YSC4231: Parallel, Concurrent
ana Distributed Programming

Concurrent Skip Lists



Set Object Interface

* Collection of elements
* No duplicates

e Methods

—add() a new element
— remove() an element
— contains() if element is present



Many are Cold but Few are Frozen

» Typically high % of contains() calls
« Many fewer add() calls

* And even fewer remove() calls

— 90% contains()
— 9% add()
— 1% remove()

* Folklore?
— Yes but probably mostly true



Concurrent Sets

» Optimistic List, Lazy List
* All have linear time (okay-ish)

* Any ideas on how we can do better?



Concurrent Sets

 Balanced Trees?
— Red-Black trees, AVL trees, ...

* Problem: no one does this well ...

... because rebalancing after add() or
remove() is a global operation



Skip Lists

* Probabilistic Data Structure
* No global rebalancing
* Logarithmic-time search
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Skip List Property

» Each layer is sub-list of lower levels



Skip List Property

» Each layer is sub-list of lower-levels
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Skip List Property

» Each layer is sub-list of lower levels
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Skip List Property

» Each layer is sub-list of lower levels
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Skip List Property

» Each layer is sub-list of lower levels
* Lowest level is entire list



Skip List Property

» Each layer is sub-list of lower levels

* Not easy to preserve Iin concurrent
Implementations ...
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Logarithmic

contains(8)
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Why Logarthimic

* Property: Each pointer at layer 1 jJumps
over roughly 2i nodes

* Pick node heights randomly so property
guaranteed probabillistically
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Sequential Find

def find(x: T, preds: Array[Node|[T]], succs: Array[Node[T]]): Int {

}
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Sequential Find

l\{
object height
(-1 if not there)
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Sequential Find

:{
object height
(-1 if not there)

Object sought
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Sequential Find

preds: Array[Node[T]]

object height
(-1 if not there)

Object sought

return predecessors
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Sequential Find

preds: Array[Node[T]]|, |succs: Array[Node|[T]]) : {

object height
(-1 if not there)

Object sought

return predecessors

return successors
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Successful Search
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Successful Search
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Unsuccessful Search
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Unsuccessful Search
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Lazy Skip List

* Mix blocking and non-blocking techniques:
— Use optimistic-lazy locking for add() and remove()
— Wait-free contains()

 Remember: typically lots of contains() calls
but few add() and remove()
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Review: Lazy List Remove
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Review: Lazy List Remove

Present In list
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Review: Lazy List Remove

Logically deleted
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Review: Lazy List Remove

Physically deleted
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Lazy Skip Lists

» Use a mark bit for logical deletion
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add(0)

» Create node of (random) height 4 Eﬂ
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add(06)
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add(06)

e find() predecessors
* Lock them
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add(6)

* find() predecessors
* Lock them } Optimistic approach

e \alidate
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add(o)

* find() predecessors
* Lock them

e \alidate
» Splice
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add(o)

* find() predecessors
* Lock them

* Validate

» Splice

»_Unlock
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remove(6)
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remove(6)

e find() predecessors
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remove(6)

e find() predecessors
* Lock victim
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remove(6)

e find() predecessors
* Lock victim
« Set mark (if not already set)

Logical remove...




remove(6)

e find() predecessors

* Lock victim

« Set mark (if not already set)

* Lock predecessors (ascending order) & validate
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remove(6)

e find() predecessors

Lock victim

« Set mark (if not already set)

* Lock predecessors (ascending order) & validate
* Physically remove
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remove(6)

e find() predecessors
Lock victim
« Set mark (if not already set)

* Lock predecessors (ascending order) & validate
* Physically remove




remove(6)

e find() predecessors
Lock victim
« Set mark (if not already set)

* Lock predecessors (ascending order) & validate
* Physically remove




remove(6)

e find() predecessors
Lock victim
« Set mark (if not already set)

* Lock predecessors (ascending order) & validate
* Physically remove




remove(6)

e find() predecessors
Lock victim
« Set mark (if not already set)

* Lock predecessors (ascending order) & validate
* Physically remove




contains(8)
e find() & not marked

52



contains(8)

Node 6 removed while traversed
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contains(8)

Node removed while
being traversed
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contains(8)

Prove: an unmarked
node (like 8)
remains reachable
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remove(6): Linearization

» Successful remove happens when bit is set

Logical remove...
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contains(7): Linearization

« \When do we linearize unsuccessful Search?

So far OK.. i l
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contains(7): Linearization

« \When do we linearize unsuccessful Search?
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But what if a new
7/ added concurrently?
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contains(7): Linearization

« \When do we linearize unsuccessful Search?

Prove: at some point 7
was not in the skip list
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Lazy Skip List: Performance

Througput

Operations: 9% add, 1% remove/90% contains

Range
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Lazy Skip List: Performance

Operations: 9% add, 1% remove,(90% contains
Range:(200,000
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Lazy Skip List: Performance

Operations: 50% add, 50%Yyemove, 0% contains
Range\200,000 o |
Unrealistic Contention
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Summary

» Lazy Skip List

— Optimistic fine-grained Locking
e Performs as well as the lock-free solution In “common” cases

* [his is how you implement a concurrent set.
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SOME RIGHTS RESERVED

i“his work 1s licensed under a Creative Commons Attribution-ShareAlike
2.5 License.

» You are free:
— to Share — to copy, distribute and transmit the work
— to Remix — to adapt the work

» Under the following conditions:

— Attribution. You must attribute the work to “The Art of Multiprocessor
Programming” (but not in any way that suggests that the authors
endorse you or your use of the work).

— Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a
compatible license.

» For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

— http://creativecommons.org/licenses/by-sa/3.0/.

» Any of the above conditions can be waived if you get permission from
the copyright holder.

* Nothing In this license impairs or restricts the author's moral rights.
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