
YSC4231: Parallel, Concurrent
and Distributed Programming

Spin Locks and Contention

2

Focus so far: Correctness and Progress

• Models
– Accurate (we never lied to you)
– But idealized (so we forgot to mention a few things)

• Protocols
– Elegant
– Important
– But naïve

3

New Focus: Performance

• Models
– More complicated (not the same as complex!)
– Still focus on principles (not soon obsolete)

• Protocols
– Elegant (in their fashion)
– Important (why else would we pay attention)
– And realistic (your mileage may vary)

4

Today: Revisit Mutual Exclusion

• Performance, not just correctness
• Proper use of multiprocessor architectures
• A collection of locking algorithms…

5

What Should you do if you can’t get a lock?

• Keep trying
– “spin” or “busy-wait”
– Good if delays are short

• Give up the processor
– Good if delays are long
– Always good on uniprocessor

• Keep trying
– “spin” or “busy-wait”
– Good if delays are short

• Give up the processor
– Good if delays are long
– Always good on uniprocessor

6

What Should you do if you can’t get a lock?

our focus now

Designing Locks
for

arbitrary number of threads

7

8

Last week: Theorem

At least N MRSW (multi-reader/single-writer)
registers are needed to solve deadlock-free
mutual exclusion.

N registers such as flag()…

9

• N RW-Registers inefficient
– Because writes “cover” older writes

• Need stronger hardware operations
– that do not have the “covering problem”

• In next lectures - understand what these operations are…

Implications

Idea: “glue” reads and writes together

10

class RMWRegister(private val init: Int) {
 private var value: Int = init

 def compareAndSet(expected: Int, update: Int) =
 this.synchronized {
 if (value == expected) {
 value = update
 true
 } else {
 false
 }
 }
}

11

The essence of concurrency: CompareAndSet

class RMWRegister(private val init: Int) {
 private var value: Int = init

 def compareAndSet(expected: Int, update: Int) =
 this.synchronized {
 if (value == expected) {
 value = update
 true
 } else {
 false
 }
 }
}

12

compareAndSet

If value is as expected, …

class RMWRegister(private val init: Int) {
 private var value: Int = init

 def compareAndSet(expected: Int, update: Int) =
 this.synchronized {
 if (value == expected) {
 value = update
 true
 } else {
 false
 }
 }
}

13

compareAndSet

… replace it

class RMWRegister(private val init: Int) {
 private var value: Int = init

 def compareAndSet(expected: Int, update: Int) =
 this.synchronized {
 if (value == expected) {
 value = update
 true
 } else {
 false
 }
 }
}

14

compareAndSet

Report success

class RMWRegister(private val init: Int) {
 private var value: Int = init

 def compareAndSet(expected: Int, update: Int) =
 this.synchronized {
 if (value == expected) {
 value = update
 true
 } else {
 false
 }
 }
}

15

compareAndSet

Otherwise report failure

16

In General: Read-Modify-Write Objects

• Method call
– Returns object’s prior value x
– Replaces x with mumble(x)

17

Read-Modify-Write

class RMWRegister(private val init: Int) {
 private var value: Int = init

 def getAndMumble() = this.synchronized {
 val prior = value
 value = mumble(value)
 prior
 }

}

class RMWRegister(private val init: Int) {
 private var value: Int = init

 def getAndMumble() = this.synchronized {
 val prior = value
 value = mumble(value)
 prior
 }

}

18

Read-Modify-Write

Record prior value

class RMWRegister(private val init: Int) {
 private var value: Int = init

 def getAndMumble() = this.synchronized {
 val prior = value
 value = mumble(value)
 prior
 }

}

19

Read-Modify-Write

Apply function to current value

20

Test-and-Set

• Boolean value
• Test-and-set (TAS)

– Swap true with current value
– Return value tells if prior value was true or false

• Can reset just by writing false
• TAS aka “getAndSet” in Scala/Java

21

Review: Test-and-Set

class AtomicBoolean {
 var value: Boolean

 def getAndSet(newValue: Boolean) =
 this.synchronized {
 val prior = value
 value = newValue
 prior
 }
}

class AtomicBoolean {
 var value: Boolean

 def getAndSet(newValue: Boolean) =
 this.synchronized {
 val prior = value
 value = newValue
 prior
 }
}

22

Review: Test-and-Set

Package
java.util.concurrent.atomic

class AtomicBoolean {
 var value: Boolean

 def getAndSet(newValue: Boolean) =
 this.synchronized {
 val prior = value
 value = newValue
 prior
 }
}

23

Review: Test-and-Set

Swap old and new
values

24

Review: Test-and-Set
val lock = new AtomicBoolean(false)
…
val prior = lock.getAndSet(true)

val lock = new AtomicBoolean(false)
…
val prior = lock.getAndSet(true)

25

Review: Test-and-Set

(5)

Swapping in true is called
“test-and-set” or TAS

26

Test-and-Set Locks

• Locking
– Lock is free: value is false
– Lock is taken: value is true

• Acquire lock by calling TAS
– If result is false, you win
– If result is true, you lose

• Release lock by writing false

27

Test-and-set Lock
class TASLock extends SpinLock {
 val state = new AtomicBoolean(false)

 override def lock() = {
 while(state.getAndSet(true)) {
 // spin
 }
 }

 override def unlock() = {
 state.set(false)
 }
}

class TASLock extends SpinLock {
 val state = new AtomicBoolean(false)

 override def lock() = {
 while(state.getAndSet(true)) {
 // spin
 }
 }

 override def unlock() = {
 state.set(false)
 }
}

28

Test-and-set Lock

Lock state is AtomicBoolean

class TASLock extends SpinLock {
 val state = new AtomicBoolean(false)

 override def lock() = {
 while(state.getAndSet(true)) {
 // spin
 }
 }

 override def unlock() = {
 state.set(false)
 }
}

29

Test-and-set Lock

Keep trying until lock acquired

class TASLock extends SpinLock {
 val state = new AtomicBoolean(false)

 override def lock() = {
 while(state.getAndSet(true)) {
 // spin
 }
 }

 override def unlock() = {
 state.set(false)
 }
}

30

Test-and-set Lock

Release lock by resetting
state to false

31

Space Complexity

• TAS spin-lock has small “footprint”
• N thread spin-lock uses O(1) space
• As opposed to O(n) Peterson/Bakery
• How did we overcome the Ω(n) lower bound?
• We used a RMW operation…

32

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

33

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock introduces
sequential bottleneck

34

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...

…lock suffers from contention

35

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...
Notice: these are distinct
phenomena

…lock suffers from contention

36

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...
Seq Bottleneck ! no parallelism

…lock suffers from contention

37

Basic Spin-Lock

CS

Resets lock
upon exit

spin
lock

critical
section

...
Contention ! ???

…lock suffers from contention

38

39

Performance

• Experiment
– n threads
– Increment shared counter 1 million times
– Demo: SpinLockBenchmark and TASLockRunner

40

Performance

• Experiment
– n threads
– Increment shared counter 1 million times
– Demo: SpinLockBenchmark and TASLockRunner

• How long should it take?
• How long does it take?

Demo

41

42

Graph

idealtim
e

threads

no speedup
because of
sequential
bottleneck

43

Mystery #1

tim
e

threads

TAS lock

Ideal

What is
going
on?

44

Test-and-Test-and-Set Locks

• Lurking stage
– Wait until lock “looks” free
– Spin while read returns true (lock taken)

• Pouncing state
– As soon as lock “looks” available
– Read returns false (lock free)
– Call TAS to acquire lock
– If TAS loses, back to lurking

45

Test-and-test-and-set Lock
class TTASLock extends SpinLock {
 val state = new AtomicBoolean(false)

 override def lock(): Unit = {
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true)) {
 return
 }
 }
 }
...
}

class TTASLock extends SpinLock {
 val state = new AtomicBoolean(false)

 override def lock(): Unit = {
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true)) {
 return
 }
 }
 }
...
}

46

Test-and-test-and-set Lock

Wait until lock looks free

class TTASLock extends SpinLock {
 val state = new AtomicBoolean(false)

 override def lock(): Unit = {
 while (true) {
 while (state.get()) {}
 if (!state.getAndSet(true)) {
 return
 }
 }
 }
...
}

47

Test-and-test-and-set Lock

Then try to
acquire it

Demo

48

49

Mystery #2
TAS lock

TTAS lock

Ideal tim
e

threads

50

Mystery

• Both
– TAS and TTAS
– Do the same thing (in our model)

• Except that
– TTAS performs better than TAS
– Neither approaches ideal

51

Opinion

• Our memory abstraction is broken
• TAS & TTAS methods

– Are provably the same (in our model)
– Except they aren’t (in field tests)

• Need a more detailed model …

52

Bus-Based Architectures

Bus

cache

memory

cachecache

53

Bus-Based Architectures

Bus

cache

memory

cachecache

Random access memory
(10s of cycles)

Art of Multiprocessor Programming 54

Bus-Based Architectures

cache

memory

cachecache

Shared Bus
•Broadcast medium
•One broadcaster at a time
•Processors and memory all “snoop”

Bus

55

Bus-Based Architectures

Bus

cache

memory

cachecache

Per-Processor Caches
•Small
•Fast: 1 or 2 cycles
•Address & state information

56

Granularity

• Caches operate at a larger granularity than a word
(32 or 64 bits)

• Cache line: fixed-size block containing of neighbouring
words (today 64 or 128 bytes)

57

Locality

• If you use an address now, you will probably use it
again soon
– Fetch from cache, not memory

• If you use an address now, you will probably use a
nearby address soon
– In the same cache line

58

L1 and L2 Caches

L1

L2

59

L1 and L2 Caches

L1

L2

Small & fast
1 or 2 cycles

60

L1 and L2 Caches

L1

L2

Larger and slower
10s of cycles

~128 byte line

61

Jargon Watch

• Cache hit
– “I found what I wanted in my cache”
– Good Thing™

• Cache miss
– “I had to shlep all the way to memory for that data”
– Bad Thing™

62

Cave Canem

• This model is still a simplification
– But not in any essential way
– Illustrates basic principles

• Will discuss complexities later

63

When a Cache Becomes Full…

• Need to make room for new entry
• By evicting an existing entry
• Need a replacement policy

– Usually some kind of least recently used heuristic

64

Cache Coherence

• A and B both cache address x
• A writes to x

– Updates cache
• How does B find out?
• Many cache coherence protocols in literature

65

MESI

• Modified
– Have modified cached data, must write back to memory

66

MESI

• Modified
– Have modified cached data, must write back to memory

• Exclusive
– Not modified, I have only copy

67

MESI

• Modified
– Have modified cached data, must write back to memory

• Exclusive
– Not modified, I have only copy

• Shared
– Not modified, may be cached elsewhere

68

MESI

• Modified
– Have modified cached data, must write back to memory

• Exclusive
– Not modified, I have only copy

• Shared
– Not modified, may be cached elsewhere

• Invalid
– Cache contents not meaningful

69

Bus

Processor Issues Load Request

Bus

cache

memory

cachecache

data

load x

70

cache

Bus

Memory Responds

Bus

memory

cachecache

data

Got it!

data

E

71

Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

Load x

E

72

Bus

Other Processor Responds

memory

cachecache

data

Got it

datadata

Bus

ES S

73

S

Modify Cached Data

Bus

data

memory

cachedata

data

dataS

74

S

memory data

data datadata
Bus

Write-Through Cache

Bus

cachedata

Write x!

S

75

Write-Through Caches

• Immediately broadcast changes
• Good

– Memory, caches always agree
– More read hits, maybe

• Bad
– Bus traffic on all writes
– Most writes to unshared data
– For example, loop indexes …

76

Write-Through Caches

• Immediately broadcast changes
• Good

– Memory, caches always agree
– More read hits, maybe

• Bad
– Bus traffic on all writes
– Most writes to unshared data
– For example, loop indexes …

“show stoppers”

77

Write-Back Caches

• Accumulate changes in cache
• Write back when line evicted

– Need the cache for something else
– Another processor wants it

78

Bus

Invalidate

Bus

memory

cachedatadata

data

cache

Invalidate x

SS MI

79

cache

Bus

memory

cachedata

data
This cache acquires write permission

Invalidate

80

cache

Bus

memory

cachedata

data

Other caches lose read permission

This cache acquires write permission

Invalidate

81

cache

Bus

Invalidate

memory

cachedata

data

Memory provides data only if not present
in any cache, so no need to change it now

(expensive)

82

Mutual Exclusion

• What do we want to optimize?
– Bus bandwidth used by spinning threads
– Release/Acquire latency
– Acquire latency for idle lock

83

Simple TASLock

• TAS invalidates cache lines
• Spinners

– Miss in cache
– Go to bus

• Thread wants to release lock
– delayed behind spinners

84

Test-and-test-and-set

• Wait until lock “looks” free
– Spin on local cache
– No bus use while lock busy

• Problem: when lock is released
– Invalidation storm …

85

Local Spinning while Lock is Busy

Bus

memory

busybusybusy

busy

86

Bus

On Release

memory

freeinvalidinvalid

free

87

On Release

Bus

memory

freeinvalidinvalid

free

miss miss

Everyone misses,
rereads

88

On Release

Bus

memory

freeinvalidinvalid

free

TAS(…) TAS(…)

Everyone tries TAS

89

Problems

• Everyone misses
– Reads satisfied sequentially

• Everyone does TAS
– Invalidates others’ caches

• Eventually quiesces after lock acquired
– How long does this take?

90

Quiescence Time

Increases
linearly with
the number of
processors for
bus architecturetim

e

threads

91

Mystery Explained
TAS lock

TTAS lock

Ideal tim
e

threads
Better than TAS
but still not as
good as ideal

92

Solution: Introduce Delay

spin locktime
dr1dr2d

• If the lock looks free
• But I fail to get it

• There must be contention
• Better to back off than to collide again

93

Dynamic Example: Exponential
Backoff

time
d2d4d spin lock

 If I fail to get lock
– Wait random duration before retry
– Each subsequent failure doubles expected wait

class BackoffLock extends SpinLock {

 private var delay = MIN_DELAY

 override def lock(): Unit = {

 while (true) {

 while (state.get()) {}

 if (!state.getAndSet(true)) { return } else {

 Thread.sleep(random() % delay);

 if (delay < MAX_DELAY) delay = 2 * delay

 }

 }
}

94

Exponential Backoff Lock

class BackoffLock extends SpinLock {

 private var delay = MIN_DELAY

 override def lock(): Unit = {

 while (true) {

 while (state.get()) {}

 if (!state.getAndSet(true)) { return } else {

 Thread.sleep(random() % delay);

 if (delay < MAX_DELAY) delay = 2 * delay

 }

 }
}

95

Fix minimum delay

Exponential Backoff Lock

class BackoffLock extends SpinLock {

 private var delay = MIN_DELAY

 override def lock(): Unit = {

 while (true) {

 while (state.get()) {}

 if (!state.getAndSet(true)) { return } else {

 Thread.sleep(random() % delay);

 if (delay < MAX_DELAY) delay = 2 * delay

 }

 }
}

96

Wait until lock looks free

Exponential Backoff Lock

class BackoffLock extends SpinLock {

 private var delay = MIN_DELAY

 override def lock(): Unit = {

 while (true) {

 while (state.get()) {}

 if (!state.getAndSet(true)) { return } else {

 Thread.sleep(random() % delay);

 if (delay < MAX_DELAY) delay = 2 * delay

 }

 }
}

97

If we win, return

Exponential Backoff Lock

class BackoffLock extends SpinLock {

 private var delay = MIN_DELAY

 override def lock(): Unit = {

 while (true) {

 while (state.get()) {}

 if (!state.getAndSet(true)) { return } else {

 Thread.sleep(random() % delay)

 if (delay < MAX_DELAY) delay = 2 * delay

 }

 }
}

98

Back off for random duration

Exponential Backoff Lock

class BackoffLock extends SpinLock {

 private var delay = MIN_DELAY

 override def lock(): Unit = {

 while (true) {

 while (state.get()) {}

 if (!state.getAndSet(true)) { return } else {

 Thread.sleep(random() % delay)

 if (delay < MAX_DELAY) delay = 2 * delay

 }

 }
}

99

Double max delay, within reason

Exponential Backoff Lock

100

Spin-Waiting Overhead

TTAS Lock

Backoff locktim
e

threads

101

Backoff: Other Issues

• Good
– Easy to implement
– Beats TTAS lock

• Bad
– Must choose parameters carefully
– Not portable across platforms

Actual Data on 40-Core Machine

102

103

A Prominent Idea

• Avoid useless invalidations
– By keeping a queue of threads

• Each thread
– Notifies next in line
– Without bothering the others

104

Anderson Queue Lock

flags

next

T F F F F F F F

idle

105

Anderson Queue Lock

flags

next

T F F F F F F F

acquiring

getAndIncrement

106

Anderson Queue Lock

flags

next

T F F F F F F F

acquiring

getAndIncrement

107

Anderson Queue Lock

flags

next

T F F F F F F F

acquired

Mine!

108

Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring

109

Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring

getAndIncrement

110

Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring

getAndIncrement

111

acquired

Anderson Queue Lock

flags

next

T F F F F F F F

acquiring

112

released

Anderson Queue Lock

flags

next

T T F F F F F F

acquired

113

released

Anderson Queue Lock

flags

next

T T F F F F F F

acquired

Yow!

114

Performance

• Shorter handover than
backoff

• Curve is practically flat
• Scalable performance

queue

TTAS

More spin-locks in the Book

• CHL Lock
• MCS Lock
• Fast-path composite locks
• Hierarchical backoff locks
• …
• No silver bullet!

115

Chapter 7

Mind the gap!

• ALock in Java is vulnerable to false sharing, which is easy to avoid
in C (where you can pad and align flags) but harder in JVM, which
tend to pack flags into one cache line.

• Thread-local vars can be very slow. One can implement them by
hand as an array indexed by thread ID.

• The standard Java Random class uses an internal static lock.

• Java code for java.util.concurrent has lots of low-level Java locks
and data structures, but it makes heavy use of the Unsafe package
for cache alignment, etc.

116

117

released

Local Spinning

flags

next

T F F F F F F F

acquired
Spin
on
my
bit

Unfortunately many bits share cache line

118

released

False Sharing

flags

next

T F F F F F F F

acquired
Spin
on
my
bit

Line 1 Line 2

 Spinning thread
gets cache

invalidation on
account of store
by threads it is
not waiting for

 Result:
contention

119

released

The Solution: Padding

flags

next

T / / / F / / /

acquired

Line 1 Line 2

Spin
on
my
line

Why should we care?

• Spin-locks are useful when critical sections are small, but the the
numbers of threads are large

• Typical for high-performance computing (most of the tasks done
in parallel) or low-level kernel drivers. Those are typically not
implemented in Java. :-)

• Regular applications (desktop, web) favour the “blocking” model
(threads yield the processor to each other).

• We will consider it in the next lecture.
120

• Keep trying
– “spin” or “busy-wait”
– Good if delays are short

• Give up the processor
– Good if delays are long
– Always good on uniprocessor

121

What Should you do if you can’t get a lock?

our focus until now

• Keep trying
– “spin” or “busy-wait”
– Good if delays are short

• Give up the processor
– Good if delays are long
– Always good on uniprocessor

122

What Should you do if you can’t get a lock?
next lecture

Art of Multiprocessor Programming 123

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of Multiprocessor

Programming” (but not in any way that suggests that the authors endorse
you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

• For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from the

copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

