
YSC4231: Parallel, Concurrent  
and Distributed Programming

Spin Locks and Contention
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Focus so far: Correctness and Progress

• Models 
– Accurate (we never lied to you) 
– But idealized (so we forgot to mention a few things) 

• Protocols 
– Elegant 
– Important 
– But naïve
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New Focus: Performance

• Models 
– More complicated (not the same as complex!) 
– Still focus on principles (not soon obsolete) 

• Protocols 
– Elegant (in their fashion) 
– Important (why else would we pay attention) 
– And realistic (your mileage may vary)



4

Today: Revisit Mutual Exclusion

• Performance, not just correctness 
• Proper use of multiprocessor architectures 
• A collection of locking algorithms… 
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What Should you do if you can’t get a lock?

• Keep trying 
– “spin” or “busy-wait” 
– Good if delays are short 

• Give up the processor 
– Good if delays are long 
– Always good on uniprocessor



• Keep trying 
– “spin” or “busy-wait” 
– Good if delays are short 

• Give up the processor 
– Good if delays are long 
– Always good on uniprocessor
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What Should you do if you can’t get a lock?

our focus now



Designing Locks  
for  

arbitrary number of threads
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Last week: Theorem

At least N MRSW (multi-reader/single-writer) 
registers are needed to solve deadlock-free 
mutual exclusion.  
 
N registers such as flag()…
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• N RW-Registers inefficient 
–  Because writes “cover” older writes 

•  Need stronger hardware operations  
– that do not have the “covering problem”  

• In next lectures - understand what these operations are…

Implications



Idea: “glue” reads and writes together
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class RMWRegister(private val init: Int) { 
  private var value: Int = init 

  def compareAndSet(expected: Int, update: Int) = 
    this.synchronized { 
      if (value == expected) { 
        value = update 
        true 
      } else { 
        false 
      } 
    } 
}
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The essence of concurrency: CompareAndSet



class RMWRegister(private val init: Int) { 
  private var value: Int = init 

  def compareAndSet(expected: Int, update: Int) = 
    this.synchronized { 
      if (value == expected) { 
        value = update 
        true 
      } else { 
        false 
      } 
    } 
}
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compareAndSet

If value is as expected, …



class RMWRegister(private val init: Int) { 
  private var value: Int = init 

  def compareAndSet(expected: Int, update: Int) = 
    this.synchronized { 
      if (value == expected) { 
        value = update 
        true 
      } else { 
        false 
      } 
    } 
}
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compareAndSet

… replace it



class RMWRegister(private val init: Int) { 
  private var value: Int = init 

  def compareAndSet(expected: Int, update: Int) = 
    this.synchronized { 
      if (value == expected) { 
        value = update 
        true 
      } else { 
        false 
      } 
    } 
}
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compareAndSet

Report success



class RMWRegister(private val init: Int) { 
  private var value: Int = init 

  def compareAndSet(expected: Int, update: Int) = 
    this.synchronized { 
      if (value == expected) { 
        value = update 
        true 
      } else { 
        false 
      } 
    } 
}
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compareAndSet

Otherwise report failure
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In General: Read-Modify-Write Objects

• Method call 
– Returns object’s prior value x 
– Replaces x with mumble(x)
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Read-Modify-Write

class RMWRegister(private val init: Int) { 
  private var value: Int = init 

  def getAndMumble() = this.synchronized { 
    val prior = value 
    value = mumble(value) 
    prior 
  } 

}



class RMWRegister(private val init: Int) { 
  private var value: Int = init 

  def getAndMumble() = this.synchronized { 
    val prior = value 
    value = mumble(value) 
    prior 
  } 

}
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Read-Modify-Write

Record prior value



class RMWRegister(private val init: Int) { 
  private var value: Int = init 

  def getAndMumble() = this.synchronized { 
    val prior = value 
    value = mumble(value) 
    prior 
  } 

}
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Read-Modify-Write

Apply function to current value
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Test-and-Set

• Boolean value 
• Test-and-set (TAS) 

– Swap true with current value 
– Return value tells if prior value was true or false 

• Can reset just by writing false 
• TAS aka “getAndSet” in Scala/Java
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Review: Test-and-Set

class AtomicBoolean { 
  var value: Boolean 
   
  def getAndSet(newValue: Boolean) =   
   this.synchronized { 
     val prior = value 
     value = newValue 
     prior 
  } 
}



class AtomicBoolean { 
  var value: Boolean 
   
  def getAndSet(newValue: Boolean) =   
   this.synchronized { 
     val prior = value 
     value = newValue 
     prior 
  } 
}

22

Review: Test-and-Set

Package 
java.util.concurrent.atomic



class AtomicBoolean { 
  var value: Boolean 
   
  def getAndSet(newValue: Boolean) =   
   this.synchronized { 
     val prior = value 
     value = newValue 
     prior 
  } 
}
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Review: Test-and-Set

Swap old and new 
values
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Review: Test-and-Set
val lock = new AtomicBoolean(false) 
… 
val prior = lock.getAndSet(true) 
 



val lock = new AtomicBoolean(false) 
… 
val prior = lock.getAndSet(true) 
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Review: Test-and-Set

(5)

Swapping in true is called 
“test-and-set” or TAS
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Test-and-Set Locks

• Locking 
– Lock is free: value is false 
– Lock is taken: value is true 

• Acquire lock by calling TAS 
– If result is false, you win 
– If result is true, you lose  

• Release lock by writing false
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Test-and-set Lock
class TASLock extends SpinLock { 
  val state = new AtomicBoolean(false) 
   
  override def lock() = { 
    while(state.getAndSet(true)) { 
      // spin 
    } 
  } 

  override def unlock() = { 
    state.set(false) 
  }   
}



class TASLock extends SpinLock { 
  val state = new AtomicBoolean(false) 
   
  override def lock() = { 
    while(state.getAndSet(true)) { 
      // spin 
    } 
  } 

  override def unlock() = { 
    state.set(false) 
  }   
}
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Test-and-set Lock

Lock state is AtomicBoolean



class TASLock extends SpinLock { 
  val state = new AtomicBoolean(false) 
   
  override def lock() = { 
    while(state.getAndSet(true)) { 
      // spin 
    } 
  } 

  override def unlock() = { 
    state.set(false) 
  }   
}
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Test-and-set Lock

Keep trying until lock acquired



class TASLock extends SpinLock { 
  val state = new AtomicBoolean(false) 
   
  override def lock() = { 
    while(state.getAndSet(true)) { 
      // spin 
    } 
  } 

  override def unlock() = { 
    state.set(false) 
  }   
}
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Test-and-set Lock

Release lock by resetting 
state to false
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Space Complexity

• TAS spin-lock has small “footprint”  
• N thread spin-lock uses O(1) space 
• As opposed to O(n) Peterson/Bakery  
• How did we overcome the Ω(n) lower bound?  
• We used a RMW operation… 
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Basic Spin-Lock

CS

Resets lock  
upon exit

spin  
lock

critical  
section

...
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Basic Spin-Lock

CS

Resets lock  
upon exit

spin  
lock

critical  
section

...

…lock introduces 
sequential bottleneck
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Basic Spin-Lock

CS

Resets lock  
upon exit

spin  
lock

critical  
section

...

…lock suffers from contention
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Basic Spin-Lock

CS

Resets lock  
upon exit

spin  
lock

critical  
section

...
Notice: these are distinct 
phenomena

…lock suffers from contention
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Basic Spin-Lock

CS

Resets lock  
upon exit

spin  
lock

critical  
section

...
Seq Bottleneck ! no parallelism

…lock suffers from contention
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Basic Spin-Lock

CS

Resets lock  
upon exit

spin  
lock

critical  
section

...
Contention ! ???

…lock suffers from contention
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Performance

• Experiment 
– n threads 
– Increment shared counter 1 million times 
– Demo: SpinLockBenchmark and TASLockRunner
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Performance

• Experiment 
– n threads 
– Increment shared counter 1 million times 
– Demo: SpinLockBenchmark and TASLockRunner 

• How long should it take? 
• How long does it take? 



Demo

41
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Graph

idealtim
e

threads

no speedup 
because of 
sequential 
bottleneck
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Mystery #1

tim
e

threads

TAS lock 

Ideal 

What is  
going 
on? 
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Test-and-Test-and-Set Locks

• Lurking stage 
– Wait until lock “looks” free 
– Spin while read returns true (lock taken) 

• Pouncing state 
– As soon as lock “looks” available 
– Read returns false (lock free) 
– Call TAS to acquire lock 
– If TAS loses, back to lurking
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Test-and-test-and-set Lock
class TTASLock extends SpinLock { 
  val state = new AtomicBoolean(false) 

  override def lock(): Unit = { 
    while (true) { 
      while (state.get()) {} 
      if (!state.getAndSet(true)) { 
        return  
      } 
    } 
  } 
... 
}



class TTASLock extends SpinLock { 
  val state = new AtomicBoolean(false) 

  override def lock(): Unit = { 
    while (true) { 
      while (state.get()) {} 
      if (!state.getAndSet(true)) { 
        return  
      } 
    } 
  } 
... 
}
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Test-and-test-and-set Lock

Wait until lock looks free



class TTASLock extends SpinLock { 
  val state = new AtomicBoolean(false) 

  override def lock(): Unit = { 
    while (true) { 
      while (state.get()) {} 
      if (!state.getAndSet(true)) { 
        return  
      } 
    } 
  } 
... 
}
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Test-and-test-and-set Lock

Then try to 
acquire it



Demo
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Mystery #2
TAS lock 

TTAS lock 

Ideal tim
e

threads
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Mystery

• Both 
– TAS and TTAS 
– Do the same thing (in our model) 

• Except that  
– TTAS performs better than TAS 
– Neither approaches ideal
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Opinion

• Our memory abstraction is broken 
• TAS & TTAS methods 

– Are provably the same (in our model) 
– Except they aren’t (in field tests) 

• Need a more detailed model …
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Bus-Based Architectures

Bus

cache

memory

cachecache
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Bus-Based Architectures

Bus

cache

memory

cachecache

Random access memory 
(10s of cycles)
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Bus-Based Architectures

cache

memory

cachecache

Shared Bus 
•Broadcast medium 
•One broadcaster at a time 
•Processors and memory all “snoop”

Bus
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Bus-Based Architectures

Bus

cache

memory

cachecache

Per-Processor Caches 
•Small 
•Fast: 1 or 2 cycles 
•Address & state information
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Granularity

• Caches  operate at a larger granularity than a word  
(32 or 64 bits) 

• Cache line: fixed-size block containing of neighbouring 
words (today 64 or 128 bytes)
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Locality

• If you use an address now, you will probably use it 
again soon 
– Fetch from cache, not memory 

• If you use an address now, you will probably use a 
nearby address soon 
– In the same cache line
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L1 and L2 Caches

L1

L2
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L1 and L2 Caches

L1

L2

Small & fast 
1 or 2 cycles
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L1 and L2 Caches

L1

L2

Larger and slower 
10s of cycles 

~128 byte line
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Jargon Watch

• Cache hit 
– “I found what I wanted in my cache” 
– Good Thing™ 

• Cache miss 
– “I had to shlep all the way to memory for that data” 
– Bad Thing™
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Cave Canem

• This model is still a simplification 
– But not in any essential way 
– Illustrates basic principles 

• Will discuss complexities later
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When a Cache Becomes Full…

• Need to make room for new entry 
• By evicting an existing entry 
• Need a replacement policy 

– Usually some kind of least recently used heuristic
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Cache Coherence

• A and B both cache address x 
• A writes to x 

– Updates cache 
• How does B find out? 
• Many cache coherence protocols in literature
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MESI

• Modified 
– Have modified cached data, must write back to memory
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MESI

• Modified 
– Have modified cached data, must write back to memory 

• Exclusive 
– Not modified, I have only copy
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MESI

• Modified 
– Have modified cached data, must write back to memory 

• Exclusive 
– Not modified, I have only copy 

• Shared 
– Not modified, may be cached elsewhere
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MESI

• Modified 
– Have modified cached data, must write back to memory 

• Exclusive 
– Not modified, I have only copy 

• Shared 
– Not modified, may be cached elsewhere 

• Invalid 
– Cache contents not meaningful
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Bus

Processor Issues Load Request

Bus

cache

memory

cachecache

data

load x
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cache

Bus

Memory Responds

Bus

memory

cachecache

data

Got it! 

data

E
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Bus

Processor Issues Load Request

Bus

memory

cachecachedata

data

Load x

E
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Bus

Other Processor Responds

memory

cachecache

data

Got it

datadata

Bus

ES S
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S

Modify Cached Data

Bus

data

memory

cachedata

data

dataS
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S

memory data

data datadata
Bus

Write-Through Cache

Bus

cachedata

Write x!

S
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Write-Through Caches

• Immediately broadcast changes  
• Good 

– Memory, caches always agree 
– More read hits, maybe 

• Bad 
– Bus traffic on all writes 
– Most writes to unshared data 
– For example, loop indexes …
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Write-Through Caches

• Immediately broadcast changes  
• Good 

– Memory, caches always agree 
– More read hits, maybe 

• Bad 
– Bus traffic on all writes 
– Most writes to unshared data 
– For example, loop indexes …

“show stoppers”
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Write-Back Caches

• Accumulate changes in cache 
• Write back when line evicted 

– Need the cache for something else 
– Another processor wants it
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Bus

Invalidate

Bus

memory

cachedatadata

data

cache

Invalidate x

SS MI
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cache

Bus

memory

cachedata

data
This cache acquires write permission

Invalidate
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cache

Bus

memory

cachedata

data

Other caches lose read permission

This cache acquires write permission

Invalidate
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cache

Bus

Invalidate

memory

cachedata

data

Memory provides data only if not present 
in any cache, so no need to change it now 

(expensive)
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Mutual Exclusion

• What do we want to optimize? 
– Bus bandwidth used by spinning threads 
– Release/Acquire latency 
– Acquire latency for idle lock
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Simple TASLock 

• TAS invalidates cache lines 
• Spinners 

– Miss in cache 
– Go to bus 

• Thread wants to release lock 
– delayed behind spinners
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Test-and-test-and-set

• Wait until lock “looks” free 
– Spin on local cache 
– No bus use while lock busy 

• Problem: when lock is released 
– Invalidation storm …



85

Local Spinning while Lock is Busy

Bus

memory

busybusybusy

busy
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Bus

On Release

memory

freeinvalidinvalid

free
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On Release

Bus

memory

freeinvalidinvalid

free

miss miss

Everyone misses, 
rereads
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On Release

Bus

memory

freeinvalidinvalid

free

TAS(…) TAS(…)

Everyone tries TAS
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Problems

• Everyone misses 
– Reads satisfied sequentially 

• Everyone does TAS 
– Invalidates others’ caches 

• Eventually quiesces after lock acquired 
– How long does this take?  
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Quiescence Time

Increases  
linearly with  
the number of  
processors for  
bus architecturetim

e

threads
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Mystery Explained
TAS lock 

TTAS lock 

Ideal tim
e

threads
Better than TAS 
but still not as 
good as ideal
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Solution: Introduce Delay

spin locktime
dr1dr2d

• If the lock looks free 
• But I fail to get it 

• There must be contention 
• Better to back off than to collide again
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Dynamic Example: Exponential 
Backoff

time
d2d4d spin lock

 If I fail to get lock 
– Wait random duration before retry 
– Each subsequent failure doubles expected wait



class BackoffLock extends SpinLock { 

  private var  delay = MIN_DELAY 

  override def lock(): Unit = { 

   while (true) { 

      while (state.get()) {} 

      if (!state.getAndSet(true)) { return } else { 

        Thread.sleep(random() % delay); 

        if (delay < MAX_DELAY) delay = 2 * delay 

      } 

    }  
}
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Exponential Backoff Lock



class BackoffLock extends SpinLock { 

  private var  delay = MIN_DELAY 

  override def lock(): Unit = { 

   while (true) { 

      while (state.get()) {} 

      if (!state.getAndSet(true)) { return } else { 

        Thread.sleep(random() % delay); 

        if (delay < MAX_DELAY) delay = 2 * delay 

      } 

    }  
}
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Fix minimum delay

Exponential Backoff Lock



class BackoffLock extends SpinLock { 

  private var  delay = MIN_DELAY 

  override def lock(): Unit = { 

   while (true) { 

      while (state.get()) {} 

      if (!state.getAndSet(true)) { return } else { 

        Thread.sleep(random() % delay); 

        if (delay < MAX_DELAY) delay = 2 * delay 

      } 

    }  
}
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Wait until lock looks free

Exponential Backoff Lock



class BackoffLock extends SpinLock { 

  private var  delay = MIN_DELAY 

  override def lock(): Unit = { 

   while (true) { 

      while (state.get()) {} 

      if (!state.getAndSet(true)) { return } else { 

        Thread.sleep(random() % delay); 

        if (delay < MAX_DELAY) delay = 2 * delay 

      } 

    }  
}
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If we win, return

Exponential Backoff Lock



class BackoffLock extends SpinLock { 

  private var  delay = MIN_DELAY 

  override def lock(): Unit = { 

   while (true) { 

      while (state.get()) {} 

      if (!state.getAndSet(true)) { return } else { 

        Thread.sleep(random() % delay) 

        if (delay < MAX_DELAY) delay = 2 * delay 

      } 

    }  
}
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Back off for random duration

Exponential Backoff Lock



class BackoffLock extends SpinLock { 

  private var  delay = MIN_DELAY 

  override def lock(): Unit = { 

   while (true) { 

      while (state.get()) {} 

      if (!state.getAndSet(true)) { return } else { 

        Thread.sleep(random() % delay) 

        if (delay < MAX_DELAY) delay = 2 * delay 

      } 

    }  
}
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Double max delay, within reason

Exponential Backoff Lock
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Spin-Waiting Overhead

TTAS Lock

Backoff locktim
e

threads
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Backoff: Other Issues

• Good 
– Easy to implement 
– Beats TTAS lock 

• Bad 
– Must choose parameters carefully 
– Not portable across platforms



Actual Data on 40-Core Machine

102
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A Prominent Idea

• Avoid useless invalidations 
– By keeping a queue of threads 

• Each thread 
– Notifies next in line 
– Without bothering the others
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Anderson Queue Lock

flags

next

T F F F F F F F

idle
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Anderson Queue Lock

flags

next

T F F F F F F F

acquiring

getAndIncrement
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Anderson Queue Lock

flags

next

T F F F F F F F

acquiring

getAndIncrement
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Anderson Queue Lock

flags

next

T F F F F F F F

acquired

Mine!
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Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring
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Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring

getAndIncrement
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Anderson Queue Lock

flags

next

T F F F F F F F

acquired acquiring

getAndIncrement
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acquired

Anderson Queue Lock

flags

next

T F F F F F F F

acquiring
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released

Anderson Queue Lock

flags

next

T T F F F F F F

acquired
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released

Anderson Queue Lock

flags

next

T T F F F F F F

acquired

Yow!
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Performance

• Shorter handover than 
backoff 

• Curve is practically flat 
• Scalable performance

queue

TTAS



More spin-locks in the Book

• CHL Lock 
• MCS Lock 
• Fast-path composite locks 
• Hierarchical backoff locks 
• … 
• No silver bullet!
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Chapter 7



Mind the gap!

• ALock in Java is vulnerable to false sharing, which is easy to avoid 
in C (where you can pad and align flags) but harder in JVM, which 
tend to pack flags into one cache line. 

• Thread-local vars can be very slow. One can implement them by 
hand as an array indexed by thread ID. 

• The standard Java Random class uses an internal static lock. 

• Java code for java.util.concurrent has lots of low-level Java locks 
and data structures, but it makes heavy use of the Unsafe package 
for cache alignment, etc.
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released

Local Spinning 

flags

next

T F F F F F F F

acquired
Spin 
on 
my  
bit

Unfortunately many bits share cache line
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released

False Sharing

flags

next

T F F F F F F F

acquired
Spin 
on 
my  
bit

Line 1 Line 2

 Spinning thread 
gets cache 

invalidation on 
account of store 
by threads it is 
not waiting for

 Result: 
contention
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released

The Solution: Padding

flags

next

T / / / F / / /

acquired

Line 1 Line 2

Spin 
on 
my  
line



Why should we care?

• Spin-locks are useful when critical sections are small, but the the 
numbers of threads are large 

• Typical for high-performance computing (most of the tasks done 
in parallel) or low-level kernel drivers. Those are typically not 
implemented in Java. :-) 

• Regular applications (desktop, web) favour the “blocking” model 
(threads yield the processor to each other). 

• We will consider it in the next lecture.
120



• Keep trying 
– “spin” or “busy-wait” 
– Good if delays are short 

• Give up the processor 
– Good if delays are long 
– Always good on uniprocessor

121

What Should you do if you can’t get a lock?

our focus until now



• Keep trying 
– “spin” or “busy-wait” 
– Good if delays are short 

• Give up the processor 
– Good if delays are long 
– Always good on uniprocessor
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What Should you do if you can’t get a lock?
next lecture
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