
YSC4231: Parallel, Concurrent  
and Distributed Programming

Linearizability (c’d) and Wait-Free Implementations

Last Week: Linearizability

2

3

Linearizability

• History H is linearizable if it can be extended to G by

– Appending zero or more responses to pending invocations

– Discarding other pending invocations

• So that G is equivalent to

– Legal sequential history S

– where ➔G ⊂ ➔S

4

Remarks

• Some pending invocations

– Took effect, so keep them

– Discard the rest

• Condition ➔G ⊂ ➔S

– Means that S respects “real-time order” of G

5

Ensuring ➔G ⊂ ➔S 

time

a

b

time

➔
G

➔S

c➔G

➔G = {a!c,b!c}

➔S = {a!b,a!c,b!c}

A lim
itation on the

Choice of S!

6

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

Example

time

B q.enq(4)

A q.enq(3)

B q.deq(4) B q.enq(6)

7

Example

Complete this
pending

invocation

time

B q.enq(4) B q.deq(4) B q.enq(6)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)

A q.enq(3)

8

Example

Complete this
pending

invocation

time

B q.enq(4) B q.deq(4) B q.enq(6)

A q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

9

Example

time

B q.enq(4) B q.deq(4) B q.enq(6)

A q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
B q:enq(6)
A q:void

discard this one

10

Example

time

B q.enq(4) B q.deq(4)

A q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4

A q:void

11

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4) B q.deq(4)

A q.enq(3)

12

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

B q.enq(4) B q.deq(4)

A q.enq(3)

13

B q.enq(4) B q.deq(4)

A q.enq(3)

A q.enq(3)
B q.enq(4)
B q:void
B q.deq()
B q:4
A q:void

Example

time

B q.enq(4)
B q:void
A q.enq(3)
A q:void
B q.deq()
B q:4

Equivalent sequential history

14

Why Does Composability Matter?

• Modularity

• Can prove linearizability of objects in isolation

• Can compose independently-implemented objects

• A history of two linearizable objects is linearizable

def deq() : T = {

 myLock.lock()

 try {

 if (tail == head) {

 throw EmptyException

 }

 val x = items(head % items.length)

 head = head + 1

 x

 } finally {

 myLock.unlock()

 }

}

15

Reasoning About Linearizability:
Locking

0 1
capacity-1

2

head tail

y z

def deq() : T = {

 myLock.lock()

 try {

 if (tail == head) {

 throw EmptyException

 }

 val x = items(head % items.length)

 head = head + 1

 x

 } finally {

 myLock.unlock()

 }

}

16

Reasoning About Linearizability:
Locking

Linearization points
are when locks are

released

0 1
capacity-1

2

head tail

y z

class LockFreeQueue[T: ClassTag](val capacity: Int) {

 @volatile

 private var head, tail: Int = 0

 private val items = new Array[T](capacity)

 def enq(x: T): Unit = {

 if (tail - head == items.length) throw FullException

 items(tail % items.length) = x

 tail = tail + 1

 }

 def deq(): T = {

 if (tail == head) throw EmptyException

 val x = items(head % items.length)

 head = head + 1

 x

 }

}

17

More Reasoning: Wait-free
0 1

capacity-1
2

head tail

y z

class LockFreeQueue[T: ClassTag](val capacity: Int) {

 @volatile

 private var head, tail: Int = 0

 private val items = new Array[T](capacity)

 def enq(x: T): Unit = {

 if (tail - head == items.length) throw FullException

 items(tail % items.length) = x

 tail = tail + 1

 }

 def deq(): T = {

 if (tail == head) throw EmptyException

 val x = items(head % items.length)

 head = head + 1

 x

 }

}

18

More Reasoning: Wait-free

Linearization in the case when
operations succeed

Remember that there

Is only one enqueuer

and only one dequeuer

class LockFreeQueue[T: ClassTag](val capacity: Int) {

 @volatile

 private var head, tail: Int = 0

 private val items = new Array[T](capacity)

 def enq(x: T): Unit = {

 if (tail - head == items.length) throw FullException

 items(tail % items.length) = x

 tail = tail + 1

 }

 def deq(): T = {

 if (tail == head) throw EmptyException

 val x = items(head % items.length)

 head = head + 1

 x

 }

}

19

More Reasoning: Wait-free

Linearization in the case when
operations fail

20

Strategy

• Identify one atomic step where method “happens”

– Critical section

– Machine instruction

• Doesn’t always work

– Might need to define several different scenarios for a given

method

– Example: if the method’s fails, its linearization point is A, if it

succeeds its LP is B

21

Linearizability: Summary

• Powerful specification tool for shared objects

• Allows us to capture the notion of objects being “atomic”

• Don’t leave home without it

22

Alternative: Sequential Consistency

• History H is Sequentially Consistent if it can be
extended to G by
– Appending zero or more responses to pending invocations
– Discarding other pending invocations

• So that G is equivalent to a
– Legal sequential history S
– Where ➔G ⊂ ➔S

 Differs from
 linearizability

23

Sequential Consistency

• No need to preserve real-time order

– Cannot re-order operations done by the same thread

– Can re-order non-overlapping operations done by different

threads

• Often used to describe multiprocessor memory

architectures

24

Example

time

25

Example

time

q.enq(x)

26

Example

time

q.enq(x) q.deq(y)

27

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

28

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

29

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

not linearizable

30

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Yet Sequentially
Consistent

31

Theorem

Sequential Consistency is not composable

32

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

time

33

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

34

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

History H

time

35

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time

time

36

H|q Sequentially Consistent

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

37

Ordering imposed by p

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

38

Ordering imposed by q

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

39

p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

40

p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

41

Fact

• Most hardware architectures don’t even support
sequential consistency

• Because they think it’s too strong

• Here’s another story …

42

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

time

43

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Each thread’s view is sequentially consistent
– It went first

44

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Entire history isn’t sequentially consistent
– Can’t both go first

– Petersen’t lock now got a problem!

45

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Is this behavior really so wrong?
– We can argue either way …

46

Opinion: It’s Wrong

• This pattern

– Write mine, read yours

• Is exactly the flag principle

– Beloved of Alice and Bob

– Heart of mutual exclusion

• Peterson

• Bakery, etc.

• It’s non-negotiable!

47

Peterson's Algorithm
def lock(): Unit = {

 flag(i) = true

 victim = i

 while (flag(1 - i) && victim == i) {}

}

def unlock(): Unit = {

 val i = ThreadID.get

 flag(i) = false

}

48

Crux of Peterson Proof

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)
(2) writeA(victim=A)➔readA(flag[B])
 ➔ readA(victim)

49

Crux of Peterson Proof

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)
(2) writeA(victim=A)➔readA(flag[B])
 ➔ readA(victim)

Observation: proof relied on fact that if a

location is stored, a later load by some thread

will return this or a later stored value.

50

Opinion: But It Feels So Right …

• Many hardware architects think that sequential
consistency is too strong

• Too expensive to implement in modern hardware

• OK if flag principle

– violated by default

– Honored by explicit request

Hardware Consistency

mov 1, a ;Store
mov b, %ebx ;Load

mov 1, b ;Store
mov a, %eax ;Load

Initially, a = b = 0.
Processor 0 Processor 1

What are the final possible values of %eax
and %ebx after both processors have
executed?

Sequential consistency implies that no
execution ends with %eax= %ebx = 0

51

· No modern-day processor implements sequential consistency.

· Hardware actively reorders instructions.

· Compilers may reorder instructions, too.

· Why?

· Because most of performance is derived from a single
thread’s unsynchronized execution of code!

52

Hardware Consistency

This is known as Weak (Relaxed) Memory Semantics

Weak-Memory Instruction Reordering

Q.	Why might the hardware or compiler decide
to reorder these instructions?

A.	To obtain higher performance by covering
load latency — instruction-level parallelism.

mov 1, a ;Store
mov b, %ebx ;Load

Program Order Execution Order

mov b, %ebx ;Load
mov 1, a ;Store

Slide used with permission of
Charles E. Leiserson 53

Q.	When is it safe for the hardware or
compiler to perform this reordering?

A.	 When a ≠ b.
A′.	And there’s no concurrency.

mov 1, a ;Store
mov b, %ebx ;Load

mov b, %ebx ;Load
mov 1, a ;Store

Program Order Execution Order

Slide used with permission of
Charles E. Leiserson 54

Weak-Memory Instruction Reordering

Hardware Reordering

· Processor can issue stores faster than the
network can handle them ⇒ store buffer.

· Loads take priority, bypassing the store buffer.
· Except if a load address matches an address in

the store buffer, the store buffer returns the result.

Memory
System

Load Bypass

Processor Network
Store Buffer

Slide used with permission of
Charles E. Leiserson 55

X86 Relaxed Memory Model

1. Loads are not reordered with loads.
2. Stores are not reordered with stores.
3. Stores are not reordered with prior loads.
4. A load may be reordered with a prior store

to a different location but not with a prior
store to the same location.

5. Stores to the same location respect a global
total order.

Store1
Store2
Load1

Store3
Store4
Load3

Load2

Load4
Load5

Thread’s
Code

56

1. Loads are not reordered with loads.
2. Stores are not reordered with stores.
3. Stores are not reordered with prior

loads.
4. A load may be reordered with a prior

store to a different location but not
with a prior store to the same location.

5. Stores to the same location respect a
global total order.

Store1
Store2
Load1

Store3
Store4
Load3

Load2

Load4
Load5

Thread’s
Code

Total Store Ordering
(TSO)…weaker than
sequential consistency

L
O
A
D
S

OK!

57

X86 Relaxed Memory Model

Memory Barriers (Fences)

· A memory barrier (or memory fence) is a
hardware action that enforces an ordering
constraint between the instructions before
and after the fence.

· A memory barrier can be issued explicitly as
an instruction (x86: mfence)

· The typical cost of a memory fence is
comparable to that of an L2-cache access.

58

1. Loads are not reordered with loads.
2. Stores are not reordered with stores.
3. Stores are not reordered with prior

loads.
4. A load may be reordered with a prior

store to a different location but not
with a prior store to the same location.

5. Stores to the same location respect a
global total order.

Store1
Store2
Load1

Store3
Store4

Load3

Load2

Load4
Load5

Thread’s
Code

Total Store Ordering +  
properly placed memory barriers
= sequential consistency

Barrier

59

X86 Relaxed Memory Model

60

Memory Barriers

• Explicit Synchronization

• Memory barrier will

– Flush write buffer

– Bring caches up to date

• Compilers often do this for you

– Entering and leaving critical sections via Java’s

synchronized

– Also, enforced by library implementations of lock/unlock()

61

Java/Scala Volatile Variables

• In Java, can ask compiler to keep a variable
up-to-date by declaring it volatile

• In Scala, use @volatile annotation

• Adds a memory barrier after each store

• Inhibits reordering, removing from loops, &
other “compiler optimizations”

62

Summary: Real-World

• Hardware is weaker than sequential consistency

• Can get sequential consistency at a price

• Linearizability better fit for high-level software

(libraries)

63

Linearizability

• Linearizability

– Operation takes effect instantaneously  

between invocation and response

– Uses sequential specification, locality implies composablity

64

Summary: Correctness

• Sequential Consistency

– Not composable

– Harder to work with

– Good way to think about hardware models 

• We will use linearizability as our consistency condition in
the remainder of this course unless stated otherwise

<A good place for a break>

66

Checkpoint

• Defined concurrent objects using linearizability and
sequential consistency

• Fact: implemented linearizable objects (Two thread
FIFO Queue) in read-write memory without mutual
exclusion

• Fact: hardware does not provide linearizable read-
write memory

67

Fundamentals
• What is the weakest form of communication that supports

mutual exclusion?

• What is the weakest shared object that allows shared-
memory computation?

68

Alan Turing

• Showed what is and is not computable on a sequential machine.

• Still best model there is.

69

Turing Computability

• Mathematical model of computation

• What is (and is not) computable

• Efficiency (mostly) irrelevant

0 1 1 0 1 01

70

Shared-Memory
Computability?

• Mathematical model of concurrent computation

• What is (and is not) concurrently computable

• Efficiency (mostly) irrelevant

10011

Shared Memory

71

Foundations of Shared Memory

To understand modern
multiprocessors we need to ask some

basic questions …

72

Foundations of Shared Memory

To understand modern
multiprocessors we need to ask some

basic questions …
What is the weakest useful form of

shared memory?

73

Foundations of Shared Memory

To understand modern
multiprocessors we need to ask some

basic questions …
What is the weakest useful form of

shared memory?What can it do?

74

Register*

10011

Holds a
(binary) value

* A memory location: name is historical

75

Register

Can be read
10011

10011

10011

76

Register

Can be written

01100

77

From Weakest Register

1

0 1

Single readerSingle writer

Safe Boolean register

78

All the way to a Wait-free
Implementation of Atomic Snapshots

MRMW

MRSW

SRSW

Safe
Regular

Atomic

M-valued

Boolean

Snapshot

Chapter 4

79

Crux of Concurrency: Wait-Free Synchronization

• Every method call completes in finite number of steps

• Implies no mutual exclusion

• We wanted atomic registers to
implement mutual exclusion

80

Rationale for wait-freedom

• We wanted atomic registers to
implement mutual exclusion

• So we couldn’t use mutual exclusion to
implement atomic registers

81

Rationale for wait-freedom

• We wanted atomic registers to
implement mutual exclusion

• So we couldn’t use mutual exclusion to
implement atomic registers

• But wait, there’s more!

82

Rationale for wait-freedom

83

What’s the problem with
Mutual Exclusion?

84

Asynchronous Interrupts

Swapped out

back at

??? ???

85

Heterogeneous Processors

??? ???
yawn

supercomputersupercomputer
toaster

86

Fault-tolerance

??? ???

87

Machine Level Instruction Granularity

Amdahl’s Law

88

Basic Questions

• Can we syncrhonize without ME?

89

Basic Questions

• Can we syncrhonize threads without ME?

• Wait-Free synchronization might be a

good idea in principle

90

Basic Questions

• Can we syncrhonize threads without ME?

• Wait-Free synchronization might be a

good idea in principle

• But how do you do it …

91

Basic Questions

• Can we syncrhonize threads without ME?

• Wait-Free synchronization might be a

good idea in principle

• But how do you do it …

– Systematically?

92

Basic Questions

• Can we syncrhonize threads without ME?

• Wait-Free synchronization might be a

good idea in principle

• But how do you do it …

– Systematically?

– Correctly?

93

Basic Questions

• Can we syncrhonize threads without ME?

• Wait-Free synchronization might be a

good idea in principle

• But how do you do it …

– Systematically?

– Correctly?

– Efficiently?

94

FIFO Queue: Enqueue Method

q.enq()

95

FIFO Queue: Dequeue Method

q.deq()/

class LockFreeQueue[T: ClassTag](val capacity: Int) {

 @volatile

 private var head, tail: Int = 0

 private val items = new Array[T](capacity)

 def enq(x: T): Unit = {

 if (tail - head == items.length) throw FullException

 items(tail % items.length) = x

 tail = tail + 1

 }

 def deq(): T = {

 if (tail == head) throw EmptyException

 val x = items(head % items.length)

 head = head + 1

 x

 }

}

96

Two-Thread Wait-Free Queue

0 1
capacity-1

2

head tail

y z

97

What About Multiple Dequeuers?

98

Grand Challenge

• Implement a FIFO queue

99

Grand Challenge

• Implement a FIFO queue

– Wait-free

100

Grand Challenge

• Implement a FIFO queue

– Wait-free

– Linearizable

101

Grand Challenge

• Implement a FIFO queue

– Wait-free

– Linearizable

– From atomic read-write registers

102

Grand Challenge

• Implement a FIFO queue

– Wait-free

– Linearizable

– From atomic read-write registers

– Multiple dequeuers

103

Grand Challenge

• Implement a FIFO queue

– Wait-free

– Linearizable

– From atomic read-write registers

– Multiple dequeuers

Only new
aspect

104

Puzzle

While you are ruminating on the
grand challenge …

We will give you another puzzle …

Consensus!

105

Consensus: Each Thread has a Private Input
32 19

21

106

They Communicate

107

They Agree on One Thread’s Input
19 19

19

108

Formally: Consensus	

• Consistent:

– all threads decide the same value

109

Formally: Consensus	

• Consistent:

– all threads decide the same value

• Valid:

– the common decision value is some thread's input

110

In the past: Consensus Game

• Two of you need to agree on a value, e.g., A or B

• You need to devise a protocol to reach a consensus

• Tell me the maximal number of steps for each thread (<= 5, please)

• We are going to communicate using the white board

• Rules: either reading or writing one register (not both)

• No other communication,

• No priorities in “thread” identities or values:

• Either of the values can be chosen (non-triviality)

• One of the thread’s suggestions need to be chosen (validity)

111

No Wait-Free Implementation of
Consensus using Registers

??? ???

112

Formally

• Theorem

– There is no wait-free implementation of n-thread

consensus (n > 1) from read-write registers 

• Proof

– Using “valence trees” — see the textbook

Next:  
Solving n-thread Consensus

113

Art of Multiprocessor Programming 114

  
This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of Multiprocessor

Programming” (but not in any way that suggests that the authors endorse
you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from

the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

