
YSC4231: Parallel, Concurrent
and Distributed Programming

Mutual Exclusion

2

Review: Amdahl's Law

Speedup =
1

1- p + p
n

Shared Data Structures

75%
Unshared

25%
Shared

Coarse
Grained

Why fine-grained
parallelism maters

Fine
Grained

75%
Unshared

25%
Shared

Honk!
Honk!

Honk!

Example Synchronization Paradigms

• Mutual exclusion
• Readers-Writers
• Producer-Consumer

4

5

Mutual Exclusion

• We will clarify our understanding of mutual exclusion

• We will also see how to reason about various properties
in an asynchronous concurrent setting

Mutual Exclusion

In his 1965 paper E. W. Dijkstra wrote:
 "Given in this paper is a solution to a problem which, to the knowledge of the

author, has been an open question since at least 1962, irrespective of the
solvability. [...]
Although the setting of the problem might seem somewhat academic at
first, the author trusts that anyone familiar with the logical problems that
arise in computer coupling will appreciate the significance of the fact that
this problem indeed can be solved."

6

7

Mutual Exclusion

• Formal problem definitions
• Solutions for 2 threads
• Solutions for n threads
• Fair solutions
• Inherent costs

8

Warning

• You will never use these protocols
– Get over it

• You are advised to understand them
– The same issues show up everywhere
– Except hidden and more complex

9

Why is Concurrent Programming so Hard?

• Try preparing a seven-course banquet
– By yourself
– With one friend
– With twenty-seven friends …

• Before we can talk about programs
– Need a language
– Describing time and concurrency

10

• “Absolute, true and mathematical time, of itself and
from its own nature, flows equably without relation
to anything external.” (Isaac Newton, 1689)

• “Time is what keeps everything from happening at
once.” (Ray Cummings, 1922)

Time

time

time

11

• An event a0 of thread A is
– Instantaneous
– No simultaneous events (break ties)

a0

Events

12

time

• A thread A is (formally) a sequence a0, a1, ... of events
– “Trace” model
– Notation: a0 ➔ a1 indicates order

a0

Threads

a1 a2 …

13

• Assign to shared variable
• Assign to local variable
• Invoke method
• Return from method
• Lots of other things …

Example Thread Events

14

Threads are State Machines

Events are
transitions

a0

a1a2

a3

15

States

• Thread State
– Program counter
– Local variables

• System state
– Object fields (shared variables)
– Union of thread states

16

time

• Thread A

Concurrency

17

time

time

• Thread A

• Thread B

Concurrency

18

time

Interleavings

• Events of two or more threads
– Interleaved
– Not necessarily independent (why?)

19

time

• An interval A0 =(a0,a1) is
– Time between events a0 and a1

a0 a1

Intervals

A0

20

time

Intervals may Overlap

a0 a1A0

b0 b1B0

21

time

Intervals may be Disjoint

a0 a1A0

b0 b1B0

22

time

Precedence

a0 a1A0

b0 b1B0

Interval A0 precedes interval B0

23

Precedence

• Notation: A0 ➔ B0
• Formally,

– End event of A0 before start event of B0
– Also called “happens before” or “precedes”

24

Precedence Ordering

• Remark: A0 ➔ B0 is just like saying
– 1066 AD ➔ 1492 AD,
– Middle Ages ➔ Renaissance,

• Oh wait,
– what about this week vs this month?

25

Precedence Ordering

• Never true that A ➔ A

• If A ➔B then not true that B ➔A
• If A ➔B & B ➔C then A ➔C
• Funny thing: A ➔B & B ➔A might both be false!

26

Partial Orders
(review)

• Irreflexive:
– Never true that A ➔ A

• Antisymmetric:
– If A ➔ B then not true that B ➔ A

• Transitive:
– If A ➔ B & B ➔ C then A ➔ C

27

Total Orders
(review)

• Also
– Irreflexive
– Antisymmetric
– Transitive

• Except that for every distinct A, B,
– Either A ➔ B or B ➔ A

28

Repeated Events

while (mumble) {
 a0; a1;
}

a0k

k-th occurrence of
event a0

A0k

k-th occurrence of
interval A0 =(a0,a1)

29

Implementing a Counter

class Counter {
 private var count = 0

 def getAndIncrement: Int = {
 val tmp = count
 count = tmp + 1
 tmp
 }
} Make these steps

indivisible using locks

30

Locks (Mutual Exclusion)

trait Lock {

 def lock(): Unit

 def unlock(): Unit
}

trait Lock {

 def lock(): Unit

 def unlock(): Unit
}

31

Locks (Mutual Exclusion)

acquire lock

trait Lock {

 def lock(): Unit

 def unlock(): Unit
}

32

Locks (Mutual Exclusion)

release lock

acquire lock

33

Using Locks
class Counter {
 private var count = 0
 private val lock : Lock = …

 def getAndIncrement: Int = {
 var tmp = 0
 lock.lock()
 try {
 tmp = count
 count = tmp + 1
 } finally {
 lock.unlock()
 tmp
 }
 }
}

class Counter {
 private var count = 0
 private val lock : Lock = …

 def getAndIncrement: Int = {
 var tmp = 0
 lock.lock()
 try {
 tmp = count
 count = tmp + 1
 } finally {
 lock.unlock()
 tmp
 }
 }
}

34

Using Locks

acquire Lock

class Counter {
 private var count = 0
 private val lock : Lock = …

 def getAndIncrement: Int = {
 var tmp = 0
 lock.lock()
 try {
 tmp = count
 count = tmp + 1
 } finally {
 lock.unlock()
 tmp
 }
 }
}

35

Using Locks

Release lock
(no matter what)

class Counter {
 private var count = 0
 private val lock : Lock = …

 def getAndIncrement: Int = {
 var tmp = 0
 lock.lock()
 try {
 tmp = count
 count = tmp + 1
 } finally {
 lock.unlock()
 tmp
 }
 }
}

36

Using Locks

critical section

37

Mutual Exclusion

• Let CSik be thread i's k-th critical
section execution

38

Mutual Exclusion

• Let CSik be thread i's k-th critical
section execution

• And CSjm be thread j's m-th critical
section execution

39

Mutual Exclusion

• Let CSik be thread i's k-th critical
section execution

• And CSjm be j's m-th execution
• Then either

– or

40

Mutual Exclusion

• Let CSik be thread i's k-th critical
section execution

• And CSjm be j's m-th execution
• Then either

– or

CSik ➔ CSjm

41

Mutual Exclusion

• Let CSik be thread i's k-th critical
section execution

• And CSjm be j's m-th execution
• Then either

– or

CSik ➔ CSjm

CSjm ➔ CSik

42

Deadlock-Free

• If some thread calls lock()
– And never returns (fails to acquire the lock)
– Then other threads must complete lock()

and unlock() calls infinitely often
• System as a whole makes progress

– Even if individuals starve

43

Starvation-Free

• If some thread calls lock()
– It will eventually return

• Individual threads make progress

44

Two-Thread vs n-Thread Solutions

• 2-thread solutions first
– Illustrate most basic ideas
– Fits on one slide

• Then n-thread solutions

45

class … extends Lock {
 …
 // thread-local index, 0 or 1
 def lock(): Unit = {
 val i = ThreadID.get();
 val j = 1 - i;
 …

 }
}

Two-Thread Conventions

class … extends Lock {
 …
 // thread-local index, 0 or 1
 def lock(): Unit = {
 val i = ThreadID.get();
 val j = 1 - i;
 …

 }
}

46

Two-Thread Conventions

Henceforth: i is current
thread, j is other thread

LockOne

class LockOne extends Lock {
 private val flag: Array[Boolean] = new Array(2)

 override def lock(): Unit = {
 val i = ThreadID.get
 val j = 1 - i
 flag(i) = true
 while (flag(j)) {} // spin
 }
…

class LockOne extends Lock {
 private val flag: Array[Boolean] = new Array(2)

 override def lock(): Unit = {
 val i = ThreadID.get
 val j = 1 - i
 flag(i) = true
 while (flag(j)) {} // spin
 }
…

LockOne

Each thread has flag

* In JVM reality, using an array this way is not quite right,
 but we’ll gloss over it for now…

class LockOne extends Lock {
 private val flag: Array[Boolean] = new Array(2)

 override def lock(): Unit = {
 val i = ThreadID.get
 val j = 1 - i
 flag(i) = true
 while (flag(j)) {} // spin
 }
…

LockOne

Set my flag

class LockOne extends Lock {
 private val flag: Array[Boolean] = new Array(2)

 override def lock(): Unit = {
 val i = ThreadID.get
 val j = 1 - i
 flag(i) = true
 while (flag(j)) {} // spin
 }
…

LockOne

Wait for other flag to
become false

51

• Assume CSAj overlaps CSBk
• Consider each thread's last

– (jth and kth) read and write …
– in lock() before entering

• Derive a contradiction

LockOne Satisfies Mutual Exclusion

52

• writeA(flag[A]=true) !
readA(flag[B]==false) !CSA

• writeB(flag[B]=true) !
readB(flag[A]==false) ! CSB

From the Code

 override def lock(): Unit = {
 …
 flag(i) = true
 while (flag(j)) {} // spin
 }

53

• readA(flag[B]==false) !
writeB(flag[B]=true)

• readB(flag[A]==false) !
writeA(flag[A]=true)

From the Assumption

 override def lock(): Unit = {
 …
 flag(i) = true
 while (flag(j)) {} // spin
 }

Since A is in the CS it did not see B's flag and vice versa.

54

• Assumptions:

– readA(flag[B]==false) ! writeB(flag[B]=true)
– readB(flag[A]==false) ! writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) ! readA(flag[B]==false)
– writeB(flag[B]=true) ! readB(flag[A]==false)

Combining

 override def lock(): Unit = {
 …
 flag(i) = true
 while (flag(j)) {} // spin
 }

55

• Assumptions:

– readA(flag[B]==false) ! writeB(flag[B]=true)
– readB(flag[A]==false) ! writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) ! readA(flag[B]==false)
– writeB(flag[B]=true) ! readB(flag[A]==false)

Combining

 override def lock(): Unit = {
 …
 flag(i) = true
 while (flag(j)) {} // spin
 }

 override def lock(): Unit = {
 …
 flag(i) = true
 while (flag(j)) {} // spin
 }

56

• Assumptions:

– readA(flag[B]==false) ! writeB(flag[B]=true)
– readB(flag[A]==false) ! writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) ! readA(flag[B]==false)
– writeB(flag[B]=true) ! readB(flag[A]==false)

Combining

 override def lock(): Unit = {
 …
 flag(i) = true
 while (flag(j)) {} // spin
 }

57

• Assumptions:

– readA(flag[B]==false) ! writeB(flag[B]=true)
– readB(flag[A]==false) ! writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) ! readA(flag[B]==false)
– writeB(flag[B]=true) ! readB(flag[A]==false)

Combining

 override def lock(): Unit = {
 …
 flag(i) = true
 while (flag(j)) {} // spin
 }

58

• Assumptions:

– readA(flag[B]==false) ! writeB(flag[B]=true)
– readB(flag[A]==false) ! writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) ! readA(flag[B]==false)
– writeB(flag[B]=true) ! readB(flag[A]==false)

Combining

 override def lock(): Unit = {
 …
 flag(i) = true
 while (flag(j)) {} // spin
 }

59

• Assumptions:

– readA(flag[B]==false) ! writeB(flag[B]=true)
– readB(flag[A]==false) ! writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) ! readA(flag[B]==false)
– writeB(flag[B]=true) ! readB(flag[A]==false)

Combining

60

Cycle!

Impossible in a

partia
l order

Demo: Testing Locks

61

62

Deadlock Freedom

• LockOne Fails deadlock-freedom
– Concurrent execution can deadlock

– Sequential executions OK

 flag(i) = true flag(j) = true
 while (flag(j)){} while (flag(i)){}

63

LockTwo

class LockTwo extends Lock {
 private var victim: Int = 0

 override def lock(): Unit = {
 val i = ThreadID.get
 victim = i
 while (victim == i) {}
 }
…

class LockTwo extends Lock {
 private var victim: Int = 0

 override def lock(): Unit = {
 val i = ThreadID.get
 victim = i
 while (victim == i) {}
 }
…

64

LockTwo

Let other go
first

class LockTwo extends Lock {
 private var victim: Int = 0

 override def lock(): Unit = {
 val i = ThreadID.get
 victim = i
 while (victim == i) {}
 }
…

65

LockTwo

Wait for
permission

class LockTwo extends Lock {
 private var victim: Int = 0

 override def lock(): Unit = {
 val i = ThreadID.get
 victim = i
 while (victim == i) {}
 }

 override def unlock(): Unit = {}
…

66

LockTwo

Nothing to do

67

def lock() {
 victim = i; // my ThreadID
 while (victim == i) {};
}

LockTwo Claims

• Satisfies mutual exclusion
– If thread i in CS
– Then victim == j
– Cannot be both 0 and 1

• Not deadlock free
– Sequential execution deadlocks
– Concurrent execution does not

Mid-lecture break

68

69

Peterson's Algorithm
def lock(): Unit = {
 val i = ThreadID.get
 val j = 1 - i
 flag(i) = true
 victim = i
 while (flag(j) && victim == i) {}
}

def unlock(): Unit = {
 val i = ThreadID.get
 flag(i) = false
}

def lock(): Unit = {
 val i = ThreadID.get
 val j = 1 - i
 flag(i) = true
 victim = i
 while (flag(j) && victim == i) {}
}

def unlock(): Unit = {
 val i = ThreadID.get
 flag(i) = false
}

70

Peterson's Algorithm

Announce I'm
interested

def lock(): Unit = {
 val i = ThreadID.get
 val j = 1 - i
 flag(i) = true
 victim = i
 while (flag(j) && victim == i) {}
}

def unlock(): Unit = {
 val i = ThreadID.get
 flag(i) = false
}

71

Peterson's Algorithm

Defer to other

Announce I'm
interested

def lock(): Unit = {
 val i = ThreadID.get
 val j = 1 - i
 flag(i) = true
 victim = i
 while (flag(j) && victim == i) {}
}

def unlock(): Unit = {
 val i = ThreadID.get
 flag(i) = false
}

72

Peterson's Algorithm

Wait while other
interested & I'm the

victim

Defer to other

Announce I'm
interested

def lock(): Unit = {
 val i = ThreadID.get
 val j = 1 - i
 flag(i) = true
 victim = i
 while (flag(j) && victim == i) {}
}

def unlock(): Unit = {
 val i = ThreadID.get
 flag(i) = false
}

73

Peterson's Algorithm

No longer
interested

Wait while other
interested & I'm the

victim

Defer to other

Announce I'm
interested

74

Mutual Exclusion

(1) writeB(Flag[B]=true)➔writeB(victim=B)

def lock() {
 flag(i) = true
 victim = i
 while (flag(j) && victim == i) {}
}

From the Code

def lock() {
 flag(i) = true
 victim = i
 while (flag(j) && victim == i) {}
}

75

Also from the Code

(2) writeA(victim=A)➔readA(flag[B])
 ➔readA(victim)

76

Assumption

W.L.O.G. assume A is the last
thread to write victim

(3) writeB(victim=B)➔writeA(victim=A)

def lock() {
 flag(i) = true
 victim = i
 while (flag(j) && victim == i) {}
}

77

Combining Observations

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)
(2) writeA(victim=A)➔readA(flag[B])
 ➔ readA(victim)

def lock() {
 flag(i) = true
 victim = i
 while (flag(j) && victim == i) {}
}

78

Combining Observations

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)
(2) writeA(victim=A)➔readA(flag[B])
 ➔ readA(victim)

def lock() {
 flag(i) = true
 victim = i
 while (flag(j) && victim == i) {}
}

79

Combining Observations

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)
(2) writeA(victim=A)➔readA(flag[B])
 ➔ readA(victim)

A read flag[B] == true and victim == A, so it
could not have entered the CS (QED)

def lock() {
 flag(i) = true
 victim = i
 while (flag(j) && victim == i) {}
}

80

Deadlock Free

• Thread blocked
– only at while loop
– only if other's flag is true
– only if it is the victim

• Solo: other's flag is false
• Both: one or the other not the victim

def lock() {
 …
 while (flag(j) && victim == i) {};

81

Starvation Free

• Thread i blocked only if j
repeatedly re-enters so that
flag(j) == true and victim == i

• When j re-enters
– it sets victim to j.
– So i gets in

def lock() {
 flag(i) = true
 victim = i
 while (flag(j) && victim == i) {};
}

public void unlock() {
 flag(i) = false
}

82

Demo: Peterson Lock

83

Bounded Waiting

• Want stronger fairness guarantees
• Thread not “overtaken” too much
• If A starts before B, then A enters before B?
• But what does “start” mean?
• Need to adjust definitions ….

84

Bounded Waiting

• Divide lock() method into 2 parts:
– Doorway interval:

• Written DA
• always finishes in finite steps

– Waiting interval:
• Written WA
• may take unbounded steps

85

• For threads A and B:
– If DAk ➔ DB j

• A's k-th doorway precedes B's j-th doorway
– Then CSAk ➔ CSBj

• A's k-th critical section precedes B's j-th critical section
• B cannot overtake A

First-Come-First-Served

86

Bakery Algorithm

• Provides First-Come-First-Served for n threads
• How?

– Take a “number”
– Wait until lower numbers have been served

• Lexicographic order
– (a,i) > (b,j)

• If a > b, or a = b and i > j

87

Bakery Algorithm

class BakeryLock(val threads: Int) extends Lock {

 private val label: Array[Label] =
 Array.fill(threads)(new Label())

 private val flag: Array[Boolean] = new Array(threads)

class BakeryLock(val threads: Int) extends Lock {

 private val label: Array[Label] =
 Array.fill(threads)(new Label())

 private val flag: Array[Boolean] = new Array(threads)

88

Bakery Algorithm

n-10
f f f f t ft

2

f

0 0 0 0 5 04 0

6

CS

89

Bakery Algorithm

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

90

Bakery Algorithm

Doorway

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

91

Bakery Algorithm

I'm interested

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

92

Bakery Algorithm
Take increasing label
(read labels in some

arbitrary order)

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

93

Bakery Algorithm

Someone is
interested

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

94

Bakery Algorithm

… whose (label,i) in
lexicographic order is lower

Someone is
interested

95

Bakery Algorithm

class BakeryLock extends Lock {

 …

 override def unlock() {
 flag(i) = false;
 }
}

class BakeryLock extends Lock {

 …

 override def unlock() {
 flag(i) = false;
 }
}

96

Bakery Algorithm

No longer
interested

labels are always increasing

97

No Deadlock

• There is always one thread with earliest label
• Ties are impossible (why?)

98

First-Come-First-Served

• If DA ➔ DB then
– A's label is smaller

• And:
– writeA(label[A]) ➔
– readB(label[A]) ➔
– writeB(label[B]) ➔ readB(flag[A])

• So B sees
– smaller label for A
– locked out while flag[A] is true

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

99

Mutual Exclusion

• Suppose A and B in CS together
• Suppose A has earlier label
• When B entered, it must have seen

– flag[A] is false, or
– label[A] > label[B]

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

100

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

101

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false
• LabelingB ➔ readB(flag[A]) ➔

writeA(flag[A]) ➔ LabelingA

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

102

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false
• LabelingB ➔ readB(flag[A]) ➔

writeA(flag[A]) ➔ LabelingA

• Which contradicts the assumption that A
has an earlier label

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

Any issues with BackeryLock?

103

104

Bakery Y232K Bug

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

class BakeryLock extends Lock {
 …
 override def lock() {
 flag(i) = true
 label(i) = max(label(0), …,label(n-1))+1

 while (∃k flag(k)
 && (label(i),i) > (label(k),k)) {}
 }

105

Bakery Y232K Bug

Mutex breaks if
label[i] overflows

106

Does Overflow Actually Matter?

• Yes
– Y2K
– 18 January 2038 (Unix time_t rollover)
– 16-bit counters

• No
– 64-bit counters

• Maybe
– 32-bit counters

107

Deep Philosophical Question

• The Bakery Algorithm is
– Succinct,
– Elegant, and
– Fair.

• Q: So why isn't it practical?
• A: Well, you have to read N distinct variables

108

Shared Memory

• Shared read/write memory locations
called Registers (historical reasons)

• Come in different flavors
– Multi-Reader-Single-Writer (flag)
– Multi-Reader-Multi-Writer (victim)
– Not that interesting: SRMW and SRSW

109

Theorem

At least N MRSW (multi-reader/single-writer)
registers are needed to solve deadlock-free
mutual exclusion.

N registers such as flag()…

Real-Life Implementations

• Demo

110

111

Summary of the last two lectures

• We have seen several impractical examples of
implementing mutual exclusion algorithms.

• We learned how to reason about their claims:
mutual exclusion, deadlock freedom, etc.

• Today we know how to solve the First-Come-First-Served
N thread mutual exclusion using 2N RW-Registers

112

• N RW-Registers inefficient
– Because writes “cover” older writes

• Need stronger hardware operations
– that do not have the “covering problem”

• In next lectures - understand what these operations are…

Summary of the last two lectures

113

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of Multiprocessor

Programming” (but not in any way that suggests that the authors
endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a
compatible license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from

the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

