YSC4231: Parallel, Concurrent
ana Distributed Programming

Concurrent Consensus and
Read-Modity Write Operations




What Does Consensus have to do with
Concurrent Objects?
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Consensus Object

trait Consensus|[T] {

def decide (value: T): T



Concurrent Consensus Object

» \We consider only one-time objects:
— each thread calls method only once

* Linearizable to sequential consensus object:
— Winner's call went first



Scala Jargon Watch

* Define Consensus protocol as an abstract class
* We implement some methods
* You do the rest ...



Generic Consensus Protocol

abstract class ConsensusProtocol |[T] extends Consensus|[T] {

private val THREADS NUM = 3248
var proposed = new Array[T] (THREADS NUM)

protected def propose(value: T): Unit = {
val 1 = ThreadID.get
proposed (1) = value

J

def decide (value: T): T




Generic Consensus Protocol

var proposed = new Array|[T] (THR!

EADS NUM)

Each thread’s
proposed value



Generic Consensus Protocol

val 1 = ThreadID.get
proposed (1) = value

Propose a value



Generic Consensus Protocol

Decide a value: abstract method
means subclass does the real work

def decide (va.




Can a FIFO Queue
Implement Consensus?
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FIFO Consensus
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Dreaded black ball

proposed array

FIFO Queue
with red and
black balls
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Protocol: Write Value to Array
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Protocol: Take Next Item from Queue
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Protocol: Take Next Item from Queue

| got the dreaded
black ball, so | will
decide the other’s

value from the array

| got the coveted
red ball, so | will
decide my value
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Consensus Using FIFO Queue

public class QueueConsensus|[T.
extends ConsensusProtocol[T] {
val queue : Queue = new Queue ()
queue.enqg (Ball.RED)
queue.eng (Ball.BLACK)




Initialize Queue

val queue : Queue = new Queue ()
queue.enqg(Ball.RED)
queue.eng (Ball.BLACK)
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Who Won??

public class QueueConsensus|[T.
extends ConsensusProtocol [T] {
val queue : Queue = new Queue ()

override def decide (value: T) = {
propose (value)
val ball = queue.deqg()
val 1 = ThreadID.ge

1f (ball == Ball.RED) {
proposed (1) .get ()
} else {

proposed(l - 1) .get ()
}
b}
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val ball

Who Won??

= queue.deq()

Race to dequeue first
queue item
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1f

Who Won??

(ball == Ball.RED) {
proposed (1) .get ()

| win if | was first
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Who Won??

Other thread wins if |
was second

proposed(l - 1) .get ()

20



Why does this Work™?

If one thread gets the red ball
Then the other gets the black ball
Winner decides her own value

Loser can find winner’s value in array
— Because threads write array
— Before dequeueing from queue
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Demo

» Testing Queue-based consensus
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Theorem

* We can solve 2-thread consensus using only
— A two-dequeuer wait-free queue, and
— Some atomic registers
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Implications

* Given
— A consensus protocol from queue and registers

* Assume there exists
— A queue implementation from atomic registers

» Substitution yields:

— A wait-free consensus protocol from atomic registers
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Corollary

|t s Impossible to Implement
— a two-dequeuer wait-free FIFO queue
— from read/write memory only
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Consensus Numbers

* An object X has consensus number n

— If it can be used to solve n-thread consensus

» Take any number of instances of X
» together with atomic read/write registers
* and implement n-thread consensus

— But not (n+1)-thread consensus
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Consensus Numbers

* [heorem
— Atomic read/write registers have consensus number 1

e Theorem

— Multi-dequeuer FIFO queues have consensus number at
least 2
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Consensus Numbers Measure Synchronization
Power

 Theorem
— If you can implement X from Y
— And X has consensus number c
— T'hen Y has consensus number at least c
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Synchronization Speed Limit

» Conversely

— |If X has consensus number c
— And Y has consensus numberd < c¢

— Then there is no way to construct a wait-free implementation
of XbyY

* This theorem will be very useful
— Unforeseen practical implications!
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Earlier Grand Challenge

e Snapshot means
— Write any array element
— Read multiple array elements atomically

 \What about

— Write multiple array elements atomically
— Scan any array elements

 Call this problem multiple assignment
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Multiple Assignment Theorem

» Atomic registers cannot implement multiple
assignment

 Weird or what?

— Single write/multi read OK
— Multi write/multi read impossible

31



Proof Strategy

* If we can write to 2/3 array elements

— We can solve 2-consensus
— Impossible with atomic registers

* Therefore
— Cannot implement multiple assignment with atomic registers

32



Proof Strategy

» Take a 3-element array
— A writes atomically to slots O and 1
— B writes atomically to slots 1 and 2
— Any thread can scan any set of locations
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Double Assignment Interface

class Assign23[T] (val 1nit: T) {

val r: Array[AtomicReference[T] ]
Array.fi1l1l (3) (new AtomicReference(i1nit))

|

def assign(vO: T, v1l: T, 10: Int, 11: Int): Unit =
this.synchronized {
r(10) .set (v0)
r(1l) .set (vl)

J

def read(i1: Int): T = this.synchronized {
r(i1) .get()
}




Double Assignment Interface

Atomically assign
r(ip)= vy

r(i,)= v,
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Double Assignment Interface

Return ith value
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and 2
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and 1
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Thread A wins If

Thread B
didn’t move
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Thread A wins If

Thread B
moved later
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Thread A loses If

Thread B
moved earlier
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Multi-Consensus Code

class MultiConsensus extends .. {
private val NULL = -1
private val assign23 = new AssignZ23 (NULL)
override def decide (value: T) = {

propose (value)
val 1 = ThreadID.get
assignZ23.assign(i1, 1, 1, 1 + 1)

val other = assignZ23.read((1 + 2) % 3)

1f (other == NULL || other == assignZ3.read(1l)) {
proposed (1) .get () // I win

} else {

proposed (1l - 1).get() // I lose
}
b}
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Multi-Consensus Code

class MultiConsensus extends .. {
private val NULL = -1
private val assign23 = new AssignZ23 (NULL)

override def decide (value: T) = {
propose (value)
val 1 = ThreadID.get
assignZ23.assign(i1, 1, 1, 1 + 1)
val other = assignZ23.read((1 + 2) % 3)
1f (other == NULL || other == assignZ3.read(1l)) {
proposed (1) .get () // I win
} else {
proposed (1l - 1).get() // I lose
}}} Extends ConsensusProtocol

“decide” sets 1-1 and proposes value
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Multi-Consensus Code

private val assign’Z3

new Assignz23 (NULL)

Three slots
initialized to
NULL
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Multi-Consensus Code

assignz23.assign(iz, 1, 1, 1 + 1)

Assign ID 0 to entries 0,1
(or ID 1 to entries 1,2)
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Multi-Consensus Code

val other = assignZ23.read((1 + 2) % 3)

Read the register my
thread didn’t assign
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Multi-Consensus Code

XA
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Other thread didn’t
move, so | win
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Multi-Consensus Code
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other == assignZ3.read (1)

Other thread moved
Jater so | win
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Multi-Consensus Code

proposed (1) .get ()

OK, | win.
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Multi-Consensus Code

proposed(l - 1) .get ()
Other thread moved
first, so | lose
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Demo

* [Jesting multi-consensus
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Summary

* If a thread can assign atomically to 2 out of 3 array
locations

* Then we can solve 2-consensus

* Therefore
— No wait-free multi-assignment
— From read/write registers
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We need better concurrent primitives!
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Read-Modify-Write Objects

e Method call

— Returns object's prior value x
— Replaces x with mumble(x)
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Read-Modify-Write

class RMWRegilster (private val i1nit: Int) {
private var value: Int = 1nit
def getAndMumble () = this.synchronized {
val prior = value
value = mumble (value)

pPrior

}
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Read-Modify-Write

Return prior value
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Read-Modify-Write

value = mumble (value)

Apply function to current value
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RMW Everywhere!

* Most synchronization instructions
— are RMW methods

* [he rest
— Can be trivially transformed into RMW methods
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Example: Read

class RMWRegilster (private val i1nit: Int) {
private var value: Int = 1nit

def read: Int = this.synchronized {
val prior = value
value = wvalue
pPrior

}
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Example: Read

apply f(x)=x, the
identity function
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Example: getAndSet

class RMWRegilster (private val i1nit: Int) {
private var value: Int = 1nit
def getAndSet (v: Int): Int =
this.synchronized {
val prior = value
value = v

pPri1or
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Example: getAndSet (swap)

f(x)=v is constant
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getAndincrement

class RMWRegister (private val 1nit:
private var value: Int = 1nit

def getAndIncrement: Int =
this.synchronized {
val prior = value
value = value + 1
pPri1or

Int)
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getAndincrement

f(x) = x+1
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getAndAdd

class RMWRegister (private val 1nit:

private var value: Int = 1nit

def getAndAdd(a: Int): Int =
this.synchronized {
val prior = value
value = value + a

pPri1or

Int)
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Example: getAndAdd

f(x) = x+a
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compareAndSet

class RMWRegister (private val 1nit: Int) {
private wvar value: Int = 1nit

def compareAndSet (expected: Int, update: Int)
this.synchronized {

1f (value == expected) {
value = update
true

} else {

false

}
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value

compareAndSet

expected: 1

== expected

If value is as expected, ...
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compareAndSet

update

... replace It
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compareAndSet

Report success

69



compareAndSet
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Read-Modify-Write

mumble (value)

Lets characterize f(x)...
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Definition

« A RMW method

— With function mumble(x)

— 1S non-trivial if there exists a value v
—Such that v # mumble(v)
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Par Example

e Tdentity(x) = x
— IS trivial

e getAndIncrement (x) = x+1
— 1S non-trivial

/3



Theorem

* Any non-trivial RMW object has consensus number at
least 2

* No wait-free implementation of RMW registers from
atomic registers

 Hardware RMW instructions not just a convenience
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Impact

* Many early machines provided only these "weak”
RMW instructions

— Test-and-set (IBM 360)
— Fetch-and-add (NYU Ultracomputer)
— Swap (Original SPARCs)

 \We now understand their limitations
— But why do we want consensus anyway?
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compareAndSet

class RMWReglster (private val 1nit: Int) {
private var value: Int = 1nit
def compareAndSet (expected: Int, update: Int): Boolean =
this.synchronized {
1f (value == expected) {
value = update
true
} else |
false

J
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compareAndSet

expected: 1

value == expected

replace value If it’s what we expected, ...
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compareAndSet Has « Consensus
Number

private val FIRST = -1
private val r = new RMWRegister (FIRST)

override def decide (value: Int) = {
propose (value)
val 1 = ThreadID.get
1f (r.compareAndSet (FIRST, 1)) {
proposed (i) .get () // won
} else {
proposed (r.read) .get ()

J

class CASConsensus extends ConsensusProtocol|[Int]
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compareAndSet Has « Consensus
Number

private wval F-

Initialized to -1
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compareAndSet Has « Consensus
Number

Try to swap in my
id

r.compareAndSet (F'1L
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compareAndSet Has « Consensus
Number

Try to swap in my
id

proposed (1) .get ()
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compareAndSet Has « Consensus
Number

Decide winner’s preference

proposed (r.read) .get ()
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Demo

e CAS-based consensus
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The Consensus Hierarchy

1 Read/Write Registers, Snapshots...

2 getAndSet, getAndincrement, ...

0 compareAndSet,...
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Summary

» Wait-free mutual exclusion requires synchronization
* WF synchronization = consensus (deciding who goes first)
 RMW operations allow to implement consensus for an

arbitrary number of threads
» Supporting RMW = supporting proper concurrency
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Next week:

* Implementing practical locks via RMW operations

* Monitors and Blocking Synchronisation
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