
YSC4231: Parallel, Concurrent
and Distributed Programming

Ilya Sergey

1

ilya@nus.edu.sg

https://ilyasergey.net/YSC4231

https://ilyasergey.net/YSC4231

2

Moore’s Law

Clock
speed

flattening
sharply

Transistor
count still

rising

Moore’s Law (in practice)

3

4

Extinct: the Uniprocesor

memory

cpu

5

Extinct:
The Shared Memory Multiprocessor

(SMP)

cache

BusBus

shared memory

cachecache

6

The New Boss:
The Multicore Processor

(CMP)

cache
BusBus

shared memory

cachecache
All on the
same chip

Sun
T2000
Niagara

7

Why do we care?

• Time no longer cures software bloat
– The “free ride” is over

• When you double your program’s path length
– You can’t just wait 6 months
– Your software must somehow exploit twice as much

concurrency

8

Traditional Scaling Process

User code

Traditional
Uniprocessor

Speedup
1.8x

7x
3.6x

Time: Moore’s law

Ideal Scaling Process

9

User code

Multicore

Speedup 1.8x

7x
3.6x

Unfortunately, not so simple…

Actual Scaling Process

10

1.8x 2x 2.9x

User code

Multicore

Speedup

Parallelization and Synchronization
require great care…

What this course is about?

11

• Writing efficient code by exploiting the parallelism offered by
modern multiprocessors by means of writing concurrent programs

• Designing concurrent algorithms and data structures
(executing on the same computer, possibly in parallel)

• Avoiding common mistakes when writing concurrent code;
formally reasoning about its correctness.

• Basics of distributed computing
(over multiple computers) in the presence of
communication faults.

12

Programming Language
• A mix of functional and object-oriented programming

(suitable for both OCaml and Java/C++ hackers)

• Supports almost all styles of concurrency
(shared-memory, message-passing, transactional memory, etc.)

• Type-safe, garbage-collected.

• Interoperability with Java, compiling into JVM (Java Virtual Machine)

• Great IDE support (we’ll be using IntelliJ IDEA with Scala plugin)

13

Grading
• Homework Assignments: 65%

• 3 Written Theory Assignments

• 6 Programming Assignments

• 1 Research Mini-project (groups of 2)

• Mid-Term Project: 15%

• Final Project: 15%

• In-class participation: 5%

14

Homework
• Two types: theoretical and programming assignments

• Complete individually

• Deliverables:
• a PDF with typeset answers (theory) and occasionally some code
• a link to a tagged GitHub release (programming)

• Each assignment is graded out of 20 points

15

Submission Policies

• Projects that don’t compile will get no credit

• All deadlines are strict (no ad-hoc extensions).

• Late submissions will be penalised by subtracting
(2 + # full days after deadline) points from the maximal score (20).

• No resubmissions.

16

Collaboration
• Permitted:

• Talking about the homework problems with the peer tutor
• Using other textbooks
• Using the Internet for documentation on Scala and Java.

• Not permitted:
• Obtaining the answer directly from anyone or anything else in any form
• Adapting a solution from a similar one found on the internet
• “Copying with understanding” from other resources
• 1st strike: 0 points for assignment
• 2nd strike: F for the module, the case is passed to the Acad. Integrity Committee

17

More on code of conduct: https://ilyasergey.net/YSC4231/faq.html

https://ilyasergey.net/YSC4231/faq.html

Getting Help

• Office Hours (#COM3-02-56, NUS SoC): by demand

• E-mail policy: questions about homework assignments sent less than
24 hours before submission deadline won’t be answered.

• Exception: bug reports.

18

19

Peer Tutor
Phong Le

phongnguyen.le@u.yale-nus.edu.sg

• Tutoring sessions: TBA

What’s in this course.

20

21

Most of this course: Multicore Programming

• Fundamentals
– Models, algorithms, impossibility

• Real-World programming
– Architectures
– Techniques

22

About 50% of the material The rest

Resources

• Lecture slides

• Lecture notes

• The Code

about 30%

Parallelism ≠ Concurrency

• Parallelism — ability to execute computations at the same time
- Think multiple classrooms

• Concurrency — structure of a computation so its parts can be executed
at the same time (i.e., in parallel)
- Think multiple classes in the schedule

• Concurrent computations can be executed sequentially, i.e., not in parallel

23

Thinking concurrently

24

25

Sequential Computation

memory

object object

thread

26

Concurrent Computation

memory

object object

th
re

ad
s

27

Concurrent Computation

memory

object object

th
re

ad
s

28

Asynchrony

• Sudden unpredictable delays
– Cache misses (short)
– Page faults (long)
– Scheduling quantum used up (really long)

Threads, Processes and Processors

Picture credit: Learning Concurrent Programming in Scala, A. Prokopec, 2014

30

Model Summary

• Multiple threads (within processes)
– Sometimes also called processes

• Single shared memory
• Objects live in memory
• Unpredictable asynchronous delays

31

Road Map

• We are going to focus on principles first, then practice
– Start with idealised models of concurrent computations
– Look at simplistic problems
– Emphasise correctness over pragmatism
– “Correctness may be theoretical, but incorrectness has

practical impact”

32

Concurrency Jargon

• Hardware
– Processors

• Software
– Threads, processes

(one process may have several threads)
• Sometimes OK to confuse them, sometimes not.

5 Min Break?

34

Designing Concurrent Programs

35

Parallel Primality Testing

• Challenge
– Print primes from 1 to 1010

• Given
– Ten-processor multiprocessor
– One thread per processor

• Goal
– Get ten-fold speedup (or close)

36

Load Balancing

• Split the work evenly
• Each thread tests range of 109

…

…109 10102·1091

P0 P1 P9

37

Procedure for Thread i

def primePrint(): Unit = {
 val i = ThreadID.get // Thread IDs in 0..9
 val block = math.pow(10, 109)
 for (j <- (i * block) + 1 to (i + 1) * block) {
 if (isPrime(j)) {
 println(j)
 }
 }
}

38

Issues (?)

• Higher ranges have fewer primes
• Yet larger numbers harder to test
• Thread workloads

– Uneven
– Hard to predict

39

Issues

rejected

• Higher ranges have fewer primes
• Yet larger numbers harder to test
• Thread workloads

– Uneven
– Hard to predict

40

17

18

19

Shared Counter

each thread
takes a number

41

Procedure for Thread i

val counter = new Counter

def primePrint(): Unit = {
 var i: Int = 1
 val limit = math.pow(10, 9).intValue
 while (i < limit) {
 i = counter.getAndIncrement
 if (isPrime(i)) {
 println(i)
 }
 }
}

val counter = new Counter

def primePrint(): Unit = {
 var i: Int = 1
 val limit = math.pow(10, 9).intValue
 while (i < limit) {
 i = counter.getAndIncrement
 if (isPrime(i)) {
 println(i)
 }
 }
}

42

Procedure for Thread i

Shared counter
object

43

Where Things Reside

cache

BusBus

cachecache

1

shared counter

shared
memory

val counter = new Counter

def primePrint(): Unit = {
 var i: Int = 1
 val limit = math.pow(10, 9).intValue
 while (i < limit) {
 i = counter.getAndIncrement
 if (isPrime(i)) {
 println(i)
 }
 }
}

code

Local
variables

val counter = new Counter

def primePrint(): Unit = {
 var i: Int = 1
 val limit = math.pow(10, 9).intValue
 while (i < limit) {
 i = counter.getAndIncrement
 if (isPrime(i)) {
 println(i)
 }
 }
}

44

Procedure for Thread i

Stop when every
value taken

val counter = new Counter

def primePrint(): Unit = {
 var i: Int = 1
 val limit = math.pow(10, 9).intValue
 while (i < limit) {
 i = counter.getAndIncrement
 if (isPrime(i)) {
 println(i)
 }
 }
}

45

Procedure for Thread i

Increment & return each
new value

Demo

47

Counter Implementation

class Counter {
 private var count = 0

 def getAndIncrement: Int = {
 val tmp = count
 count = tmp + 1
 tmp
 }
}

class Counter {
 private var count = 0

 def getAndIncrement: Int = {
 val tmp = count
 count = tmp + 1
 tmp
 }
}

48

Counter Implementation

OK for single thread,

not for concurrent threads

49

time

Not so good…

Value… 1

read
1

read
1

read
2

write
2

2

write
3

3

write
2

2

50

Is this problem inherent?

If we could only glue reads and writes together…

read

write read

write
!! !!

5 Min Break?

52

Challenge

class Counter {
 private var count = 0

 def getAndIncrement: Int = {
 val tmp = count
 count = tmp + 1
 tmp
 }
}

class Counter {
 private var count = 0

 def getAndIncrement: Int = {
 val tmp = count
 count = tmp + 1
 tmp
 }
}

53

Challenge

Make these steps
atomic (indivisible)

class Counter {
 private var count = 0

 def getAndIncrement: Int = {
 val tmp = count
 count = tmp + 1
 tmp
 }
}

54

Hardware Solution

ReadModifyWrite()
instruction

class Counter {
 private var count = 0

 def getAndIncrement: Int = {
 this.synchronized {

 val tmp = count
 count = tmp + 1

 tmp
 }
 }
}

55

Java / Scala solution

class Counter {
 private var count = 0

 def getAndIncrement: Int = {
 this.synchronized {

 val tmp = count
 count = tmp + 1

 tmp
 }
 }
}

56

Synchronized block

Java / Scala solution

class Counter {
 private var count = 0

 def getAndIncrement: Int = {
 this.synchronized {

 val tmp = count
 count = tmp + 1

 tmp
 }
 }
}

57

Mutual Exclusion

Java / Scala solution

58

Mutual Exclusion,
or “Alice & Bob share a pond”

A B

59

Alice has a pet

A B

60

Bob has a pet

A B

61

The Problem

A B

The pets don’t
get along

62

Formalizing the Problem

• Two types of formal properties in asynchronous
computation:

• Safety Properties
– Nothing bad happens ever
– If is violated, this is done by a finite computation

• Liveness Properties
– Something good happens eventually
– Cannot be violated by a finite computation

(intuition we can always run longer and see what happens)

63

Formalizing our Problem

• Mutual Exclusion
– Both pets never in pond simultaneously
– This is a safety property

• No Deadlock
– if only one wants in, it gets in
– if both want in, one gets in.
– This is a liveness property

64

Simple Protocol

• Idea
– Just look at the pond

• Problems?
• Gotcha

– Not atomic
– Trees obscure the view

65

Interpretation

• Threads can’t “see” what other threads are doing

• Explicit communication required for coordination

66

Cell Phone Protocol

• Idea
– Bob calls Alice (or vice-versa)

• Problems?
• Gotcha

– Bob takes shower
– Alice recharges battery
– Bob out shopping for pet food …

67

Interpretation

• Message-passing doesn’t work
• Recipient might not be

– Listening
– There at all

• Communication must be
– Persistent (like writing)
– Not transient (like speaking)

68

Can Protocol

co
la

co
la

69

Bob conveys a bit

A B
co

la

70

Bob conveys a bit

A B

cola

71

Can Protocol

• Idea
– Cans on Alice’s windowsill
– Strings lead to Bob’s house
– Bob pulls strings, knocks over cans

• Gotcha
– Cans cannot be reused
– Bob runs out of cans

72

Interpretation

• Cannot solve mutual exclusion with interrupts
– Sender sets fixed bit in receiver’s space
– Receiver resets bit when ready
– What if the receiver is unavailable and doesn’t reset?
– Requires unbounded number of interrupt bits

73

Flag Protocol

A B

74

Alice’s Protocol (sort of)

A B

75

Bob’s Protocol (sort of)

A B

76

Alice’s Protocol

• Raise flag
• Wait until Bob’s flag is down
• Unleash pet
• Lower flag when pet returns

77

Bob’s Protocol

• Raise flag
• Wait until Alice’s flag is down
• Unleash pet
• Lower flag when pet returns

Problems with this protocol?

78

Bob’s Protocol

• Raise flag
• Wait until Alice’s flag is down
• Unleash pet
• Lower flag when pet returns

danger: deadlock!

Alice’s Protocol

• Raise flag
• Wait until Bob’s flag is down
• Unleash pet
• Lower flag when pet returns

79

Bob’s Protocol (2nd try)

• Raise flag
• While Alice’s flag is up

– Lower flag
– Wait for Alice’s flag to go down
– Raise flag

• Unleash pet
• Lower flag when pet returns

80

Bob’s Protocol

• Raise flag
• While Alice’s flag is up

– Lower flag
– Wait for Alice’s flag to go down
– Raise flag

• Unleash pet
• Lower flag when pet returns

Bob defers
to Alice

81

The Flag Principle

• Raise the flag
• Look at other’s flag
• Flag Principle:

– If each raises and looks, then
– Last to look must see both flags up

82

Proof of Mutual Exclusion

• Assume both pets in pond
– Derive a contradiction
– By reasoning backwards

• Consider the last time Alice and Bob each looked
before letting the pets in

• Without loss of generality assume Alice was the
last to look…

83

Proof

time

Alice’s last look

Alice last raised her flag

Bob’s last
look

QED
Alice must have seen Bob’s Flag. A Contradiction

Bob last raised
flag

84

Proof of No Deadlock

• If only one pet wants in, it gets in.

85

Proof of No Deadlock

• If only one pet wants in, it gets in.
• Deadlock requires both continually trying to

get in.

86

Proof of No Deadlock

• If only one pet wants in, it gets in.

• Deadlock requires both continually trying to get in.

• If Bob sees Alice’s flag, he backs off, gives her
priority (Alice’s lexicographic privilege)

QED

87

Remarks

• Protocol is unfair (why?)
– Bob’s pet might never get in

• Protocol uses waiting
– If Bob is eaten by his pet, Alice’s pet might never get in

88

Moral of Story

• Mutual Exclusion cannot be solved by
–transient communication (cell phones)
–interrupts (cans)

• It can be solved by
– one-bit shared variables
– that can be read or written

89

The Fable Continues

• Alice and Bob fall in love & marry

• Then they fall out of love & divorce
– After a coin flip, she gets the pets
– He has to feed them

90

The Fable Continues

• Alice and Bob fall in love & marry

• Then they fall out of love & divorce
– She gets the pets
– He has to feed them

• Leading to a new coordination problem:
Producer-Consumer

91

Bob Puts Food in the Pond

A

92

mmm…

Alice releases her pets to Feed

B
mmm…

93

Producer/Consumer

• Alice and Bob can’t meet
– Each has restraining order on other
– So he puts food in the pond
– And later, she releases the pets

• Avoid
– Releasing pets when there’s no food
– Putting out food if uneaten food remains

94

Producer/Consumer

• Need a mechanism so that
– Bob lets Alice know when food has been put out
– Alice lets Bob know when to put out more food

95

Surprise Solution

A B
co

la

96

Bob puts food in Pond

A B
co

la

97

Bob knocks over Can

A B

cola

98

Alice Releases Pets

A B

cola

yum… B
yum…

99

Alice Resets Can when Pets are Fed

A B
co

la

100

Pseudocode

while (true) {
 while (can.isUp()){};
 pet.release();
 pet.recapture();
 can.reset();
}

Alice’s code

101

Pseudocode

while (true) {
 while (can.isUp()){};
 pet.release();
 pet.recapture();
 can.reset();
}

Alice’s code

while (true) {
 while (can.isDown()){};
 pond.stockWithFood();
 can.knockOver();
}

Bob’s code

102

Correctness
• Mutual Exclusion

– Pets and Bob never together in pond

103

• Mutual Exclusion
– Pets and Bob never together in pond

• No Starvation
if Bob always willing to feed, and pets always

famished, then pets eat infinitely often.

Correctness

104

Correctness
• Mutual Exclusion

– Pets and Bob never together in pond
• No Starvation

if Bob always willing to feed, and pets always
famished, then pets eat infinitely often.

• Producer/Consumer
The pets never enter pond unless there is

food, and Bob never provides food if there is
unconsumed food.

safety

liveness

safety

105

Could Also Solve Using Flags

A B

106

Waiting

• Both solutions use waiting
– while(mumble){}

• In some cases waiting is problematic
– If one participant is delayed
– So is everyone else
– But delays are common & unpredictable

107

The Fable drags on …

• Bob and Alice still have issues

108

The Fable drags on …

• Bob and Alice still have issues
• So they need to communicate

109

The Fable drags on …

• Bob and Alice still have issues
• So they need to communicate
• They agree to use billboards …

110

E
1

D
2C

3

Billboards are Large

B
3A

1

Letter
Tiles

From Scrabble™ box

111

E
1

D
2C

3

Write One Letter at a Time …

B
3A

1

W
4
A

1
S

1

H
4

112

To post a message

W
4
A

1
S

1
H

4
A

1
C

3
R

1
T

1
H

4
E

1

whew

113

S
1

Let’s send another message

S
1
E

1
L

1
L

1
L

1
V

4

L
1 A

1

M
3

A
1

A
1

P
3

114

Uh-Oh

A
1

C
3

R
1

T
1
H

4
E

1
S

1
E

1
L

1
L

1

L
1

OK

115

Readers/Writers

• Devise a protocol so that
– Writer writes one letter at a time
– Reader reads one letter at a time
– Reader sees “snapshot”

• Old message or new message
• No mixed messages

116

Readers/Writers (continued)

• Easy with mutual exclusion
• But mutual exclusion requires waiting

– One waits for the other
– Everyone executes sequentially

• Remarkably
– We can solve R/W without mutual exclusion

117

Esoteric?

• Java container size() method
• Single shared counter?

– incremented with each add() and
– decremented with each remove()

• Threads wait to exclusively access counter

perfo
rm

ance

bottle
neck

118

Readers/Writers Solution

• Each thread i has size[i] counter
– only it increments or decrements.

• To get object’s size, a thread reads a
“snapshot” of all counters

• This eliminates the bottleneck

Concurrency and Mutual Exclusion

Mutual Exclusion = Sequential Execution

120

121

Why do we care?

• We want as much of the code as possible to execute
concurrently (in parallel)

• A larger sequential part implies reduced performance

• Amdahl’s law: this relation is not linear…

122

Amdahl’s Law

Speedup=
1-thread execution time

n-thread execution time

123

Amdahl’s Law

Speedup= 1
1 − 𝑝 + 𝑝

𝑛

Parallel
fraction

124

Amdahl’s Law

Speedup= 1
1 − 𝑝 + 𝑝

𝑛

1
1 − 𝑝 + 𝑝

𝑛

125

Amdahl’s Law

Speedup= 1
1 − 𝑝 + 𝑝

𝑛

Parallel
fraction

Sequential
fraction

126

Amdahl’s Law

Speedup=

Parallel
fraction

Sequential
fraction

Number of
threads

1
1 − 𝑝 + 𝑝

𝑛

Bad synchronization ruins everything

Amdal’s Law

128

Example

• Ten processors
• 60% concurrent, 40% sequential
• How close to 10-fold speedup?

129

Example

• Ten processors
• 60% concurrent, 40% sequential
• How close to 10-fold speedup?

10
6.06.01

1

+−
Speedup = 2.17=

130

Example

• Ten processors
• 80% concurrent, 20% sequential
• How close to 10-fold speedup?

131

Example

• Ten processors
• 80% concurrent, 20% sequential
• How close to 10-fold speedup?

10
8.08.01

1

+−
Speedup = 3.57=

132

Example

• Ten processors
• 90% concurrent, 10% sequential
• How close to 10-fold speedup?

133

Example

• Ten processors
• 90% concurrent, 10% sequential
• How close to 10-fold speedup?

10
9.09.01

1

+−
Speedup = 5.26=

134

Example

• Ten processors
• 99% concurrent, 01% sequential
• How close to 10-fold speedup?

135

Example

• Ten processors
• 99% concurrent, 1% sequential
• How close to 10-fold speedup?

10
99.099.01

1

+−
Speedup = 9.17=

136

• Basics of Scala programming

• Formal model for thinking about concurrency

• Algorithms for mutual exclusion

Next Week

Art of Multiprocessor Programming 137

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of Multiprocessor

Programming” (but not in any way that suggests that the authors
endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a
compatible license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from

the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

