower bound”  

• Dually, the ⨆ operator is called the “join” operation.

• It constructs the least upper bound:

– ℓ1  ⊑  ℓ1 ⨆ ℓ2     and   ℓ2  ⊑  ℓ1 ⨆ ℓ2      

 “the join is an upper bound”

– If ℓ1   ⊑  ℓ   and ℓ2   ⊑  ℓ  then ℓ1 ⨆ ℓ2   ⊑  ℓ          

 “there is no smaller upper bound”  

• A partial order that has all meets and joins is called a lattice.

– If it has just meets, it’s called a meet semi-lattice.

15



Another Way to Describe the (Forward) Algorithm
• Algorithm repeatedly computes (for each node n):

• out[n] := Fn(in[n])  

• Equivalently:   out[n] := Fn(⨅n’∈pred[n]out[n’])

– By definition of in[n] 

• We can write this as a simultaneous update of the vector of out[n] values:

– Let xn = out[n]


– Let X = (x1, x2, … , xn)      it’s a vector of points in L corresponding to CFG nodes


– F(X) = (F1(⨅j∈pred[1]out[j]), F2(⨅j∈pred[2]out[j]), …, Fn(⨅j∈pred[n]out[j]))


• Any solution to the constraints is a fixpoint X of F

– i.e. F(X) = X

16



Iteration Computes Fixpoints

• Let X0 = (⟙,⟙, …, ⟙)

• Each loop through the algorithm apply F to the old vector: 

X1 = F(X0) 
X2 = F(X1) 
…


• Fk+1(X) = F(Fk(X))


• A fixpoint is reached when Fk(X) = Fk+1(X)

– That’s when the algorithm stops.


• Wanted: a maximal fixpoint

– Because that one is more informative/useful for performing optimizations

17



Monotonicity & Termination
• Each flow function Fn maps lattice elements to lattice elements; to be sensible is should be monotonic: 

• F : L → L is monotonic iff: 
ℓ1 ⊑ ℓ2 implies that F(ℓ1) ⊑ F(ℓ2) 

– Intuitively:  “If you have more information entering a node, then you have more information leaving the node.”


• Monotonicity lifts point-wise to the function: F : Ln → Ln 

– vector (x1, x2, … , xn) ⊑  (y1, y2, … , yn)  iff xi ⊑ yi for each i


• Note that F is consistent: F(X0) ⊑ X0


– So each iteration moves at least one step down the lattice (for some component of the vector)

– … ⊑ F(F(X0)) ⊑ F(X0)  ⊑  X0 


• Therefore, # steps needed to reach a fixpoint is at most the height H of L times the number of nodes:  
O(Hn) — height of the lattice

18



• Information about individual nodes or variables can be lifted pointwise:  


– If L is a lattice, then so is  { f : X → L } where f ⊑ g if and only if 
f(x) ⊑ g(x) for all x ∊ X. 
 

• Like types, the dataflow lattices are static approximations to the dynamic behavior:

– Could pick a lattice based on subtyping:  


– Or other information:   


• Points in the lattice are sometimes called dataflow “facts”  

Building Lattices?

19

Any

Int

Neg Zero Pos

Bool

True False

<:

<:
<:

:>

:> :>

:>

Aliased

Unaliased



More on Fixpoint Solutions

20

• Remember constructing LL(1) parse tables

number + ( ) $ (EOF)

T ⟼ S$ ⟼S$

S ⟼ E S’ ⟼E S’

S’ ⟼ + S ⟼ ε ⟼ ε

E ⟼ num. ⟼ ( S )

T  ⟼ S$


S  ⟼ ES’


S’ ⟼ ε 


S’ ⟼ + S


E  ⟼ number | ( S )

Then: we want the least 
solution to this system of 
set equations… a fixpoint 
computation.  More on 
these later in the course.

• First(T) = First(S)


• First(S) = First(E)


• First(S’) = { + }


• First(E) = { number, ‘(‘ } 

• Follow(S’) = Follow(S)


• Follow(S) = { $, ‘)’ } ∪ Follow(S’) Now: This solution is 
obtained by starting from 
taking all First/Follow as ∅ 
and then iterating the 
equations until fixpoint is 
reached.



Dataflow Analysis: Summary

• Many dataflow analyses fit into a common framework. 

• Key idea: iterative solution of a system of equations over a lattice of facts (constraints).

– Iteration terminates if flow functions are monotonic.

– Solution is obtained as the greatest fixpoint is reached via the meet operation (⨅).


• In the literature, sometimes the definition of the analysis lattice is reversed:

– The most useful/precise information is represented by the bottom element (⊥)

– Solution is obtained as the least fixpoint via iterative application of join operator (⨆)

– The two definitions are equivalent modulo the (semi-)lattice direction.

21



Implementation

• See HW6

• Generic analysis is to be defined in solver.ml

• Control-Flow Graphs are defined in cfg.ml 

• Analysis example: liveness.ml 

• Printing analysis results, e.g., liveness: 
 
./printanalysis.native -live llprograms/analysis2.ll 

22



• Given: an IR program that uses an unbounded number of temporaries

– e.g. the uids of our LLVM programs 

• Find: a mapping from temporaries to machine registers such that

– program semantics is preserved (i.e. the behaviour is the same)

– register usage is maximised

– moves between registers are minimised

– calling conventions / architecture requirements are obeyed 

• Stack Spilling

– If there are k registers available and m > k temporaries are live at the same time, 

then not all of them will fit into registers.

– So: “spill” the excess temporaries to the stack.

Register Allocation Problem

23



Linear-Scan Register Allocation

24

  

Live Ranges and Live Intervals

e = d + a

f = b + c

f = f + b

d = e + f d = e – f

g = d

    e = d + a

    f = b + c

    f = f + b

    IfZ e Goto _L0

    d = e + f

    d = e - f

    Goto _L1;

_L0:

_L1:

    g = d



Linear-Scan Register Allocation

25

  

Live Ranges and Live Intervals

e = d + a

f = b + c

f = f + b

d = e + f d = e – f

g = d

    e = d + a

    f = b + c

    f = f + b

    IfZ e Goto _L0

    d = e + f

    d = e - f

    Goto _L1;

_L0:

_L1:

    g = d

  

Live Ranges and Live Intervals
{ a, b, c, d }

e = d + a
{ b, c, e }

{ b, c, e }
f = b + c
{ b, e, f}

{ b, e, f }
f = f + b
{ e, f }

{ e, f }
d = e + f

{ d }

{ e, f }
d = e – f

{ d }

{ d }
g = d
{ g }

a bcbb bebd bgbf

    e = d + a

    f = b + c

    f = f + b

    IfZ e Goto _L0

    d = e + f

    d = e - f

    Goto _L1;

_L0:

_L1:

    g = d



26

Idea: sweep the program top-down,  
allocating registers for live variables and evicting non-live ones.

Linear-Scan Register Allocation



27
  

Register Allocation with Live Intervals
a bcbb bebd bgbf

Linear-Scan Register Allocation



28
  

Register Allocation with Live Intervals
a bcbb bebd bgbf

  

Register Allocation with Live Intervals
a bcbb bebd bgbf

R
0

R
1

R
2

R
0

R
1

R
2

Free Registers

R
2

R
3

Linear-Scan Register Allocation



29
  

Register Allocation with Live Intervals
a bcbb bebd bgbf

  

Register Allocation with Live Intervals
a bcbb bebd bgbf

R
0

R
1

R
2

R
0

R
1

R
2

Free Registers

R
2

R
3

Linear-Scan Register Allocation



30
  

Register Allocation with Live Intervals
a bcbb bebd bgbf

  

Register Allocation with Live Intervals
a bcbb bebd bgbf

R
0

R
1

R
2

R
0

R
1

R
2

Free Registers

R
2

R
3

  

R
0

Register Allocation with Live Intervals
a bcbb bebd bgbf

R
0

R
1

R
2

R
1

R
2

Free Registers

R
2

R
3

Linear-Scan Register Allocation



31
  

Register Allocation with Live Intervals
a bcbb bebd bgbf

  

Register Allocation with Live Intervals
a bcbb bebd bgbf

R
0

R
1

R
2

R
0

R
1

R
2

Free Registers

R
2

R
3

  

R
0

Register Allocation with Live Intervals
a bcbb bebd bgbf

R
0

R
1

R
2

R
1

R
2

Free Registers

R
2

R
3

  

R
1

R
0

Register Allocation with Live Intervals
a bcbb bebd bgbf

R
0

R
1

R
2

R
2

Free Registers

R
2

R
3

Linear-Scan Register Allocation



32

  

R
2

R
1

R
0

Register Allocation with Live Intervals
a bcbb bebd bgbf

R
0

R
1

R
2

Free Registers

R
2

R
3

Linear-Scan Register Allocation



33

  

R
3

R
2

R
1

R
0

Register Allocation with Live Intervals
a bcbb bebd bgbf

R
0

R
1

R
2

Free Registers

R
2

Linear-Scan Register Allocation



34

  

R
0

R
0

R
3

R
2

R
1

Register Allocation with Live Intervals
a bcbb bebd bgbf

R
1

R
2

Free Registers

R
2

Linear-Scan Register Allocation



35

  

R
2

R
0

R
0

R
3

R
2

R
1

Register Allocation with Live Intervals
a bcbb bebd bgbf

R
1

Free Registers

R
2

Linear-Scan Register Allocation



36

  

R
2

R
2

R
0

R
0

R
3

R
1

Register Allocation with Live Intervals
a bcbb bebd bgbf

R
1

Free Registers

R
2

Linear-Scan Register Allocation



37

  

R
2

R
0

R
1

R
2

R
2

R
0

R
3

R
1

Register Allocation with Live Intervals
a bcbb bebd bgbf Free Registers

Linear-Scan Register Allocation



38

  

R
0

R
2

R
0

R
1

R
2

R
2

R
3

R
1

Register Allocation with Live Intervals
a bcbb bebd bgbf Free Registers

Linear-Scan Register Allocation



39

Linear-Scan Register Allocation
Simple, greedy register-allocation strategy: 

1. Compute liveness information:  live(x)

– recall: live(x) is the set of uids that are live on entry to x's definition


2. Let regs be the set of usable registers

– usually reserve a couple for spill code (offloading to stack) [our implementation uses rax,rcx]


3. Maintain “layout” uid_loc that maps uids to locations

– locations include registers and stack slots n, starting at n=0


4. Scan through the program.  For each instruction that defines a uid x

– used = {r | reg r = uid_loc(y) s.t. y ∈  live(x)} 

– available = regs - used

– If available is empty:  	 	 	 // no registers available, spill 
    uid_loc(x) := slot n    ;  n = n + 1


– Otherwise, pick r in available:      	 // choose an available register 
    uid_loc(x) := reg r



40

• Advantages

– Very efficient (after computing live intervals, runs in linear time) 

– Produces good code in many instances. 

– Allocation step works in one pass; can generate code during iteration. 

– Often used in JIT compilers like Java HotSpot.  

• Pitfalls

– Doesn’t always choose a very good strategy due to greediness.

– Doesn’t work well with branching.

Linear-Scan Register Allocation



Linear Scan and Branching

41

a = d = c = 0

b = 1

if (?) {

  a = b + 1

  c = a + b

  print(a)

} else {

  d = b + 2

  c = d + b

  print(d)

}

return c

// live = {%a}

b = 1

a = b + 1

c = a + b

print(a)

d = b + 2

c = d + b

print(d)

return c

a = d = c = 0

// live = { }

// live = { b } // live = { b }

// live = { a, b } // live = { d, b }

// live = { a, c } // live = { d, c }

// live = { c } // live = { c }



42

Let’s have a short break



Graph Colouring

43



Basic process: 

1. Compute liveness information for each temporary (%uid). 

2. Create an interference graph:

– Nodes are temporary variables (%uids).

– There is an edge between node n and m if n is live at the same time as m 

3. Try to colour the graph

– Each colour corresponds to a register 

4. In case Step 3 fails, “spill” a temporary to the stack and repeat the whole process. 

5. Rewrite the program to use registers

Register Allocation via Colour Graphs

44



• Nodes of the graph are %uids

• Edges connect variables that interfere with each other

– Two variables interfere if their live ranges intersect (i.e. there is an edge in the control-flow graph 

across which they are both live).


• Register assignment is a graph colouring.

– A graph colouring assigns each node in the graph a colour (register)

– Any two nodes connected by an edge must have different colours.


• Example:

Interference Graphs

45

 
%b1 = add i32 %a, 2  
 
%c = mult i32 %b1, %b1  
 
%b2 = add i32 %c, 1  
 
%ans = mult i32 %b2, %a

 
return %ans;

// live = {%a}

 
// live = {%a,%b1} 

 
// live = {%a,%c}

 
// live = {%a,%b2} 

// live = {%ans}

Interference Graph

%a

%b1 %b2 %c

%ans

2-Colouring of the graph: 
red = r8

yellow = r9

%a

%b1 %b2 %c

%ans



• Can we efficiently find a k-colouring of the graph whenever possible?

– Answer: in general the problem is NP-complete (it requires search)

– But, we can do an efficient approximation using heuristics. 

• How do we assign registers to colours?

– If we do this in a smart way, we can eliminate many redundant MOV instructions. 

• What do we do when there aren’t enough colours/registers?

– We have to use stack space, but how do we do this effectively?

Register Allocation Questions

46



• Kempe [1879] provides this algorithm for K-coloring a graph. 

• It’s a recursive algorithm that works in three steps: 

• Step 1:  Find a node with degree < K and cut it out of the graph.

– Remove the nodes and edges.

– This is called simplifying the graph 

• Step 2: Recursively K-colour the remaining subgraph 

• Step 3: When remaining graph is coloured, there must be at least one free colour available 
for the deleted node (since its degree was < K).  Pick such a colour.

Colouring a Graph: Kempe’s Algorithm

47



48

Recursing Down the Simplified Graphs

Example: 3-colour this Graph



Example: 3-colour this Graph

49

Assigning colours on the way back up.



• If the graph cannot be coloured, it will simplify to a graph where every node has 
at least K neighbours.

– This can happen even when the graph is K-colourable!

– This is a symptom of NP-hardness (it requires search) 

• Example: When trying to 3-colour this graph:

Failure of the Algorithm

50

?



• Idea: If we can’t K-colour the graph, we need to store one temporary variable on the 
stack. 

• Which variable to spill?

– Pick one that isn’t used very frequently

– Pick one that isn’t used in a (deeply nested) loop

– Pick one that has high interference (since removing it will make the graph easier to colour) 

• In practice: some weighted combination of these criteria 

• When colouring: 

– Mark the node as spilled

– Remove it from the graph

– Keep recursively colouring

Spilling

51



• Select a node to spill

• Mark it and remove it from the graph

• Continue colouring

Spilling, Pictorially

52

X



• Sometimes it is possible to colour a node marked for spilling.

– If we get “lucky” with the choices of colours made earlier. 

• Example:  When 2-colouring this graph, we don’t have a node with degree < 2 
 
 
 
 
 
 

• Even though the node was marked for spilling, we can colour it. 

• So: on the way down, mark for spilling, but don’t actually spill…

Optimistic Colouring

53

X

…
X



• Some variables must be pre-assigned to registers.

– E.g. on X86 the multiplication instruction: IMul must define %rax

– The “Call” instruction should kill the caller-save registers %rax, %rcx, %rdx.  

– Any temporary variable live across a call interferes with the caller-save registers. 

• To properly allocate temporaries, we treat registers as nodes in the 
interference graph with pre-assigned colours.

– Pre-coloured nodes can’t be removed during simplification.

– Trick: Treat pre-coloured nodes as having “infinite” degree in the interference graph – 

this guarantees they won’t be simplified.

– When the graph is empty except the pre-coloured nodes, we have reached the point 

where we start colouring the rest of the nodes.

Precoloured Nodes

54



• When choosing colours during the colouring phase, any choice is semantically correct, 
but some choices are better for performance. 

• Example: 
%t1 = %t2

– If t1 and t2 can be assigned the same register (colour) then this move is redundant and can be eliminated. 

• A simple colour choosing strategy that helps eliminate such moves:

– Add a new kind of “move related” edge between the nodes for t1 and t2 in the interference graph.

– When choosing a colour for t1 (or t2), if possible pick a colour of an already coloured node reachable by a 

move-related edge.

Picking Good Colours

55



• Consider 3-colouring this graph, where the dashed edge indicates 
that there is a Mov from one temporary to another. 
 
 
 
 
 

• After colouring the rest, we have a choice:

– Picking yellow is better than red because it will eliminate a move.

Example Colour Choice

56

Move 
related 
edge

?



• A more aggressive strategy is to coalesce nodes of the interference graph if they are 
connected by move-related edges.

– Coalescing the nodes forces the two temporaries to be assigned the same register.


• Idea: interleave simplification and coalescing to maximize the number of moves that 
can be eliminated.


• Problem: coalescing can sometimes increase the degree of a node.

Coalescing Interference Graphs

57

t

u t,u

a b

c

a b

c



• Two strategies are guaranteed to preserve the k-colorability of the interference graph.


• Brigg’s strategy: It's safe to coalesce x & y if the resulting node will have fewer than k 
neighbours (with degree ≥ k).


• George’s strategy: We can safely coalesce x & y if for every neighbour t of x,  
either t already interferes with y or t has degree < k.

Conservative Coalescing

58



1. Build interference graph (pre-colour nodes as necessary).

– Add move related edges 

2. Reduce the graph (building a stack of nodes to color).

a. Simplify the graph as much as possible without removing nodes that are move-related (i.e. have a move-related neighbour). 

Remaining nodes are high degree or move-related.

b. Coalesce move-related nodes using Brigg’s or George’s strategy.

c. Coalescing can reveal more nodes that can be simplified, so repeat 2.a and 2.b until no node can be simplified or coalesced.

d. If no nodes can be coalesced freeze (remove) a move-related edge and keep trying to simplify/coalesce. 

3. If there are non-precoloured nodes left, mark one for spilling, remove it from the graph and continue 
doing step 2. 

4. When only pre-coloured node remain, start colouring (popping simplified nodes off the top of the 
stack).


a. If a node must be spilled, insert spill code as on slide “Example Spill Code” and rerun the whole register allocation algorithm,  
starting at step 1.

Complete Register Allocation Algorithm

59



Was it worth it?

60

Demo: Register allocation in HW6



• HW 6 implements two naive register allocation strategies: 

• no_reg_layout: spill all registers to the stack 

• greedy_layout: puts the first few uids in available registers and spills the 
rest. It uses liveness information to recycle available registers when their 
current value becomes dead (see the slides above). 

• Your job:  do “better” than these via graph colouring. 

• Quality Metric:   

– the total number of memory accesses in x86 program, which is the sum of:

• the number of Ind2 and Ind3 operands 

• the number of Push and Pop instructions


– shorter code is better

For HW6

61



62

Another break?



Current Research in PLDI

63



• The job of a compiler is to translate from the syntax of one language to another,  
but preserve the semantics. 

• Compiler correctness is critical

– Trustworthiness of every component built in a compiled language depends on  

trustworthiness of the compiler 

• Compilers tend to be well-engineered and well-tested,  
but that does not mean they are bug-free.

Validating Compilers



Testing Compilers

LLVM

Random test-case 
generation

{8 other C compilers}

79 bugs: 

25 critical

202 bugs
325 bugs in 
total

Source 
Programs

Finding and Understanding Bugs in C Compilers.Yang et al. PLDI 2011



(in PLDI 2011)

Compilers should be correct. 
 

To improve the quality of C compilers, we 
created Csmith, a randomized test-case 
generation tool, and spent three years 
using it to find compiler bugs.  

During this period we reported more than 
325 previously unknown bugs to 
compiler developers. 

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eide John Regehr
University of Utah, School of Computing

{ jxyang, chenyang, eeide, regehr }@cs.utah.edu

Abstract

Compilers should be correct. To improve the quality of C compilers,
we created Csmith, a randomized test-case generation tool, and
spent three years using it to find compiler bugs. During this period
we reported more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and also
to silently generate wrong code when presented with valid input.
In this paper we present our compiler-testing tool and the results
of our bug-hunting study. Our first contribution is to advance the
state of the art in compiler testing. Unlike previous tools, Csmith
generates programs that cover a large subset of C while avoiding the
undefined and unspecified behaviors that would destroy its ability
to automatically find wrong-code bugs. Our second contribution is a
collection of qualitative and quantitative results about the bugs we
have found in open-source C compilers.

Categories and Subject Descriptors D.2.5 [Software Engineer-

ing]: Testing and Debugging—testing tools; D.3.2 [Programming

Languages]: Language Classifications—C; D.3.4 [Programming

Languages]: Processors—compilers

General Terms Languages, Reliability

Keywords compiler testing, compiler defect, automated testing,
random testing, random program generation

1. Introduction

The theory of compilation is well developed, and there are compiler
frameworks in which many optimizations have been proved correct.
Nevertheless, the practical art of compiler construction involves a
morass of trade-offs between compilation speed, code quality, code
debuggability, compiler modularity, compiler retargetability, and
other goals. It should be no surprise that optimizing compilers—like
all complex software systems—contain bugs.

Miscompilations often happen because optimization safety
checks are inadequate, static analyses are unsound, or transfor-
mations are flawed. These bugs are out of reach for current and
future automated program-verification tools because the specifica-
tions that need to be checked were never written down in a precise
way, if they were written down at all. Where verification is imprac-
tical, however, other methods for improving compiler quality can
succeed. This paper reports our experience in using testing to make
C compilers better.

c� ACM, 2011. This is the author’s version of the work. It is posted here by permission
of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 32nd ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI), San Jose, CA,
Jun. 2011, http://doi.acm.org/10.1145/1993498.1993532

1 int foo (void) {
2 signed char x = 1;
3 unsigned char y = 255;
4 return x > y;
5 }

Figure 1. We found a bug in the version of GCC that shipped with
Ubuntu Linux 8.04.1 for x86. At all optimization levels it compiles
this function to return 1; the correct result is 0. The Ubuntu compiler
was heavily patched; the base version of GCC did not have this bug.

We created Csmith, a randomized test-case generator that sup-
ports compiler bug-hunting using differential testing. Csmith gen-
erates a C program; a test harness then compiles the program us-
ing several compilers, runs the executables, and compares the out-
puts. Although this compiler-testing approach has been used be-
fore [6, 16, 23], Csmith’s test-generation techniques substantially
advance the state of the art by generating random programs that
are expressive—containing complex code using many C language
features—while also ensuring that every generated program has a
single interpretation. To have a unique interpretation, a program
must not execute any of the 191 kinds of undefined behavior, nor
depend on any of the 52 kinds of unspecified behavior, that are
described in the C99 standard.

For the past three years, we have used Csmith to discover bugs
in C compilers. Our results are perhaps surprising in their extent: to
date, we have found and reported more than 325 bugs in mainstream
C compilers including GCC, LLVM, and commercial tools. Figure 1
shows a representative example. Every compiler that we have tested,
including several that are routinely used to compile safety-critical
embedded systems, has been crashed and also shown to silently
miscompile valid inputs. As measured by the responses to our bug
reports, the defects discovered by Csmith are important. Most of
the bugs we have reported against GCC and LLVM have been
fixed. Twenty-five of our reported GCC bugs have been classified as
P1, the maximum, release-blocking priority for GCC defects. Our
results suggest that fixed test suites—the main way that compilers
are tested—are an inadequate mechanism for quality control.

We claim that Csmith is an effective bug-finding tool in part
because it generates tests that explore atypical combinations of C
language features. Atypical code is not unimportant code, how-
ever; it is simply underrepresented in fixed compiler test suites.
Developers who stray outside the well-tested paths that represent
a compiler’s “comfort zone”—for example by writing kernel code
or embedded systems code, using esoteric compiler options, or au-
tomatically generating code—can encounter bugs quite frequently.
This is a significant problem for complex systems. Wolfe [30], talk-
ing about independent software vendors (ISVs) says: “An ISV with
a complex code can work around correctness, turn off the optimizer
in one or two files, and usually they have to do that for any of the

compilers they use” (emphasis ours). As another example, the front

1

The striking thing about our CompCert results is 
that the middle-end bugs we found in all other 
compilers are absent. 

 
As of early 2011, the under-development version 
of CompCert is the only compiler we have tested 
for which Csmith cannot find wrong-code errors. 
This is not for lack of trying: we have devoted 
about six CPU-years to the task. 

 
The apparent unbreakability of CompCert 
supports a strong argument that developing 
compiler optimizations within a proof framework, 
where safety checks are explicit and machine-
checked, has tangible benefits for compiler users. 



Xavier Leroy

INRIA

CompCert (2006-now):  
Optimising C Compiler,

proved correct end-to-end

with machine-checked proof in Coq

C language

CompCert

Compiler

ISA

Verified Compilation



• Consider two programs P1 and P2 possibly in different languages.

– e.g. P1 is an Oat program, P2 is its compilation to LL


• The semantics of the languages associate to each program a set of observable behaviours: 
    


B(P1)  and  B(P2)


• Note: |B(P)| = 1 if P is deterministic, > 1 otherwise

Comparing Behaviours



• For C-like languages: 
	 	  
	 	 observable behavior ::=   
	 	 	 | terminates(st)            (i.e. observe the final state) 
	 	 	 | diverges  
	 	 	 | goeswrong 

• For pure functional languages: 
 
	 	 observable behavior ::= 
	 	 	 | terminates(v)		 (i.e. observe the final value) 
	 	 	 | diverges 
	 	 	 | goeswrong

What is Observable?



• Add a trace of input-output events performed: 
 
	 	 	 t 	 ::=  []   |   e :: t		 	 (finite traces) 
	 coind.	 T 	 ::=  []   |   e :: T		 	 (finite and infinite traces) 
 
	 	 observable behavior ::= 
	 	 	 	 | terminates(t, st)     (end in state st after trace t) 
	 	 	 	 | diverges(T)	 	     (loop, producing trace T) 
	 	 	 	 | goeswrong(t)

What about I/O?



• P1:    
print(1); / st	 	 	 ⇒	 	 terminates(out(1)::[],st) 

• P2:   
print(1); print(2);  / st    
	 	 	 	 	 	 	 ⇒ 	 	 terminates(out(1)::out(2)::[],st) 

• P3: 
WHILE true DO print(1) END  / st 
	 	 	 	 	 	 	 ⇒	 	 diverges(out(1)::out(1)::…) 

• So     B(P1)  ≠   B(P2)  ≠  B(P3)

Examples



• Two programs P1 and P2 are bisimilar whenever: 
 
	 	 	 	 	 	 B(P1)  =   B(P2) 

• The two programs are completely indistinguishable. 
 

• But… this is often too strong in practice. 

Bisimulation



• Some languages (like C) have underspecified behaviours:

– Example: order of evaluation of expressions    f() + g() 

• Concurrent programs often permit nondeterminism

– Classic optimizations can reduce this nondeterminism 

– Example:   

	 a := x + 1; b := x + 1    	 ||	 	 x := x+1

 

	 	 	 	 	 	 	 vs. 
 
	 a := x + 1; b := a         	 ||	 	 x := x+1 

• LLVM explicitly allows nondeterminism:

– undef values  (not part of LLVM lite)

Compilation Reduces Nondeterminism



• Program P2 can exhibit fewer behaviours than P1:  
 
	 	 	 	 	 	                                B(P1)  ⊇   B(P2) 

• All of the behaviours of P2 are permitted by P1, though some of them may have been eliminated. 

• Also called refinement.

Backward Simulation 



Related Research Topics

75



• Moore’s law: processor advances double speed every 18 months 

• Moore’s law ended in 2006 for single-threaded applications 

• Started to hit fundamental limits in how small transistors can be 

• Processor manufacturers shifted to multi-core processors 

• Need new compiler technology to take advantage of multi-core – 
automatically find and exploit opportunities for parallel execution

Automated Parallelisation

76



• The goal of a program analysis is to answer questions about the run-time behaviour of software 

• In compilers: data flow analysis, control flow analysis

– Typical goal: determine whether an optimisation is safe 

• Research in program analysis has shifted to more sophisticated properties:

– Numerical analyses, e.g., find geometric regions that contain reachable values for integer variables.  

Can be used to verify absence of buffer overflows.

– Shape analyses – determine whether a data structure in the heap is a list, a tree, a graph,...  

Can be used to verify memory safety.

– Resource analyses – e.g., find a conservative upper bound on the run-time complexity of a loop.  

Can be used to find timing side-channel attacks.

– Concurrency analysis: find all data races in a multi-threaded program. 

• Industrial program analysis:

– Static Driver Verifier (Microsoft): finds bugs in device driver code

– Infer (Facebook): proves memory safety & finds race conditions

– Astrée (AbsInt): static analyser for safety-critcal embedded code (e.g.,automotive& aerospace applications)

Program Analysis



• Verification: Given a program and a specification, prove that the program satisfies the specification 

• Synthesis: Given a specification, find a program that satisfies the specification

– Kind of a “compilation on steroids” from language of specifications to a programming language

Program Verification and Synthesis

78

void swap(loc x, loc y)



void swap(loc x, loc y)

{ x ↦ a ⋀ y ↦ b }{ x ↦ a ⋀ y ↦ b }



void swap(loc x, loc y)

{ x ↦ a ⋀ y ↦ b }

{ x ↦ b ⋀ y ↦ a }



void swap(loc x, loc y)

{ x ↦ a * y ↦ b }

{ x ↦ b * y ↦ a }

“x and y are different memory locations”



void swap(loc x, loc y)

{ x ↦ a * y ↦ b }

{ x ↦ b * y ↦ a }



void swap(loc x, loc y)

{ x ↦ a * y ↦ b }

{ x ↦ b * y ↦ a }



{ x ↦ a * y ↦ b }

{ x ↦ b * y ↦ a }

??



{ x ↦ a2 * y ↦ b }

{ x ↦ b * y ↦ a2 }

??

let a2 = *x;



{ x ↦ a2 * y ↦ b2 }

{ x ↦ b2 * y ↦ a2 }
??

let a2 = *x;

let b2 = *y;



{ x ↦ b2 * y ↦ b2 }

{ x ↦ b2 * y ↦ a2 }

let a2 = *x;

??

let b2 = *y;

*x = b2;



{ x ↦ b2 * y ↦ a2 }

{ x ↦ b2 * y ↦ a2 }

let a2 = *x;

??

let b2 = *y;

x ↦ b2 * y ↦ a2

x ↦ b2 * y ↦ a2

*x = b2;

*y = a2;



{ x ↦ b2 * y ↦ a2 }

{ x ↦ b2 * y ↦ a2 }

let a2 = *x;

??

let b2 = *y;

x ↦ b2 * y ↦ a2 x ↦ b2 * y ↦ a2⊢

*x = b2;

*y = a2;



let a2 = *x;

{ x ↦ b2 * y ↦ a2 }

{ x ↦ b2 * y ↦ a2 }
??

let b2 = *y;

x ↦ b2 * y ↦ a2 x ↦ b2 * y ↦ a2⊢

*x = b2;

*y = a2;



let a2 = *x;

let b2 = *y;

*x = b2;

*y = a2;

void swap(loc x, loc y) {

}



Transforming Entailment

P Q⇝

There exists a program c, such that  
for any initial state satisfying P,   

c, after it terminates,  
will transform to a state satisfying Q.



⇝x ↦ a

“Proof ”: *x = 42

x ↦ 42



   EV(Г, P, Q) ∩ Vars(R) = ∅ 

      Г ; { P } ⇝ { Q } | c
——————————— (Frame)

Г; { P ∗ R } ⇝ { Q ∗ R } | c  

                         Vars(e) ⊆ Г

        Г ; { x ↦ e ∗ P } ⇝ { x ↦ e ∗ Q } | c
—————————————————— (Write)

Г; { x ↦ - ∗ P } ⇝ { x ↦ e ∗ Q } | *x = e; c  

          a ∈ GV(Г, P, Q)         y is fresh                        

   Г, y ; [y/a]{ x ↦ y ∗ P } ⇝ [y/a]{ Q } | c
————————————————— (Read)

Г; { x ↦ a ∗ P } ⇝ { Q } | let y = *x; c  

Г; {emp} ⇝ {emp} | skip      (Emp)



void swap(loc x, loc y)

{ x ↦ a ∗ y ↦ b }

{ x ↦ b ∗ y ↦ a }



⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | ??



⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x; ??
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | ??



⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x; ??
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | let b2 = *y; ??

⇝ { x ↦ a2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | ??
(Read)



⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x; ??
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | let b2 = *y; ??

⇝ { x ↦ a2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | *x = b2; ??
(Read)

⇝ { x ↦ b2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | ??
(Write)



⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x; ??
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | let b2 = *y; ??

⇝ { x ↦ a2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | *x = b2; ??
(Read)

⇝ { x ↦ b2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | ??
(Write)

(Frame)

⇝ { y ↦ b2 } { y ↦ a2 }{ x, y, a2, b2 } ; | ??



⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x; ??
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | let b2 = *y; ??

⇝ { x ↦ a2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | *x = b2; ??
(Read)

⇝ { x ↦ b2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | ??
(Write)

(Frame)

⇝ { y ↦ b2 } { y ↦ a2 }{ x, y, a2, b2 } ; |
(Write)

*y = a2; ??

⇝ { y ↦ a2 } { y ↦ a2 }{ x, y, a2, b2 } ; | ??



⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x; ??
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | let b2 = *y; ??

⇝ { x ↦ a2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | *x = b2; ??
(Read)

⇝ { x ↦ b2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | ??
(Write)

(Frame)

⇝ { y ↦ b2 } { y ↦ a2 }{ x, y, a2, b2 } ; |
(Write)

*y = a2; ??

⇝ { y ↦ a2 } { y ↦ a2 }{ x, y, a2, b2 } ; | ??

⇝ { emp } { emp }{ x, y, a2, b2 } ; | ??
(Frame)



⇝ { x ↦ a ∗ y ↦ b } { x ↦ b ∗ y ↦ a }{ x, y } ; | let a2 = *x;
(Read)

⇝ { x ↦ a2 ∗ y ↦ b } { x ↦ b ∗ y ↦ a2 }{ x, y, a2 } ; | let b2 = *y;

⇝ { x ↦ a2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | *x = b2;
(Read)

⇝ { x ↦ b2 ∗ y ↦ b2 } { x ↦ b2 ∗ y ↦ a2 }{ x, y, a2, b2 } ; | ??
(Write)

(Frame)

⇝ { y ↦ b2 } { y ↦ a2 }{ x, y, a2, b2 } ; |
(Write)

*y = a2;

⇝ { y ↦ a2 } { y ↦ a2 }{ x, y, a2, b2 } ; | ??

⇝ { emp } { emp }{ x, y, a2, b2 } ; | skip
(Frame)

(Emp)

??

??

??

??



let a2 = *x;

let b2 = *y;

*x = b2;

*y = a2;

void swap(loc x, loc y) {

}



What Can be Synthesised

105

Structuring the Synthesis of Heap-Manipulating Programs :21

Table 1. Benchmarks and S�SL�� results. For each benchmark, we report the size of the synthesized Code (in
AST nodes) and the ratio Code/Spec of code to specification; as well as synthesis times (in seconds): with all
optimizations enabled (Time), without phase distinction (T-phase), without invertible rules (T-inv), without
early failure rules (T-fail), without the commutativity optimization (T-com), and without any optimizations
(T-all). T-IS reports the ratio of synthesis time in I��S��� to Time. “-” denotes timeout of 120 seconds.

Group Description Code Code/Spec Time T-phase T-inv T-fail T-com T-all T-IS

Integers
swap two 12 0.9x < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
min of two2 10 0.7x 0.1 0.1 0.1 < 0.1 0.1 0.2

Linked
List

length1,2 21 1.2x 0.4 0.9 0.5 0.4 0.6 1.4 29x
max1 27 1.7x 0.6 0.8 0.5 0.4 0.4 0.8 20x
min1 27 1.7x 0.5 0.9 0.5 0.4 0.5 1.2 49x

singleton2 11 0.8x < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
dispose 11 2.8x < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
initialize 13 1.4x < 0.1 0.1 0.1 < 0.1 0.1 < 0.1
copy3 35 2.5x 0.2 0.3 0.3 0.1 0.2 -

append3 19 1.1x 0.2 0.3 0.3 0.2 0.3 0.7
delete3 44 2.6x 0.7 0.5 0.3 0.2 0.3 0.7

Sorted
list

prepend1 11 0.3x 0.2 1.4 83.5 0.1 0.1 - 48x
insert1 58 1.2x 4.8 - - - 5.0 - 6x

insertion sort1 28 1.3x 1.1 1.8 1.3 1.2 1.2 74.2 82x

Tree

size 38 2.7x 0.2 0.3 0.2 0.2 0.2 0.3
dispose 16 4.0x < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
copy 55 3.9x 0.4 49.8 - 0.8 1.4 -

�atten w/append 48 4.0x 0.4 0.6 0.5 0.4 0.4 0.6
�atten w/acc 35 1.9x 0.6 1.7 0.7 0.5 0.6 -

BST
insert1 58 1.2x 31.9 - - - - - 11x

rotate left1 15 0.1x 37.7 - - - - - 0.5x
rotate right1 15 0.1x 17.2 - - - - - 0.8x

1 From (Qiu and Solar-Lezama 2017) 2 From (Leino and Milicevic 2012) 3 From (Qiu et al. 2013)

(1) Generality: Is S�SL�� general enough to synthesize a range of nontrivial programs with pointers?
(2) Utility: How does the size of the inputs required by S�SL�� compare to the size of the generated

programs? Does S�SL�� require any additional hints apart from pre- and post-conditions? What
is the quality of the generated programs?

(3) E�ciency: Is it e�cient? What is the e�ect of optimizations from Sec. 5 on synthesis times?
(4) Comparison with existing tools: How does S�SL�� fare in comparison with existing tools for

synthesizing heap-manipulating programs, speci�cally, I��S��� (Qiu and Solar-Lezama 2017)?

6.1 Benchmarks
In order to answer these questions, we assembled a suite of 22 programs listed in Tab. 1. The
benchmarks are grouped by the main data structure they manipulate: integer pointers, singly linked
lists, sorted singly linked lists, binary trees, and binary search trees.

To facilitate comparison with existing work, most of the programs are taken from the literature on
synthesis and veri�cation of heap-manipulating programs: the I��S��� synthesis benchmarks (Qiu
and Solar-Lezama 2017), the J������� synthesis benchmarks (Leino and Milicevic 2012), and the
D���� veri�cation benchmarks (Qiu et al. 2013). We manually translated these benchmarks into
the input language of S�SL��, taking care to preserve their semantics. D���� and I��S��� use
the D���� dialect of separation logic as their speci�cation language, hence the translation in this
case was relatively straightforward. As an example, consider an I��S��� speci�cation and its
S�SL�� equivalent in Fig. 15. The “??” are part of the I��S��� spec language, denoting unknown
holes to be �lled by the synthesizer. The main di�erence between the two pre-/post-condition

Proc. ACM Program. Lang., Vol. 1, No. 1, Article . Publication date: July 2018.



More Program Synthesis

106

Excel® FlashFill



Final Project

107

• Choose one of the 30+ papers (seminal ones or state of the art in PLDI research) 

• Topics:

– Low-Level and Intermediate-Level Languages

– Interpreters and Program Transformations

– Lexing and Parsing

– Types and Type Systems

– Code Analysis and Optimisations

– Verified Compilers

– Miscellanea (language design, compiler testing, program synthesis)


• Write a report summarising the paper:

– Problem, motivation

– Ideas, contributions

– (Most important) Evaluation

• Developed example using paper’s theory (paper-and-pencil), or

• Report on using the system/tool, or

• A survey of the follow-up works and the paper’s impact



Wrapping Up

108



• We have learned (hopefully): 

– How high-level languages are implemented in machine language

– (A subset of) Intel x86 architecture

– (A subset of) LLVM

– Lexing and parsing 

– Lambda-calculus and its extensions

– A little about programming language semantics and type systems

– How to implement a type checker

– How to implement a program analyser

– Practical applications of theory (logic, proofs, automata, graphs, lattices)

– How to represent complex data structures in memory

– How to write large working programs in OCaml

– How to be a better programmer

Why YSC4230?

109



• Understanding hardware/software interface

– Different devices have different instruction sets, programming models 

• General programming

– In C/C++, better understanding of how the compiler works can help you generate better code.

– Ability to read assembly/LLVM output from compiler

– Experience with functional programming gives you different ways to think about solving a problem

– Knowledge of type systems helps you understand type errors in Java, Scala, OCaml, etc. 

• Writing domain specific languages

– lex/yacc very useful for little utilities

– understanding abstract syntax specification

– understanding typing rules

– being able to write your own interpreter and compiler

Where else is this stuff applicable?

110



• We skipped stuff at every level…

• Concrete syntax/parsing:  

– Much more to the theory of parsing… LR(*)

– Good syntax is art not science!


• Source language features:

– Exceptions, advanced type systems, type inference, dependent types, concurrency


• Intermediate languages:

– Intermediate language design, bytecode, bytecode interpreters, just-in-time compilation (JIT)


• Compilation:

– Continuation-passing transformation, analyses for SSA, compiling OO classes, 

lambda-lifting, closure conversion

• Analysis and Optimisations:

– Abstract interpretation, cache optimization, instruction selection/optimization


• Runtime support:

– memory management, garbage collection

Stuff we didn’t Cover

111



• Conferences  (proceedings available on the web): 

– Programming Language Design and Implementation (PLDI)

– Principles of Programming Languages (POPL)

– Object Oriented Programming Systems, Languages & Applications (OOPSLA)

– International Conference on Functional Programming  (ICFP)

– European Symposium on Programming (ESOP) 

• Programming Language Mentoring Workshops (PLMW)

– Affiliated with POPL/PLDI/OOPSLA/ICFP 

• Technologies / Open Source Projects

– Yacc, lex, bison, flex, …

– LLVM – low level virtual machine

– Java virtual machine (JVM), Microsoft’s Common Language Runtime (CLR)

– Languages: OCaml, F#, Haskell, Scala, Go, Rust, … Coq, Agda, …?

Where to go from here?

112



Further Reading - Types

113

https://softwarefoundations.cis.upenn.edu/



Further Reading - Analysis

114



Further Reading - Compilation Techniques

115



• CS4215: Programming Language Implementation

• semantics, type systems, automatic memory management, dynamic linking 

and just-in-time compilation, as features of modern execution systems 

• CS5218: Principles and Practice of Program Analysis

• foundations of static program analysis, abstract interpretation, lattice 

theory, analysis of higher-order languages 

• CS6215: Advanced Topics in Program Analysis

• symbolic execution, model checking, state-of-the-art industrial analysis tools, 

performance analysis

PL Classes at NUS School of Computing

116



The End

Thanks!


