YSC4231: Parallel, Concurrent
ana Distributed Programming

Concurrent Skip Lists

Set Object Interface

* Collection of elements
* No duplicates

e Methods

—add() a new element
— remove() an element
— contains() if element is present

Many are Cold but Few are Frozen

» Typically high % of contains() calls
« Many fewer add() calls

* And even fewer remove() calls

— 90% contains()
— 9% add()
— 1% remove()

* Folklore?
— Yes but probably mostly true

Concurrent Sets

» Optimistic List, Lazy List
* All have linear time (okay-ish)

* Any ideas on how we can do better?

Concurrent Sets

 Balanced Trees?
— Red-Black trees, AVL trees, ...

* Problem: no one does this well ...

... because rebalancing after add() or
remove() is a global operation

Skip Lists

* Probabilistic Data Structure
* No global rebalancing
* Logarithmic-time search

=

V VvVvy

6

Skip List Property

» Each layer is sub-list of lower levels

Skip List Property

» Each layer is sub-list of lower-levels

i

Skip List Property

» Each layer is sub-list of lower levels

o

Skip List Property

» Each layer is sub-list of lower levels

E[%— ERREEe ED

Skip List Property

» Each layer is sub-list of lower levels
* Lowest level is entire list

Skip List Property

» Each layer is sub-list of lower levels

* Not easy to preserve Iin concurrent
Implementations ...

contains(8)
o
oO

Search

13

contains(8)
o
oO

Search

b

>

>

S| 7

> >

V!VV

14

contains(8)
o
oO

Search

b

>

>

S| 7

> >

V!VV

15

contains(8)
o
oO

Search

16

Search

;

o |]
> >
> S5 >
»(2] }» > > >
17

Search

contains(8)

>
| O >

VvV VVY

18

Logarithmic

contains(8)

19

Why Logarthimic

* Property: Each pointer at layer 1 jJumps
over roughly 2i nodes

* Pick node heights randomly so property
guaranteed probabillistically

20

Sequential Find

def find(x: T, preds: Array[Node|[T]], succs: Array[Node[T]]): Int {

}

21

Sequential Find

l\{
object height
(-1 if not there)

22

Sequential Find

:{
object height
(-1 if not there)

Object sought

23

Sequential Find

preds: Array[Node[T]]

object height
(-1 if not there)

Object sought

return predecessors

24

Sequential Find

preds: Array[Node[T]]|, |succs: Array[Node|[T]]) : {

object height
(-1 if not there)

Object sought

return predecessors

return successors

25

Successful Search

26

Successful Search

27

Unsuccessful Search

preds

>
>
“ II/ T

Unsuccessful Search

29

Lazy Skip List

* Mix blocking and non-blocking techniques:
— Use optimistic-lazy locking for add() and remove()
— Wait-free contains()

 Remember: typically lots of contains() calls
but few add() and remove()

30

Review: Lazy List Remove

(I 3@ 5> T3>{[13~d[13~

31

Review: Lazy List Remove

Present In list

32

Review: Lazy List Remove

Logically deleted

33

Review: Lazy List Remove

Physically deleted

34

Lazy Skip Lists

» Use a mark bit for logical deletion

35

add(0)

» Create node of (random) height 4 Eﬂ

36

add(06)

o find() predecessors EH

B — o |
>
B t

1

v

\ A 4

37

add(06)

e find() predecessors
* Lock them

38

add(6)

* find() predecessors
* Lock them } Optimistic approach

e \alidate

v
YVVYyY

4
\A 4
®
oL
_ |

s
61

39

add(o)

* find() predecessors
* Lock them

e \alidate
» Splice

|

I »

6

\ A A A4

6

40

add(o)

* find() predecessors
* Lock them

* Validate

» Splice

»_Unlock

B
IEHIII

VvV VVY

B
t 0o

vvvv
o
L L

AL

41

remove(6)

\AA A4

VYVY
N

remove(6)

e find() predecessors

VvV VVY

=T

43

remove(6)

e find() predecessors
* Lock victim

i > P i
R

5 > >
Gl s=il t

VvV VVY

44

remove(6)

e find() predecessors
* Lock victim
« Set mark (if not already set)

Logical remove...

remove(6)

e find() predecessors

* Lock victim

« Set mark (if not already set)

* Lock predecessors (ascending order) & validate

B
=68
6

remove(6)

e find() predecessors

Lock victim

« Set mark (if not already set)

* Lock predecessors (ascending order) & validate
* Physically remove

B
==
6

remove(6)

e find() predecessors
Lock victim
« Set mark (if not already set)

* Lock predecessors (ascending order) & validate
* Physically remove

remove(6)

e find() predecessors
Lock victim
« Set mark (if not already set)

* Lock predecessors (ascending order) & validate
* Physically remove

remove(6)

e find() predecessors
Lock victim
« Set mark (if not already set)

* Lock predecessors (ascending order) & validate
* Physically remove

remove(6)

e find() predecessors
Lock victim
« Set mark (if not already set)

* Lock predecessors (ascending order) & validate
* Physically remove

contains(8)
e find() & not marked

52

contains(8)

Node 6 removed while traversed

53

contains(8)

Node removed while
being traversed

e
i 7
H —i‘l T

K |7
I I- l' <] =x

VvV VVY

54

contains(8)

Prove: an unmarked
node (like 8)
remains reachable

Hiw

_ _'ll

==

VVvyY

\4

Lom:

55

remove(6): Linearization

» Successful remove happens when bit is set

Logical remove...

=i

56

\AA A4
VVVVV

B
Il

contains(7): Linearization

« \When do we linearize unsuccessful Search?

So far OK.. i l
I >2]

VVVVY

)

57

contains(7): Linearization

« \When do we linearize unsuccessful Search?

I o D
r

H
>12]

But what if a new
7/ added concurrently?

58

contains(7): Linearization

« \When do we linearize unsuccessful Search?

Prove: at some point 7
was not in the skip list

I 7 —_
T -“EE

VVVVY

59

Lazy Skip List: Performance

Througput

Operations: 9% add, 1% remove/90% contains

Range

——Lazy
- |_ea
/ = Seq
/ i |
> Multiprogramming >
20 40 - »

Threads

60

Lazy Skip List: Performance

Operations: 9% add, 1% remove,(90% contains
Range:(200,000

3000

Higher contention

2500

= 2000

1500

Througp

1000

——Lazy
-+ | ea
= Seq

500

Threads

61

Lazy Skip List: Performance

Operations: 50% add, 50%Yyemove, 0% contains
Range\200,000 o |
Unrealistic Contention

1400

1200
1000 =

800
600 //

T, —Lazy

-+ | ea

Througput

/'/
400 /
200

62

Summary

» Lazy Skip List

— Optimistic fine-grained Locking
e Performs as well as the lock-free solution In “common” cases

* [his is how you implement a concurrent set.

63

©

SOME RIGHTS RESERVED

i“his work 1s licensed under a Creative Commons Attribution-ShareAlike
2.5 License.

» You are free:
— to Share — to copy, distribute and transmit the work
— to Remix — to adapt the work

» Under the following conditions:

— Attribution. You must attribute the work to “The Art of Multiprocessor
Programming” (but not in any way that suggests that the authors
endorse you or your use of the work).

— Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a
compatible license.

» For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

— http://creativecommons.org/licenses/by-sa/3.0/.

» Any of the above conditions can be waived if you get permission from
the copyright holder.

* Nothing In this license impairs or restricts the author's moral rights.

Art of Multiprocessor 64
Programming

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

