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Abstract

Several recent studies have introduced lightweight ver�
sions of Java� reduced languages in which complex fea�
tures like threads and re�ection are dropped to enable
rigorous arguments about key properties such as type
safety� We carry this process a step further� omitting
almost all features of the full language �including inter�
faces and even assignment� to obtain a small calculus�
Featherweight Java� for which rigorous proofs are not
only possible but easy�

Featherweight Java bears a similar relation to full
Java as the lambda�calculus does to languages such
as ML and Haskell� It o�ers a similar computational
�feel�	 providing classes� methods� 
elds� inheritance�
and dynamic typecasts� with a semantics closely follow�
ing Java�s� A proof of type safety for Featherweight
Java thus illustrates many of the interesting features
of a safety proof for the full language� while remaining
pleasingly compact� The syntax� type rules� and opera�
tional semantics of Featherweight Java 
t on one page�
making it easier to understand the consequences of ex�
tensions and variations�

As an illustration of its utility in this regard� we
extend Featherweight Java with generic classes in the
style of GJ �Bracha� Odersky� Stoutamire� and Wadler�
and sketch a proof of type safety� The extended system
formalizes for the 
rst time some of the key features of
GJ�

Subject areas� theoretical foundations� language de�
sign and implementation�

� Introduction

�Inside every large language is a small language
struggling to get out����

Formal modeling can o�er a signi
cant boost to the de�
sign of complex real�world artifacts such as program�
ming languages� A formal model may be used to de�
scribe some aspect of a design precisely� to state and

prove its properties� and to direct attention to issues
that might otherwise be overlooked� In formulating a
model� however� there is a tension between completeness
and compactness� the more aspects the model addresses
at the same time� the more unwieldy it becomes� Often
it is sensible to choose a model that is less complete but
more compact� o�ering maximum insight for minimum
investment� This strategy may be seen in a �urry of
recent papers on the formal properties of Java� which
omit advanced features such as concurrency and re�ec�
tion and concentrate on fragments of the full language
to which well�understood theory can be applied�

We propose Featherweight Java� or FJ� as a new con�
tender for a minimal core calculus for modeling Java�s
type system� The design of FJ favors compactness over
completeness almost obsessively� having just 
ve forms
of expression� object creation� method invocation� 
eld
access� casting� and variables� Its syntax� typing rules�
and operational semantics 
t comfortably on a single
page� Indeed� our aim has been to omit as many fea�
tures as possible � even assignment � while retaining
the core features of Java typing� There is a direct cor�
respondence between FJ and a purely functional core of
Java� in the sense that every FJ program is literally an
executable Java program�

FJ is only a little larger than Church�s lambda cal�
culus 
�� or Abadi and Cardelli�s object calculus 
���
and is signi
cantly smaller than previous formal models
of class�based languages like Java� including those put
forth by Drossopoulou� Eisenbach� and Khurshid 
����
Syme 
���� Nipkow and Oheimb 
���� and Flatt� Krish�
namurthi� and Felleisen 
��� ���� Being smaller� FJ lets
us focus on just a few key issues� For example� we have
discovered that capturing the behavior of Java�s cast
construct in a traditional �small�step	 operational se�
mantics is trickier than we would have expected� a point
that has been overlooked or underemphasized in other
models�

One use of FJ is as a starting point for modeling
languages that extend Java� Because FJ is so compact�
we can focus attention on essential aspects of the exten�
sion� Moreover� because the proof of soundness for pure
FJ is very simple� a rigorous soundness proof for even
a signi
cant extension may remain manageable� The
second part of the paper illustrates this utility by en�
riching FJ with generic classes and methods �a la GJ 
���
The model omits some important aspects of GJ �such

�



as �raw types	 and type argument inference for generic
method calls�� Nonetheless� it has been a useful tool
in clarifying our thought� and led to the discovery and

x of at least one bug in the GJ compiler� Because the
model is small� it is easy to contemplate further exten�
sions� and we have begun the work of adding raw types
to the model� so far� this has revealed at least one corner
of the design that was underspeci
ed�

Our main goal in designing FJ was to make a proof of
type soundness ��well�typed programs don�t get stuck	�
as concise as possible� while still capturing the essence
of the soundness argument for the full Java language�
Any language feature that made the soundness proof
longer without making it signi
cantly di�erent was a
candidate for omission� As in previous studies of type
soundness in Java� we don�t treat advanced features
such as concurrency� inner classes� and re�ection� Other
Java features omitted from FJ include assignment� in�
terfaces� overloading� messages to super� null pointers�
base types �int� bool� etc��� abstract method declara�
tions� shadowing of superclass 
elds by subclass 
elds�
access control �public� private� etc��� and exceptions�
The features of Java that we do model include mutually
recursive class de
nitions� object creation� 
eld access�
method invocation� method override� method recursion
through this� subtyping� and casting�

One key simpli
cation in FJ is the omission of as�
signment� We assume that an object�s 
elds are initial�
ized by its constructor and never changed afterwards�
This restricts FJ to a �functional	 fragment of Java�
in which many common Java idioms� such as use of
enumerations� cannot be represented� Nonetheless� this
fragment is computationally complete �it is easy to en�
code the lambda calculus into it�� and is large enough
to include many useful programs �many of the programs
in Felleisen and Friedman�s Java text 
��� use a purely
functional style�� Moreover� most of the tricky typing
issues in both Java and GJ are independent of assign�
ment� An important exception is that the type inference
algorithm for generic method invocation in GJ has some
twists imposed on it by the need to maintain soundness
in the presence of assignment� This paper treats a sim�
pli
ed version of GJ without type inference�

The remainder of this paper is organized as follows�
Section � introduces the main ideas of Featherweight
Java� presents its syntax� type rules� and reduction
rules� and sketches a type soundness proof� Section �
extends Featherweight Java to Featherweight GJ� which
includes generic classes and methods� Section � presents
an erasure map from FGJ to FJ� modeling the tech�
niques used to compile GJ into Java� Section � discusses
related work� and Section � concludes�

� Featherweight Java

In FJ� a program consists of a collection of class def�
initions plus an expression to be evaluated� �This ex�
pression corresponds to the body of the main method in
Java�� Here are some typical class de
nitions in FJ�

class Pair extends Object �
Object fst�
Object snd�
Pair�Object fst� Object snd� �

super��� this�fst�fst� this�snd�snd�

�
Pair setfst�Object newfst� �

return new Pair�newfst� this�snd��
�

�

class A extends Object �
A�� � super��� �

�

class B extends Object �
B�� � super��� �

�

For the sake of syntactic regularity� we always in�
clude the supertype �even when it is Object�� we always
write out the constructor �even for the trivial classes
A and B�� and we always write the receiver for a 
eld
access �as in this�snd� or a method invocation� Con�
structors always take the same stylized form� there is
one parameter for each 
eld� with the same name as the

eld� the super constructor is invoked on the 
elds of
the supertype� and the remaining 
elds are initialized
to the corresponding parameters� Here the supertype is
always Object� which has no 
elds� so the invocations
of super have no arguments� Constructors are the only
place where super or � appears in an FJ program� Since
FJ provides no side�e�ecting operations� a method body
always consists of return followed by an expression� as
in the body of setfst���

In the context of the above de
nitions� the expres�
sion

new Pair�new A��� new B����setfst�new B���

evaluates to the expression

new Pair�new B��� new B����

There are 
ve forms of expression in FJ� Here� new A���
new B��� and new Pair�e��e�� are object constructors�
and e	�setfst�e
� is a method invocation� In the body
of setfst� the expression this�snd is a �eld access� and
the occurrences of newfst and this are variables� FJ
di�ers from Java in that this is an ordinary variable
rather than a special keyword�

The remaining form of expression is a cast� The
expression

��Pair�new Pair�new Pair�new A��� new B����
new A����fst��snd

evaluates to the expression

new B���

Here� ��Pair�e��� where e� is new Pair������fst� is
a cast� The cast is required� because e� is a 
eld access
to fst� which is declared to contain an Object� whereas
the next 
eld access� to snd� is only valid on a Pair� At
run time� it is checked whether the Object stored in the
fst 
eld is a Pair �and in this case the check succeeds��

In Java� one may pre
x a 
eld or parameter declara�
tion with the keyword final to indicate that it may not
be assigned to� and all parameters accessed from an in�
ner class must be declared final� Since FJ contains
no assignment and no inner classes� it matters little
whether or not final appears� so we omit it for brevity�



Dropping side e�ects has a pleasant side e�ect� eval�
uation can be easily formalized entirely within the syn�
tax of FJ� with no additional mechanisms for model�
ing the heap� Moreover� in the absence of side e�ects�
the order in which expressions are evaluated does not
a�ect the 
nal outcome� so we can de
ne the opera�
tional semantics of FJ straightforwardly using a nonde�
terministic small�step reduction relation� following long�
standing tradition in the lambda calculus� Of course�
Java�s call�by�value evaluation strategy is subsumed by
this more general relation� so the soundness properties
we prove for reduction will hold for Java�s evaluation
strategy as a special case�

There are three basic computation rules� one for 
eld
access� one for method invocation� and one for casts�
Recall that� in the lambda calculus� the beta�reduction
rule for applications assumes that the function is 
rst
simpli
ed to a lambda abstraction� Similarly� in FJ the
reduction rules assume the object operated upon is 
rst
simpli
ed to a new expression� Thus� just as the slogan
for the lambda calculus is �everything is a function�	
here the slogan is �everything is an object�	

Here is the rule for 
eld access in action�

new Pair�new A��� new B����snd �� new B��

Because of the stylized form for object constructors� we
know that the constructor has one parameter for each

eld� in the same order that the 
elds are declared� Here
the 
elds are fst and snd� and an access to the snd 
eld
selects the second parameter�

Here is the rule for method invocation in action ��
denotes substitution��

new Pair�new A��� new B����setfst�new B���

��

�
new B���newfst�
new Pair�new A���new B����this

�

new Pair�newfst� this�snd�
i�e�� new Pair�new B���

new Pair�new A��� new B����snd�

The receiver of the invocation is the object
new Pair�new A��� new B���� so we look up the
setfst method in the Pair class� where we 
nd
that it has formal parameter newfst and body
new Pair�newfst� this�snd�� The invocation reduces
to the body with the formal parameter replaced by
the actual� and the special variable this replaced
by the receiver object� This is similar to the beta
rule of the lambda calculus� ��x�e��e� �� 
e��x�e��
The key di�erences are the fact that the class of
the receiver determines where to look for the body
�supporting method override�� and the substitution of
the receiver for this �supporting �recursion through
self	�� Readers familiar with Abadi and Cardelli�s
Object Calculus will see a strong similarity to their �
reduction rule 
��� In FJ� as in the lambda calculus and
the pure Abadi�Cardelli calculus� if a formal parameter
appears more than once in the body this may lead
duplication of the actual� but since there are no side
e�ects this causes no problems�

Here is the rule for a cast in action�

�Pair�new Pair�new A��� new B���
�� new Pair�new A��� new B���

Once the subject of the cast is reduced to an object� it
is easy to check that the class of the constructor is a
subclass of the target of the cast� If so� as is the case
here� then the reduction removes the cast� If not� as in
the expression �A�new B��� then no rule applies and the
computation is stuck� denoting a run�time error�

There are three ways in which a computation may
get stuck� an attempt to access a 
eld not declared for
the class� an attempt to invoke a method not declared
for the class ��message not understood	�� or an attempt
to cast to something other than a superclass of the class�
We will prove that the 
rst two of these never happen
in well�typed programs� and the third never happens
in well�typed programs that contain no downcasts �or
�stupid casts	�a technicality explained below��

As usual� we allow reductions to apply to any subex�
pression of an expression� Here is a computation for the
second example expression� where the next subexpres�
sion to be reduced is underlined at each step�

��Pair�new Pair�new Pair�new A���
new B���� new A����fst��snd

�� ��Pair�new Pair�new A���new B�����snd
�� new Pair�new A��� new B����snd
�� new B��

We will prove a type soundness result for FJ� if an ex�
pression e reduces to expression e�� and if e is well typed�
then e� is also well typed and its type is a subtype of
the type of e�

With this informal introduction in mind� we may
now proceed to a formal de
nition of FJ�

��� Syntax

The syntax� typing rules� and computation rules for FJ
are given in Figure �� with a few auxiliary functions in
Figure ��

The metavariables A� B� C� D� and E range over class
names� f and g range over 
eld names� m ranges over
method names� x ranges over parameter names� d and
e range over expressions� CL ranges over class decla�
rations� K ranges over constructor declarations� and M
ranges over method declarations� We write f as short�
hand for f��� � � �fn �and similarly for C� x� e� etc�� and
write M as shorthand for M�� � � Mn �with no commas�� We
write the empty sequence as � and denote concatenation
of sequences using a comma� The length of a sequence x
is written ��x�� We abbreviate operations on pairs of se�
quences in the obvious way� writing �C f	 as shorthand
for �C� f��� � � �Cn fn	� and similarly �C f
	 as short�
hand for �C� f�
� � � Cn fn
	� and �this�f�f
	 as short�
hand for �this�f��f�
� � � 
this�fn�fn
	� Sequences of

eld declarations� parameter names� and method decla�
rations are assumed to contain no duplicate names�

A class table CT is a mapping from class names C
to class declarations CL� A program is a pair �CT � e� of
a class table and an expression� To lighten the notation
in what follows� we always assume a �xed class table
CT �

The abstract syntax of FJ class declarations� con�
structor declarations� method declarations� and expres�
sions is given at the top left of Figure �� As in Java� we
assume that casts bind less tightly than other forms of



Syntax�

CL ��� class C extends C �C f
 K M�

K ��� C�C f� �super�f�
 this�f � f
�

M ��� C m�C x� �return e
�

e ��� x
j e�f
j e�m�e�
j new C�e�
j �C�e

Subtyping�

C �� C

C �� D D �� E

C �� E

CT �C� � class C extends D �����

C �� D

Computation�

�elds�C� � C f

�new C�e���fi �� ei
�R�Field�

mbody�m� C� � �x� e��

�new C�e���m�d�
�� 
d�x� new C�e��this�e�

�R�Invk�

C �� D

�D��new C�e�� �� new C�e�
�R�Cast�

Expression typing�

� � x � ��x� �T�Var�

� � e� � C� �elds�C�� � C f

� � e��fi � Ci
�T�Field�

� � e� � C�
mtype�m� C�� � D�C
� � e � C C �� D

� � e��m�e� � C
�T�Invk�

�elds�C� � D f
� � e � C C �� D

� � new C�e� � C
�T�New�

� � e� � D D �� C

� � �C�e� � C
�T�UCast�

� � e� � D C �� D C �� D

� � �C�e� � C
�T�DCast�

� � e� � D C ��� D D ��� C
stupid warning

� � �C�e� � C
�T�SCast�

Method typing�

x � C� this � C � e� � E� E� �� C�
CT �C� � class C extends D �����

override�m� D� C�C��

C� m �C x� �return e�
� OK IN C

Class typing�

K � C�D g� C f� �super�g�
 this�f � f
�
�elds�D� � D g M OK IN C

class C extends D �C f
 K M� OK

Figure �� FJ� Main de
nitions



Field lookup�

�elds�Object� � �

CT �C� � class C extends D �C f
 K M�
�elds�D� � D g

�elds�C� � D g� C f

Method type lookup�

CT �C� � class C extends D �C f
 K M�
B m �B x� �return e
� � M

mtype�m� C� � B�B

CT �C� � class C extends D �C f
 K M�
m is not de
ned in M

mtype�m� C� � mtype�m� D�

Method body lookup�

CT �C� � class C extends D �C f
 K M�
B m �B x� �return e
� � M

mbody�m� C� � �x� e�

CT �C� � class C extends D �C f
 K M�
m is not de
ned in M

mbody�m� C� � mbody�m� D�

Valid method overriding�

mtype�m� D� � D�D�� implies C � D and C� � D�

override�m� D� C�C��

Figure �� FJ� Auxiliary de
nitions

expression� We assume that the set of variables includes
the special variable this� but that this is never used
as the name of an argument to a method�

Every class has a superclass� declared with extends�
This raises a question� what is the superclass of the
Object class� There are various ways to deal with this
issue� the simplest one that we have found is to take
Object as a distinguished class name whose de
nition
does not appear in the class table� The auxiliary func�
tions that look up 
elds and method declarations in the
class table are equipped with special cases for Object
that return the empty sequence of 
elds and the empty
set of methods� �In full Java� the class Object does have
several methods� We ignore these in FJ��

By looking at the class table� we can read o� the sub�
type relation between classes� We write C �� D when C is
a subtype of D � i�e�� subtyping is the re�exive and tran�
sitive closure of the immediate subclass relation given
by the extends clauses in CT � Formally� it is de
ned in
the middle of the left column of Figure ��

The given class table is assumed to satisfy some
sanity conditions� ��� CT �C� � class C��� for every
C � dom�CT �� ��� Object �� dom�CT �� ��� for every
class name C �except Object� appearing anywhere in
CT � we have C � dom�CT�� and ��� there are no cycles
in the subtype relation induced by CT � that is� the ��

relation is antisymmetric�
For the typing and reduction rules� we need a few

auxiliary de
nitions� given in Figure �� The 
elds of a
class C� written �elds�C�� is a sequence C f pairing the
class of a 
eld with its name� for all the 
elds declared
in class C and all of its superclasses� The type of the
method m in class C� written mtype�m� C�� is a pair� writ�
ten B�B� of a sequence of argument types B and a result
type B� Similarly� the body of the method m in class C�
written mbody�m� C�� is a pair� written �x�e�� of a se�
quence of parameters x and an expression e� The pred�
icate override�C��C� m� D� judges if a method m with
argument types C and a result type C� may be de
ned
in a subclass of D� In case of overriding� if a method

with the same name is declared in the superclass then
it must have the same type�

��� Typing

The typing rules for expressions� method declarations�
and class declarations are in the right column of Fig�
ure �� An environment � is a 
nite mapping from vari�
ables to types� written x�C�

The typing judgment for expressions has the form
� � e � C� read �in the environment �� expression e has
type C�	 The typing rules are syntax directed� with one
rule for each form of expression� save that there are three
rules for casts� The typing rules for constructors and
method invocations check that each actual parameter
has a type that is a subtype of the corresponding formal�
We abbreviate typing judgments on sequences in the
obvious way� writing � � e � C as shorthand for � � e� �
C�� � � � � � � en � Cn and writing C �� D as shorthand
for C� �� D�� � � � � Cn �� Dn�

One technical innovation in FJ is the introduction
of �stupid	 casts� There are three rules for type casts�
in an upcast the subject is a subclass of the target� in
a downcast the target is a subclass of the subject� and
in a stupid cast the target is unrelated to the subject�
The Java compiler rejects as ill typed an expression con�
taining a stupid cast� but we must allow stupid casts in
FJ if we are to formulate type soundness as a subject
reduction theorem for a small�step semantics� This is
because a sensible expression may be reduced to one
containing a stupid cast� For example� consider the fol�
lowing� which uses classes A and B as de
ned as in the
previous section�

�A��Object�new B�� �� �A�new B��

We indicate the special nature of stupid casts by includ�
ing the hypothesis stupid warning in the type rule for
stupid casts �T�SCast�� an FJ typing corresponds to a
legal Java typing only if it does not contain this rule�



�Stupid casts were omitted from Classic Java 
���� caus�
ing its published proof of type soundness to be incorrect�
this error was discovered independently by ourselves and
the Classic Java authors��

The typing judgment for method declarations has
the form M OK IN C� read �method declaration M is ok
if it occurs in class C�	 It uses the expression typing
judgment on the body of the method� where the free
variables are the parameters of the method with their
declared types� plus the special variable this with type
C�

The typing judgment for class declarations has the
form CL OK� read �class declaration CL is ok�	 It checks
that the constructor applies super to the 
elds of the
superclass and initializes the 
elds declared in this class�
and that each method declaration in the class is ok�

The type of an expression may depend on the type
of any methods it invokes� and the type of a method
depends on the type of an expression �its body�� so it
behooves us to check that there is no ill�de
ned circu�
larity here� Indeed there is none� the circle is broken
because the type of each method is explicitly declared�
It is possible to load and use the class table before all
the classes in it are checked� so long as each class is
eventually checked�

��� Computation

The reduction relation is of the form e �� e�� read
�expression e reduces to expression e� in one step�	 We
write ��� for the re�exive and transitive closure of ���

The reduction rules are given in the bottom left col�
umn of Figure �� There are three reduction rules� one
for 
eld access� one for method invocation� and one for
casting� These were already explained in the introduc�
tion to this section� We write 
d�x� e�y�e� for the result
of replacing x� by d�� � � � � xn by dn� and y by e in ex�
pression e��

The reduction rules may be applied at any point in
an expression� so we also need the obvious congruence
rules �if e �� e� then e�f �� e��f� and the like�� which
we omit here�

��� Properties

Formal de
nitions are fun� but the proof of the pudding
is in� � � well� the proof� If our de
nitions are sensible� we
should be able to prove a type soundness result� which
relates typing to computation� Indeed we can prove
such a result� if a term is well typed and it reduces to
a second term� then the second term is well typed� and
furthermore its type is a subtype of the type of the 
rst
term�

����� Theorem �Subject Reduction�� If � � e � C
and e �� e�� then � � e� � C� for some C� �� C�

Proof sketch� The main property required in the
proof is the following term�substitution lemma�

If �� x � E � e � D� and � � d � D where D �� E�
then � � 
d�x�e � C for some C �� D�

This is proved by induction on the derivation of �� x �
E � e � D� An interesting case is when e � �C�e�� where

the 
nal rule used in the derivation is T�DCast� Sup�
pose the type of e� is C� and C �� C�� By the induction
hypothesis� � � 
d�x�e � D� for some D� �� C�� But�
since D� and C may or may not be in the subtype rela�
tion� the derivation of � � �C�
d�x�e � C may involve a
stupid warning� On the other hand� if �C�e� is derived
using T�UCast� then �C�
d�x�e will also be an upcast�

The theorem itself is now proved by induction on the
derivation of e �� e�� with a case analysis on the last
rule used� The case for R�Invk is easy� using the lemma
above� Other base cases are also straightforward� as are
most of the induction steps� The only interesting case is
the congruence rule for casting�that is� the case where
�C�e �� �C�e� is derived using e �� e�� Using an
argument similar to the term substitution lemma above�
we see that a downcast expression may be reduced to
a stupid cast and an upcast expression will be always
reduced to an upcast� �

We can also show that if a program is well typed�
then the only way it can get stuck is if it reaches a
point where it cannot perform a downcast�

����� Theorem �Progress�� Suppose e is a well�
typed expression�

��� If e includes new C��e��f as a subexpression� then
�elds�C�� � T f and f � f�

��� If e includes new C��e��m�d� as a subexpression�
then mbody�m� C�� � �x� e�� and ��x� � ��d��

To state a similar property for casts� we say that an
expression e is safe in � if the type derivations of the
underlying CT and � � e � C contain no downcasts
or stupid casts �uses of rules T�DCast or T�SCast��
In other words� a safe program includes only upcasts�
Then we see that a safe expression always reduces to
another safe expression� and� moreover� typecasts in a
safe expression will never fail� as shown in the following
pair of theorems�

����� Theorem� �Reduction preserves safety� If e
is safe in � and e��e�� then e� is safe in ��

����� Theorem �Progress of safe programs��
Suppose e is safe in �� If e has �C�new C��e� as a
subexpression� then C� �� C�

� Featherweight GJ

Just as GJ adds generic types to Java� Featherweight
GJ �or FGJ� for short� adds generic types to FJ� Here
is the class de
nition for pairs in FJ� rewritten with
generic type parameters in FGJ�

class Pair�X extends Object� Y extends Object	
extends Object �

X fst�
Y snd�
Pair�X fst� Y snd� �

super��� this�fst�fst� this�snd�snd�
�
�Z extends Object	

Pair�Z�Y	 setfst�Z newfst� �
return new Pair�Z�Y	�newfst� this�snd��

�



�

class A extends Object �
A � super��� �

�

class B extends Object �
B � super��� �

�

Both classes and methods may have generic type pa�
rameters� Here X and Y are parameters of the class� and
Z is a parameter of the setfst method� Each type pa�
rameter has a bound � here X� Y� and Z are each bounded
by Object�

In the context of the above de
nitions� the expres�
sion

new Pair�A�B	�new A��� new B����setfst�B	�new B���

evaluates to the expression

new Pair�B�B	�new B��� new B���

If we were being extraordinarily pedantic� we would
write A�� and B�� instead of A and B� but we allow the
latter as an abbreviation for the former in order that FJ
is a proper subset of FGJ�

In GJ� type parameters to generic method invoca�
tions are inferred� Thus� in GJ the expression above
would be written

new Pair�A�B	�new A��� new B����setfst�new B���

with no �B� in the invocation of setfst� So while FJ is
a subset of Java� FGJ is not quite a subset of GJ� We
regard FGJ as an intermediate language � the form that
would result after type parameters have been inferred�
While parameter inference is an important aspect of GJ�
we chose in FGJ to concentrate on modeling other as�
pects of GJ�

The bound of a type variable may not be a type
variable� but may be a type expression involving type
variables� and may be recursive �or even� if there are
several bounds� mutually recursive�� For example� if
C�X� and D�Y� are classes with one parameter each�
one may have bounds such as �X extends C�X�� or
even �X extends C�Y�� Y extends D�X��� For more
on bounds� including examples of the utility of recur�
sive bounds� see the GJ paper 
���

GJ and FGJ are intended to support either of two
implementation styles� They may be implemented di�
rectly� augmenting the run�time system to carry infor�
mation about type parameters� or they may be imple�
mented by erasure� removing all information about type
parameters at run�time� This section explores the 
rst
style� giving a direct semantics for FGJ that maintains
type parameters� and proving a type soundness theo�
rem� Section � explores the second style� giving an era�
sure mapping from FGJ into FJ and showing a corre�
spondence between reductions on FGJ expressions and
reductions on FJ expressions� The second style corre�
sponds to the current implementation of GJ� which com�
piles GJ into the Java Virtual Machine �JVM�� which of
course maintains no information about type parameters
at run�time� the 
rst style would correspond to using
an augmented JVM that maintains information about
type parameters�

��� Syntax

In what follows� for the sake of conciseness we abbre�
viate the keyword extends to the symbol � and the
keywork return to the symbol ��

The syntax� typing rules� and computation rules for
FGJ are given in Figure �� with a few auxiliary functions
in Figure �� The metavariables X� Y� and Z range over
type variables� T� U� and V range over types� and N and
O range over nonvariable types �types other than type
variables�� We write X as shorthand for X��� � � �Xn �and
similarly for T� N� etc��� and assume sequences of type
variables contain no duplicate names�

The abstract syntax of FGJ is given at the top left
of Figure �� We allow C�� and m�� to be abbreviated as
C and m� respectively�

As before� we assume a 
xed class table CT � which is
a mapping from class names C to class declarations CL�
obeying the same sanity conditions as given previously�

��� Typing

A type environment � is a 
nite mapping from type
variables to nonvariable types� written X �� N� that
takes each type variable to its bound�

Bounds of types

We write bound��T� for the upper bound of T in �� as
de
ned in Figure �� Unlike calculi such as F� 
��� this
promotion relation does not need to be de
ned recur�
sively� the bound of a type variable is always a nonva�
riable type�

Subtyping

The subtyping relation is de
ned in the left column of
Figure �� As before� subtyping is the re�exive and tran�
sitive closure of the � relation� Type parameters are in�
variant with regard to subtyping �for reasons explained
in the GJ paper�� so T �� U does not imply C�T� �� C�U��

Well�formed types

If the declaration of a class C begins class C�X � N��
then a type like C�T� is well formed only if substituting
T for X respects the bounds N� that is if T �� 
T�X�N�
We write � � T ok if type T is well�formed in context
�� The rules for well�formed types appear in Figure ��
Note that we perform a simultaneous substitution� so
any variable in X may appear in N� permitting recursion
and mutual recursion between variables and bounds�

A type environment � is well formed if � � ��X� ok
for all X in dom���� We also say that an environment
� is well formed with respect to �� written � � � ok�
if � � ��x� ok for all x in dom����

Field and method lookup

For the typing and reduction rules� we need a few aux�
iliary de
nitions� given in Figure �� these are fairly
straightforward adaptations of the lookup rules given
previously� The 
elds of a nonvariable type N� writ�
ten �elds�N�� are a sequence of corresponding types and

eld names� T f� The type of the method invocation m



Syntax�

CL ��� class C�X � N� � N �T f
 K M�

K ��� C�T f� �super�f�
 this�f � f
�

M ��� �X � N� T m �T x� ��e
�

e ��� x
j e�f
j e�m�T��e�
j new N�e�
j �N�e

T ��� X
j N

N ��� C�T�

Subtyping�

� � T �� T

� � S �� T � � T �� U

� � S �� U

� � X �� ��X�

CT�C� � class C�X � N� � N �����

� � C�T� �� 
T�X�N

Well�formed types�

� � Object ok

X � dom���

� � X ok

CT�C� � class C�X � N� � N �����
� � T ok � � T �� 
T�X�N

� � C�T� ok

Computation�

�elds�N� � T f

�new N�e���fi �� ei

mbody�m�V�� N� � �x� e��

�new N�e���m�V��d�
�� 
d�x� new N�e��this�e�

� � N �� O

�O��new N�e�� �� new N�e�

Expression typing�

��� � x � ��x�

�� � � e� � T� �elds�bound��T��� � T f

��� � e��fi � Ti

��� � e� � T�
mtype�m� bound��T��� � �Y � O�U�U

� � V ok � � V �� 
V�Y�O
��� � e � S � � S �� 
V�Y�U

��� � e��m�V��e� � 
V�Y�U

� � N ok �elds�N� � T f
��� � e � S � � S �� T

��� � new N�e� � N

��� � e� � T� � � T� �� N

��� � �N�e� � N

��� � e� � T� � � N ok
� � N �� bound��T�� N �� bound��T��

downcast�N� bound��T���

�� � � �N�e� � N

��� � e� � T� � � N ok
� � bound��T�� ��� N � � N ��� bound��T��

stupid warning

��� � �N�e� � N

Method typing�

� � X��N� Y��O
� � T ok � � T ok � � O ok

�� x � T� this � C�X� � e� � S � � S �� T
CT �C� � class C�X � N� � N �����

override�m� N� �Z � P�U�U�

�Y � O� T m �T x� ��e�
� OK IN C�X � N�

Class typing�

X��N � N ok X��N � N ok X��N � T ok
�elds�N� � U g M OK IN C�X � N�

K � C�U g� T f� �super�g�
 this�f � f
�

class C�X � N� � N �T f
 K M� OK

Figure �� FGJ� Main de
nitions



Bound of type�

bound��X� � ��X�
bound��N� � N�

Field lookup�

�elds�Object� � �

CT �C� � class C�X � N� � N �S f
 K M�
�elds�
T�X�N� � U g

�elds�C�T�� � U g� 
T�X�S f

Method type lookup�

CT �C� � class C�X � N� � N �S f
 K M�
�Y � O� U m �U x� ��e
� � M

mtype�m� C�T�� � 
T�X���Y � O�U�U�

CT �C� � class C�X � N� � N �S f
 K M�
m is not de
ned in M

mtype�m� C�T�� � mtype�m� 
T�X�N�

Method body lookup�

CT �C� � class C�X � N� � N �S f
 K M�
�Y � O� U m �U x� ��e�
� � M

mbody�m�V�� C�T�� � �x� 
T�X� V�Y�e��

CT �C� � class C�X � N� � N �S f
 K M�
m is not de
ned in M

mbody�m�V�� C�T�� � mbody�m�V�� 
T�X�N�

Valid method overriding�

mtype�m� N� � �Z � P�U�U implies
O�T � 
Y�Z��P�U� and � � T �� 
Y�Z�U

override�m� N� �Z � P�U�U�

Valid downcast�

� � C�S� �� T and � � C�S� ok
implies S � T for all S

downcast�C�T�� T�

Figure �� FGJ� Auxiliary de
nitions

at nonvariable type N� written mtype�m� N�� is a type of
the form �X � N�U�U� Similarly� the body of the method
invocation m at nonvariable type N with type parameters
V� written mbody�m�V�� N�� is a pair� written �x�e�� of a
sequence of parameters x and an expression e�

Typing rules

Typing rules for expressions� methods� and classes ap�
pear in Figure ��

The typing judgment for expressions is of form
�� � � e � T� read as �in the type environment � and
the environment �� e has type T�	 Most of the sub�
tleties are in the 
eld and method lookup relations that
we have already seen� the typing rules themselves are
straightforward�

In the ruleGT�DCast� the last premise ensures that
the result of the cast will be the same at run time� no
matter whether we use the high�level �type�passing� re�
duction rules de
ned later in this section or the erasure
semantics considered in Section �� For example� sup�
pose we have de
ned�

class List�X � Object	 � Object � ��� �
class LinkedList�X � Object	 � List�X	 � ��� �

Now� if o has type Object� then the cast �List�C��o
is not permitted� �If� at run time� o is bound
to new List�D���� then the cast would fail in the
type�passing semantics but succeed in the erasure se�
mantics� since �List�C��o erases to �List�o while
both new List�C��� and new List�D��� erase to
new List���� On the other hand� if cl has type
List�C�� then the cast �LinkedList�C��cl is permit�
ted� since the type�passing and erased versions of the
cast are guaranteed to either both succeed or both fail�

The typing rule for methods contains one additional
subtlety� In FGJ �and GJ�� unlike in FJ �and Java��
covariant subtyping of method results is allowed� That
is� the result type of a method may be a subtype of
the result type of the corresponding method in the su�
perclass� although the bounds of type variables and the
argument types must be identical �modulo renaming of
type variables��

As before� a class table is ok if all its class de
nitions
are ok�

��� Reduction

The operational semantics of FGJ programs is only a
little more complicated than what we had in FJ� The
rules appear in Figure ��

��� Properties

FGJ programs enjoy subject reduction and progress
properties exactly like programs in FJ ������ and �������
The basic structures of the proofs are similar to those
of Theorem ����� and ������ For subject reduction� how�
ever� since we now have parametric polymorphism com�
bined with subtyping� we need a few more lemmas� The
main lemmas required are a term substitution lemma as
before� plus similar lemmas about the preservation of
subtyping and typing under type substitution� �Read�
ers familiar with proofs of subject reduction for typed
lambda�calculi like F� 
�� will notice many similarities��
We begin with the three substitution lemmas� which are
proved by straightforward induction on a derivation of
� � S �� T or �� � � e � T�



����� Lemma� �Type substitution preserves sub�
typing� If ��� X��N��� � S �� T and �� � U �� 
U�X�N
with �� � U ok� and none of X appearing in ��� then
��� 
U�X��� � 
U�X�S �� 
U�X�T�

����� Lemma� �Type substitution preserves typ�
ing� If ��� X��N� ��� � � e � T and �� � U �� 
U�X�N
where �� � U ok and none of X appears in ��� then
��� 
U�X���� 
U�X�� � 
U�X�e � S for some S such that
��� 
U�X��� � S �� 
U�X�T�

����� Lemma� �Term substitution preserves typ�
ing� If �� �� x � T � e � T and� �� � � d � S where
� � S �� T� then �� � � 
d�x�e � S for some S such that
� � S �� T�

����� Theorem �Subject reduction�� If �� � � e �
T and e �� e�� then �� � � e� � T�� for some T� such
that � � T� �� T�

Proof sketch� By induction on the derivation of
e �� e� with a case analysis on the reduction rule used�
We show in detail just the base case where e is a method
invocation� From the premises of the rule GR�Invk� we
have

e � new N�e��m�V��d�
mbody�m�V�� N� � �x� e��
e� � 
d�x� new N�e��this�e��

By the rule GT�Invk and GT�New� we also have

�� � � new N�e� � N
mtype�m� bound��N�� � �Y � O�U�U
� � V �� 
V�Y�O
� � V ok
�� � � d � S
� � S �� 
V�Y�U
T � 
V�Y�U�

By examining the derivation of mtype�m� bound��N���
we can 
nd a supertype C�T� of N where

Y��O� x � U� this � C�T� � e� � S
Y��O � S �� U

and none of the Y appear in T� Now� by Lemma ������

�� x � 
V�Y�U� this � C�T� � e� � 
V�Y�S�

From this� a straightforward weakening lemma �not
shown here�� plus Lemma ����� and Lemma ������ gives

�� � � e� � S�

� � S� �� 
V�Y�S
� � 
V�Y�S �� 
V�Y�U�

Letting T� � S� 
nishes the case� since � � S� �� 
V�Y�U
by S�Trans� �

����	 Theorem �Progress�� Suppose e is a well�
typed expression�

��� If e includes new N��e��f as a subexpression� then
�elds�N�� � T f and f � f�

��� If e includes new N��e��m�V��d� as a subexpres�
sion� then mbody�m�V�� N�� � �x� e�� and ��x� �
��d��

FGJ is backward compatible with FJ� Intuitively�
this means that an implementation of FGJ can be used
to typecheck and execute FJ programs without changing
their meaning� We can show that a well�typed FJ pro�
gram is always a well�typed FGJ program and that FJ
and FGJ reduction correspond� �Note that it isn�t quite
the case that the well�typedness of an FJ program under
the FGJ rules implies its well�typedness in FJ� because
FGJ allows covariant overriding and FJ does not�� In
the statement of the theorem� we use ��FJ and ��FGJ

to show which set of reduction rules is used�

����
 Theorem �Backward compatibility�� If an
FJ program �e� CT � is well typed under the typing
rules of FJ� then it is also well�typed under the rules of
FGJ� Moreover� for all FJ programs e and e� �whether
well typed or not�� e ��FJ e

� i� e ��FGJ e
��

Proof� The 
rst half is shown by straightforward in�
duction on the derivation of � � e � C �using FJ typing
rules�� followed by an analysis of the rules GT�Method
and GT�Class� In the second half� both directions are
shown by induction on a derivation of the reduction re�
lation� with a case analysis on the last rule used� �

� Compiling FGJ to FJ

We now explore the second implementation style for GJ
and FGJ� The current GJ compiler works by translation
into the standard JVM� which maintains no informa�
tion about type parameters at run�time� We model this
compilation in our framework by an erasure translation
from FGJ into FJ� We show that this translation maps
well�typed FGJ programs into well�typed FJ programs�
and that the behavior of a program in FGJ matches �in
a suitable sense� the behavior of its erasure under the
FJ reduction rules�

A program is erased by replacing types with their
erasures� inserting downcasts where required� A type is
erased by removing type parameters� and replacing type
variables with the erasure of their bounds� For example�
the class Pair�X�Y� in the previous section erases to the
following�

class Pair extends Object �
Object fst�
Object snd�
Pair�Object fst� Object snd� �

super��� this�fst�fst� this�snd�snd�
�
Pair setfst�Object newfst� �

return new Pair�newfst� this�snd��
�

�

Similarly� the 
eld selection

new Pair�A�B	�new A��� new B����snd

erases to

�B�new Pair�new A��� new B����snd

where the added downcast �B� recovers type informa�
tion of the original program� We call such downcasts
inserted by erasure synthetic�



��� Erasure of Types

To erase a type� we remove any type parameters and
replace type variables with the erasure of their bounds�
Write jTj� for the erasure of type T with respect to type
environment �

jTj� � C

where bound��T� � C�T��

��� Field and Method Lookup

In FGJ �and GJ�� a subclass may extend an instantiated
superclass� This means that� unlike in FJ �and Java��
the types of the 
elds and the methods in the subclass
may not be identical to the types in the superclass� In
order to specify a type�preserving erasure from FGJ to
FJ� it is necessary to de
ne additional auxiliary func�
tions that look up the type of a 
eld or method in the
highest superclass in which it is de
ned�

For example� we previously de
ned the generic class
Pair�X�Y�� We may declare a specialized subclass
PairOfA as a subclass of the instantiation Pair�A�A��
which instantiates both X and Y to a given class A�

class PairOfA extends Pair�A�A	 �
PairOfA�A fst� A snd� �

super�fst� snd��
�
PairOfA setfst�A newfst� �

return new PairOfA�newfst� this�fst��
�

�

Note that� in the setfst method� the argument type
A matches the argument type of setfst in Pair�A�A��
while the result type PairOfA is a subtype of the result
type in Pair�A�A�� this is permitted by FGJ�s covariant
subtyping� as discussed in the previous section� Erasing
the class PairOfA yields the following�

class PairOfA extends Pair �
PairOfA�Object fst� Object snd� �

super�fst� snd��
�
Pair setfst�Object newfst� �

return new PairOfA�newfst� this�fst��
�

�

Here arguments to the constructor and the method are
given type Object� even though the erasure of A is itself�
and the result of the method is given type Pair� even
though the erasure of PairOfA is itself� In both cases�
the types are chosen to correspond to types in Pair� the
highest superclass in which the 
elds and method are
de
ned�

We de
ne variants of the auxiliary functions that

nd the types of 
elds and methods in the highest su�
perclass in which they are de
ned� The maximum 
eld
types of a class C� written �eldsmax �C�� is the sequence
of pairs of a type and a 
eld name de
ned as follows�

�eldsmax �Object� � �

CT�C� � class C�X � N� � D�U� �T f
 ��� �
� � X��N C g � �eldsmax �D�

�eldsmax �C� � C g� jTj� f

The maximum method type of m in C� written
mtypemax �m� C�� is de
ned as follows�

CT �C� � class C�X � N� � D�U� �����
�Y � O�T�T � mtype�m� D�U��

mtypemax �m� C� � mtypemax �m� D�

CT �C� � class C�X � N� � D�U� �����
mtype�m� D�U�� unde
ned

�Y � O�T�T � mtype�m� C�X�� � � X��N� Y��O

mtypemax �m� C� � jTj��jTj�

We also need a way to look up the maximum type
of a given 
eld� If �eldsmax �C� � D f then we set
�eldsmax �C��fi� � Di�

��� Erasure of Expressions

The erasure of an expression depends on the typing of
that expression� since the types are used to determine
which downcasts to insert� The erasure rules are opti�
mized to omit casts when it is trivially safe to do so�
this happens when the maximum type is equal to the
erased type�

Write jej��� for the erasure of a well�typed expres�
sion e with respect to environment � and type environ�
ment ��

jxj��� � x

��� � e��f � T ��� � e� � T�
�eldsmax �jT�j���f� � jTj�

je��fj��� � je�j����f

��� � e��f � T ��� � e� � T�
�eldsmax �jT�j���f� �� jTj�

je��fj��� � �jTj�� je�j����f

��� � e��m�V��e� � T ��� � e� � T�
mtypemax �m� jT�j�� � C�D D � jTj�

je��m�V��e�j��� � je�j����m�jej����

��� � e��m�V��e� � T ��� � e� � T�
mtypemax �m� jT�j�� � C�D D �� jTj�

je��m�V��e�j��� � �jTj�� je�j����m�jej����

jnew N�e�j��� � new jNj��jej����

j�N�e�j��� � �jNj�� je�j���

�Strictly speaking� one should think of the erasure
operation as acting on typing derivations rather than
expressions� Since well�typed expressions are in ��� cor�
respondence with their typing derivations� the abuse of
notation creates no confusion��



��� Erasure of Methods and Classes

The erasure of a method m with respect to type environ�
ment � in class C� written jMj��C� is de
ned as follows�

� � x�T �� � �� Y��O
e� � 
�jTj���x��x�jej����

mtypemax �m� C� � D�D

j�Y � O� T m �T x� ��e
�j��C � D m �D x�� ��e�
�

�In GJ� the actual erasure is somewhat more complex�
involving the introduction of bridge methods� so that
one ends up with two overloaded methods� one with
the maximum type� and one with the instantiated type�
We don�t model that extra complexity here� because it
depends on overloading of method names� which is not
modeled in FJ��

The erasure of constructors and classes is�

jC�U g� T f� �super�g�
 this�f � f
�j��C

� C��eldsmax �C�� �super�g�
 this�f � f
�

� � X��N

jclass C�X � N� � N �T f
 K M�j
� class C � jNj��jTj� f
 jKj� jMj��C�

��	 Properties of Erasure

Having de
ned erasure� we may investigate some of its
properties� First� a well�typed FGJ program erases to a
well�typed FJ program� as expected�

��	�� Theorem �Erasure preserves typing�� If an
FGJ class table CT is ok and �� � � e � T� then
j�j� � jej��� � jTj� and jCT j is ok using FJ rules�

Proof sketch� By induction on the derivation of
�� � �FGJ e � T� using the following lemmas� ��� if
� � N ok then j�elds

FGJ
�N�j� �� �eldsmax �jNj��� ���

if � � N ok and methodtype
FGJ

�m� N� � �Y � O�U�U�
then mtypemax �m� jNj�� � C�D and j
V�Y�Uj� �� C and
j
V�Y�Uj� �� D� and ��� if � � � ok and �� � � e � T for
some well�formed type environment �� then � � T ok� �

More interestingly� we would intuitively expect that
erasure from FGJ to FJ should also preserve the reduc�
tion behavior of FGJ programs�

e
reduce �FGJ�

��

erase

��

e�

erase

��

jej
reduce �FJ�

�� je�j

Unfortunately� this is not quite true� For example� con�
sider the FGJ expression

e � new Pair�A�B��a�b��fst�

where a and b are expressions of type A and B� respec�
tively� and its erasure�

jej��� � �A�new Pair�jaj����jbj�����fst

In FGJ� e reduces to jaj���� while the erasure jej��� re�
duces to �A�jaj��� in FJ� it does not reduce to jaj���

when a is not a new expression� �Note that it is not
an artifact of our nondeterministic reduction strategy�
it happens even if we adopt a call�by�value reduction
strategy� since� after method invocation� we may obtain
an expression like �A�e where e is not a new expres�
sion�� Thus� the above diagram does not commute even
if one�step reduction ���� at the bottom is replaced
with many�step reduction ������ In general� synthetic
casts can persist for a while in the FJ expression� al�
though we expect those casts will eventually turn out
to be upcasts when a reduces to a new expression�

In the example above� an FJ expression d reduced
from jej��� had more synthetic casts than je�j���� How�
ever� this is not always the case� d may have less casts
than je�j��� when the reduction step involves method
invocation� Consider the following class and its erasure�

class C�X extends Object	 extends Object �
X f�
C�X f� � this�f � f� �
C�X	 m�� � return new C�X	�this�f�� �

�

class C extends Object �
Object f�
C�Object f� � this�f � f� �
C m�� � return new C�this�f�� �

�

Now consider the FGJ expression

e � new C�A��new A����m��

and its erasure

jej��� � new C�new A����m���

In FGJ�

e ��FGJ new C�A��new C�A��new A����f��

In FJ� on the other hand� jej��� reduces to
new C�new C�new A����f�� which has fewer synthetic
casts than new C��A�new C�new A����f�� which is the
erasure of the reduced expression in FGJ� The subtlety
we observe here is that� when the erased term is re�
duced� synthetic casts may become �coarser	 than the
casts inserted when the reduced term is erased� or may
be removed entirely as in this example� �Removal of
downcasts can be considered as a combination of two
operations� replacement of �A� with the coarser cast
�Object� and removal of the upcast �Object�� which
does not a�ect the result of computation��

To formalize both of these observations� we de
ne an
auxiliary relation that relates FJ expressions di�ering
only by the addition and replacement of some synthetic
casts� Let us call a well�typed expression d an expansion
of a well�typed expression e� written e �� d� if d is
obtained from e by some combination of ��� addition of
zero or more synthetic upcasts� ��� replacement of some
synthetic casts �D� with �C�� where C is a supertype of
D� or ��� removal of some synthetic casts�

��	�� Theorem� �Erasure preserves reduction
modulo expansion� If �� � � e � T and e ��FGJ

�

e�� then there exists some FJ expression d� such that



je�j��� �� d� and jej��� ��FJ d�� In other words� the
following diagram commutes�

e
reduce �FGJ��

��

erase

��

e�

erase
��

je�j

��
jej

reduce �FJ�

�
�� d�

As easy corollaries of this theorem� it can be shown that�
if an FGJ expression e reduces to a �fully�evaluated
expression�	 then the erasure of e reduces to exactly
its erasure� and that if FGJ reduction gets stuck at a
stupid cast� then FJ reduction also gets stuck because
of the same typecast� We use the metavariable v for
fully evaluated expressions� de
ned as follows�

v ��� new N�v��

��	�� Corollary� �Erasure preserves execution
results� If �� � � e � T and e ��FGJ

� v� then
jej��� ��FJ

� jvj����

��	�� Corollary� �Erasure preserves typecast er�
rors� If �� � � e � T and e ��FGJ

� e�� where e�

has a stuck subexpression �C�S��new D�T��e�� then
jej��� ��FJ

� d� such that d� has a stuck subexpression
�C�new D�d�� where d are expansions of the erasures of
e� in the same position �modulo synthetic casts� as the
erasure of e��

	 Related Work

Core calculi for Java� There are several known
proofs in the literature of type soundness for subsets
of Java� In the earliest� Drossopoulou and Eisen�
bach 
��� �using a technique later mechanically checked
by Syme 
���� prove soundness for a fairly large sub�
set of sequential Java� Like us� they use a small�step
operational semantics� but they avoid the subtleties of
�stupid casts	 by omitting casting entirely� Nipkow
and Oheimb 
��� give a mechanically checked proof of
soundness for a somewhat larger core language� Their
language does include casts� but it is formulated us�
ing a �big�step	 operational semantics� which sidesteps
the stupid cast problem� Flatt� Krishnamurthi� and
Felleisen 
��� ��� use a small�step semantics and for�
malize a language with both assignment and casting�
Their system is somewhat larger than ours �the syn�
tax� typing� and operational semantics rules take per�
haps three times the space�� and the soundness proof�
though correspondingly longer� is of similar complexity�
Their published proof of subject reduction in the earlier
version is slightly �awed � the case that motivated our
introduction of stupid casts is not handled properly �
but the problem can be repaired by applying the same
re
nement we have used here�

Of these three studies� that of Flatt� Krishnamurthi�
and Felleisen is closest to ours in an important sense�

the goal there� as here� is to choose a core calculus that
is as small as possible� capturing just the features of
Java that are relevant to some particular task� In their
case� the task is analyzing an extension of Java with
Common Lisp style mixins � in ours� extensions of the
core type system� The goal of the other two systems� on
the other hand� is to include as large a subset of Java
as possible� since their primary interest is proving the
soundness of Java itself�

Other class�based object calculi� The literature
on foundations of object�oriented languages contains
many papers formalizing class�based object�oriented
languages� either taking classes as primitive �e�g�� 
��� ��
�� ��� or translating classes into lower�level mechanisms
�e�g�� 
��� �� �� ���� Some of these systems �e�g� 
��� ���
include generic classes and methods� but only in fairly
simple forms�

Generic extensions of Java� A number of exten�
sions of Java with generic classes and methods have
been proposed by various groups� including the lan�
guage of Agesen� Freund� and Mitchell 
��� PolyJ� by
Myers� Bank� and Liskov 
���� Pizza� by Odersky and
Wadler 
���� GJ� by Bracha� Oderksy� Stoutamire� and
Wadler 
��� and NextGen� by Cartwright and Steele 
����
While all these languages are believed to be typesafe�
our study of FGJ is the 
rst to give rigorous proof of
soundness for a generic extension of Java� We have used
GJ as the basis for our generic extension� but similar
techniques should apply to the forms of genericity found
in the rest of these languages�


 Discussion

We have presented Featherweight Java� a core language
for Java modeled closely on the lambda�calculus and
embodying many of the key features of Java�s type sys�
tem� FJ�s de
nition and proof of soundness are both
concise and straightforward� making it a suitable arena
for the study of ambitious extensions to the type sys�
tem� such as the generic types of GJ� We have developed
this extension in detail� stated some of its fundamental
properties� and sketched their proofs�

FJ itself is not quite complete enough to model some
of the interesting subtleties found in GJ� In particular�
the full GJ language allows some parameters to be in�
stantiated by a special �bottom type	 �� using a slightly
delicate rule to avoid unsoundness in the presence of as�
signment� Capturing the relevant issues in FGJ requires
extending it with assignment and null values �both of
these extensions seem straightforward� but cost us some
of the pleasing compactness of FJ as it stands�� The
other somewhat subtle aspect of GJ that is not accu�
rately modeled in FGJ is the use of bridge methods in
the compilation from GJ to JVM bytecodes� To treat
this compilation exactly as GJ does� we would need to
extend FJ with overloading�

Our formalization of GJ also does not include raw
types� a unique aspect of the GJ design that supports
compatibility between old� unparameterized code and
new� parameterized code� We are currently experiment�
ing with an extension of FGJ with raw types�



Formalizing generics has proven to be a useful appli�
cation domain for FJ� but there are other areas where its
extreme simplicity may yield signi
cant leverage� For
example� work is under way on formalizing Java ����s
inner classes using FJ 
����
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