YSC4231: Parallel, Concurrent
ana Distributed Programming

Concurrent Consensus and
Read-Modity Write Operations

What Does Consensus have to do with
Concurrent Objects?

N

‘

ole|
Q/ﬁ

Consensus Object

trait Consensus|[T] {

def decide (value: T): T

Concurrent Consensus Object

» \We consider only one-time objects:
— each thread calls method only once

* Linearizable to sequential consensus object:
— Winner's call went first

Scala Jargon Watch

* Define Consensus protocol as an abstract class
* We implement some methods
* You do the rest ...

Generic Consensus Protocol

abstract class ConsensusProtocol |[T] extends Consensus|[T] {

private val THREADS NUM = 3248
var proposed = new Array[T] (THREADS NUM)

protected def propose(value: T): Unit = {
val 1 = ThreadID.get
proposed (1) = value

J

def decide (value: T): T

Generic Consensus Protocol

var proposed = new Array|[T] (THR!

EADS NUM)

Each thread’s
proposed value

Generic Consensus Protocol

val 1 = ThreadID.get
proposed (1) = value

Propose a value

Generic Consensus Protocol

Decide a value: abstract method
means subclass does the real work

def decide (va.

Can a FIFO Queue
Implement Consensus?

10

FIFO Consensus

|

4)

4

Coveted red ball

°|
N\

Dreaded black ball

proposed array

FIFO Queue
with red and
black balls

11

Protocol: Write Value to Array

12

Protocol: Take Next Item from Queue

13

Protocol: Take Next Item from Queue

| got the dreaded
black ball, so | will
decide the other’s

value from the array

| got the coveted
red ball, so | will
decide my value

14

Consensus Using FIFO Queue

public class QueueConsensus|[T.
extends ConsensusProtocol[T] {
val queue : Queue = new Queue ()
queue.enqg (Ball.RED)
queue.eng (Ball.BLACK)

Initialize Queue

val queue : Queue = new Queue ()
queue.enqg(Ball.RED)
queue.eng (Ball.BLACK)

16

Who Won??

public class QueueConsensus|[T.
extends ConsensusProtocol [T] {
val queue : Queue = new Queue ()

override def decide (value: T) = {
propose (value)
val ball = queue.deqg()
val 1 = ThreadID.ge

1f (ball == Ball.RED) {
proposed (1) .get ()
} else {

proposed(l - 1) .get ()
}
b}

17

val ball

Who Won??

= queue.deq()

Race to dequeue first
queue item

18

1f

Who Won??

(ball == Ball.RED) {
proposed (1) .get ()

| win if | was first

19

Who Won??

Other thread wins if |
was second

proposed(l - 1) .get ()

20

Why does this Work™?

If one thread gets the red ball
Then the other gets the black ball
Winner decides her own value

Loser can find winner’s value in array
— Because threads write array
— Before dequeueing from queue

21

Demo

» Testing Queue-based consensus

22

Theorem

* We can solve 2-thread consensus using only
— A two-dequeuer wait-free queue, and
— Some atomic registers

23

Implications

* Given
— A consensus protocol from queue and registers

* Assume there exists
— A queue implementation from atomic registers

» Substitution yields:

— A wait-free consensus protocol from atomic registers

24

Corollary

|t s Impossible to Implement
— a two-dequeuer wait-free FIFO queue
— from read/write memory only

25

Consensus Numbers

* An object X has consensus number n

— If it can be used to solve n-thread consensus

» Take any number of instances of X
» together with atomic read/write registers
* and implement n-thread consensus

— But not (n+1)-thread consensus

26

Consensus Numbers

* [heorem
— Atomic read/write registers have consensus number 1

e Theorem

— Multi-dequeuer FIFO queues have consensus number at
least 2

27

Consensus Numbers Measure Synchronization
Power

 Theorem
— If you can implement X from Y
— And X has consensus number c
— T'hen Y has consensus number at least c

28

Synchronization Speed Limit

» Conversely

— |If X has consensus number c
— And Y has consensus numberd < c¢

— Then there is no way to construct a wait-free implementation
of XbyY

* This theorem will be very useful
— Unforeseen practical implications!

29

Earlier Grand Challenge

e Snapshot means
— Write any array element
— Read multiple array elements atomically

 \What about

— Write multiple array elements atomically
— Scan any array elements

 Call this problem multiple assignment

30

Multiple Assignment Theorem

» Atomic registers cannot implement multiple
assignment

 Weird or what?

— Single write/multi read OK
— Multi write/multi read impossible

31

Proof Strategy

* If we can write to 2/3 array elements

— We can solve 2-consensus
— Impossible with atomic registers

* Therefore
— Cannot implement multiple assignment with atomic registers

32

Proof Strategy

» Take a 3-element array
— A writes atomically to slots O and 1
— B writes atomically to slots 1 and 2
— Any thread can scan any set of locations

33

Double Assignment Interface

class Assign23[T] (val 1nit: T) {

val r: Array[AtomicReference[T]]
Array.fi1l1l (3) (new AtomicReference(i1nit))

|

def assign(vO: T, v1l: T, 10: Int, 11: Int): Unit =
this.synchronized {
r(10) .set (v0)
r(1l) .set (vl)

J

def read(i1: Int): T = this.synchronized {
r(i1) .get()
}

Double Assignment Interface

Atomically assign
r(ip)= vy

r(i,)= v,

35

Double Assignment Interface

Return ith value

36

Initially

‘0
\ 2
‘0
.

*

“
“
2
.

¢“
.
.

Writes to 1
and 2

Writes to 0
and 1

37

Thread A wins If

Thread B
didn’t move

38

Thread A wins If

Thread B
moved later

39

Thread A loses If

Thread B
moved earlier

40

Multi-Consensus Code

class MultiConsensus extends .. {
private val NULL = -1
private val assign23 = new AssignZ23 (NULL)
override def decide (value: T) = {

propose (value)
val 1 = ThreadID.get
assignZ23.assign(i1, 1, 1, 1 + 1)

val other = assignZ23.read((1 + 2) % 3)

1f (other == NULL || other == assignZ3.read(1l)) {
proposed (1) .get () // I win

} else {

proposed (1l - 1).get() // I lose
}
b}

41

Multi-Consensus Code

class MultiConsensus extends .. {
private val NULL = -1
private val assign23 = new AssignZ23 (NULL)

override def decide (value: T) = {
propose (value)
val 1 = ThreadID.get
assignZ23.assign(i1, 1, 1, 1 + 1)
val other = assignZ23.read((1 + 2) % 3)
1f (other == NULL || other == assignZ3.read(1l)) {
proposed (1) .get () // I win
} else {
proposed (1l - 1).get() // I lose
}}} Extends ConsensusProtocol

“decide” sets 1-1 and proposes value

42

Multi-Consensus Code

private val assign’Z3

new Assignz23 (NULL)

Three slots
initialized to
NULL

43

Multi-Consensus Code

assignz23.assign(iz, 1, 1, 1 + 1)

Assign ID 0 to entries 0,1
(or ID 1 to entries 1,2)

44

Multi-Consensus Code

val other = assignZ23.read((1 + 2) % 3)

Read the register my
thread didn’t assign

45

Multi-Consensus Code

XA

*

‘0
“
l | |

BN

Other thread didn’t
move, so | win

46

Multi-Consensus Code

‘
‘0 j ' |
*
‘0
“
Ii “

other == assignZ3.read (1)

Other thread moved
Jater so | win

47

Multi-Consensus Code

proposed (1) .get ()

OK, | win.

48

Multi-Consensus Code

proposed(l - 1) .get ()
Other thread moved
first, so | lose

49

Demo

* [Jesting multi-consensus

50

Summary

* If a thread can assign atomically to 2 out of 3 array
locations

* Then we can solve 2-consensus

* Therefore
— No wait-free multi-assignment
— From read/write registers

51

We need better concurrent primitives!

52

Read-Modify-Write Objects

e Method call

— Returns object's prior value x
— Replaces x with mumble(x)

53

Read-Modify-Write

class RMWRegilster (private val i1nit: Int) {
private var value: Int = 1nit
def getAndMumble () = this.synchronized {
val prior = value
value = mumble (value)

pPrior

}

54

Read-Modify-Write

Return prior value

55

Read-Modify-Write

value = mumble (value)

Apply function to current value

56

RMW Everywhere!

* Most synchronization instructions
— are RMW methods

* [he rest
— Can be trivially transformed into RMW methods

57

Example: Read

class RMWRegilster (private val i1nit: Int) {
private var value: Int = 1nit

def read: Int = this.synchronized {
val prior = value
value = wvalue
pPrior

}

58

Example: Read

apply f(x)=x, the
identity function

59

Example: getAndSet

class RMWRegilster (private val i1nit: Int) {
private var value: Int = 1nit
def getAndSet (v: Int): Int =
this.synchronized {
val prior = value
value = v

pPri1or

60

Example: getAndSet (swap)

f(x)=v is constant

61

getAndincrement

class RMWRegister (private val 1nit:
private var value: Int = 1nit

def getAndIncrement: Int =
this.synchronized {
val prior = value
value = value + 1
pPri1or

Int)

62

getAndincrement

f(x) = x+1

63

getAndAdd

class RMWRegister (private val 1nit:

private var value: Int = 1nit

def getAndAdd(a: Int): Int =
this.synchronized {
val prior = value
value = value + a

pPri1or

Int)

64

Example: getAndAdd

f(x) = x+a

65

compareAndSet

class RMWRegister (private val 1nit: Int) {
private wvar value: Int = 1nit

def compareAndSet (expected: Int, update: Int)
this.synchronized {

1f (value == expected) {
value = update
true

} else {

false

}

66

value

compareAndSet

expected: 1

== expected

If value is as expected, ...

6/

compareAndSet

update

... replace It

68

compareAndSet

Report success

69

compareAndSet

70

Read-Modify-Write

mumble (value)

Lets characterize f(x)...

71

Definition

« A RMW method

— With function mumble(x)

— 1S non-trivial if there exists a value v
—Such that v # mumble(v)

72

Par Example

e Tdentity(x) = x
— IS trivial

e getAndIncrement (x) = x+1
— 1S non-trivial

/3

Theorem

* Any non-trivial RMW object has consensus number at
least 2

* No wait-free implementation of RMW registers from
atomic registers

 Hardware RMW instructions not just a convenience

74

Impact

* Many early machines provided only these "weak”
RMW instructions

— Test-and-set (IBM 360)
— Fetch-and-add (NYU Ultracomputer)
— Swap (Original SPARCs)

 \We now understand their limitations
— But why do we want consensus anyway?

73

compareAndSet

class RMWReglster (private val 1nit: Int) {
private var value: Int = 1nit
def compareAndSet (expected: Int, update: Int): Boolean =
this.synchronized {
1f (value == expected) {
value = update
true
} else |
false

J

/6

compareAndSet

expected: 1

value == expected

replace value If it’s what we expected, ...

77

compareAndSet Has « Consensus
Number

private val FIRST = -1
private val r = new RMWRegister (FIRST)

override def decide (value: Int) = {
propose (value)
val 1 = ThreadID.get
1f (r.compareAndSet (FIRST, 1)) {
proposed (i) .get () // won
} else {
proposed (r.read) .get ()

J

class CASConsensus extends ConsensusProtocol|[Int]

/8

compareAndSet Has « Consensus
Number

private wval F-

Initialized to -1

79

compareAndSet Has « Consensus
Number

Try to swap in my
id

r.compareAndSet (F'1L

30

compareAndSet Has « Consensus
Number

Try to swap in my
id

proposed (1) .get ()

81

compareAndSet Has « Consensus
Number

Decide winner’s preference

proposed (r.read) .get ()

32

Demo

e CAS-based consensus

33

The Consensus Hierarchy

1 Read/Write Registers, Snapshots...

2 getAndSet, getAndincrement, ...

0 compareAndSet,...

34

Summary

» Wait-free mutual exclusion requires synchronization
* WF synchronization = consensus (deciding who goes first)
 RMW operations allow to implement consensus for an

arbitrary number of threads
» Supporting RMW = supporting proper concurrency

85

Next week:

* Implementing practical locks via RMW operations

* Monitors and Blocking Synchronisation

36

©

SOME RIGHTS RESERVED

This work Is licensed under a

You are free:
— to Share — to copy, distribute and transmit the work
— to Remix — to adapt the work

Under the following conditions:

— Attribution. You must attribute the work to “The Art of Multiprocessor
Programming” (but not in any way that suggests that the authors endorse you
or your use of the work).

— Share Alike. If you alter, transform, or build upon this work, you may distribute
the resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

— http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from
the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.

Art of Multiprocessor Programming

37

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

