
YSC4231: Parallel, Concurrent
and Distributed Programming

Concurrent Queues and the ABA Problem

2

The Five-Fold Path

• Coarse-grained locking
• Fine-grained locking
• Optimistic synchronization
• Lazy synchronization
• Lock-free synchronization (a glimpse of)

3

Another Fundamental Problem

• We learned about
– Sets implemented by linked lists

• Next: queues
• After that: stacks

4

Queues & Stacks

• pool of items

5

Queues

deq()/
enq()

Total order
First in

First out

6

Stacks

pop()/

push()

Total order
Last in

First out

7

Bounded

• Fixed capacity
• Good when resources an issue

8

Unbounded

• Unlimited capacity
• Often more convenient

…

Blocking

zzz …
Block on attempt to remove

from empty stack or queue

Blocking

zzz …
Block on attempt to add to full

bounded stack or queue

Non-Blocking

Ouch!
Throw exception on attempt to remove

from empty stack or queue

12

This Lecture

• Queue
– Bounded, blocking, lock-based
– Unbounded, non-blocking, lock-free

• Stack
– Unbounded, non-blocking lock-free
– Elimination-backoff algorithm

12

This Lecture

• Queue
– Bounded, blocking, lock-based
– Unbounded, non-blocking, lock-free

• Stack
– Unbounded, non-blocking lock-free
– Elimination-backoff algorithm

Warm-up (coding):
Coarse-Grained Queues and Tests

13

Queue: Concurrency

enq(x) y=deq()

enq() and deq()
work at different

ends of the object

tail head

13

Queue: Concurrency

enq(x) y=deq()

enq() and deq()
work at different

ends of the object

tail head

14

Concurrency

enq(x)

Challenge: what if
the queue is empty

or full?

y=deq()
tai

lhead

Let’s Look at the Code:
Analysing Unbounded Queue

Bounded Queue

15

Bounded Queue

Sentinel

head

tail

16

Bounded Queue

head

tail

First actual item

17

Bounded Queue

head

tail

Lock out other
deq() calls

deqLock

18

Bounded Queue

head

tail

Lock out other
enq() calls

deqLock

enqLock

19

Not Done Yet

head

tail

deqLock

enqLock

Need to tell whether
queue is full or empty

20

Not Done Yet

head

tail

deqLock

enqLock

 Max size is 8 items

7
remaining

21

Not Done Yet

head

tail

deqLock

enqLock

Decremented by enq()
Incremented by deq()

7
remaining

22

Enqueuer

7

Lock enqLock

head

tail

deqLock

enqLock

remaining

23

Enqueuer

7

Read size

OK

head

tail

deqLock

enqLock

remaining

24

Enqueuer

7

Need to
lock tail

head

tail

deqLock

enqLock

remaining

25

Enqueuer

7

Enqueue Node

head

tail

deqLock

enqLock

remaining

26

Enqueuer

76

getAndDecrement()

head

tail

deqLock

enqLock

remaining

27

Enqueuer

8 Release lock
6

head

tail

deqLock

enqLock

remaining

28

Enqueuer

6

If queue was empty,
notify waiting dequeuers

head

tail

deqLock

enqLock

remaining

29

Unsuccesful Enqueuer

0
Uh-oh

Read size

…head

tail

deqLock

enqLock

remaining

30

Dequeuer

6

Lock deqLock

head

tail

deqLock

enqLock

remaining

31

Dequeuer

6

Read sentinel’s next
field

OK

head

tail

deqLock

enqLock

remaining

32

Dequeuer

6

Read value

head

tail

deqLock

enqLock

remaining

33

Dequeuer

6

Make first Node new
sentinel

head

tail

deqLock

enqLock

remaining

34

Dequeuer

7

Increment size

head

tail

deqLock

enqLock

remaining

35

Dequeuer

7 Release
deqLock

head

tail

deqLock

enqLock

remaining

36

Unsuccesful Dequeuer

8

Read sentinel’s next
field

uh-oh

head

tail

deqLock

enqLock

remaining

66

The Bounded Queue

class BoundedQueue[T](private val capacity: Int)
 extends ConcurrentQueue[T]{

 private val enqLock = new ReentrantLock()
 private val deqLock = new ReentrantLock()

 private val notFullCondition = enqLock.newCondition()
 private val notEmptyCondition = deqLock.newCondition()

 private val remaining = new AtomicInteger(capacity)
 private val head: Node = new Node(null)
 private val tail: Node = head

class BoundedQueue[T](private val capacity: Int)
 extends ConcurrentQueue[T]{

 private val enqLock = new ReentrantLock()
 private val deqLock = new ReentrantLock()

 private val notFullCondition = enqLock.newCondition()
 private val notEmptyCondition = deqLock.newCondition()

 private val remaining = new AtomicInteger(capacity)
 private val head: Node = new Node(null)
 private val tail: Node = head

67

Bounded Queue Fields

Enq & deq locks

class BoundedQueue[T](private val capacity: Int)
 extends ConcurrentQueue[T]{

 private val enqLock = new ReentrantLock()
 private val deqLock = new ReentrantLock()

 private val notFullCondition = enqLock.newCondition()
 private val notEmptyCondition = deqLock.newCondition()

 private val remaining = new AtomicInteger(capacity)
 private val head: Node = new Node(null)
 private val tail: Node = head

68

Bounded Queue Fields

Enq lock’s associated
condition

class BoundedQueue[T](private val capacity: Int)
 extends ConcurrentQueue[T]{

 private val enqLock = new ReentrantLock()
 private val deqLock = new ReentrantLock()

 private val notFullCondition = enqLock.newCondition()
 private val notEmptyCondition = deqLock.newCondition()

 private val remaining = new AtomicInteger(capacity)
 private val head: Node = new Node(null)
 private val tail: Node = head

69

Bounded Queue Fields

remaining slots: capacity to 0

class BoundedQueue[T](private val capacity: Int)
 extends ConcurrentQueue[T]{

 private val enqLock = new ReentrantLock()
 private val deqLock = new ReentrantLock()

 private val notFullCondition = enqLock.newCondition()
 private val notEmptyCondition = deqLock.newCondition()

 private val remaining = new AtomicInteger(capacity)
 private val head: Node = new Node(null)
 private val tail: Node = head

70

Bounded Queue Fields

Head and Tail

53

A Monitor Lock

C
rit

ic
al

 S
ec

tio
n

waiting room
lock()

unlock()

54

Unsuccessful Deq

C
rit

ic
al

 S
ec

tio
n

waiting room
lock()

await()
deq()

Oh no,
empty!

55

Another One

C
rit

ic
al

 S
ec

tio
n

waiting room
lock()

await()
deq()

Oh no,
empty!

56

Enqueuer to the Rescue

C
rit

ic
al

 S
ec

tio
n

waiting room
lock()

signalAll()enq()

unlock()

Yawn!
Yawn!

57

Yawn!

Monitor Signalling

C
rit

ic
al

 S
ec

tio
n

waiting room

Yawn!

Awakened thread
might still lose lock to
outside contender…

58

Dequeuers Signalled

C
rit

ic
al

 S
ec

tio
n

waiting room

Found it

Yawn!

59

Yawn!

Dequeuers Signaled

C
rit

ic
al

 S
ec

tio
n

waiting room

Still empty!

60

Dollar Short + Day Late

C
rit

ic
al

 S
ec

tio
n

waiting room

71

Enq Method Part One
 def enq(x: T): Unit = {
 var mustWakeDequeuers = false
 enqLock.lock()
 try {
 while (remaining.get == 0) {
 notFullCondition.await()
 }
 val e = new Node(x)
 tail.next = e
 tail = e
 if (remaining.getAndDecrement == capacity)
 mustWakeDequeuers = true
 } finally {
 enqLock.unlock()
 }
 // ...
 }

 def enq(x: T): Unit = {
 var mustWakeDequeuers = false
 enqLock.lock()
 try {
 while (remaining.get == 0) {
 notFullCondition.await()
 }
 val e = new Node(x)
 tail.next = e
 tail = e
 if (remaining.getAndDecrement == capacity)
 mustWakeDequeuers = true
 } finally {
 enqLock.unlock()
 }
 // ...
 }

72

Enq Method Part One

Lock and unlock
enq lock

 def enq(x: T): Unit = {
 var mustWakeDequeuers = false
 enqLock.lock()
 try {
 while (remaining.get == 0) {
 notFullCondition.await()
 }
 val e = new Node(x)
 tail.next = e
 tail = e
 if (size.getAndDecrement == capacity)
 mustWakeDequeuers = true
 } finally {
 enqLock.unlock()
 }
 // ...
 }

73

Enq Method Part One

Wait while queue is full …

 def enq(x: T): Unit = {
 var mustWakeDequeuers = false
 enqLock.lock()
 try {
 while (remaining.get == 0) {
 notFullCondition.await()
 }
 val e = new Node(x)
 tail.next = e
 tail = e
 if (size.getAndDecrement == capacity)
 mustWakeDequeuers = true
 } finally {
 enqLock.unlock()
 }
 // ...
 }

74

Enq Method Part One

when await() returns, you
might still fail the test !

 def enq(x: T): Unit = {
 var mustWakeDequeuers = false
 enqLock.lock()
 try {
 while (remaining.get == 0) {
 notFullCondition.await()
 }
 val e = new Node(x)
 tail.next = e
 tail = e
 if (size.getAndDecrement == capacity)
 mustWakeDequeuers = true
 } finally {
 enqLock.unlock()
 }
 // ...
 }

75

Be Afraid

After the loop: how do we know the
queue won’t become full again?

 def enq(x: T): Unit = {
 var mustWakeDequeuers = false
 enqLock.lock()
 try {
 while (remaining.get == 0) {
 notFullCondition.await()
 }
 val e = new Node(x)
 tail.next = e
 tail = e
 if (remaining.getAndDecrement == capacity)
 mustWakeDequeuers = true
 } finally {
 enqLock.unlock()
 }
 // ...
 }

76

Enq Method Part One

Add new node

 def enq(x: T): Unit = {
 var mustWakeDequeuers = false
 enqLock.lock()
 try {
 while (remaining.get == 0) {
 notFullCondition.await()
 }
 val e = new Node(x)
 tail.next = e
 tail = e
 if (remaining.getAndDecrement == capacity)
 mustWakeDequeuers = true
 } finally {
 enqLock.unlock()
 }
 // ...
 }

77

Enq Method Part One

If queue was empty, wake
frustrated dequeuers

78

Beware Lost Wake-Ups

C
rit

ic
al

 S
ec

tio
n

waiting room
lock()

Queue empty
so signal ()

enq()

unlock()

Yawn!

79

Lost Wake-Up

C
rit

ic
al

 S
ec

tio
n

waiting room
lock()

enq()

unlock()

Yawn!

Queue not
empty so no

need to signal

80

Lost Wake-Up

C
rit

ic
al

 S
ec

tio
n

waiting room

Yawn!

81

Lost Wake-Up

C
rit

ic
al

 S
ec

tio
n

waiting room

Found it

82

What’s Wrong Here?

C
rit

ic
al

 S
ec

tio
n

waiting room

Still waiting ….!

Solution to Lost Wakeup

• Always use
– signalAll() and notifyAll()

• Not
– signal() and notify()

83

85

Enq Method Part Deux

 def enq(x: T): Unit = {
 // ...
 if (mustWakeDequeuers) {
 deqLock.lock()
 try {
 notEmptyCondition.signalAll()
 } finally {
 deqLock.unlock()
 }
 }
 }

 def enq(x: T): Unit = {
 // ...
 if (mustWakeDequeuers) {
 deqLock.lock()
 try {
 notEmptyCondition.signalAll()
 } finally {
 deqLock.unlock()
 }
 }
 }

86

Enq Method Part Deux

Are there dequeuers to be signaled?

 def enq(x: T): Unit = {
 // ...
 if (mustWakeDequeuers) {
 deqLock.lock()
 try {
 notEmptyCondition.signalAll()
 } finally {
 deqLock.unlock()
 }
 }
 }

87

Enq Method Part Deux

Lock and unlock
deq lock

 def enq(x: T): Unit = {
 // ...
 if (mustWakeDequeuers) {
 deqLock.lock()
 try {
 notEmptyCondition.signalAll()
 } finally {
 deqLock.unlock()
 }
 }
 }

88

Enq Method Part Deux

Signal dequeuers that
queue is no longer empty

<Good place for a break>

89

The enq() & deq() Methods

• Share no locks (almost)
– That’s good

• But do share an atomic counter
– Accessed on every method call
– That’s not so good

• Can we alleviate this bottleneck?

90

Split the Counter

• The enq() method
– Increments only
– Cares only if value is capacity

• The deq() method
– Decrements only
– Cares only if value is zero

91

Split Counter

• Enqueuer increments enqSize
• Dequeuer increments deqSize
• When enqueuer hits capacity

– Locks deqLock
– Sets size = enqSize - deqSize

• Intermittent synchronization
– Not with each method call
– Need both locks! (careful …)

92

A Lock-Free Queue

Sentinel

head

tail

93

Compare and Set

CAS

94

Enqueue

head

tail

enq()

95

Enqueue

head

tail

96

Logical Enqueue

head

tail

CAS

97

Physical Enqueue

head

tailCAS

98

Enqueue

• These two steps are not atomic
• The tail field refers to either

– Actual last Node (good)
– Penultimate Node (not so good)

• Be prepared!

99

Enqueue

• What do you do if you find
– A trailing tail?

• Stop and help fix it
– If tail node has non-null next field
– CAS the queue’s tail field to tail.next

100

When CASs Fail

• During logical enqueue
– Abandon hope, restart
– Still lock-free (why?)

• During physical enqueue
– Ignore it (why?)

101

Dequeuer

head

tail

Read value

102

Dequeuer

head

tail

Make first Node new
sentinel

CAS

Checking the code of Lock-Free Queue

103

Memory Reuse?

• What do we do with nodes after we dequeue them?
• Scala/Java: let garbage collector deal?
• Suppose there is no GC, or we prefer not to use it?

104

Dequeuer

head

tail

CAS

Can recycle

105

Simple Solution

• Each thread has a free list of unused queue nodes
• Allocate node: pop from list
• Free node: push onto list

106

Why Recycling is Hard

Free pool

head tail

Want to
redirect head
from gray to

red

zzz…

107

Both Nodes Reclaimed

Free pool

zzz

head tail

108

One Node Recycled

Free pool

Yawn!

head tail

109

Why Recycling is Hard

Free pool

CAS
head tail

OK, here I
go!

110

Recycle FAIL

Free pool

ZOMG what went wrong?

head tail

111

The Dreaded ABA Problem
head tail

Head reference has value A
Thread reads value A

112

Dreaded ABA continued

zzz

head tail

Head reference has value B
Node A freed

113

Dreaded ABA continued

Yawn!

head tail

Head reference has value A again
Node A recycled and reinitialized

114

Dreaded ABA continued

CAS
head tail

CAS succeeds because references match,
even though reference’s meaning has changed

The Dreaded ABA FAIL

• Is a result of CAS() semantics
– Oracle, Intel, AMD, …

• Not with Load-Locked/Store-Conditional
– IBM …

Dreaded ABA – A Solution

• Tag each pointer with a counter
• Unique over lifetime of node
• Pointer size vs word size issues
• Overflow?

– Don’t worry be happy?
– Bounded tags?

• AtomicStampedReference class
• “Hazard Pointers”

Atomic Stamped Reference

! "#$%&'(#)%*+,-+.+/+0'+ class
1 2)3)45#&64'$0'5//+0#4)#$%&' package

address S

Stamp

Reference

Can get reference & stamp atomically

Next:
Concurrent Stacks

Art of Multiprocessor Programming

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of Multiprocessor

Programming” (but not in any way that suggests that the authors
endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a
compatible license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from

the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

