
YSC4231: Parallel, Concurrent  
and Distributed Programming

Concurrent Queues and the ABA Problem
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The Five-Fold Path

• Coarse-grained locking 
• Fine-grained locking 
• Optimistic synchronization 
• Lazy synchronization 
• Lock-free synchronization (a glimpse of)
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Another Fundamental Problem

• We learned about  
– Sets implemented by linked lists 

• Next: queues 
• After that: stacks
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Queues & Stacks

• pool of items



5

Queues

deq()/
enq(    )

Total order 
First in 

First out
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Stacks

pop()/

push(    )

Total order 
Last in 

First out
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Bounded

• Fixed capacity 
• Good when resources an issue
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Unbounded

• Unlimited capacity 
• Often more convenient

…



Blocking

zzz …
Block on attempt to remove 

from empty stack or queue



Blocking

zzz …
Block on attempt to add to full 

bounded stack or queue



Non-Blocking

Ouch!
Throw exception on attempt to remove 

from empty stack or queue
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This Lecture

• Queue 
– Bounded, blocking, lock-based 
– Unbounded, non-blocking, lock-free 

• Stack 
– Unbounded, non-blocking lock-free 
– Elimination-backoff algorithm
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This Lecture

• Queue 
– Bounded, blocking, lock-based 
– Unbounded, non-blocking, lock-free 

• Stack 
– Unbounded, non-blocking lock-free 
– Elimination-backoff algorithm



Warm-up (coding):  
Coarse-Grained Queues and Tests
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Queue: Concurrency

enq(x) y=deq()

enq() and deq() 
work at different 

ends of the object

tail head
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Queue: Concurrency

enq(x) y=deq()

enq() and deq() 
work at different 

ends of the object

tail head
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Concurrency

enq(x)

Challenge: what if 
the queue is empty 

or full?

y=deq()
tai

lhead



Let’s Look at the Code:  
Analysing Unbounded Queue



Bounded Queue
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Bounded Queue

Sentinel

head

tail
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Bounded Queue

head

tail

First actual item
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Bounded Queue

head

tail

Lock out other 
deq() calls

deqLock
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Bounded Queue

head

tail

Lock out other 
enq() calls

deqLock

enqLock
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Not Done Yet

head

tail

deqLock

enqLock

Need to tell whether 
queue is full or empty
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Not Done Yet

head

tail

deqLock

enqLock

 Max size is 8 items

7
remaining
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Not Done Yet

head

tail

deqLock

enqLock

Decremented by enq() 
Incremented by deq()

7
remaining
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Enqueuer

7

Lock enqLock

head

tail

deqLock

enqLock

remaining
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Enqueuer

7

Read size

OK

head

tail

deqLock

enqLock

remaining
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Enqueuer

7

Need to 
lock tail

head

tail

deqLock

enqLock

remaining
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Enqueuer

7

Enqueue Node

head

tail

deqLock

enqLock

remaining
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Enqueuer

76

getAndDecrement()

head

tail

deqLock

enqLock

remaining
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Enqueuer

8 Release lock
6

head

tail

deqLock

enqLock

remaining
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Enqueuer

6

If queue was empty, 
notify waiting dequeuers

head

tail

deqLock

enqLock

remaining
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Unsuccesful Enqueuer

0
Uh-oh

Read size

…head

tail

deqLock

enqLock

remaining
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Dequeuer

6

Lock deqLock

head

tail

deqLock

enqLock

remaining
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Dequeuer

6

Read sentinel’s next 
field

OK

head

tail

deqLock

enqLock

remaining
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Dequeuer

6

Read value

head

tail

deqLock

enqLock

remaining
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Dequeuer

6

Make first Node new 
sentinel

head

tail

deqLock

enqLock

remaining
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Dequeuer

7

Increment size

head

tail

deqLock

enqLock

remaining
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Dequeuer

7 Release 
deqLock

head

tail

deqLock

enqLock

remaining
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Unsuccesful Dequeuer

8

Read sentinel’s next 
field

uh-oh

head

tail

deqLock

enqLock

remaining
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The Bounded Queue

class BoundedQueue[T](private val capacity: Int)  
      extends ConcurrentQueue[T]{ 

  private val enqLock = new ReentrantLock() 
  private val deqLock = new ReentrantLock() 

  private val notFullCondition = enqLock.newCondition() 
  private val notEmptyCondition = deqLock.newCondition() 

  private val remaining = new AtomicInteger(capacity) 
  private val head: Node = new Node(null) 
  private val tail: Node = head 



class BoundedQueue[T](private val capacity: Int)  
      extends ConcurrentQueue[T]{ 

  private val enqLock = new ReentrantLock() 
  private val deqLock = new ReentrantLock() 

  private val notFullCondition = enqLock.newCondition() 
  private val notEmptyCondition = deqLock.newCondition() 

  private val remaining = new AtomicInteger(capacity) 
  private val head: Node = new Node(null) 
  private val tail: Node = head 
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Bounded Queue Fields

Enq & deq locks



class BoundedQueue[T](private val capacity: Int)  
      extends ConcurrentQueue[T]{ 

  private val enqLock = new ReentrantLock() 
  private val deqLock = new ReentrantLock() 

  private val notFullCondition = enqLock.newCondition() 
  private val notEmptyCondition = deqLock.newCondition() 

  private val remaining = new AtomicInteger(capacity) 
  private val head: Node = new Node(null) 
  private val tail: Node = head 
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Bounded Queue Fields

Enq lock’s associated 
condition



class BoundedQueue[T](private val capacity: Int)  
      extends ConcurrentQueue[T]{ 

  private val enqLock = new ReentrantLock() 
  private val deqLock = new ReentrantLock() 

  private val notFullCondition = enqLock.newCondition() 
  private val notEmptyCondition = deqLock.newCondition() 

  private val remaining = new AtomicInteger(capacity) 
  private val head: Node = new Node(null) 
  private val tail: Node = head 

69

Bounded Queue Fields

remaining slots: capacity to 0



class BoundedQueue[T](private val capacity: Int)  
      extends ConcurrentQueue[T]{ 

  private val enqLock = new ReentrantLock() 
  private val deqLock = new ReentrantLock() 

  private val notFullCondition = enqLock.newCondition() 
  private val notEmptyCondition = deqLock.newCondition() 

  private val remaining = new AtomicInteger(capacity) 
  private val head: Node = new Node(null) 
  private val tail: Node = head 
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Bounded Queue Fields

Head and Tail
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A Monitor Lock

C
rit

ic
al

 S
ec

tio
n

waiting room
lock()

unlock()
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Unsuccessful Deq

C
rit

ic
al

 S
ec

tio
n

waiting room
lock()

await()
deq()

Oh no, 
empty!
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Another One

C
rit

ic
al

 S
ec

tio
n

waiting room
lock()

await()
deq()

Oh no, 
empty!
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Enqueuer to the Rescue

C
rit

ic
al

 S
ec

tio
n

waiting room
lock()

signalAll()enq(   )

unlock()

Yawn!
Yawn!
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Yawn!

Monitor Signalling 

C
rit

ic
al

 S
ec

tio
n

waiting room

Yawn!

Awakened thread  
might still lose lock to  
outside contender… 
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Dequeuers Signalled

C
rit

ic
al

 S
ec

tio
n

waiting room

Found it

Yawn!



59

Yawn!

Dequeuers Signaled

C
rit

ic
al

 S
ec

tio
n

waiting room

Still empty!
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Dollar Short + Day Late

C
rit

ic
al

 S
ec

tio
n

waiting room
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Enq Method Part One
  def enq(x: T): Unit = { 
    var mustWakeDequeuers = false 
    enqLock.lock() 
    try { 
      while (remaining.get == 0) { 
        notFullCondition.await() 
      }  
      val e = new Node(x) 
      tail.next = e 
      tail = e 
      if (remaining.getAndDecrement == capacity)  
        mustWakeDequeuers = true 
    } finally { 
      enqLock.unlock() 
    } 
    // ... 
  }



  def enq(x: T): Unit = { 
    var mustWakeDequeuers = false 
    enqLock.lock() 
    try { 
      while (remaining.get == 0) { 
        notFullCondition.await() 
      }  
      val e = new Node(x) 
      tail.next = e 
      tail = e 
      if (remaining.getAndDecrement == capacity)  
        mustWakeDequeuers = true 
    } finally { 
      enqLock.unlock() 
    } 
    // ... 
  }
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Enq Method Part One

Lock and unlock 
enq lock



  def enq(x: T): Unit = { 
    var mustWakeDequeuers = false 
    enqLock.lock() 
    try { 
      while (remaining.get == 0) { 
        notFullCondition.await() 
      }  
      val e = new Node(x) 
      tail.next = e 
      tail = e 
      if (size.getAndDecrement == capacity)  
        mustWakeDequeuers = true 
    } finally { 
      enqLock.unlock() 
    } 
    // ... 
  }
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Enq Method Part One

Wait while queue is full …   



  def enq(x: T): Unit = { 
    var mustWakeDequeuers = false 
    enqLock.lock() 
    try { 
      while (remaining.get == 0) { 
        notFullCondition.await() 
      }  
      val e = new Node(x) 
      tail.next = e 
      tail = e 
      if (size.getAndDecrement == capacity)  
        mustWakeDequeuers = true 
    } finally { 
      enqLock.unlock() 
    } 
    // ... 
  }
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Enq Method Part One

when await() returns, you 
might still fail the test !



  def enq(x: T): Unit = { 
    var mustWakeDequeuers = false 
    enqLock.lock() 
    try { 
      while (remaining.get == 0) { 
        notFullCondition.await() 
      }  
      val e = new Node(x) 
      tail.next = e 
      tail = e 
      if (size.getAndDecrement == capacity)  
        mustWakeDequeuers = true 
    } finally { 
      enqLock.unlock() 
    } 
    // ... 
  }
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Be Afraid

After the loop: how do we know the 
queue won’t become full again?



  def enq(x: T): Unit = { 
    var mustWakeDequeuers = false 
    enqLock.lock() 
    try { 
      while (remaining.get == 0) { 
        notFullCondition.await() 
      }  
      val e = new Node(x) 
      tail.next = e 
      tail = e 
      if (remaining.getAndDecrement == capacity)  
        mustWakeDequeuers = true 
    } finally { 
      enqLock.unlock() 
    } 
    // ... 
  }
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Enq Method Part One

Add new node



  def enq(x: T): Unit = { 
    var mustWakeDequeuers = false 
    enqLock.lock() 
    try { 
      while (remaining.get == 0) { 
        notFullCondition.await() 
      }  
      val e = new Node(x) 
      tail.next = e 
      tail = e 
      if (remaining.getAndDecrement == capacity)  
        mustWakeDequeuers = true 
    } finally { 
      enqLock.unlock() 
    } 
    // ... 
  }
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Enq Method Part One

If queue was empty, wake 
frustrated dequeuers
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Beware Lost Wake-Ups

C
rit

ic
al

 S
ec

tio
n

waiting room
lock()

Queue empty 
so signal ()

enq(   )

unlock()

Yawn!
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Lost Wake-Up

C
rit

ic
al

 S
ec

tio
n

waiting room
lock()

enq(   )

unlock()

Yawn!

Queue not 
empty so no 

need to signal
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Lost Wake-Up

C
rit

ic
al

 S
ec

tio
n

waiting room

Yawn!



81

Lost Wake-Up

C
rit

ic
al

 S
ec

tio
n

waiting room

Found it
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What’s Wrong Here?

C
rit

ic
al

 S
ec

tio
n

waiting room

Still waiting ….!



Solution to Lost Wakeup 

• Always use 
– signalAll() and notifyAll()  

• Not 
– signal() and notify()

83
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Enq Method Part Deux

  def enq(x: T): Unit = { 
    // ... 
    if (mustWakeDequeuers) { 
      deqLock.lock() 
      try { 
        notEmptyCondition.signalAll() 
      } finally { 
        deqLock.unlock() 
      } 
    } 
  }



  def enq(x: T): Unit = { 
    // ... 
    if (mustWakeDequeuers) { 
      deqLock.lock() 
      try { 
        notEmptyCondition.signalAll() 
      } finally { 
        deqLock.unlock() 
      } 
    } 
  }

86

Enq Method Part Deux

Are there dequeuers to be signaled?



  def enq(x: T): Unit = { 
    // ... 
    if (mustWakeDequeuers) { 
      deqLock.lock() 
      try { 
        notEmptyCondition.signalAll() 
      } finally { 
        deqLock.unlock() 
      } 
    } 
  }
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Enq Method Part Deux

Lock and unlock 
deq lock



  def enq(x: T): Unit = { 
    // ... 
    if (mustWakeDequeuers) { 
      deqLock.lock() 
      try { 
        notEmptyCondition.signalAll() 
      } finally { 
        deqLock.unlock() 
      } 
    } 
  }
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Enq Method Part Deux

Signal dequeuers that 
queue is no longer empty 



<Good place for a break>
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The enq() & deq() Methods

• Share no locks (almost) 
– That’s good 

• But do share an atomic counter 
– Accessed on every method call 
– That’s not so good 

• Can we alleviate this bottleneck? 
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Split the Counter

• The enq() method 
– Increments only 
– Cares only if value is capacity 

• The deq() method 
– Decrements only 
– Cares only if value is zero
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Split Counter

• Enqueuer increments enqSize 
• Dequeuer increments deqSize 
• When enqueuer hits capacity 

– Locks deqLock 
– Sets size = enqSize - deqSize 

• Intermittent synchronization 
– Not with each method call 
– Need both locks! (careful …)
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A Lock-Free Queue

Sentinel

head

tail
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Compare and Set

CAS
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Enqueue

head

tail

enq(   )
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Enqueue

head

tail



96

Logical Enqueue

head

tail

CAS
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Physical Enqueue

head

tailCAS
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Enqueue

• These two steps are not atomic 
• The tail field refers to either 

– Actual last Node (good) 
– Penultimate Node (not so good) 

• Be prepared!
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Enqueue

• What do you do if you find 
– A trailing tail? 

• Stop and help fix it 
– If tail node has non-null next field 
– CAS the queue’s tail field to tail.next
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When CASs Fail

• During logical enqueue 
– Abandon hope, restart 
– Still lock-free (why?) 

• During physical enqueue 
– Ignore it (why?)
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Dequeuer

head

tail

Read value
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Dequeuer

head

tail

Make first Node new 
sentinel

CAS



Checking the code of Lock-Free Queue
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Memory Reuse?

• What do we do with nodes after we dequeue them? 
• Scala/Java: let garbage collector deal? 
• Suppose there is no GC, or we prefer not to use it?
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Dequeuer

head

tail

CAS

Can recycle



105

Simple Solution

• Each thread has a free list of unused queue nodes 
• Allocate node: pop from list 
• Free node: push onto list
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Why Recycling is Hard

Free pool

head tail

Want to 
redirect head 
from gray to 

red 

zzz… 
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Both Nodes Reclaimed

Free pool

zzz

head tail
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One Node Recycled

Free pool

Yawn!

head tail
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Why Recycling is Hard

Free pool

CAS
head tail

OK, here I 
go!
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Recycle FAIL

Free pool

ZOMG what went wrong?

head tail
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The Dreaded ABA Problem
head tail

Head reference has value A 
Thread reads value A
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Dreaded ABA continued

zzz

head tail

Head reference has value B 
Node A freed
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Dreaded ABA continued

Yawn!

head tail

Head reference has value A again  
Node A recycled and reinitialized
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Dreaded ABA continued

CAS
head tail

CAS succeeds because references match, 
even though reference’s meaning has changed



The Dreaded ABA FAIL

• Is a result of CAS() semantics 
– Oracle, Intel, AMD, … 

• Not with Load-Locked/Store-Conditional 
– IBM …



Dreaded ABA – A Solution

• Tag each pointer with a counter 
• Unique over lifetime of node 
• Pointer size vs word size issues 
• Overflow? 

– Don’t worry be happy? 
– Bounded tags? 

• AtomicStampedReference class 
• “Hazard Pointers”



Atomic Stamped Reference

! "#$%&'(#)%*+,-+.+/+0'+ class 
1 2)3)45#&64'$0'5//+0#4)#$%&' package

address S

Stamp

Reference

Can get reference & stamp atomically



Next: 
Concurrent Stacks
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