
YSC4231: Parallel, Concurrent  
and Distributed Programming

Data Races in Java



Races
A race condition occurs when the computation result depends on scheduling (how 
threads are interleaved on ≥1 processors. 

• Only occurs  if T1 and T2 are scheduled in a particular way 
• As programmers, we cannot control the scheduling of threads 
• Program correctness must be independent of scheduling 

Race conditions are bugs that exist only due to concurrency  
• No interleaved scheduling with 1 thread 

Typically, the problem is some intermediate state that "messes up" a concurrent 
thread that "sees" that state 

We will distinguish between data races and atomicity violations, both of which 
are types of race condition bugs.



Data Races

A data race is a type of race condition that can happen in two ways: 
• Two threads potentially write a variable at the same time 
• One thread potentially write a variable while another reads  

Not a race: simultaneous reads (provide no errors) 

Potentially is important 
• We claim that code itself has a data race independent of any particular actual 

execution



class Stack<E> { 
  private E[] array = (E[])new Object[SIZE]; 
  int index = -1; 
  synchronized boolean isEmpty() {  
    return index==-1;  
  } 
  synchronized void push(E val) { 
   array[++index] = val; 
  } 
  synchronized E pop() { 
   if(isEmpty()) 
      throw new StackEmptyException();  
   return array[index--]; 
  } 
}

Java Stack Example



A Race Condition: But Not a Data Race

In a sequential world, this code is 
iffy, ugly, and questionable style, 
but correct

class Stack<E> { 

  … 
  synchronized boolean isEmpty() {…} 
  synchronized void push(E val) {…} 
  synchronized E pop(E val) {…} 

E peek() { 

  E ans = pop(); 

  push(ans); 

  return ans; 

}

Note that peek() throws 
the StackEmpty exception 
via its call to pop()

This "algorithm" is the only 
way to write a peek helper 
method if this interface is all 
you have to work with.



peek in a Concurrent Context

peek has no overall effect on the shared data 
• It is a "reader" not a "writer" 
• State should be the same after it executes as before 

E peek() { 
     E ans = pop(); 
     push(ans); 
     return ans; 
}

This implementation creates an inconsistent intermediate state 
• Calls to push and pop are synchronised, so there are no data races on the 

underlying array 
• But there is still a race condition 
• This intermediate state should not be exposed 

• Leads to several atomicity violations



Example 1: peek and isEmpty

Property we want:  
If there has been a push (and no pop),  
then isEmpty should return false 

With peek as written, property can be violated – how?

E ans = pop(); 

push(ans); 

return ans;

push(x) 
boolean b = isEmpty()

Ti
m

e

Thread 2Thread 1 (peek)



Example 1: peek and isEmpty

E ans = pop(); 

push(ans); 

return ans;

Ti
m

e

Thread 2Thread 1 (peek)

Race causes error with: 
  T2: push(x) 
  T1: pop() 
  T2: isEmpty()

push(x) 
boolean b = isEmpty()

Property we want:  
If there has been a push (and no pop),  
then isEmpty should return false 

With peek as written, property can be violated – how?



Example 2: peek and push
Property we want:  
Values are returned from pop in LIFO order 

With peek as written, property can be violated – how?

E ans = pop(); 

push(ans); 

return ans;

Ti
m

e

Thread 2Thread 1 (peek)

push(x) 
push(y) 
E e = pop()



Example 2: peek and push

Race causes error with: 
  T2: push(x) 
  T1: pop() 
  T2: push(x) 
  T1: push(x)

Property we want:  
Values are returned from pop in LIFO order 

With peek as written, property can be violated – how?

E ans = pop(); 

push(ans); 

return ans;

Ti
m

e

Thread 2Thread 1 (peek)

push(x) 
push(y) 
E e = pop()



Example 3: peek and peek
Property we want:  
peek does not throw an exception unless the stack is empty 

With peek as written, property can be violated – how?

E ans = pop(); 

push(ans); 

return ans;

Ti
m

e

Thread 2Thread 1 (peek)

E ans = pop(); 

push(ans); 

return ans;



The Fix?
peek needs synchronisation to disallow interleavings 
• The key is to make a larger critical section 
• This protects the intermediate state of peek 
• Use re-entrant locks; will allow calls to push and pop 
• Can be done in stack (left) or an external class (right)

class Stack<E> { 
  … 
  synchronized E peek(){ 
     E ans = pop(); 
     push(ans); 
     return ans; 
  } 
} 

class C { 
  <E> E myPeek(Stack<E> s){ 
    synchronized (s) { 
      E ans = s.pop(); 
      s.push(ans); 
      return ans; 
    } 
  } 
}



Another (Incorrect?) Example
class Stack<E> { 
  private E[] array = (E[])new Object[SIZE]; 
  int index = -1; 
  boolean isEmpty() { 
    return index==-1;  
  } 
  synchronized void push(E val) { 
   array[++index] = val; 
  } 
  synchronized E pop() {  
   return array[index--]; 
  } 
  E peek() { 
    return array[index]; 
  } 
}



Another Incorrect Example
class Stack<E> { 
  private E[] array = (E[])new Object[SIZE]; 
  int index = -1; 
  boolean isEmpty() { // unsynchronized: wrong?! 
    return index==-1;  
  } 
  synchronized void push(E val) { 
   array[++index] = val; 
  } 
  synchronized E pop() {  
   return array[index--]; 
  } 
  E peek() { // unsynchronized: wrong! 
    return array[index]; 
  } 
}



Why Wrong?

It looks like isEmpty and peek can "get away  
with this" because push and pop adjust the  
stack's state using "just one tiny step”

But this code is still wrong and depends on  
language-implementation details you cannot assume 
• Even "tiny steps" may require multiple steps in implementation: array[++index] = val 

probably takes at least two steps 
• Code has a data race, allowing very strange behaviour 

Do not introduce a data race, even if every interleaving you can think of is correct!



Getting It Right

Avoiding race conditions on shared resources is difficult 
• Decades of bugs have led to some conventional wisdom and 

general techniques known to work

We will discuss a way to automatically detect data races.



RacerD:  
Compositional Static Race Detection

144

RacerD: Compositional Static Race Detection

SAM BLACKSHEAR, Facebook, USA
NIKOS GOROGIANNIS, Facebook, UK and Middlesex University London, UK

PETER W. O’HEARN, Facebook, UK and University College London, UK

ILYA SERGEY∗, Yale-NUS College, Singapore and University College London, UK

Automatic static detection of data races is one of the most basic problems in reasoning about concurrency.
We present RacerD—a static program analysis for detecting data races in Java programs which is fast, can
scale to large code, and has proven e!ective in an industrial software engineering scenario. To our knowledge,
RacerD is the "rst inter-procedural, compositional data race detector which has been empirically shown to
have non-trivial precision and impact. Due to its compositionality, it can analyze code changes quickly, and
this allows it to perform continuous reasoning about a large, rapidly changing codebase as part of deployment
within a continuous integration ecosystem. In contrast to previous static race detectors, its design favors
reporting high-con"dence bugs over ensuring their absence. RacerD has been in deployment for over a year at
Facebook, where it has #agged over 2500 issues that have been "xed by developers before reaching production.
It has been important in enabling the development of new code as well as "xing old code: it helped support the
conversion of part of the main Facebook Android app from a single-threaded to a multi-threaded architecture.
In this paper we describe RacerD’s design, implementation, deployment and impact.

CCS Concepts: • Theory of computation → Program analysis; • Software and its engineering →

Concurrent programming structures;

Additional Key Words and Phrases: Concurrency, Static Analysis, Race Freedom

ACM Reference Format:
Sam Blackshear, Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. 2018. RacerD: Compositional Static
Race Detection. Proc. ACM Program. Lang. 2, OOPSLA, Article 144 (November 2018), 28 pages. https://doi.org/
10.1145/3276514

1 INTRODUCTION

Concurrent programming is hard. It is di$cult for humans to think about the vast number of
potential interactions between processes, and this makes concurrent programs hard to get right in
the "rst place. Further, concurrency errors are di$cult to debug and even reproduce after they have
been observed, making them time-consuming to "x. Because of both its di$culty and importance,
formal reasoning about concurrency has been studied for over 40 years and has seen many research
advances. However, despite numerous interesting ideas not much of the work has made it out of
the research setting and into deployment, where it can help programmers in their daily jobs.

At Facebook, we are working on techniques for automated reasoning about concurrency. RacerD,
our new race detector, searches for data races—unsynchronized memory accesses, where one is a

∗Work done while employed as a part-time contractor at Facebook.

Authors’ addresses: Sam Blackshear, Facebook, USA, shb@fb.com; Nikos Gorogiannis, Facebook, UK, Middlesex University
London, UK, nikosgorogiannis@fb.com; Peter W. O’Hearn, Facebook, UK, University College London, UK, peteroh@fb.com;
Ilya Sergey, Yale-NUS College, Singapore, University College London, UK, i.sergey@ucl.ac.uk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro"t or commercial advantage and that copies bear this notice and
the full citation on the "rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).
2475-1421/2018/11-ART144
https://doi.org/10.1145/3276514

Proc. ACM Program. Lang., Vol. 2, No. OOPSLA, Article 144. Publication date: November 2018.

This work is licensed under a Creative Commons Attribution 4.0 International License.



Fetch data

Measure/Layout

Draw

Determine size and position

Render and attach

Litho Component

Talk to network



Moving layout to background for better perf

Background
thread(s)

BUT: to migrate, Measure/Layout step needs 
to be thread-safe. Otherwise...

Fetch data

Measure/Layout DrawUI
thread



Adding concurrency can introduce data races

Data race:
two concurrent accesses to 
the same memory location

where at least one is a write.



Concurrency can introduce data races

DrawUI
thread

Background
thread 2

Fetch data

Background
thread 1

Fetch data Measure/Layout

Measure/Layout

Conflicts

Conflicts

Conflicts



Adding concurrency to sequential code is scary

Problem 1: 1000s of existing components. Where 
should we add synchronization to avoid races?

Static race detector can show us where to 
add synchronization + prevent regressions

at code review time.

Problem 2: Nondeterminism makes it hard to test 
for races. How do we prevent regressions?



Devs need static analysis for migration



Stringent requirements for helpful analysis

Interprocedural

Scalable + 
incremental

Low annotation 
burden

High signal >> 
catching all bugs



RacerD Design Principles

- Be compositional; don't do whole-program analysis 

- Report races between syntactically identical access paths; 
don't attempt a general alias analysis  

- Reason sequentially about memory accesses, locks, and 
threads; don't explore interleaving  

- Occam's razor; don't use complex techniques (unless forced)



P1

P2 P3

P4

P5

- Will have summary for callee P4  

- But don't know anything about 
callers P1, P2, or transitive callee P5  

- Need to compute summary for P3 
usable in any calling context

When analyzing P3:

Background: compositional analysis



P0

P1 P2

P3 P4

P5 P6

- Compute call graph, do 
topological sort

- Analyze each procedure 
once using reverse 
postorder scheduling

- Break call cycles by iterating 
to fixed point

Scalable: analyze each procedure just once (without cycles)

Background: compositional analysis



Computing procedure summaries

get and reset access same memory location
reset performs a write under synchronization
get uses no synchronization

Summary = { (access path, kind, locks) }
class Counter { 
  private int mCount; 
 
  int get() {  
    return this.mCount; 
  } 
   
  private void set(int i) { 
    this.mCount = i; 
  } 
 
  synchronized void reset() { 
    set(0); 
  } 
 
  ... 
}

get { (this.mCount, READ,  0) }

set { (this.mCount, WRITE, 0) }

reset { (this.mCount, WRITE, 1) }



RacerD vs Static and Dynamic Analysis tools

True races

Sound dynamic 
analysis

Sound static analysis

RacerD



Finding data race regressions
Impact (1y)

~500
PROGRAMMERS 

REACHED

~7K
REPORTS

~4K
FIXES



Engineer Comments



Try RacerD

https://fbinfer.com/docs/racerd.html

or Google “Facebook RacerD”



Demo

Using RacerD for simple data race detection



HW: Research Project

• Investigate large open-source Java projects 

• Detect data races in them via RacerD 

• Check the reports: False or True Positives? 

• Suggest minimal fixes



Why double-checking?

True races

RacerD

False Positives



HW: Research Project

• Investigate large open-source Java projects 

• Detect data races in them via RacerD 

• Check the reports: False or True Positives? 

• Suggest minimal fixes



Next Week

• Functional Concurrent Programming in Java and Scala 

• Controlling the Future 

• Keeping the Promises


