YSC4230: Programming Language
Design and Implementation

Week 10: Type Checking
and Typing for Advanced Features

[lya Sergey

ilya.sergey@yale-nus.edu.sg

mailto:ilya.sergey@yale-nus.edu.sg

Why Types?

Type checking (ensuring that the program is ascribed a “correct” type) catches errors at compile time,
eliminating a class of mistakes that would otherwise lead to run-time errors, provided type information

Type inference derives type information from the code (think function parameters in OCaml vs Java)

Type information is sometimes necessary for code generation
* Floating-point + is not the same instruction as integer + is not the same as pointer/integer +
* pointer/integer compiled differently depending on pointer type

* Assignment x = y compiled differently if y is an int or a struct

Purposes of Type Checking

Statically rule out scoping issues (unresolved identifiers)
Statically rule out multiple runtime errors (what is “a” + 427?)
Make sure that the ascribed types are a correct approximation of runtime values

Provide information about types of intermediate operations to the compiler

What is a type system?

- A type system consists of a system of judgements and inference rules
- (Extrinsic view) A judgement is a claim, which may or may not be valid

* 3 :int - "3 has type integer”

* (1 +2) : bool - “(1+2) has type boolean”

- Inference rules are used to derive valid judgements from other valid judgements.

ADD
|_611th |_621th

|—61—|—€22th

Read: “If e; and e; have type int, so does e; + e

- Type system might involve many different kinds of judgement

- Well-typed expressions
- Well-formed types
- Well-formed statements

Inference Rules, General Form

- An inference rule consists of a list of premises .Ji, ..., J,, and one conclusion J (optionally: a
side-condition):

Ji Jo .. J,
SIDE-CONDITION

- Side-condition: additional premise, but not a judgement

- Read top-down: If J; and J; and ... and J,, are valid, and the side condition holds, then Jis
valid.

- Read bottom-up: To prove Jis valid, sufficient to prove .J;, Js, ... J,, are valid

Type Judgments

* Inthejudgment: GFe:t

— G is a typing environment Or a type context
— G maps variables to types. It is just a set of bindings of the form:
X1:0, X0, ..., X, T,
* A type judgement takes the form G e : t
“Under the type environment G, the expression e has type t”

» For example:
X :int, b : bool + if (b) 3 else x : int

» What do we need to check to decide whether “if (b) 3 else x” has type int in
the environment X : int, b : bool?

— b must be a bool i.e. X : int, b : bool + b : bool
— 3 must be an int 1.e. X :int, b : bool + 3 : int
— X must be an int 1.e. X :int, b : bool + x : int

Simply-typed Lambda Calculus with Integers

VAR ADD
X: 1T € G Gk eq:iInt Gk e,:iInt
GHEi:int GrFx:T GrFe+e:int
G, x:TrHe:S GrFe :T->8S Gre,:T

G+ fun (x:T)->e :T->S GHeje:S

Model for Type Checking

A derivation or proof tree has (instances of) judgments as its nodes and edges that
connect premises to a conclusion according to an inference rule.

Leaves of the tree are axioms (i.e. rules with no premises)
— Example: the INT rule is an axiom

Goal of the type checker: verity that such a tree exists.

Example: Find a tree for the following program using the inference rules on the
previous slide:

— (fun (x:int) ->x +3)5 :int

Example Derivation Tree

INT

VAR

X:Int € x:iInt

ADD

GrFi:int

X :Intk X :Int X:Int— 3 :int

G x:Tre:

x:T €e G Gtre:int GFre,:int
GEx:T GrHe +e:int

APP
S G|—e1:T->S Gl—ele

GFfun (xT)->e :T->S Greje:S

X:Int X+ 3 :Int

FUON|— oo —

— (fun (x:int) -> x + 3) : int -> int

— 5 :1n

t

* Note: the OCaml function typecheck verifies the existence of this
tree. The structure of the recursive calls when running typecheck is

the same shape as this tree!

. Int

* Note that x:int € Eis implemented by the function 1ookup

[1I-typed Programs

. : . : 11N INT VAR ADD
Programs without derivations are ill-typed CTeG Greiint Grein
. GrFi:int GEx:T G n . int
Example: There is no type T such that AR
— (fun (x:int) @ x3)5 : T FUN APP
G x:THe:S Gre :T->S Gre:T
Gr fun (x:T)->e :T->S Greje:S

X:int I T ¢ x:int\
A
X:INntx :int ¥ T x:int|—3:int\

X:Int—x3:1T
N \

(fun (x:int) ¥x3):Int ¥ T =5

INt
— e as T\
(fun (x:int) ¥ x3)5 : T

Simply-typed Lambda Calculus with Integers

For the language in “stlc.ml” we have five inference rules:

VAR ADD
x:T € G Gt e :int GFe,:int
GHi:int Grx:T GF e +e,:int
G x:TrHe:S Gre :T->5 Gre: T
G+ fun (x:T)->e :T->S GHeje,:S

Note how these rules correspond to the OCaml code.

Implementing a Type Checker
for Lambda Calculus

See stlc.ml

Exercise

* Implement the missing parts of the type-checker

Notes about this Type Checker

In the interpreter, we only evaluate the body of a function when it's applied.

In the type checker, we always check the body of the function (even if it's never applied.)
— We assume the input has some type (say t;) and reflect this in the type of the function (t; -> t,).

Dually, at a call site (e e,), we don't know what closure we're going to get as e;.
Yy 1 €2 goIg Lo g

— But we can calculate e;'s type, check that e, is an argument of the right type, and also determine
what type will (e; e,) have.

Question: Why is this a valid approximation of the dynamic program behaviour?

Contexts and Inference Rules

* Need to keep track of contextual information.
— What variables are in scope?
— What are their types?

— What information doe we have about each syntactic construct?

» What relationships are there among the syntactic objects?

— e.g. is one type a subtype of another?

e How do we describe this information?

— In the compiler there's a mapping from variables to information we know about them — the "context".

— The compiler has a collection of (mutually recursive) functions that follow the structure of the syntax.

Why Inference Rules?

They are a compact, precise way of specifying language properties.
— E.g. ~20 pages for full Java vs. 100’s of pages of prose Java Language Spec.
— Check out oat-v1-typing.pdf

Inference rules correspond closely to the recursive AST traversal that implements them

Type checking (and type inference) is nothing more than attempting
to prove a judgment (G e : t) by searching backwards through the rules.

Strong mathematical foundations

— The “Curry-Howard correspondence”:
— Programming Language ~ Logic,
— Program ~ Proof,
— Type ~ Proposition

Talk to me you're interested in type systems!

Types and
Programming

Languages

Benjamin C. Pierce

Types and Type Safety

Type Safety

Theorem: (type soundness of simply typed lambda calculus with integers)

If ~ e:t then there exists a value v such that e "—v .

"Well typed programs do not go wrong."
— Robin Milner, 1978

 Note: this is a very strong property.

— Well-typed programs cannot "go wrong" by trying to execute undefined code
(such as 3 + (fun x -> 2))

— Simply-typed lambda calculus is guaranteed to terminate!
(i.e. it isn't Turing complete)

Tuples

» ML-style tuples with statically known number of products:

« First: add a new type constructor: T; * ... * T,

Gre Ty ... Gre,:T,

G - (e1, ooy en) :T1 L. *Tn

Gre:T *..*T, 1<i<n

G|—#ie:Ti

Arrays

* Array constructs are not hard

» First: add a new type constructor: T|]

Gre :int GrFe,:T e, is the size of the newly

allocated array. e,
initialises the elements of
the array.

G+ new Tleq](ey) :T]]

Gre :T[]] Gre:int

G e le,] 1 Note: These rules don't
ensure that the array index
UPDATE is in bounds — that should

Gre:Tl]l GrFe:int GFey: T be checked dynamically.

G+ e le,] =e; 0k

References

» OCaml-style references (note that in OCaml references are expressions)

 First, add a new type constructor: T ref

GrFe:T

Grrefe:Tref

DEREF
- Fe:Tref

GrHle :T

ASSIGN Note the similarity with the

rules for arrays...
Grei:Tref Ere,:T

GFe:=e, :unit

Well-Formed Types

* In languages with type definitions, need additional rules to define well-formed types
* Judgements take the form H ~ t

— H is set of type names

— tis atype

— H Rt

means
“Assuming H lists well-formed types, t is a well-formed type”

[E 22+ @@2P
> p > b b# >

> Int >l bool > h" b

* Note: also need to modify the typing rules and judgements. E.g.,

H /
>0 j >1{t$" k! 20 b

> “+8t: h)->2h" b

Type-Checking Statements

* In languages with statements, need additional rules to define well-formed statements

» E.g. judgements may take the form H;G;rt - s

— H maps type names to their definitions
— G is a type environment (variables -> types)
— rtis atype
— H:Grts
means

“with type definitions H, assuming type environment G, s is avalid statement within
the context of a function that returns a value of type rt”

BB! / ? EH@/ +
1 2.1 (1) 20 I S {t#E 0 b

R [S gl U,isp 2 Tt pzZiE 2B

Type Safety For General Languages

Theorem: (Type Safety)

If = P:t isawell-typed program, then either:

(@) the program terminates in a well-defined way, or
(b) the program continues computing forever

* Well-defined termination could include:
— halting with a return value
— raising an exception
» Type safety rules out undefined behaviours:
— abusing "unsafe" casts: converting pointers to integers, etc.
— treating non-code values as code (and vice-versa)

— breaking the type abstractions of the language (e.g., via Java/Ruby reflection)

» What is "defined" depends on the language semantics...

Types as Sets

What are types, anyway?

* A type is just a predicate on the set of values in a system.

— For example, the type “int” can be thought of as a boolean function that returns “true”
on integers and “false” otherwise.

— Equivalently, we can think of a type as just a subset of all values.

» For efficiency and tractability, the predicates are usually taken to be very simple.
— TTypes are an abstraction mechanism

* We can easily add new types that distinguish different subsets of values:

type 1p =
| IntT (* type of integers *)
| PosT | NegT | ZeroT (* refinements of ints *)
| BoolT (* type of booleans *)
| TrueT | FalseT (* subsets of booleans *)
(

| AnyT * any value *)

Modifying the typing rules

* We need to refine the typing rules too...

* Some easy cases:

— Just split up the integers into their more refined cases:

1 >0 1< 0
G i1:Pos G H1: Neg GHO0: Zero

e Same for booleans:

G true : True G I false : False

What about “if”’?

* 'Two cases are easy:
Gre;:True GFe,: T Gl—e1:FalseG|—e3:T

Grif(e))e,elsee;: T GHif(e) e;elsee;: T

* What happens when we don’t know statically which branch will be taken?

» Consider the type checking problem:

x:bool - if (x) 3 else -1 :7?

» The true branch has type Pos and the false branch has type Neg.
— What should be the result type of the whole if?

Subtyping and Upper Bounds

 If we think of types as sets of values, we have a natural inclusion relation: Pos! Int
» This subset relation gives rise to a subtype relation: Pos <: Int (sometimes also typeset as <)
* Such inclusions give rise to a subtyping hierarchy:

AN
< 4><X

Int Bool

Neg Zero Pos True False

« Given any two types T; and T,, we can calculate their /east upper bound (LUB)
according to the hierarchy.
— Example: LUB(True, False) = Bool, LUB(Int, Bool) = Any

— Note: might want to add types for “NonZero”, “NonNegative”, and “NonPositive” so that set
union on values corresponds to taking LUBs on types.

“If” Typing Rule Revisited

 For statically unknown conditionals, we want the return value to be the LUB of
the types of the branches:

G|—e1:b00| E|—62:T1 G|—63:T2

G if (e)) e, else e; : LUB(T{,T,)

« Note that LUB(T,, T,) is the most precise type (according to the hierarchy)
that is able to describe any value that has either type T; or type T,.

» In math notation, LUB(T1, T2) is sometimes written T; v T,

» LUB is also called the join operation.

Subtyping Hierarchy

* A subtyping hierarchy:
Any

R o o

W

Int Bool

Neg Zero Pos True False

» The subtyping relation is a partial order:
— Reflexive: T <: T foranytype T

— Transitive: T; <: T, and T, <: T3 then T, <: T,

— Antisymmetric: It T; <: T,and T, <: T; thenT; =T,

Soundness of Subtyping Relations

We don’t have to treat every subset of the integers as a type.

— e.g., we left out the type NonNeg

A subtyping relation T, <: T, is sound if it approximates the underlying semantic subset relation.

Formally: write [T] for the subset of (closed) values of type T
— e [Tl={v|+Vv:T}
— e.g. [Zero] = {0}, [Pos] =1{1, 2, 3, ...}

If T, <: T, implies [T;1! [T,], then T; <: T, is sound.
— e.g. Pos <: Intis sound, since {1,2,3,...} ! {...,-3,-2,-1,0,1,2,3,...}

— e.g. Int <: Pos is not sound, since it is not the case that
{...,-3,-2,-1,0,1,2,3,...}} {1,2,3,...}

Subsumption Rule

* When we add subtyping judgments of the form T <: S we can uniformly
integrate it into the type system generically:

SUBSUMPTION Gke'T T<S

GrFHe:S

» Subsumption allows any value of type T to be treated as an S whenever T <: S.

» Adding this rule makes the search for typing derivations more difficult — this rule
can be applied anywhere, since T <: T.

— But careful engineering of the typing system can incorporate the subsumption rule into
a deterministic algorithm. (See, e.g., the Oat type system)

Downcasting

What happens if we have an Int but need something of type Pos?

— At compile time, we don’t know whether the Int is greater than zero.
— At run time, we do.

 Add a “checked downcast”

GHFeq:iInt G, x:Poske,: T, Gres: T4

G + ifPos (x =) e, else e;3 : LUB(T,, T3)

e At runtime, ifPos checks whether e; is > 0.
If so, branches to e, and otherwise branches to e;.

 Inside the expression e,, x is the name for e;’s value, which is known to be
strictly positive because of the dynamic check.

Note that such rules force the programmer to add the appropriate checks
— We could give integer division the type: Int" NonZero" Int

Subtyping in the Wild

Extending Subtyping to Other Types

» What about subtyping for tuples?

— Intuition: whenever a program expects T,<:§5 T,< 5,
something of type S; * S,, it is sound
to giveita Ty * T,. (T1 *T,) <: (51 *5y)

— Example: (Pos * Neg) <: (Int * Int)

« What about functions?

« Whenis T;" T, <:§" S, ?

Subtyping for Function Types

* One way to see I1t:

Expected function

* Need to convert an S1 to a T1 and T2 to S2, so the argument type is
contravariant and the output type is covariant.

S;<:T¢ T,< S,

Immutable Records

« Record type: {lab;:T;; lab,:T»; ... ; lab,:T,}

— Each lab; is a label drawn from a set of identifiers.

Gl—e1:T1 GFe: T, .. Gre,:T,

G+ {lab; =eq; lab, =e,; ... ; lab, = e } : {lab{:T;; lab,:T,; ... ; lab,:T,}

GFe:{lab:T¢; lab,:T,; ... lab,: T}

G e.lab;: T,

Immutable Record Subtyping

» Depth subtyping:
— Corresponding fields may be subtypes

I < U, Ty< U, ... T,<:U,

{lab{:T; [ab,:T,; ... ; lab,: T} <: {lab;:U;; lab,:U,; ... ; lab,:U,}

» Width subtyping:

— Subtype record may have more fields:

m<n

{lab+:T¢; lab,:T,; ... ; [ab,: T} <: {lab+:T¢; lab,:T,; ... ; [ab: T}

Mutability and Subtyping

NULL

What is the type of null?

Consider:
intffla=null; // OK?
int x = null; // OK? (nope)

string s = null; // OK?

NULL
- Gr+null:r

Null has any reference type

— Null is generic

What about type safety?

— Requires defined behavior when dereferencing null
e.g. Java's NullPointerException

— Requires a safety check for every dereference operation

Subtyping and References

What is the proper subtyping relationship for references and arrays?

Suppose we have NonZero as a type and the division operation has type:
Int” NonZero" Int

— Recall that NonZero <: Int

Should (NonZero ref) <: (Int ref) ?

Consider this program:

Int bad(NonZero ref r) {
Intrefa =r; (* OK because (NonZero ref <: Int ref*)

a:=0; (* OK because 0 : Zero <: Int *)
return (42 /!r) (* OK because !r has type NonZero *)

}

Mutable Structures are Invariant

» Covariant reference types are unsound (well-typed programs do go wrong)
— As demonstrated in the previous example

» Contravariant reference types are also unsound
— 1.e.If T; <: T, thenret T, <: ref T; is also unsound

— Exercise: construct a program that breaks contravariant references.
e Moral: Mutable structures are invariant:
T, ref <: T, ret implies T, =T,
» Same holds for arrays, OCaml-style mutable records, object fields, etc.

— Note: Java and C# get this wrong. They allows covariant array subtyping, but then
compensate by adding a dynamic check on every array update!

*,1 =[t#FS nat array

. E IE

na€: int
M@ @ @ —F :
'l t: nat array nat arrdayint array
AH . E | E :
'l t:int array I'1'0: nat 1" 1 int

L1 0] :=

BB/

Reminder: Subtyping for Function Types

One way to see it:

Expected function

Need to convert an S1 to a T1 and T2 to S2, so the argument type is
contravariant and the output type is covariant.

S;<:T¢ T,< S,

Another Way to See It

We can think of a reference cell as an immutable record (object) with two
functions (methods) and some hidden state:
Tref = {get:unit" T, set: T" unit}

— get returns the value hidden in the state.

— set updates the value hidden in the state.

When is T ref <: S ref?
Records are like tuples: subtyping extends pointwise over each component.
{get: unit" T, set: T" wunit} <: {get: unit" S;set: S" unit}

— get components are subtypes: unit" T <: unit" S
set components are subtypes: T" unit <: S" unit

From get, we must have T <: S (covariant return)
From set, we must have S <: T (contravariant arg.)

FromT <:Sand S <: T we conclude T = S.

Demo: Arrays in Java

Check out https://github.com/ysc4230/week-10-java-arrays

The code shows the run-time issue with covariant array subtyping

46

https://github.com/ysc4230/week-10-java-arrays

Structural vs. Nominal Subtyping

Structural vs. Nominal Typing

« Is type equality / subsumption defined by the structure of the data or the name of the data?
« Example: type abbreviations (OCaml) vs. “newtypes” (a la Haskell)

(* OCaml: *)
type cents =int (* cents = int in this scope *)
type age =int

let foo (x:cents) (y:age) =x+y

(* Haskell: *)
newtype Cents = Cents Integer (* Integer and Cents are isomorphic, not identical. *)

newtype Age = Age Integer

foo :: Cents -> Age -> Int
fooxy=x+y (* lll typed! *)

» Type abbreviations are treated “structurally” Newtypes are treated “by name”.

Nominal Subtyping in Java
» InJava, Classes and Interfaces must be named and their relationships explicitly declared:

(* Java:)
iInterface Foo {
Int foo();

}

class C{ /* Does not implement the Foo interface */
int foo() {return 2;}

}

class D implements Foo {
int foo() {return 4230;}

}

» Similarly for inheritance: the subclass relation must be declared via the “extends” keyword.

— Typechecker still checks that the classes are structurally compatible

Oat’s Type System

Oat’s Treatment of Types

» Primitive (non-reference) types:
— Int, bool
* Definitely non-null reference types: R

— (named) mutable structs with (right-oriented) width subtyping
— string
— arrays (including length information, per HW4)

* Possibly-null reference types: R?

— Subtyping: R <: R?
int sum(int[]? arr) {
var z = 0;
if? (int[] a = arr) {
for(vari = 0; i<length(a); i=1+ 1;) {
Zz =2+ alll;
}
}

return z;

— Checked downcast syntax if?:

Full Oat Features

Named structure types with mutable fields
— but using structural, width subtyping

Typed function pointers

Polymorphic operations: length and ==/ |=
— need special case handling in the typechecker

Type-annotated null values: t null always has type t?

Definitely-not-null values means we need an "atomic" array initialization syntax

— for example, null is not allowed as a value of type int[], so to construct a record
containing a field of type int[], we need to initialize it

— subtlety: int[][] cannot be initialized by default, but int[] can be

Oat "Returns" Analysis

» Type-safe, statement-oriented imperative languages like Oat (or Java)
must ensure that a function (always) returns a value of the appropriate type.

— Does the returned expression's type match the one declared by the function?
— Do all paths through the code return appropriately?
» QOat’s statement checking judgment

— takes the expected return type as input: what type should the statement return (or void if none)

— produces a boolean flag as output: does the statement definitely return?

H;G;Ly;rt! stmt © Ly, returns
H;G;L! exp : bool
H:G;L! exp:t& H! t&' t t ot T ‘;G;_;I’t!%bdﬁ;l’l
H,G;L;t! return exg " L;~ P H: G; L:rt ! block:rs v i
H;G;L;rt ! if (exp block else block " L;ri) ro P
H;G;L! exp: bool H;G,L! exp: (t1,..,tp) -> void
H;G;L;rt! bl -G L | - & -G L | - &
.r ockr " typ while H’G’Ig:'. exp : ty .. &I-!,G,L. expm : t;
H:G;L;rt ! while (exp block L; (H! t7 t¢ .. H! t3 th
typ scall

H;G;L;rt ! expgexp, ..,exm); " L(

Example: Typing in Oat

Checking Derivations

A derivation or proof tree has (instances of) judgments as its nodes and edges that connect
premises to a conclusion according to an inference rule.

Leaves of the tree are axioms (i.e. rules with no premises)

— Example: the INT rule is an axiom
Goal of the type checker: verify that such a tree exists.

Example 1: Find a tree for the following program using the inference rules in Oat specification

var x1 = 0;
var x2 = x1 + x1;
X1l = x1 — x2;

return(xl);

Example 2: There is no tree for this ill-typed program:

int f£() {
var x = 1nt[] null;
X = new 1int[] {3,4};
return x[0];

}

Example Derivation

H; G, Lg; rt ! sgstmty..stmt, © Lj; returns

H;G;Lg;rt ! stmty * Ly #

var x1 = 0: D
! D H;G;Lngo;rt | stmtygs " Lng1;#
Xl = x1 — Xx2; D> H: G; Lo; rt ! ssStmt ..Stmt,g 1 StMty " Ln; T P
return(xl); Dy
D4 D> D3 Dy
T . . . - typ _stmts
H; G, aInt | sgvar X; =0; var Xo =Xq1+Xo; X1 =Xq1- Xo; return Xq; X1:Int ,Xo:Int , g #

Example Derivation

H:G:L;! vdecl" L, t N H;G;L! exp:t x#3L tyo dec
Sm eC 11 —
H:G:Ly;rt ! vdec] " |_2;(yp _ H;, G;L! var x=exp” L,Xx:t
var x2 = x1 + x1; '
! . : t INt
x1l = x1 — x2; H;G;L! Integer : Int P
return(xl);
D]_:
: . typ int X1 $Y%
H;:G;al O . Int P 1% typ decl
H:G:;al var x; =0" 3§x;:int — vo stmtdecl
H:G:gint ! var x;=0; " 3x;:int ;& P

Example Derivation

H:G: Ly ! vdecl" L, t e H;G;L! exp:t x#{ typ decl
stimitaecC . _ T : —
H:G:Ly;rt ! vdec] " |_2;(yp _ H;, G;L! var x=exp” L,Xx:t
var x1 = 0;
- it L
' . . L INt
X1 = x1 — x2;5 H;G;L! Integer : int P H'GL! id : t typ _local
return(xl);
D2:
"+ (nt nt) > int | YP-INt Ops
X1:int %gxy :int typ local X1:int %3gxy :int typ local
H;G;§xq:int I xq : int — H;G;§xq:int I xq : int — y
H:G;§xq:int | xq+Xxq : int typ_bop X2 $%8xy :int typ decl

H; G;al var Xxo = X1 +x¢ "

aXxq:int ,Xo:int

H:G;axq:int ;int !

var Xo =X +Xq1;

aXq:int ,Xo:int ;&

typ _stmtdecl

Example Derivation

H:G: Ly ! vdec" L, t e H;G,L! exp:t x#4L tyo dec
stimtdec T~ _ n _ _
H;G;Ly;rt ! vdecl " Lo;(P H; G L! var x=exp” L,x:t
var x1 = 0;
var x2 = x1 + x1; t int id:t" L
X1l = x1 — xX2j5 H;G;L! Integer : int P H'GL! id : t typ _local
return(xl);
D5:
o (int nt) >t YP-Int Ops
Xq1:int " §Xq:int ,Xs:int , ocal Xo:int " §Xq:int ,Xs:int t ocal
H;:G;§Xq:int ,Xo:int 1 Xq @ Int P H;:G;§Xq:int ,Xo:int 1 Xo @ Int yp _bta o bo
H:G;axq:int ,Xo:int 1 Xq1- X7 @ int P _POp
D3:
G| t a global function id LMt " axa:int ,xp:int typ_local b sub int D
+ X1 ot a giobal Tnction | H;G;3xq:int ,Xo:int 1 X7 : int yp_otd H! int # Int Stb_SURIN >
typ _assn

H:G;§Xq:int ,Xo:int ;int |

X1 =X1-X2; $ gxq:int ,Xo:int ;%

Example Derivation

H:G;L! exp: t& H! t&' t t - e i
re . — SUb sub In
H,G;L;t! return exg " L;~ P H ! int int - =
var x1 = 0;
var x2 = x1 + x1; dit 7 L typ local
xl = x1 — x2; H:G;L! id :t P
D4:
X1:int " §Xq:int ,Xo:int _
— . . typ local . . sub sub Int
H;G;axq:Int ,xo:int I Xq © Int H! int # Int
S : : — : typ ret T
H:G;§Xq:int ,Xo:int ;int ! return X1; $ §Xq:int ,Xo:int ;&

Example: IlI-Typed Oat Program

int f() {
var X = 1int[] null;
X = new int[] {3,4};

return x[0];

}

Next in this Module

» Making our programs faster

