
Space-Efficient Closure Representations

Zhong Shao and Andrew W. Appel

Department of Computer Science, Princeton University

Princeton, NJ 08544-2087

zshQcs. princeton. edu appel@cs .princeton. S&I

Abstract

Many modern compilers implement function calls (or re-

turns) in two steps: first, a closure environment is properly

installed to provide access for free variables in the target

program fragment; second, the control is transferred to the

target by a “jump with arguments (or results).” Closure

conversion, which decides where and how to represent clo-

sures at runtime, is a crucial step in compilation of functional

languages. We have a new algorithm that exploits the use

of compile-time control and data flow information to opti-

mize closure representations. By extensive closure sharing

and allocating as many closures in registers as possible, our

new closure conversion algorithm reduces heap allocation

by 36% and memory fetches for local/global variables by

43%; and improves the already-efficient code generated by

the Standard ML of New Jersey compiler by about 17% on a

DECstation 5000. Moreover, unlike most other approaches,

our new closure allocation scheme satisfies the strong “safe

for space complexity” rule, thus achieving good asymptotic

space usage.

1 Introduction

Many modern compilers take great efforts to optimize func-

tion calls and returns because they are fundamental control

structures, especially in functional languages. Before a func-

tion call, context information is saved from registers into a

“frame.” In a compiler based on Continuation-Passing Style

(CPS), this “frame “ is the closure of a continuation func-

tion [33].

In a CPS-based compiler, a closure environment is con-

structed at each function (or continuation) definition site; it

provides runtime access to bindings of variables free in the

function (or continuation) body. Each function call is then

implemented as first installing the corresponding closure en-

vironment, setting up the arguments (normally in registers),

and then passing the control to the target by a “jump” in-

struction. Function returns are implemented in the same

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advanta e, the ACM copyright notice and the

7title of the publication and ts date appear, and notice is given
that copying is by permission of the Association of Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

way because they are essentially calls to continuation func-

tions, if represented in CPS.

A closure can be any combination of registers and memory

data structures that gives access to the free variables [25, 6].

The compiler is free to choose a closure representation that

minimizes stores (closure creation), fetches (to access free

variables), and memory use (reachable data).

We have developed a new algorithm for choosing good

closure represent ations. As far as we know, our new closure

allocation scheme is the first to satisfy all of the following

import ant properties:

Unlike stack allocation and traditional linked closures,

our shared closure representations are safe for space

complexity (see Section 2); at the same time, they still

allow extensive closure sharing.

Our closure allocation scheme exploits extensive use of

compile-time control and data flow information to de-

termine the closure representations.

Source-language functions that make several sequential

function calls can build one shared closure for use by

all the continuations, taking advantage of callee-save

registers.

Because activation records (i.e., frames) are also allo-

cated in the heap, they can be freely shared with other

heap-allocated closures. Under stack allocation, this

is impossible since stack frames normally have shorter

lifetime than heap-allocated closures.

Tail recursive calls-which are often quite troublesome

to implement correctly on a stack [20]—can be imple-

mented very easily.

All of our closure optimization can be cleanly repre-

sented using continuation-passing and closure-passing

style [4] as the intermediate language.

Once a closure is created, no later writes are made to it;

this makes generational garbage collection and CUZZ!CC

efficient, and also reduces the need for alias analysis in

the compiler.

Because all closures are either allocated in the heap or

in registers, first class continuations call\cc are very ef-

ficient, requiring no complicated stack hackery [21].

LISP 94- 6/94 Orlando, Florida USA
@ 1994 ACM 0-89791 -643-3/94/0006..$3.50

150

Flat Closures

gvwx y z

I

Linked Closures

-ml

Safely Linked Closures

-+E13-’

Figure 1: A comparison of three closure representations

Our new closure allocation scheme does not use any run-

time stack. Instead, all closure environments are either al-

located in the heap or in registers. This decision may seem

controversial, because stack allocation is widely believed

to have better reference locality, and deallocation of stack

frames can be cheaper than garbage collection. Moreover,

because heap allocated closures are not contiguous in mem-

ory, an extra memory write and read (of the frame pointer)

are necessary at each function call. These assumptions no

longer hold, for three reasons:

1.

2.

3.

As we will show in Section 4, because most parts of

continuation closures are allocated in callee-save regis-

ters [6], the extra memory write and read at each call

can often be avoided. With the help of compile-time

control and data flow information, the combination of

shared closures and callee-save registers can often be

comparable to or even better than stack allocation [7].

In a companion paper [7], we show that stacks do not

have a significantly better locality of reference than

heap-allocated activation records, even in a modern

cache memory hierarchy. Stacks do have a much better

write miss ratio, but not a much better read miss ratio.

But on many modern machines, the write miss penalty

is approximately zero [23, 16, 7].

The amortized cost of collection can be very low [1, 71,.,. .
especially with modern generational garbage collection

techniques [36].

The major contribution of our paper is a “safe for space”

closure conversion algorithm that integrates and improves

most previous closure analysis techniques [26, 6, 33, 30,

20, 22], using a simple and general framework expressed in

continuation-passing and closure-passing style [4, 6]. Our

new algorithm extensively exploits the use of compile-time

control and data flow information to optimize closure alloca-

tion strategies and representations. Our measurements show

that the new algorithm reduces heap allocation by 36% and

memory fetches for local/global variables by 43’%; and im-

proves the already-efficient code generated by the Standard

ML of New Jersey compiler by about 17% on a DECst ation

5000.

2 Safely Linked Closures

Optimization of closure representations is sometimes dan-

gerous and unsafe for space usage (i.e., maximum live data

size). In 1988, Chase [11] observed that certain storage al-

location optimization may convert a program that runs ro-

bustly into one that does not, due to the requirement of

larger fraction of memory than the program actually needs.

Appel [2] also noticed that programs using linked closuresl,

or stack-allocated activation records, may cause a compiled

program to use much more memory.

fun f(v, w,x, y,z) =

let fun go =

let val u = hd(v)

fun ho =

let fun io = w+x+y+z+3

in (i, u)

end

inh

end

in g

end

fun big n = if n<l then [0] else n :: big(n-1)

fun loop (n,res) =

if n<l then res

else (let val s = f (big(n) ,0,0,0,0)()

in loop(n-l, s: :res)

end)

val result = 100p(M, [l)

Figure 2: An Example in Standard ML

For example, consider the Standard ML [29] program in

Figure 2. With flat closures2 (see Figure 1), each evaluation

of f(. ..) () yields a closure s for h that contains just a

few integers u, W, x, y, and z; the final result (e.g., result)

contains N copies of the closure s for h, thus it uses at

most O(N) space. With linked closures (see again Figure 1),

each closure s for h contains a pointer to the closure for g,

which cent ains a list v of size N. Since the final result keeps

N closures for h simultaneously, it requires 0(IV2) space

consumption instead of O(N). Obviously, this space leak is

caused by inappropriately retaining some “dead” objects (v)

that should be garbage collected earlier.

1A linked closure [271 is a record that contains the bound vari-
ables of the enclosing finction, together with a pointer to the
enclosing function’s closure.

2A fiat cr~s~re [IO] is a record that holds only the free variables

needed by the function.

151

v ..—..— variable

I .._.,— integer constant

R ..—..— real constant

P ..—..— arithmetic operator

A ::= VIIIR

F ..—..— VO(V1,V2,. ... Vn)=EIFland Fz

D ::= D1 Dz I fun F I val V = select(I,A)

I val V = (A1,Az,. . .,A~)

I val V = P(A1,A2,. . .,An)

E ..—..— if V then El else Ez

I let D in El end I Ao(AI,Az,. . .,A~)

Figure 3: Abstract syntax of CPS

In 1992, we found several instances of real programs whose

live data size (and therefore memory use) was unnecessar-

ily large (with factors of 2 to 80) when compiled by early

versions of our compiler that introduced this kind of space

leak. All recent versions of SML/N J have obeyed the “safe

for space complexity” (SSC) rule, and users really did notice

the improvement. The SSC rule is stated as follows: any local

variable binding must be unreachable after its last use within

its scope (see Appel [2] for a more formaJ definition).

Traditional stack allocation schemes and linked closures

obviously violate this rule because local variable bindings

will stay on the stack until they exit their scope, so may

remain live even after their last use. Flat closures do sat-

isfy the SSC rule, but they require that variables be copied

many times from one closure to another. Many of the clo-

sure strategies described by Appel and Jim [3] violate the

rule.

Most stack-frame implement ations also violate SSC, since

dead variables remain in the frame until a function returns.

This can be avoided by associating a descriptor with each

return address, showing which variables are live; but this

complicates the garbage collector [7, 8].

Obeying SSC can require extra copying of pointer values

from an old closure that contains them (but also contains

values not needed in a new context) into a new closure. One

cannot simply “zap” the unneeded vaJues in the old closure,

since it is not known whether there are other references to

the old closure. The challenge is to find efficient closure

strategies that obey SSC while minimizing copying.

Our new algorithm uses safely linked ciosures (the 3rd

column in Figure 1), which cent ain only those variables ac-

tually needed in the function3, but avoids closure copying by

grouping variables with same lifetime into a sharable record.

In Figure 1, we use G, H and 1 to denote the closure, and

g, h, and i for code pointers. With flat closures, variables

w, x, y, and z must be copied from the closure of g into

the closure of h, and then into the closure of i, this is very

expensive. With traditional linked closures, closures for h

and i are unsafely re-using the closure for g, retaining the

variable v that is not free in h or i; moreover, accessing

variables w, x, y and z inside 1 is quite expensive because

at least two links needs to be traversed. By noticing that

w, x, y, and z have same lifetime, the safely linked closure

for g puts them into a separate record, which is later shared

by closures for h and i. Unlike linked closures, the nesting

level of safely linked closures never exceeds more than two,

so they still enjoy very fast variable access time.

3 Continuations and Closures

We will illustrate CPS-conversion (which is not new [33, 26,

2]), and our new closure analysis algorithm, on the example

in Figure 4. The function it er iteratively applies function

~ to argument z until it converges to satisfy predicate p.

fun iter(x,p,f) =

let fun h(a, r) = if p(a, r) then a

else h(f (a) ,a)

in h(x,l.0)

end

Figure 4: Function iter in Standard ML

3.1 Continuation-passing style

Continuation-passing style (CPS) is a subset of k-calculus,

but which closely reflects the control-flow and data-flow op-

erations of a von Neumann machine. As in J-calculus,

functions are nested and variables have lexical scope; but

as on a von Neumann machine, order of evaluation is pre-

determined. For the purposes of this paper, we express CPS

using ML notation, albeit severely constrained — see Fig-

ure 3. An atom A can be a variable or a constant; a record

can be constructed out of a sequence (Al, AZ, An) of

atoms. If v is bound to an n-element record, then the ith field

may be fetched using select (i, v); The syntax for building

records, selecting fields, applying primitive arithmetic oper-

ators, and defining mutually recursive functions (fum and F)

must specify a continuation expression E that will use the

result (via let expressions). 4 On the other hand, function

application (shown in the last line on the right of Figure 3)
does not specify a continuation expression — functions never

return in the conventional sense. Instead, it is expected that

many functions will pass a continuation function as one of

their arguments. This function can be defined in the ordi-

nary way (by fun), and will presumably be invoked by the

callee in order to continue the computation.

Figure 5 shows the code of the function it er after transla-

tion into CPS, and after the continuation argument of h has

3 In practice, both this and SSC can be relaxed a little because

the asymptotic space complexity will not change if we retain some

variables that can be proven of constant size at compile time.

4Later in the paper, we use let El E2 . . . En in . . . end. to

denote a sequence of let expressions, e.g., let El in (let E2 in

. . . (let En in . . . end) . . . end) end.

152

fun iter(C,x,p,f) =
let fun h(a,r) =

let fun J(z) = if z then C(a)
else (let fun Q(b) = h(b, a)

in f(Q, a)
end)

in p(J, a,r)
end

in h(x,l .0)
end

Figure 5: Function iter after CPS-based optimizations

been hoisted out of the loop because it is loop-invariant [32].

Such optimizations are performed after CPS-conversion, but

before the closure analysis that is the subject of this paper.

To e~e the presentation, we use capital letters to denote

continuations (e.g., C, J, and Q). We call those functions de-

clared in the source program user functions (e.g., it er, h),

and those introduced by CPS conversioncontinuation ~unc-

tions (e.g., J, Q). Continuation variables areall those formal

parameters (commonly placed as the first argument) intro-

duced in CPS conversion to serve as return continuations

(e.g., C). Functions such as iter, p and f are called escap-

ing ~tmctions, because they may be passed as arguments or

stored in data structures so that the compiler cannot identify

all the places where they are called. All functions that do

not escape are called known functions (e.g., h). We can do

extensive optimizations on known functions since we know

all of their call sites at compile time.

3.2 Closure-pnesing style

Continuation-passing style is meant to approximate the op-

eration of a von Neumann computer; a “function” in ma-

chine language is just an address in the executable program,

perhaps with some convention about which registers hold

the parameters—very much like a “jump with arguments.”

The notion of function in CPS is almost the same, except

that they have nested lexical scope and may contain tree

variables. This problem is solved by adding a closure which

makes explicit the access to all nonlocal variables.

Kranz [25, 26] showed that different kinds of functions

should use different closure allocation strategies. For exam-

ple, the closure for a known function (e.g., h in Figure 5)

can be allocated in registers, because we know all of its cdl-,
sites at compile time and can let the caller always pass its

free variables as extra arguments at runtime; on the other

hand, the closure for an escaping function may have to be

allocated as a heap record that contains both the machine

code address of the function plus bindings for all its free

variables.

Conventional com~ilers use caller-saue registers, which-.
may be destroyed by a procedure call, and callee-saw reg-

isters, which are preserved across calls. Variables not live

after the call may be allocated to caller-save registers which

cuts down on register-saving traffic.

We wanted to adapt this idea to our continuation-passing

intermediate representation. We did so as follows [6]: each

CPS-converted user function ~ is passed its ordinary argu-

ments, a continuation function co, and k extra arguments

15

01
02

03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23

fun iter(I,CO, Cl, C2, C3, x,p,f) =
let fun h(a, r, CR,p) =

let fun JO(J1, J2, J3, Z) =
if z then

(let VSJ. CO = select (O, Jl)
Val cl = select(l ,Jl)
Vel C2 = select (2, Jl)
val C3 = selact(3, Jl)

in CO(CI, C2, C3, J2)
end)

else
(let fun QO(Q1,Q2, Q3,b)

= h(b, Q2, Ql, Q3)
val f = select (4, Ql)
Val fo = selact(O, f)

in fO(f, QO,Jl, J2, J3, J2)
end)

val pO = select (O,p)
in pO(p, JO, CR, a,p, a,r)

end
val CR = (co, cl, c2, c3,f)

in h(x,l. 0,(11, p)
end

Figure 6: Function it er in after closure conversion

c1,. .. . c~. The function “returns” by invoking co with a “re-

sult” argument r and the additional arguments c1, ck.

Thus, the “callee-save” arguments c1, ck are handed back

to the continuation. When this CPS code is translated into

machine instructions, cl, ..., c~ will stay in registers through-

out the execution of ~; unless ~ needed to use those registers

for other purposes, in which case ~ must save and restore

them. One could also say that the continuation is repre-

sented in k + 1 registers (co, ck) instead of in just one

pointer to a memory-resident closure.

In our previous work [6], we outlined this framework and

demonstrated that it could reduce allocation and memory

tratlic. However, we did not have a really good algorithm to

exploit the flexibility that callee-save registers provide.

Closure creation and use can also be represented using the

CPS language itself [4, 24]. We call this closure-passing style

(CLO). The main difference between CLO and CPS is that

functions in CLO do not contain free variables, so they can

be translated directly into machine code. In CLO, the formal

parameters of each function correspond to the target ma-

chine registers, and heap-allocated closures are represented

as CPS records.

Figure 6 lists the code of function iter after transla-

tion into CLO. All continuation functions and variables

(e.g., C, J, Q) are now represented as a machine code pointer

(e.g., CO, JO, QO) plus three extra callee-save arguments (e.g.,

C1-C3, JI-J3,CJ1-Q3).

The origird function J (in Figure 5) had free variables

C, f ,a, h. With three callee-save registers, C becomes the

four variables CO, C1, C2, C3, for an effective total of seven.

When J is passed to p (line 19), these seven free variables—
plus the machine code pointer for J’s entry point—must be

squeezed into four formal parameters JO, J1, J2, J3. Where

there are more than three free variables, some of the callee-

save arguments must be heap-allocated records containing

several variables each; thus, the CR closure-record appears

3

as J1 in the call on line 19.

Previous closure conversion algorithms [33, 25, 4] require

memory stores for each continuation function. An important

advance in our new work is that we allocate (in this example)

only one record CR for the functions J, Q, h, and this record

is carefully chosen to contain loop-invariant components, so

that it can be built outside the loop.

Escaping user functions (iter ,p ,f) are now represented

as a closure record (I ,p ,f), each with its Oth field being the

machine code pointer (it er, pO, f O). Escaping function calls

are implemented as first selecting the O~h field, placing the

closure itself in a special register (the first formal parame-

ter), and then doing a “jump with arguments” (lines 15-16,

18-19).

4 Closure Conversion

In this section, we present our new closure conversion algo-

rithm using the framework defined in Section 3. Our algo-

rithm takes a CPS expression E as theargument, determines

the closure representation for each function definition in E,

and then converts E into a CLO expression E’ in which each

function definition does not contain any free variables. The

presentation of our algorithm is organized in the following

five steps:

1.

2.

3.

4.

5.

Construct an eztended CPS ca21 graph that captures the

control flow information in the CPS expression.

Gather the set of raw free variables and their lifetime

information for each CPS function.

Use closure strategy analysis to determine where in the

machine to allocate each closure.

Use closure representation analysis to determine the ac-

tual structure of each closure at runtime.

Find out the variable access path for all non-local vari-

ables of each CPS function.

Each step here does not necessarily correspond to a separate

pass in the real implementation because many of them are

actually done in a single paas.

4.1 Extended CPS call graph

Given a CPS expression E, we can divide the set of function

definitions in E into four categories: escaping user functions,

known user functions, escaping continuation functions, and

known continuation functions (see the last paragraph of Sec-
tion 3.1 for definitions). Given two CPS variables v and w,

v directly calls w if w is possibly the first function call inside

the function definition of v. For example, in Figure 5, J di-

rectly calls C and f but not h, because h cannot be the first

call inside J.

The extended CPS call graph G of E is a directed graph

wit h the set of function definition variables in E as nodes;

there is an edge from v to w in G if v directly calls w, or

v directly calls some function with w as its return contin-

uation. For example, the eztended CPS call graph for the

function it er in Figure 5 is as follows:

iter

“—-’

Although J is not directly called by h, we conservatively

assume that the function p will always call its return con-

tinuation, i.e., J.

The extended CPS call graph G of E essentially captures

a very simple set5 of control flow information in E. Cycles in

the graph imply loops or recursions (e.g., the path from h to

J to Q). The nested hierarchies of loops and recursions in E

can be revealed by running the Tarjan interval analysis6 al-

gorithm [34, 31] on G, assuming G is a reducible flow graph.

For the purpose of our closure analysis, this control flow in-

formation can be used to choose closure representations that

allow more efficient variable accesses in fr~quently-executed

program fragments (e.g., loops).

For every function definition v in E, we define its loop level

L(v) as the nesting depth of its interval in the extended CPS

call graph for E, assuming the outmost interval is at depth O.

For all other function variables that are not actually defined

in E (e.g., C, f ,p in Figure 5), their loop 2eve2s are defined

as O. The 2oop level of each call from v to w is defined as

L(v, w) = min(L(v), L(w)). The loop level for an arbitrary

CPS expression inside a function definition v is inductively

defined as follows:

L(if V than EI else E2) = maz(L(El), L(Ez));

L(let D in EI end) = L(EI);

L(AO(A1,A2,. . ..An)) = L(u, AO) if AO is a continuation,

and maz(L(v, Ao), L(v, Al)) if A. is a user function and

Al is its return continuation.

The loop level number can be used as a guide for static

branch prediction of control flow in E. For example,

in function it er, the loop level of h, J, Q is 1, and the

loop level of it er, C, f, p is O. In the CPS expression

“if z then . . . else . . . “ in J’s definition, J either calls

f with the return continuation q, or it calls the continuation

variable C. Clearly, the call to f and Q is inside a loop because

L(J, Q) = 1, while the call to C is not, because L(J, C) = O.

The closure representations for J and h should take more

considerations on the “else” branch because it is more likely

to be taken at runtime.

For each function definition w in the expression E, we

also define pred(w) as its predecessor set, i.e., the set of all

variables v such that there is an edge from v to w in E’s

extended CPS call graph.

4.2 Raw free variables with lifetime

To implement the safely-linked closures described in Sec-

tion 2, we want to group variables into closure records if

they have similar lifetimes. If v is defined much later than

w, z, y, then we may not have enough registers to hold w, z, y

while waiting for v. If y‘s last use is much earlier than w‘s or

x’s, then the record (w, z, y) might not obey the SSC rule.

5Shivers [32] presented more sophistical ed techniques that can
find even better approximations of control flow information.

6Given ~ flow ~aph G, a Tarjan interval iS eSSentiflY a single

entry, strongly<ormected subgraph of G; the interval analysis [31]
partitions the set of nodes in G into disjoint intervals, with each
interval representing a proper loop (or recursion) layer.

154

Function Stage Number Raw Free Variables Closure Strategy

it er 1 0 1 slot

h 2 {(p, 2,2), (C,3,3), (f, 3, 3), (h,4,4)} 2 slots

J 3 {(C,3,3), (f,3, 3), (a, 3,4), (h)4,4)} 3 slots

Q 4 {(a, 4, 4), (h, 4, 4)} 3 slots

Table 1: Raw free variables and closure strategies

Most closure conversion algorithms [2, 26, 33] start with

a phase to gather the set of raw free variables for each func-

tion definition in E. These free variables are called raw free

variables because some of them may be substituted by a set

of other free variables later during the ciosure representation

analysis phase; we use the true free variables to denote the

set of variables that are finally put in the closure environ-

ment.

Our algorithm does the same except that we are also gath-

ering the lifetime information at the same time. To define

the lifetime for a variable, we first assign a stage number

(denoted as SW) for each function definition w using the

following method:

● if w is the outmost function definition, then SN(W) = 1;

● if w is a user function, then SN(W) = 1 + SN(j) where

~ is the nearest enclosing function definition;

● if w is a continuation function, then SN(VJ) = 1+ maz{

SN(V) I v c precl(w) } (this definition is valid because

continuation functions are never recursive).

We then define the use time for each use of every CPS vari-

able v w SN(~) where ~ is the nearest enclosing function

definition for this use of v. The set of free variables for each

function definition ~ is now a set of triples (v, fut, Zut) where

v is the variable, fut is the jirst use time of v denoting the

smallest stage number of all uses of v inside ~, and Zut is the

last use time of v denoting the largest stage number of all

uses of v inside ~.

To reflect the control flow, the lut and fut numbers of v

can also be calculated based on the (predicted) execution

frequency of each use of v. For example, for a CPS expres-

sion if V then EI else Ez, we can ignore all uses of v in

EI (or Ez) if JZ(EI) > L(E2) (or L(Ez) > L(E1)) during

the calculation. The higher preference for those uses inside

a loop body would likely lead to more efficient closure rep-

resentation at runtime.

For example, the stage number and the set of raw free

variables for all function definitions in Figure 5 are shown

in Table 1. Notice that a variable can have different lut and

fut numbers inside different function definitions (e.g., a in J

and Q).

4.3 Closure strategy analysis

Closure strategy analysis essentially determines where in the

machine to allocate each closure. Unlike previous CPS com-

pilers [26, 33], we do not do any escape analysis7 because
we simply do not use a runtime stack. Our ciosure strategy

7The ~~cape analysis here refers to the analysis that decides

whether a function’s environment can be allocated on the stack
or not.

analysis only decides how many slots (i.e., registers) each

closure is going to use, denoted by S(f) for each function f.

We calculate S(f) using the following simple algorithm:

●

●

●

If ~ is an escaping user function, then S(t) = 1. This

essentially means that all its free variables must be put

in the heap. The closure for ~ is a pointer to a linked

data structure in the heap.

If ~ is an escaping continuation function, then S(f) = k

where k is the number of callee-save registers. Because

their call sites are not known at compile time, most

continuation functions have to use the uniform conven-

tion, i.e., always in k callee-save registers [6]. In special

cases, some continuation functions can be represented

differently; this will be briefly discussed in Section 5.3.

For known functions, since their call sites are all known

at compile time, their closures (or environments) may

be allocated completely in registers. However, the num-

ber of registers on the target machine can be limited,

and it may not always be desirable to allocate all free

variables in registers (see Section 5.2). We run the fol-

lowing iterative algorithm to calculate the appropriate

number of slots (registers) used for each known func-

tion:

1.

2.

Initially, each known function f is assigned m

slots, i.e., S(f) = m, where m is the maximum

number of available registers on the target ma-

chine minus the number of formal parameters of

function ~ (assuming they will be passed in regis-

ters);

Then, for each known function ~, we substi-

tute S(f) by min({T(vl),..., T(v~), S(f)}). Here

V1, V* are any subset of the functions in pred(f)

that do not enclose ~’s definition, i.e., ~ must

be free in these V1, v~. The value T(v) is

maz(l, S(v) — j) where j is the number of vari-

ables that are free in v but not in ~. This sub-

stitution process is then repeated until S(f) no

longer changes and a fixed points is reached.

The second step here is based on the observation that if

~ is called inside a function v, and j is also free in v, then

the number of slots assigned to ~ should not be bigger

than the number of slots available for v’s environment,

otherwise, some kind of spilling will be inevitable.

When choosing which subset of v; to use in calculating

S(f) at step 2, we can again take advantage of the con-
trol flow information in the extended CPS call graph.

‘This iterative process clearly terminates because T(v) ~ 1,
S(f) ~ 1, and the sum of S(f) (for all functions) gets smaller in
each round.

155

More specifically, we want to favor those program frag-

ments that are likely executed more often than others,

so we always choose those v, which has a higher L (vi, ~)

value (i.e., the call from v, to j is within a loop).

Let’s apply this algorithm to the function it er in Figure 5.

Suppose we use 3 callee-save registers, then both S(Q) and

S(J) are 3; S(h) is initially 14, assuming that there are 16

available registers on the target machine; then since Q calls

h, and a is free in Q but not in h, so S(h) should be mira(3 –

1, 14), which is 2, as shown in Table 1; notice that the call

from it er to h is not considered here because h is not free

in iter.

4.4 Closure representation analysis

Closure representation analysis solves the following problem:

“Given a function f, if f contains m free variables and is

assigned n slots, how to place these m values into n slots?”

Given a CPS expression E, the closure representation

analysis is done by processing each function definition

through a preorder traversal of E; during the traversal, we

maintain and update the following three data structures:

whatMap A static environment that maps every function

definition processed so far to its closure representation.

whereMap A list of currently visible closures and vari-

ables.

baseRegs The current contents of callee-save registers.

When traversing and processing each function definition f,

we do the following:

1.

2.

3.

Suppose the set of raw free variables of f found in the

last step (i.e., Section 4.2) is RFV, we first check if

f is recursive or mutually recursive with some other

functions, and then find the transitive closure RFV*

of f’s raw free variables. For example, w shown

in Table 1, function h is recursive and its RFV is

{(P,2, 2), (C, 3, 3), (f, 3, 3), (h,4,4)}; we remove hand re-
place it by its raw free variables. We also propagate h’s

fut and M numbers into each of its free variables by

taking the minimum of their fut numbers and the max-

imum of their lut numbers. As the result, the transitive

closure RFV* of h is {(p, 2, 4), (C, 3, 4), (f, 3, 4)}.

Next, we find the set of true free variables TFV of f

by replacing each continuation variable in RFV* by its

corresponding callee-save variables, and each function

definition by its closure contents (or slot variables). For

example, suppose we use three callee-save registers, each

continuation variable C is then represented by a code

pointer CO and its three callee-save variables C1, C2, c3.

The set of true free variables TFV for h is {(p, 2, 4),

(CO, 3,4), (Cl, 3,4), (C2, 3, 4), (C3, 3,4), (f, 3, 4)}. Notice

that CO, Cl, c2, C3 here naturally inherit C’s fut and lut

numbers.

Now assume that TFV of ~ contains m variables, and

f is assigned n slots by closure strategy analysis in

Section 4.3. If m < n, then we are done; otherwise,

we search through the current list of visible closures

maintained in the whereMap data structure, and see

4.

5.

We

the

if there is any closure record that we can reuse (or

share). The SSC rule mentioned in Section 1 is sat-

isfied by making sure that we only reuse those closures

whose cent ents are a subset of TF V. Because all closures

in the heap are safely linked closures, certain closure

sharings had already been anticipated while processing

the enclosing function definitions. If there are multiple

sharable closures, we use a “best fit” heuristic to decide

which one to reuse. In the example of function it er,

the closure CR (line 21 in Figure 6) is sharable by the

continuations J and Q.

If the size m of TFV after closure sharing is still larger

than n, we have to heap allocate part of the closure.

We do this by putting n – 1 variables into one slot each,

and packing the remaining m — n + 1 variables into

the heap closure. The criteria in choosing these n – 1

variables is baaed on the following priorities: the first

priority is smaller lut number; the second is smaller fut

number; the third is whether the variable is already in

the current callee-save registers (i.e., baseRegs) or not.

We also use the contents of baaeRegs to decide which

variable goes to which slot to avoid any possible register

moves. For example, the function h is assigned 2 slots

but h has 6 true free variables, we put the free variable

p in the register because it has the smallest futnumber

(all variables have the same lut number).

Finally, we decide the actual layout of the spilled heap

closure of the above m — n + 1 variables based on

each variable’s lut number. To satisfy SSC with shared

closures, each distinct lut number requires a separate

record. For example, the closure for G in Figure 1 was

split into two records because v’s lut number waa differ-

ent from those of w,x, y,z.

finish processing the function definition f by updating

whatMap, whereMap and baseRegs environments

accordingly based on f’s closure representation.

Not only is CR shared in Figure 6, but its creation is out-

side the h loop. Thus, each iteration of h manages to call

two unknown (escaping) functions without any memory traf-

fic! This is one of the most important strengths of our new

algorithm.

4.5 Access path for non-local free variables

Finding out the access path for each non-local free variable

v is just a breadth-first search of v in the whereMap en-

vironment. We use the ‘lazy display” technique used by

Kranz [26], so that loads of common paths can be shared.

More specifically, let’s look at the function i (the innermost

function inside f) in Figure 2: assuming that i uses the

safely linked closure shown in Figure 1, then accessing each

non-local variable (e.g., w, x, y, z) inside i requires traversing

two links; but we can first load the 2nd field of the closure I

into a register r, and then access w, x, y, and z directly from

r via one load. These intermediate variables (e.g., register r)

may use up all the available machine registers and cause un-

necessary register spilling, but this can always be avoided by

selectively keeping limited number of intermediate variables

in the “lazy display” (registers).

156

4.6 Remarks

Graph-coloring global register allocation and targeting,

which have been implemented by Lal George [17], will ac-

complish most control transfers (function calls) (such as line

12 and 13 in Figure 6) without any register-register moves.

This allows a more flexible boundary between callee-save and

caller-save registers than is normal in most compilers.

Programs, in our scheme, tend to accumulate values in

registers and only dump them into a closure at infrequent

intervals. It may be useful to use more callee-save (and fewer

caller-save) registers to optimize this.

Our closure scheme handles tail calls very nicely, simply

by re-arranging registers. Hanson [20] shows how compli-

cated things become when it’s necessary to m-arrange a

stack frame.

A source-language function that calls several other func-

tions in sequence would, in previous CPS compilers (includ-

ing our own) allocate a continuation closure for each call.

The callee-save registers and safely linked closures allow us

to allocate only once.

General deep recursions are handled very efficiently in our

scheme. A conventional stack implementation tends to have

a high space overhead per frame, but our closures are quite

concise. Thus, total memory usage (and cache coverage) of

recursions will be much less.

5 Case Studies

A good environment allocation scheme must implement fre-

quently used control structures very efficiently. Many com-

pilers identify special control structures at compile time, and

assign each of them a special closure allocation strategy.

For example, in Kranz’s Orbit compiler [26], all tailrecur-

sions are asssigned a so-called “stack/loop” strategy, and all

general recursions are assigned a “stack/recursion” strategy.

Our new closure conversion algorithm, on the other hand,

uniformly decides the closure strategy (i.e., number of slots)

and the closure representation for each function solely based

on the lifetime information of its free variables and simple

control flow information.

In Section 3, we have shown how our new algorithm im-

plements tail recursion very efficiently (i.e., function iter).

In this section, we use several more examples to show how

our new algorithm effectively deals with other common con-

trol structures such as a sequence of function applications,

calling a known function, and general recursion.

5.1 Function calls in sequence

One common control structure in functional programs is

making a sequence of function applications, as shown in the

following example:

fun f(g,u,v>w) =

let val x = g(u, v)
Val y = g(x, rl)

Valz= g(y, x)
in x+y+z+v+l

end

Here the function g (a formal parameter off) is called three

times in a row inside the function f. Under the traditional

stack scheme, when function f is called, an activation record

for f—containing formal parameters (i.e., g ,U,V, v) and local

variables (i.e., x, y ,z)—will be pushed onto the stack. Each

time before g is called, certain local variables in registers

must be saved onto the stack. For example, assuming all

function arguments (i.e., g ,U, v, w) and return results (i.e.,

x, y, z) are passed in registers, then before the first call to

g, the registers holding g and w must be saved so that they

can still be retrieved later after g returns.

If activation records are allocated on the heap, things get

much worse. Every time registers need to be saved before a

function call, a closure record has to be built on the heap.

Because heap allocated closures are not contiguous in mem-

ory, an extra memory write (and later a memory read) of

the frame pointer is necessary at each function call.

With our new closure analysis technique to make good use

of callee-save registers, heap-allocated activation records can

be made almost as efficient sa stack allocation [7]. The idea

is that we can always allocate most parts of the current ac-

tivation record in callee-save registers. With careful lifetime

analysis, register save/restore around several function calls

can often be eliminated or amalgamated, so function calls in

sequence need just write one heap record. Figure 7 lists the

01 fun f(co, ci, c2, c3, g,u,v, w) =
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
16
19
20

21

22

let

in

fti JO(J1 ,J2~J3, x) =
let fvn KO(K1 ,K2, K3, y) =

let fwn QO(Ql, Q2,Q3, z) =
let val v = select (4, Q1)

valr= Q3+Q2+Z+V+1
Val co = select (O, Ql)

veil Cl = select(l ,Ql)

Val C2 = select (2, Ql)

Vel C3 = select(3, Ql)

in co(cl, c2, c3, r)

end

Val go = select (0, K2)

fi @(K2>W>Kl, y, K3, y,K2)
end

val gO = select (0, J2)

in gO(J2, KO,Jl, J2, x,x, J3)
end

val CR = (CO, C1,C2, C3, V)
Val go = select (O, g)

gO(g, JO,cR, g,w, u,v)

Figure 7: Making a sequence of function calls

code of function f after translation into CLO (by our new al-

gorithm in Section 4). Continuations are still represented as

one code pointer plus three callee-save registers, all denoted

by capital letters. As before, escaping function calls (i.e.,

calls to g on line 14,17,21) are implemented as first selecting

the Oih field, placing the closure itself in a special register

(the first formal parameter), and then doing a “jump with

arguments” (lines 13-14, 16-17,20-21). Before the first call

to g (line 21), we put variables that have smaller lut num-

bers (i.e., g, w) callee-save registers (i.e., J2, J3), and spill

the rest (i.e., CO-C3, v) into a heap record CR (line 19). At
the second and the third calls to g (line 17,14), no register

save/restore are necessary. This is because the lifetime of w

and x (also g and y) does not overlap, so they can just share

one callee-save register (i.e., J3 and K3, K2 and Q2).

157

5.2 Lambda lifting on known function

Lambda Zifting [22] is a well-known transformation that

rewrites a program into an equivalent one in which no func-

tion haa free variables. Lambda lifting on known func-

tions essentially corresponds to the special closure allocation

strategy that allocates as many free variables in registers as

possible. But this special strategy does not always generate

very efficient code [26]. For example, in the following pro-

gram, assume that f is a known function, and p, w, x, y, and

z are its free variables.

funfu= (p u, U+w+x+y+z+l)

fun g(x, y) = (p x, f x, f y)

If the closure for f is allocated in registers, then before the

call to p inside g, some of f‘s free variables must be saved

onto the heap (assuming there are only three callee-save reg-

isters); when the call to p returns, these variables must be

reloaded back into registers, and passed to function f; after

entering f, some of them again have to be saved when f calls

p, and so on. Clearly, allocating f‘s environment in registers

dramatically increases the need for more callee-save registers

inside g. This leads to more memory traffic when there are

only a limited number of callee-save registers.

The closure strategy analysis described in Section 4.3 uses

an iterative algorithm to decide the number of registers as-

signed to each known function. The number of registers

assigned to f will be restricted by those of its callers, i.e.,

the return continuation for p x and the return continuation

for the first call to f. As a result, f is only assigned one slot,

and its closure will be allocated in the heap.

5.3 General recursion

The closure strategy analysis algorithm described in Sec-

tion 4.3 conservatively represents all continuation functions

using the same (fixed) number of callee-save registers. This

rest riction can be relaxed: continuations that are passed

to known functions can be represented in any number of

callee-save registers. This special calling convention is espe-

cially desirable for general recursions such as the map func-

tion shown as follows (after translation into CPS):

fun map(C,f,l) =
let fun m(J, z) =

if (z=[I) then [1
else (let val a = csx z

val r = cdr z
fun K(b) =

let fun Q(s) =
let val y = b::s

in J(y)
end

in m(Q, r)

end

in f(K, a)

end)

in III(C,1)
end

Notice that the recursive function m is called only at two

places: one by function map with C as the return continu-

ation, one inside K with Q as the return continuation. Be-

cause the second call to m is a recursive call, it will be ex-

ecuted much more often at runtime. We can represent all

normal continuation functions in three callee-save registers,

but represent continuations J and Q in two callee-save regis-

ters. Figure 8 lists the code of function map after translation

into CLO using the above special calling convention.

01 fun map(CO,Cl, C2,C3,f,l) =

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

let fun RO(R1, R2, X) =
let val CO = select (O,Rl)

val Cl = select (1 ,Rl)
val C3 = select (2, Rl)

in CO(C1, R2, C3, X)
end

fun m(JO, Jl, J2, z,f) =
if (z=[]) then JO(J1, J2, [])
else (let val a = car z

valr=cdxz
fun KO(K1 ,K2,K3,b) =

let fun QO(Q1, Q2, S) =
let val y = Q2::s

val JO = select (O,Ql)
val J1 = select (1 ,Ql)
val J2 = select (2,Ql)

in Jo(Jl,J2, y)
end

in m(QO, Kl, b, K2, K3)
end

val cR = (JO, J1,J2)
val fO = select (O, f)

in fO(f, KO,CR,r,f, a)
end)

Val cc = (CO,CI,C3)
in m(RO, CC,C2,1, f)

end

Figure 8: Function map using special calling conventions

Here m is a known function, and the environment for m

(i.e., the free variable f) is allocated in a register (i.e., f is

treated as an extra argument of m, see line 9,21,28). Since

continuation C still uses the normal calling convention, when

it is passed to the function m (line 28), a new “coercion” con-

tinuation (i.e., RO on line 2-7) has to be built to adjust the

normal convention (three callee-save registers CO-C3) into

the special convention (two callee-save registers RO-R2). Be-

cause the return continuation J of m is represented in two

callee-save registers (i.e., JO-J2), we can build a smaller heap

closure (of size 3, on line 23) for continuation K.

If both J and Q are represented in three callee-save regis-

ters, the heap closure for K would at least be of size 4.

6 Measurements

We have implemented our new “space-efficient” closure con-

version algorithm in the Standard ML of New Jersey com-

piler version 1.01. We compare the performance of two com-

pilers, using our Old algorithm [2, 6] and the New algorithm

described in this paper. The Old algorithm uses a hybrid

scheme: it uses linked closure representation if it is space

safe, otherwise it uses flat closure representation. Both the

Old and New compilers satisfy the “safe for space complex-

ity” rule. Both compilers represent continuation closures

using three callee-save registers. Both compilers use rep re-

158

Program

Barnes-Hut

Bover

CML-sieve

Knuth-Bendix

Lexgen

Life

Ray

Simple

VLIW

YACC

Average

Program Size Description

Barnes-Hut 3036 N-body problem solver.

Boyer 919 Standard theorem-prover benchmark.

CML-sieve 1356 CML implementation of prime number generator.

Knuth-Bendix 655 The Knuth-Bendix completion algorithm.

Lexgen 1185 A lexical-analyzer generator.

Life 148 The game of Life implemented using lists.

Ray 874 A simple ray tracer.

Simple 990 Aspherical fluid-dynamics program.

VLIW 3658 AVLIW instruction scheduler.

YACC 7432 An implementation of an LALR parser generator.

Table 2: General Information about the Benchmark Programs

Links Traversed Allocation Size

(millions) (meeawords)

10.97 4.86 55.70% 13.89 10.09 27.36%

43.15% 35.85%

Execution Time Code Size

(seconds)

Old New Savings Savings

33.11 28.14 15.01% 16.91%

2.70 2.37 12.22% 13.36%

35.02 30.55 12.76% 16.19%

8.02 6.25 22.07~o 14.57%

12.33 11.07 10.22% 18.68%

1.42 1.25 11.97% 14.83%

25.89 22.40 13.48% 19.65%

24.18 18.86 22.00% 38.63%

20.81 12.05 42.10% 23.98%

4.94 4.35 11.9470 26.29%

17.38% I 20.31%

Table 3: Performance of the Benchmark Programs

Escaping User Known User Continuation Record Other

(megawords) (megawords) (megawords) (megawords) (megawords)

Program Old New Old New Old New Old New Old New

Barnes-Hut 1.21 1.02 10.47 2.86 29.92 24.89 10.07 10.07 0.17 0.17

Boyer 1.91 1.18 0.00 0.48 4.88 3.17 0.95 0.95 3.49 0.00

CML-sieve 7.28 7.28 11.40 8.29 22.85 6.24 11.95 11.95 0.00 0.00

Knuth-Bendix 12.49 5.99 0.04 1.45 24.28 12.92 4.11 4.11 0.00 0.00

Lexgen 1.39 0.48 0.57 0.64 16.54 6.90 0.75 0.75 2.12 0.00

Life 0.06 0.06 0.00 0.06 1.44 0.63 0.79 0.79 0.08 0.08

Ray 0.00 0.00 0.01 2.11 14.42 9.96 13.89 13.89 0.00 0.00

Simple 7.37 5.87 3.01 1.30 54.10 25.23 5.92 5.92 0.00 0.00

VLIW 7.38 6.78 2.67 3.07 32.98 15.72 5.75 5.75 0.73 0.30

YACC 0.23 0.23 2.80 2.04 8.80 5.92 1.85 1.85 0.21 0.04

Table 4: Allocation Breakdown of the Benchmark Programs

159

sentation analysis [28] to allow arguments being passed in

registers. The “lazy display” technique is implemented in

both compilers, however it is used more effectively in the

New compiler because of its more extensive use of shared

closures.

Table 2 shows the set of benchmarks we use and the source

program size in number of lines. Table 3 shows the number of

memory fetches for local/global variables, total heap aHoca-

tion size, the execution time (user time plus system time) on

a DECstation 5000, and the code size (only show the “sav-

ings”) for both the Old and New compilers. On average, the

New compiler reduces heap allocation by 36% and memory

fetches for local/global variables by 43%; and improves the

already efficient code generated by the Old compiler by 17%.

The New compiler also uniformly generates more compact

code, achieves an average of 20% reduction in code size over

the Old compiler. The VLIW benchmark—an instruction

scheduler—achieves up to 42~0 speedup in execution time,

because it gets significant benefits from the extensive closure

sharing in our new closure conversion algorithm.

We have also measured the allocation profile of vari-

ous kinds of closures, shown in Table 4: Escaping User,

Known User, and Continuation are respectively the total

size of closures (in megawords) allocated for escaping user

function, known user function, and continuation function;

Record includes cons cells and other explicitly allocated

non-closures; Other includes arrays, references, and regis-

ter spills. Most of the reduction in heap allocation is from

the continuation closures; closure analysis does nothing to

reduce the allocation of records and arrays.

7 Comparison with Other Schemes

Our work on closure analysis is related to, and influenced

by, many other research results.

Closure analysis: Steele [33] used continuation closures

instead of “stack frames;” Rozas [30] and Kranz [25, 26]

used closure analysis to choose specialized representa-

tions for different kinds of closures; Appel and Jim in-

vestigated closure-sharing strategies [3]. We combine all

of these analyses (except stack allocation) and more.

Tail calls: Hanson [20] showed the complexity of imple-

menting tail calls correctly and efficiently on a conven-

tional stack.

Closure-passing style: Lambda notation has often been

used to represent the results of closure analysis (this is

also called “lambda lifting”) [14, 22, 4, 24].

Efficient call/cc: Many have tried to make call/cc efFi-

cient [15, 13, 21].

Callee-save registers: Dataflow analysis can help decide

whether to put variables in caller-save or callee-save reg-

isters [12, 19]. We had shown how to represent callee-

save registers in continuation-passing style [6, 2] but our

new algorithm does a much better job of it.

Safe space complexity: The notion that certain compiler

optimizations can cause space leaks by remembering too

much is old, but only recently appreciated [9, 11, 2].

The Chalmers Lazy-ML compiler [8] and the SML/NJ

compiler [5] are the only ones we know of that guarantee

“space safety.”

Globalization: Local variables of different functions with

nonoverlapping live ranges can be allocated to the same

register or global without any save/restore [18, 12].

A stack of regions: Tofte and Talpin have demonstrated

an analysis that can avoid garbage collection en-

tirely [35], but unfortunately it does not satisfy the “safe

for space complexity” rule.

8 Conclusions

Our new closure conversion algorithm is a great success. The

closure conversion algorithm itself is faster than our previous

algorithm. It makes every program smaller (by an average

of 20Yo) and faster (by an average of 17% over many bench-

marks). It decreases the rate of heap allocation by 36%,

and (by obeying the “safe for space complexity” rule and

keeping closures small) helps reduce the amount of live data

preserved by garbage collection.

The closure analysis technique introduced in this paper

can also be applied to compilers that do not use CPS as

their intermediate languages. Both safely-linked closures

and good use of callee-save registers are essential in building

any real efficient compilers that want to satisfy the “safe for

space complexity” rule.

Acknowledgement

We would like to thank Trevor Jim, Xavier Leroy, John

Reppy, Jean-Pierre Talpin, and the LFP program commit-

tee for comments on an early version of this paper. This

research is supported by the National Science Foundation

Grant CCR-9002786 and CCR-9200790.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Andrew W. Appel. Garbage collection can be faster than
stack allocation Information Processing Letter, 25(4):275–

79, 1987.

Andrew W. Appel. Compiling with Continuations. Cam-

bridge University Press, 1992.

Andrew W. Appel and Trevor Jim. Optimizing closure
environment represent ations. Technical Report 168, Dept.
of Computer Science, Princeton University, Princeto~ NJ,
1988.

Andrew W. Appel and Trevor Jim. Continuatiompassing,
closure-passing style. In Sixteenth ACM Symp. on Principles

of Programming Languages, pages 293–302, New York, 1989.
ACM Press.

Andrew W. Appel and David B. MacQueen. Standani ML of
New Jersey. In Martin Wirsing, editor, ThiTd Int’1 Symp. on

Prog. Lang. Implementation and Logic Programming, pages

1–13, New York, August 1991. Springer-Verlag.

Andrew W. Appel and Zhong Shao. Callee-save registers in
continuation-passing style. Lisp and Symbolic Computation,

5(3):191–221, 1992.

Andrew W. Appel and Zhong Shao. An empirical and ana-

lytic study of stack vs. heap cost for languages with closures.

Technical Report CS-TR450-94, Princeton University, De-

partment of Computer Science, Princetoq NJ, March 1994.

160

[8] Lennmt Augustsson. Garbage collection in the < v, g >-
machine. Technical Report PMG memo 73, Dept. of Com-

puter Sciences, Chahners University of Technology, Gote-

borg, Sweden, December 1989.

[9] Henry G. Baker. The buried binding and stale binding prob-

lems of LISP 1.5. unpublished, undistributed paper, June

1976.

[10] Luca Cardelli. Compiling a functional language. In PTOC.

oj the 1984 ACM Conjevence on Lisp and Functional PTo-

gTamming, pages 208-217, August 1984.

[11] David R. Chase. Safety considmations for storage allocation

optimization. in PTOC. ACM SIGPLA N ’88 Conj. on PTog.

Lang. Design and Implementation, pages 1–9, New York,

June 1988. ACM Press.

[12] Fred C. Chow. Minimizing register usage penalty at pro-

cedure calls. In PTOC. ACM SIGPLAN ’88 Conf. on PTog.

Lang. Design and Implementation, pages 85–94, New York,

June 1988. ACM Press.

[13] William D Clinger, Anne H Hartheimer, and Eric M Ost.

Implementation strategies for continuations. In 1988 ACM

ConjeTence on Lisp and Fucntional PTogTamming, pages

124–131, New York, June 1988. ACM Press.

[14] G. Cousineau, P. L. Curien, and M. Mauny. The categorical
abstract machine. In J. P. Jouaunau~ editor, Functional

Programming Languages and Computer Architecture, LNCS

Vol 201, pages 50–64, New York, 1985. Springer-Verlag.

[15] Olivier Danvy. Memory allocation and higher-crder func-

tions. In Proceedings of the SIGPLAN’87 Symposium on In-

teTpTetem and InteTpTetive Techniques, pages 241-252. ACM

Press, June 1987.

[16] Amer Diwan, David Tarditi, and Eliot Moss. Memory sub-

system performan ce of programs using copying garbage col-

lection. In PTOC. 21st Annual ACM SIGPLAN-SIGA CT

Symp. on Principles of PTogTamming Languages, pages l–

14. ACM Press, 1994.

[17] Lal George, Florent Guillaume, and John Reppy. A portable

and optimizing backend for the SML/NJ compiler. In PTO-

ceedings of the 1994 International Conference on CompileT

Construction, page (to appear), April 1994.

[18] Carsten K. Gomard and Peter Sestoft. Globalization and

live variables. In Proceedings of the 1991 Symposium on

Pa Ttial Evaluation and Semantics-Based ProgTam Manipu-

lation, pages 166-177. ACM Press, June 1991.

[19] Jr. Guy L. Steele and Gerald Jay Sussman. The dream of a

lifetime A lazy variable extent mechanism. In Proceedings oj

the 1980 LISP ConjeTence, pages 163–172, Stanford, 1980.

[20] Chris Hanson. Efficient stack allocation for tail-recursive

languages. In 1990 ACM Conference on Lisp and Fucntional

PTogTamming, pages 106-118, New York, June 1990. ACM

Press.

[21] Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Repre-

senting control in the presence of fist-class continuations. In

Proc. ACM SIGPLAN ’90 Conf. on PTog. Lang. Design and

Implementation, pages 6&77, New York, 1990. ACM Press.

[22] Thcunas Johnsson. L_bda Lifting: ‘lkansforming ProgranM

to Recursive Equations. In The Second International Con-

ference on Functional PTogTamming Language. and Com-

put eT ATchit ectuTe, pages 190–203, New York, September

1985. Springm-Verlag.

[23] Norman P. Jouppi. Cache write policies and performance.

In Proceedings of the 20th Annual Intemiational Symposium

on ComputeT ATchitectuTe7 pages 191–201. ACM Press, May
1993.

[24] Richard Kelsey and Paul Hudak. Realistic compilaticm by

program transformation. In Sixteenth ACM Symp. on PTin-

cip les of PTogTamming Languages, pages 281–92, New York,

1989. ACM Press.

[25] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and
N. Adams. ORBIT: An optimizing compiler for Scheme.
SIGPLAN Notices (PTOC. Sigplan ’86 Symp. on CompilcT

Constmction), 21(7):219-33, July 1986.

[26] David Kranz. ORBIT: An optimizing compileT joT Scheme.

PhD thesis, Yale University, New Haven, CT, 1987.

[27] P. J. Landin. The mechanical evaluation of expressions.

Computm .70timtal, 6(4):30S20, 1964.

[28] Xavier Leroy. Unboxed objects and polymorphic typing. In

Nineteenth Annual ACM Symp. on Principles of PTog. Lan-

guages, New York, Jan 1992. ACM Press.

[29] Robin Milner, Mads Tofte, and Robert Harper. The Defini-

tion of StandaTd ML. MIT Press, Cambridge, Massachusetts,

1990.

[30] Guillermo Juan Rozas. Liar, an algol-like compiler for

scheme. S .B. thesis, MIT Dept. of Computer Science and

Electrical Engineering, June 1984.

[31] Barbara G. Ryder and Marvin C. PauU. Elimination al-

gorithms for data flow analysis. ACM Computing Sumeys,

18(3):277–316, September 1986.

[32] C)lin Shivers. Cont70/-F/ow Analysis of High eT- OTdeT Lan-

guages. PhD thesis, Carnegie-Mellon University, Pittsburgh

PA, May 1991. CMU-CS-91-145.

[33] Guy L. Steele. Rabbit: a compiler for Scheme. Technical

Report AI-TR-474, MIT, Cambridge, MA, 1978.

[34] Robert E. Tarjan. Testing flow graph reducibility. Journal

of ComputeT and System Science, 9(3):355–365, December

1974.

[35] Mads Tofte and Jean-Pierre Talpin. Implementation of

the typed call-by-value A-calculus using a stack of regions.

In PTOC. 21st Annual ACM SIGPLAN-SIGA CT Symp. on

Principles of PTogTamming Languages, pages 188-201. ACM

Press, 1994.

[36] David M. Ungar. The Design and Evaluation of a High

PeTfoTmance Smalltalk System. MIT Press, Cambridge, MA,

1986.

161

