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Moore’s Law
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Moore’s Law (in practice)
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Extinct: the Uniprocesor

memory

cpu
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Extinct:  
The Shared Memory Multiprocessor 

(SMP)

cache

BusBus

shared memory

cachecache
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The New Boss:  
The Multicore Processor 

(CMP) 

cache
BusBus

shared memory

cachecache
All on the  
same chip

Sun 
T2000 
Niagara
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Why do we care? 

• Time no longer cures software bloat 
– The “free ride” is over 

• When you double your program’s path length 
– You can’t just wait 6 months 
– Your software must somehow exploit twice as much 

concurrency
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Traditional Scaling Process

User code

Traditional 
Uniprocessor 

Speedup
1.8x

7x
3.6x

Time: Moore’s law



Ideal Scaling Process
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User code

Multicore

Speedup 1.8x

7x
3.6x

Unfortunately, not so simple…



Actual Scaling Process
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1.8x 2x 2.9x

User code

Multicore

Speedup

Parallelization and Synchronization  
require great care… 



What this course is about?
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• Writing efficient code by exploiting the parallelism offered by  
modern multiprocessors by means of writing concurrent programs 

• Designing concurrent algorithms and data structures  
(executing on the same computer, possibly in parallel) 

• Avoiding common mistakes when writing concurrent code;  
formally reasoning about its correctness. 

• Basics of distributed computing  
(over multiple computers) in the presence of  
communication faults.
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Programming Language
• A mix of functional and object-oriented programming 

(suitable for both OCaml and Java/C++ hackers) 

• Supports almost all styles of concurrency  
(shared-memory, message-passing, transactional memory, etc.) 

• Type-safe, garbage-collected. 

• Interoperability with Java, compiling into JVM (Java Virtual Machine) 

• Great IDE support (we’ll be using IntelliJ IDEA with Scala plugin)
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Grading
• Homework Assignments: 65% 

• 3 Written Theory Assignments 

• 6 Programming Assignments  

• 1 Research Mini-project (groups of 2) 

• Mid-Term Project: 15% 

• Final Project: 15% 

• In-class participation: 5% 
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Homework
• Two types: theoretical and programming assignments 

• Complete individually 

• Deliverables:  
• a PDF with typeset answers (theory) and occasionally some code 
• a link to a tagged GitHub release (programming) 

• Each assignment is graded out of 20 points
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Submission Policies

• Projects that don’t compile will get no credit 

• All deadlines are strict (no ad-hoc extensions). 

• Late submissions will be penalised by subtracting  
(2 + # full days after deadline) points from the maximal score (20). 

• No resubmissions.
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Collaboration
• Permitted: 

• Talking about the homework problems with the peer tutor  
• Using other textbooks  
• Using the Internet for documentation on Scala and Java. 

• Not permitted:
• Obtaining the answer directly from anyone or anything else in any form 
• Adapting a solution from a similar one found on the internet 
• “Copying with understanding” from other resources 
• 1st strike: 0 points for assignment 
• 2nd strike: F for the module, the case is passed to the Acad. Integrity Committee
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More on code of conduct: https://ilyasergey.net/YSC4231/faq.html 
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Getting Help

• Office Hours (#COM3-02-56, NUS SoC): by demand  

• E-mail policy: questions about homework assignments sent less than 
24 hours before submission deadline won’t be answered.  

• Exception: bug reports.
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Peer Tutor
Phong Le

phongnguyen.le@u.yale-nus.edu.sg

• Tutoring sessions: TBA 



What’s in this course.

20
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Most of this course: Multicore Programming

• Fundamentals 
– Models, algorithms, impossibility 

• Real-World programming 
– Architectures 
– Techniques
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About 50% of the material The rest

Resources

• Lecture slides 

• Lecture notes 

• The Code

about 30%



Parallelism ≠ Concurrency

• Parallelism — ability to execute computations at the same time  
- Think multiple classrooms 

• Concurrency — structure of a computation so its parts can be executed  
at the same time (i.e., in parallel) 
- Think multiple classes in the schedule 

• Concurrent computations can be executed sequentially, i.e., not in parallel
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Thinking concurrently
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Sequential Computation

memory

object object

thread
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Concurrent Computation

memory

object object

th
re

ad
s
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Concurrent Computation

memory

object object

th
re

ad
s
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Asynchrony

• Sudden unpredictable delays 
– Cache misses (short) 
– Page faults (long) 
– Scheduling quantum used up (really long)



Threads, Processes and Processors

Picture credit: Learning Concurrent Programming in Scala, A. Prokopec, 2014
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Model Summary

• Multiple threads (within processes)  
– Sometimes also called processes 

• Single shared memory 
• Objects live in memory 
• Unpredictable asynchronous delays
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Road Map

• We are going to focus on principles first, then practice 
– Start with idealised models of concurrent computations 
– Look at simplistic problems 
– Emphasise correctness over pragmatism 
– “Correctness may be theoretical, but incorrectness has 

practical impact”
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Concurrency Jargon

• Hardware 
– Processors 

• Software 
– Threads, processes  

(one process may have several threads) 
• Sometimes OK to confuse them, sometimes not.



5 Min Break?
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Designing Concurrent Programs
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Parallel Primality Testing

• Challenge 
– Print primes from 1 to 1010 

• Given 
– Ten-processor multiprocessor 
– One thread per processor 

• Goal 
– Get ten-fold speedup (or close)
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Load Balancing

• Split the work evenly 
• Each thread tests range of 109

…

…109 10102·1091

P0 P1 P9
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Procedure for Thread i

def primePrint(): Unit = { 
  val i = ThreadID.get // Thread IDs in 0..9 
  val block = math.pow(10, 109) 
  for (j <- (i * block) + 1 to (i + 1) * block) { 
    if (isPrime(j)) { 
      println(j) 
    } 
  } 
} 
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Issues (?)

• Higher ranges have fewer primes 
• Yet larger numbers harder to test 
• Thread workloads 

– Uneven 
– Hard to predict
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Issues

rejected

• Higher ranges have fewer primes 
• Yet larger numbers harder to test 
• Thread workloads 

– Uneven 
– Hard to predict
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17

18

19

Shared Counter

each thread 
takes a number
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Procedure for Thread i

val counter = new Counter 

def primePrint(): Unit = { 
  var i: Int = 1 
  val limit = math.pow(10, 9).intValue 
  while (i < limit) { 
    i = counter.getAndIncrement 
    if (isPrime(i)) { 
      println(i) 
    } 
  } 
}



val counter = new Counter 

def primePrint(): Unit = { 
  var i: Int = 1 
  val limit = math.pow(10, 9).intValue 
  while (i < limit) { 
    i = counter.getAndIncrement 
    if (isPrime(i)) { 
      println(i) 
    } 
  } 
}
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Procedure for Thread i

Shared counter 
object
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Where Things Reside

cache

BusBus

cachecache

1

shared counter

shared  
memory

val counter = new Counter 

def primePrint(): Unit = { 
  var i: Int = 1 
  val limit = math.pow(10, 9).intValue 
  while (i < limit) { 
    i = counter.getAndIncrement 
    if (isPrime(i)) { 
      println(i) 
    } 
  } 
}

code

Local  
variables



val counter = new Counter 

def primePrint(): Unit = { 
  var i: Int = 1 
  val limit = math.pow(10, 9).intValue 
  while (i < limit) { 
    i = counter.getAndIncrement 
    if (isPrime(i)) { 
      println(i) 
    } 
  } 
}
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Procedure for Thread i

Stop when every 
value taken



val counter = new Counter 

def primePrint(): Unit = { 
  var i: Int = 1 
  val limit = math.pow(10, 9).intValue 
  while (i < limit) { 
    i = counter.getAndIncrement 
    if (isPrime(i)) { 
      println(i) 
    } 
  } 
}
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Procedure for Thread i

Increment & return each 
new value



Demo
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Counter Implementation

class Counter { 
  private var count = 0 

  def getAndIncrement: Int = { 
    val tmp = count 
    count = tmp + 1 
    tmp 
  } 
}



class Counter { 
  private var count = 0 

  def getAndIncrement: Int = { 
    val tmp = count 
    count = tmp + 1 
    tmp 
  } 
}
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Counter Implementation

OK for single thread, 

not for concurrent threads
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time

Not so good…

Value… 1

read  
1

read  
1

read  
2

write  
2

2

write  
3

3

write  
2

2
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Is this problem inherent?

If we could only glue reads and writes together… 

read

write read

write
!! !!



5 Min Break?
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Challenge

class Counter { 
  private var count = 0 

  def getAndIncrement: Int = { 
    val tmp = count 
    count = tmp + 1 
    tmp 
  } 
}



class Counter { 
  private var count = 0 

  def getAndIncrement: Int = { 
    val tmp = count 
    count = tmp + 1 
    tmp 
  } 
}
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Challenge

Make these steps 
atomic (indivisible)



class Counter { 
  private var count = 0 

  def getAndIncrement: Int = { 
    val tmp = count 
    count = tmp + 1 
    tmp 
  } 
}
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Hardware Solution

ReadModifyWrite() 
instruction



class Counter { 
  private var count = 0 

  def getAndIncrement: Int = { 
    this.synchronized { 

 val tmp = count 
     count = tmp + 1 

      tmp 
    } 
  } 
}
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Java / Scala solution



class Counter { 
  private var count = 0 

  def getAndIncrement: Int = { 
    this.synchronized { 

 val tmp = count 
     count = tmp + 1 

      tmp 
    } 
  } 
}
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Synchronized block

Java / Scala solution



class Counter { 
  private var count = 0 

  def getAndIncrement: Int = { 
    this.synchronized { 

 val tmp = count 
     count = tmp + 1 

      tmp 
    } 
  } 
}
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Mutual Exclusion

Java / Scala solution
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Mutual Exclusion, 
or “Alice & Bob share a pond”

A B
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Alice has a pet

A B
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Bob has a pet

A B
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The Problem

A B

The pets don’t 
get along
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Formalizing the Problem

• Two types of formal properties in asynchronous 
computation:  

• Safety Properties 
– Nothing bad happens ever 
– If is violated, this is done by a finite computation 

• Liveness Properties  
– Something good happens eventually 
– Cannot be violated by a finite computation 

(intuition we can always run longer and see what happens)
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Formalizing our Problem

• Mutual Exclusion 
– Both pets never in pond simultaneously 
– This is a safety property 

• No Deadlock 
– if only one wants in, it gets in 
– if both want in, one gets in. 
– This is a liveness property



64

Simple Protocol

• Idea 
– Just look at the pond 

• Problems? 
• Gotcha 

– Not atomic 
– Trees obscure the view
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Interpretation

• Threads can’t “see” what other threads are doing 

• Explicit communication required for coordination
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Cell Phone Protocol

• Idea 
– Bob calls Alice (or vice-versa) 

• Problems?  
• Gotcha 

– Bob takes shower 
– Alice recharges battery 
– Bob out shopping for pet food …
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Interpretation

• Message-passing doesn’t work 
• Recipient might not be 

– Listening 
– There at all 

• Communication must be 
– Persistent (like writing) 
– Not transient (like speaking)
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Can Protocol

co
la

co
la
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Bob conveys a bit

A B
co

la
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Bob conveys a bit

A B

cola
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Can Protocol

• Idea 
– Cans on Alice’s windowsill 
– Strings lead to Bob’s house 
– Bob pulls strings, knocks over cans 

• Gotcha 
– Cans cannot be reused 
– Bob runs out of cans
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Interpretation

• Cannot solve mutual exclusion with interrupts 
– Sender sets fixed bit in receiver’s space 
– Receiver resets bit when ready 
– What if the receiver is unavailable and doesn’t reset? 
– Requires unbounded number of interrupt bits
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Flag Protocol

A B
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Alice’s Protocol (sort of)

A B
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Bob’s Protocol (sort of)

A B
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Alice’s Protocol

• Raise flag 
• Wait until Bob’s flag is down 
• Unleash pet 
• Lower flag when pet returns
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Bob’s Protocol

• Raise flag 
• Wait until Alice’s flag is down 
• Unleash pet 
• Lower flag when pet returns

Problems with this protocol?
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Bob’s Protocol

• Raise flag 
• Wait until Alice’s flag is down 
• Unleash pet 
• Lower flag when pet returns

danger: deadlock!

Alice’s Protocol

• Raise flag 
• Wait until Bob’s flag is down 
• Unleash pet 
• Lower flag when pet returns
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Bob’s Protocol (2nd try)

• Raise flag 
• While Alice’s flag is up 

– Lower flag 
– Wait for Alice’s flag to go down 
– Raise flag 

• Unleash pet 
• Lower flag when pet returns
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Bob’s Protocol

• Raise flag 
• While Alice’s flag is up 

– Lower flag 
– Wait for Alice’s flag to go down 
– Raise flag 

• Unleash pet 
• Lower flag when pet returns

Bob defers 
to Alice
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The Flag Principle

• Raise the flag 
• Look at other’s flag 
• Flag Principle: 

– If each raises and looks, then 
– Last to look must see both flags up
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Proof of Mutual Exclusion

• Assume both pets in pond 
– Derive a contradiction 
– By reasoning backwards 

• Consider the last time Alice and Bob each looked 
before letting the pets in 

• Without loss of generality assume Alice was the 
last to look… 
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Proof

time

Alice’s last look

Alice last raised her flag

Bob’s last 
look

QED
Alice must have seen Bob’s Flag. A Contradiction

Bob last raised 
flag
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Proof of No Deadlock

• If only one pet wants in, it gets in.



85

Proof of No Deadlock

• If only one pet wants in, it gets in. 
• Deadlock requires both continually trying to 

get in.
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Proof of No Deadlock

• If only one pet wants in, it gets in. 

• Deadlock requires both continually trying to get in. 

• If Bob sees Alice’s flag, he backs off, gives her 
priority (Alice’s lexicographic privilege)

QED
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Remarks

• Protocol is unfair (why?) 
– Bob’s pet might never get in 

• Protocol uses waiting 
– If Bob is eaten by his pet, Alice’s pet might never get in
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Moral of Story

• Mutual Exclusion cannot be solved by 
–transient communication (cell phones) 
–interrupts (cans) 

• It can be solved by 
– one-bit shared variables  
– that can be read or written 
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The Fable Continues

• Alice and Bob fall in love & marry 

• Then they fall out of love & divorce 
– After a coin flip, she gets the pets 
– He has to feed them
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The Fable Continues

• Alice and Bob fall in love & marry 

• Then they fall out of love & divorce 
– She gets the pets 
– He has to feed them 

• Leading to a new coordination problem: 
Producer-Consumer 
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Bob Puts Food in the Pond

A
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mmm…

Alice releases her pets to Feed

B
mmm…
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Producer/Consumer

• Alice and Bob can’t meet 
– Each has restraining order on other 
– So he puts food in the pond 
– And later, she releases the pets 

• Avoid 
– Releasing pets when there’s no food 
– Putting out food if uneaten food remains
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Producer/Consumer

• Need a mechanism so that 
– Bob lets Alice know when food has been put out 
– Alice lets Bob know when to put out more food 
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Surprise Solution

A B
co

la
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Bob puts food in Pond

A B
co

la
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Bob knocks over Can

A B

cola
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Alice Releases Pets

A B

cola

yum… B
yum…
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Alice Resets Can when Pets are Fed

A B
co

la
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Pseudocode

while (true) { 
  while (can.isUp()){}; 
  pet.release(); 
  pet.recapture(); 
  can.reset(); 
}  

Alice’s code
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Pseudocode

while (true) { 
  while (can.isUp()){}; 
  pet.release(); 
  pet.recapture(); 
  can.reset(); 
}  

Alice’s code

while (true) { 
  while (can.isDown()){}; 
  pond.stockWithFood(); 
  can.knockOver(); 
}  

Bob’s code
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Correctness
• Mutual Exclusion 

– Pets and Bob never together in pond
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• Mutual Exclusion 
– Pets and Bob never together in pond 

• No Starvation 
if Bob always willing to feed, and pets always 

famished, then pets eat infinitely often.

Correctness
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Correctness
• Mutual Exclusion 

– Pets and Bob never together in pond 
• No Starvation 

if Bob always willing to feed, and pets always 
famished, then pets eat infinitely often. 

• Producer/Consumer 
The pets never enter pond unless there is 

food, and Bob never provides food if there is 
unconsumed food.

safety

liveness

safety
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Could Also Solve Using Flags

A B
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Waiting

• Both solutions use waiting 
– while(mumble){} 

• In some cases waiting is problematic 
– If one participant is delayed 
– So is everyone else 
– But delays are common & unpredictable
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The Fable drags on …

• Bob and Alice still have issues
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The Fable drags on …

• Bob and Alice still have issues 
• So they need to communicate
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The Fable drags on …

• Bob and Alice still have issues 
• So they need to communicate 
• They agree to use billboards …
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E
1

D
2C

3

Billboards are Large

B
3A

1

Letter 
Tiles 

From Scrabble™ box
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E
1

D
2C

3

Write One Letter at a Time …

B
3A

1

W
4
A

1
S

1

H
4
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To post a message

W
4
A

1
S

1
H

4
A

1
C

3
R

1
T

1
H

4
E

1

whew
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S
1

Let’s send another message

S
1
E

1
L

1
L

1
L

1
V

4

L
1 A

1

M
3

A
1

A
1

P
3
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Uh-Oh

A
1

C
3

R
1

T
1
H

4
E

1
S

1
E

1
L

1
L

1

L
1

OK
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Readers/Writers

• Devise a protocol so that 
– Writer writes one letter at a time 
– Reader reads one letter at a time 
– Reader sees “snapshot” 

• Old message or new message 
• No mixed messages
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Readers/Writers (continued)

• Easy with mutual exclusion 
• But mutual exclusion requires waiting 

– One waits for the other 
– Everyone executes sequentially 

• Remarkably 
– We can solve R/W without mutual exclusion
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Esoteric?

• Java container size() method 
• Single shared counter? 

– incremented with each add() and 
– decremented with each remove() 

• Threads wait to exclusively access counter

perfo
rm

ance  

bottle
neck



118

Readers/Writers Solution

• Each thread i has size[i] counter  
– only it increments or decrements.   

• To get object’s size, a thread reads a 
“snapshot” of all counters 

• This eliminates the bottleneck



Concurrency and Mutual Exclusion



Mutual Exclusion = Sequential Execution

120
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Why do we care?

• We want as much of the code as possible to execute 
concurrently (in parallel) 

• A larger sequential part implies reduced performance   

• Amdahl’s law: this relation is not linear…
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Amdahl’s Law

Speedup=
1-thread execution time

n-thread execution time
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Amdahl’s Law

Speedup= 1
1  − 𝑝 + 𝑝

𝑛



Parallel 
fraction
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Amdahl’s Law

Speedup= 1
1  − 𝑝 + 𝑝

𝑛



1
1  − 𝑝 + 𝑝

𝑛
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Amdahl’s Law

Speedup= 1
1  − 𝑝 + 𝑝

𝑛

Parallel 
fraction

Sequential 
fraction
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Amdahl’s Law

Speedup=

Parallel 
fraction

Sequential 
fraction

Number of 
threads

1
1  − 𝑝 + 𝑝

𝑛



Bad synchronization ruins everything

Amdal’s Law
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Example

• Ten processors 
• 60% concurrent, 40% sequential 
• How close to 10-fold speedup?
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Example

• Ten processors 
• 60% concurrent, 40% sequential 
• How close to 10-fold speedup?

10
6.06.01

1

+−
Speedup = 2.17=
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Example

• Ten processors 
• 80% concurrent, 20% sequential 
• How close to 10-fold speedup?
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Example

• Ten processors 
• 80% concurrent, 20% sequential 
• How close to 10-fold speedup?

10
8.08.01

1

+−
Speedup = 3.57=
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Example

• Ten processors 
• 90% concurrent, 10% sequential 
• How close to 10-fold speedup?
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Example

• Ten processors 
• 90% concurrent, 10% sequential 
• How close to 10-fold speedup?

10
9.09.01

1

+−
Speedup = 5.26=
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Example

• Ten processors 
• 99% concurrent, 01% sequential 
• How close to 10-fold speedup?
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Example

• Ten processors 
• 99% concurrent, 1% sequential 
• How close to 10-fold speedup?

10
99.099.01

1

+−
Speedup = 9.17=
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• Basics of Scala programming 

• Formal model for thinking about concurrency 

• Algorithms for mutual exclusion

Next Week
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ShareAlike 2.5 License. 

• You are free:
– to Share — to copy, distribute and transmit the work 
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• Under the following conditions:
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distribute the resulting work only under the same, similar or a 
compatible license. 

• For any reuse or distribution, you must make clear to others the license 
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– http://creativecommons.org/licenses/by-sa/3.0/. 
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