YSC4231: Parallel, Concurrent
ana Distributed Programming

Syzantine Fault [olerance and Blockchains

Wrap-Up

Why Distributed Consensus is difficult”

Arbitrary message delays (asynchronous network)

Independent parties (nodes) can go offline (and also back online)
Network partitions

Message reorderings

Malicious (Byzantine) parties

Why Distributed Consensus is difficult”

 Malicious (Byzantine) parties

Byzantine Generals Problem

mv’(powﬁt;ﬂ .-;ps"nwmiwun: o]ku\lw)u\n%l;l{‘w&p’pn Y
(R o Qg s

e X !

v A

A Byzantine army decides to attack/retreat
N generals, f of them are traitors (can collude)

Generals camp outside the battle field:
decide individually based on their field information

Exchange their plans by unreliable messengers
* Messengers can be killed, can be . etc.

* Messengers cannot forge a general's seal on a message

Byzantine Consensus

* All loyal generals decide upon the same plan of action.

o A smallnumber of traitors (f << N) cannot cause the loyal generals to adopt
a bad plan or disagree on the course of actions.

* All the usual consensus properties:
uniformity (amongst the loyal generals), non-triviality, and irrevocability.

Why is Byzantine Agreement Hard”?

Simple scenario

e 3 generals, general (3) is an tmhpester traitor

e TJraitor (3) sends different plans to (1) and (2)
e |f decision is based on majority

(1) and (2) decide differently
e (2) attacks and gets defeated

More complicated scenarios

| | will attack
* Messengers get killed, spoofed C—
 Traitors confuse others: Ok, so will |

(3) tells (1) that (2) retreats, etc @

Byzantine Consensus in Computer Science

A generalis a program component/replica/node
* Replicas communicate via messages/remote procedure calls

e [rajitors are or adversaries

e Byzantine army s a deterministic replicated service
* All (good) replicas should act similarly and execute the same logic

* [he service should cope with failures, keeping its state consistent across the replicas

e Seen in many applications:
* replicated file systems, backups, distributed servers

* shared ledgers between banks, decentralised blockchain protocols

Byzantine Fault lolerance Proplem

o Consider a system of similar distributed replicas (nodes)
N replicas In total
e fof them might be faulty (crashed or compromised)

* All replicas initially start from the same state

o (Glven a request/operation (e.q., a fransaction), the goal is to
e guarantee that all non-faulty replicas agree on the next state

e provide system consistency even when some replicas may be inconsistent

Previous lecture: Paxos

- Communication model

 Network IS asynchronous:. messages are
but eventually delivered; they are not deceiving.

* Protocol tolerates (lbenign) crash-tailure

- Key design points
 Works In two phases — secure guorum, then commit

 Require at least 2f + 1 replicas to tolerate f taulty replicas

Paxos and Byzantine Faults

« N=3,f=1

« N/2 +1 =2 are good .
* gveryone Is proposer/acceptor ‘

o il

Paxos and Byzantine Faults

e N=3,f=1

e N/2+1=2are good

* gVveryone is proposer/acceptor

Paxos and Byzantine Faults

e N=3,f=1

e N/2+1=2are good

* gVveryone is proposer/acceptor

Paxos and Byzantine Faults

1

e N=3,f=1

??
e N/2+1=2are good '
* gVveryone is proposer/acceptor

il

What went wrong”

e Problem 1;

Acceptors did not communicate with each other to check the
consistency of the values proposed to everyone.

e |etustryto fixit with an additional Phase 2 (Prepare), executed
before everyone commits in Phase 3 (Commit).

Phase 1: “Pre-prepare”

Phase 2: “Prepare”

got H from 1

Phase 2: “Prepare”

got W from 1

Phase 2: “Prepare”

Phase 2: “Prepare”

4 R A

Two out of three Two out of three
want to commit W want to commit H
t's a quorum for W! t's a quorum for H!

H?

—
)

PR R R EBERERERERE
EEEEEEEEEEEEEEHR

4 I EEEEEEEEEEEEEDN
EEEEEEEEEEEEEERY

EEEEEEEEEEEEEEED EEEEEEEEEEEEEERED®

Phase 3: “Commit”

What went wrong now"

* Problem 2:
Even though the acceptors communicated, the quorum size was
too small to avolid "contamination” by an adversary.

 We can fix it by increasing the quorum size relative to
the total number of nodes.

Choosing the Quorum Size

e Paxos: any two qguorums must have non-empty intersection

N>2"f+ 1
r————————— N ———————————

Sharing at least one node: must agree on the value

Choosing the Quorum Size

An adversarial node in the intersection can “lie” about the value:

to honest parties it might look like there is not split, but in fact, there is!

Choosing the Quorum Size

* Byzantine consensus: let's make a quorumto be >2/3 * N + 1
any two quorums must have at least one non-faulty node in their intersection.

N>2"f+ 1

[r————— ———————————————

Up to f adversarial nodes will not manage to deceive the others.

Two Key ldeas of Byzantine Fault Tolerance

* 3-Phase protocol: Pre-prepare, Prepare, Commit

» (Cross-validating each other’s intentions amongst replicas

e Larger quorum size: 2/3*N + 1 (instead of N/2 + 1)
* Allows for up to 1/3 * N adversarial nodes

 Honest nodes still reach an agreement

Practical Byzantine Fault lolerance
(PBFT)

* Introduced by Miguel Castro & Barbara Liskov in 1999

e almost 10 years after Paxos

o Addresses real-life constraints on Byzantine systems:
* Asynchronous network
o Byzantine failure

 Message senders cannot be forged (via public-key crypto)

PBH1 lerminology and Layout

Replicas — nodes participating in a consensus
(no more acceptor/proposer dichotomy)

A dedicated replica (primary) acts as a proposer/leader
e A primary can be re-elected it suspected to be compromised

e Backups — other, non-primary replicas

Clients — communicate directly with primary/replicas

The protocol uses time-outs (partial synchrony) to detect faults

 E.9., aprimary not responding for too long is considered compromised

Overview of the Core PBFT Algorithm

Request = Pre-Prepare — Prepare = Commit — Reply
N e ———————————eee

Executed by Executed by Replicas

Client

m(v)

Clieiﬂ C \\\
replica 0 ‘

replica 1
replica 2

replica 3

Reqguest

Client C sends a message to all replicas

Pre-prepare

e Primary (0) sends a signed pre-prepare message with the to all backups

e |t also includes the digest (hash) D(m) of the original message

: [pre-prepare, 0, m, D(m)] :

client C

replica O \

replica 1 \

replica 2

replica 3

Prepare

e —ach replica sends a prepare-message to all other replicas

o [t proceeds If it receives 2/3"N + 1 prepare-messages consistent with its own

i [prepare, i, O, D(mM)]

client C

replica 0

replica 1

replica 2

replica 3

Commit

e ach replica sends a signed commit-message to all other replicas

e [t commits if it receives 2/3*"N+1 commit-messages consistent with its own

[commit, i, O, D(m)]

client C

replica O \\v

replica 1 "“7

replica 2 "
i i i LA

replica 3

Reply

e ach replica sends a signed response to the initial client

* The client trusts the response once she receives N/3 + 1 matching ones

[reply, i,

replica O II

replica 1 I

replica 2

replica 3

What it Primary is compromised?

Thanks to large quorums, it won't break integrity of the good replicas
Eventually, replicas and the clients will detect it via time-outs

* Primary sending inconsistent messages would cause the system to
between the phases, without reaching the end of commit

Once a faulty primary is detected, backups-will launch a view-change,
re-electing a new primary

View-change Is similar to reaching a consensus but gets tricky in the
poresence of partially committed values

o See the Castro & Liskov 99 PBFT paper for the details...

PBFT in Industry

 Widely adopted In practical developments:

- Tendermint

- IBM’s Openchain

- Zilliga

- Libra/Novi

- Solana
 Used for mplementing to speed-up blockchain-based consensus
 Many blockchain solutions build on similar ideas

- Stellar Consensus Protocol, HotStuff

PBFT Shortcomings

e Can be used only for a fixed set of replicas
 Agreement is based on fixed-size quorums

 Open systems (used in Blockchain Protocols) rely on alternative
mechanisms of Proof-of-X (e.g., Proof-of-Work,)

Blockchain Consensus
Protocols

VWhat blockchain does

{tx1,txs,txs, txy, txy}

N\

 transforms a set of transactions

[e,

INnto a globally-agreed sequence . é
35

* “distributed timestamp server” % é
(Nakamoto 2008) 25

O

@)

v
txy, — txy — txy — tx1 — txs

transactions
can be anything

39

{tx1,txs, tes, tey, taxs }

\ 4
txs,try| — |txy| — |tz tas]

v
try, — toxs — toy — txy — txo

{tx1,txs, tes, tey, taxs }

\ 4
txs,try| (txy| + |[tx1,txs]

v
try, — toxs — toy — txy — txo

{tx1,txs, tes, txy, tzs }

GB = genesis block

v
try, — toxrg — texy — txy — tao

| < |tzs, tas]

\ 4
— |txy|

:tilll . tiEz:

42

How blockchain protocols work

what everyone ~ B

eventually agrees on \

e distributed

* multiple nodes |
view of all

| participants’ state
o all start with same GB

44

 distributed
* multiple nodes
* message-passing
over a network

e all start with same GB

(2)
{

i

{]
t)%
o5] 2> [o8
X1 } {]

 distributed
* multiple nodes
* message-passing
over a network

o all start with same GB
* have a transaction pool

distributed (1)
* multiple nodes

* message-passing '\A
over a network -
(2)
all start with same GB A
have a transaction pool {1x; }

can create (mint) blocks {)

o distributed = concurrent .
A
* multiple nodes { 1x3}
* message-passing over a tx// .
X3
network
2 (3)
. . ®s G

* multiple transactions can 1x2

oe Issued and propagated
concurrently { tx2) {1

* multiple nodes
* message-passing over a

network -
YN

* blocks can be created (2) (3)
without full knowledge of all ;
transactions A A

GB
)
o distributed = concurrent A
1
B
1}

{ [X2, 1X3 } { [X2, 1X3 }

* chain fork has
happened, but nodes
don’t know about It

1
A
1
B
{ 12 }
Y
(2) (3)

50

* as block messages
propagate, nodes become
aware of the fork

Problem: need to choose @ (&

* blockchain “promise” = e
one globally-agreed chain ol

e each node must choose one chain

* nodes with the same information B) [
Must choose the same chain 1

Problem: need to choose © @

* blockchain “promise” = a
one globally-agreed chain al [z

e each node must choose one chain

* nodes with the same information B) g
Must choose the same chain 1

Problem: need to choose © @

* blockchain “promise” = N
one globally-agreed chain] [&

e each node must choose one chain

* nodes with the same information B) g
Must choose the same chain 1

Problem: need to choose @

* blockchain “promise” =
one globally-agreed chain

U]

e cach node must choose one chain

* NOdes with the same Information
Must choose the same chain

0o

Solution: fork choice rule

* Fork choice rule (FCR, >):

* given two blockchains, says which one is °
* Imposes a strict total order on all possible blockchains
* same FCR shared by all nodes

))

* Nodes adopt “heaviest” chain they know

*“Lying” to different nodes Is computationally very expensive
and cannot be done for multiple subsequent blocks

FCR (>)

..>|GB,ACl>...>|GB,A,B]>...>[GB, A >...>|GB] > ...

Bitcoin: FCR based on “most cumulative work”.
New blocks take to create.

Quiescent consistency

* distributed i
* multiple nodes

o all start with GB c/ \B
* message-passing over a network]
* equipped with same FCR /
) GB 3) GB
. . i i
when all block messages have been ? o
delivered, everyone (good) agrees C c| |5

wWhy It works

Invariant: local state + “in-flight™ = global

(1) 4) ™ GB
GB GB 7
1 1 A
A A /N
T 1X] C B
. ! ()
0 g global system step %xz}
= > o/
W Ni /@ @ [
I i
(2) o (3) — A A
x ; (s / N\
" cl ™ |cC B
4 (] ()

{ tx2, tx3 } { tx2, tx3 } {1 { tx2)

iNnvariant Is Inductive

system step

s

system step

system step

—

system step

-

» Invariant holds

» Invariant holds

» Invariant holds

» Invariant holds

» Invariant holds

o1

Invariant implies Quiescent Consistency

* QC: when all blocks delivered, everyone agrees

How:

* |ocal state + m = global

e use FCR to extract “heaviest” chain out of local state

* Since everyone has same initial state & same FCRH
>CONSEeNSUS

62

Mechanising Blockchain Consensus

George Pirlea
University College London, UK
george.pirlea.15@ucl.ac.uk

Abstract

We present the first formalisation of a blockchain-based dis-
tributed consensus protocol with a proof of its consistency
mechanised in an interactive proof assistant.

Our development includes a reference mechanisation of
the block forest data structure, necessary for implementing
provably correct per-node protocol logic. We also define a
model of a network, implementing the protocol in the form
of a replicated state-transition system. The protocol’s execu-
tions are modeled via a small-step operational semantics for
asynchronous message passing, in which packages can be
rearranged or duplicated.

In this work, we focus on the notion of global system
safety, proving a form of eventual consistency. To do so, we
provide a library of theorems about a pure functional im-
plementation of block forests, define an inductive system
invariant, and show that, in a quiescent system state, it im-
plies a global agreement on the state of per-node transaction
ledgers. Our development is parametric wrt. implementa-
tions of several security primitives, such as hash-functions, a
notion of a proof object, a Validator Acceptance Function, and a
Fork Choice Rule. We precisely characterise the assumptions,
made about these components for proving the global system
consensus, and discuss their adequacy. All results described
in this paper are formalised in Coq.

Ilya Sergey
University College London, UK
i.sergey@ucl.ac.uk

1 Introduction

The notion of decentralised blockchain-based consensus is
a tremendous success of the modern science of distributed
computing, made possible by the use of basic cryptography,
and enabling many applications, including but not limited
to cryptocurrencies, smart contracts, application-specific
arbitration, voting, etc.

In a nutshell, the idea of a distributed consensus proto-
col based on blockchains, or transaction ledgers,1 is rather
simple. In all such protocols, a number of stateful nodes
(participants) are communicating with each other in an asyn-
chronous message-passing style. In a message, a node (a)
can announce a transaction, which typically represents a
certain event in the system, depending on the previous state
of the node or the entire network (we intentionally leave
out the details of what can go into a transaction, as they are
application-specific); a node can also (b) create and broad-
cast a block that contains the encoding of a certain vector
of transactions, created locally or received via messages of
type (a) from other nodes. Each recipient of a block message
should then validate the block (i.e., check the consistency of
the transaction sequence included in it), and, in some cases,
append it to its local ledger, thus, extending its subjective
view of the global sequence of transactions that have taken
place in the system to date. The process continues as more

—

03

Blockchain Iransactions

| < [txs,tasg| < [txy| < [tx1,tas]

* Executed by each node /ocally, alter the replicated state.

o Simplest variant: transferring funds from A to B,
consensus: no double spending.

* More interesting: deploying and executing replicated computations
—,_/

Smart Contracts

Smart Contracts

Stateful mutable objects replicated via a consensus protocol
State typically involves a stored amount of funds/currency
One or more entry points: invoked reactively by a client message

Main usages:
» crowdfunding and ICO
* multi-party accounting
e voting and arbitration
e puzzle-solving games with distribution of rewards

Supporting platforms: Ethereum, Solana, Sui, Avalanche, Cardano,...

Smart Contracts are Like Concurrent Objects

contract Accounting {

address owner;
mapping (address => uint) assets;

Mutable fields

function Accounting(address _owner) { € ———-—-e—— (CoNStructor

owner = _ownher;

}

function invest() returns (string) { D S Entw pOiI’]J[

if (assets[msg.sender].initialized()) { throw; }

assets[msg.sender] = msg.value; o fig it
return "You have given us your money'; msg argument Is Implici

} e funds accepted mplicitly

e can be called as a function
from another contract

Smart Contracts are Like Concurrent Objects

A Concurrent Perspective on Smart Contracts

Ilya Sergey' and Aquinas Hobor?

! University College London, United Kingdom
i.sergeyQucl.ac.uk
? Yale-NUS College and School of Computing, National University of Singapore
hobor@comp.nus.edu.sg

Abstract. In this paper, we explore remarkable similarities between
multi-transactional behaviors of smart contracts in cryptocurrencies such
as FEthereum and classical problems of shared-memory concurrency. We
examine two real-world examples from the Ethereum blockchain and an-
alyzing how they are vulnerable to bugs that are closely reminiscent
to those that often occur in traditional concurrent programs. We then
elaborate on the relation between observable contract behaviors and
well-studied concurrency topics, such as atomicity, interference, synchro-
nization, and resource ownership. The described contracts-as-concurrent-
objects analogy provides deeper understanding of potential threats for
smart contracts, indicate better engineering practices, and enable appli-
cations of existing state-of-the-art formal verification techniques.

Accounts using smart contracts in a blockchain
are like

threads using concurrent objects In shared memory.

Accounts using smart contracts in a blockchain
are like

threads using concurrent objects in shared memory.

contract state — object state

call/senad — context switching

Reentrancy and multitasking

1010 // Burn DAO Tokens

1011 Transfer (msg.sender, O, balances[msg.sender]) ;
1012 | withdrawRewardFor (msg.sender);)// be nice, and get his rewards
1013 totalSupply -= balances[msg.sender];

1014 balances[msg.sender] = 0;
1015 paidOut [msg.sender] = 0;
1016 return true;

1017 }

Reentrancy and multitasking

1010 // Burn DAO Tokens

1011 Transfer (msg.sender, O, balances[msg.sender]) ;

1012 withdrawRewardFor (msg.sender); // be nice, and get his rewards
1013 totalSupply -= balances[msg.sender];

1014 balances[msg.sender] = O0;

1015 paidOut[msg.sender] = 0;
1016 return true;
1017}

_recipient.call.value(..): [Manipulation with DAO]

DAO:[withdrawRewardFor () j Inv [balances[msg.sender] = 0 j

_recipient.call.value(..): [Manipulation with DAO]

Inv(contract.state, balance)

Inv Inv Inv Inv Inv Inv

[c.atomicMethod () j (c.atomicMethod () } (c.atomicMethod() j

/

[Environment] [Environment]

Accounts using smart contracts in a blockchain
are like

threads using concurrent objects in shared memory.

contract state — object state
call/senad — context switching
Reentrancy — (Un)cooperative multitasking

Invariants — Atomicity

Querying an Oracle

--

Transaction 1 , Transaction 2

:[C-prepareRequest() 1\ : . [o.respond ())\

I
[o.raiseEvent() j : : [c,_callback(data) j :

...

Call/Return in Two Transactions

Block N Block N+M

Transaction 1

I . |
i | | 2 1 :
i | i g ! |
I[c.prepareRequest() : . | e eciccccemccmccmas 4
i

I I S T s
| i I ; 1 |
I i : i : i
I . 1 I I i

$ 4
--

..

Transaction 2

I g ! " i
I ! I i
______________________________________ :[o.respond() &
: » 1
N g ! i i
1 g 1B I 1

i
[c.__callback(data)j:

................................
. J . J

BlockKing via Oraclize

function enter() {
if (msg.value < 50 finney) {
msg.sender.send(msg.value);
return;

warrior = msg.sender;
warriorGold = msg.value;
warriorBlock = block.number;

H EH = B H = EH H B H B B H =H H =H I = = o
Il I = = = H EH HE = HE = = = = = = =N = =

function callback(bytes32 myid, string result) {
if (msg.sender != oraclize cbAddress()) throw;
randomNumber = uint(bytes(result)[0]) - 48;
process payment();

¢ H I I I I I I I g
.----'

More on that in the paper.

Accounts using smart contracts in a blockchain
are like

threads using concurrent objects in shared memory.

contract state — object state
call/senad — context switching
Reentrancy — (Un)cooperative multitasking
Invariants — Atomicity

Non-determinism — data races

o Take Away

o Byzantine Fault-Tolerant Consensus is a common issue addressed
In distributed systems, where participants do not trust each other.

 For a fixed set of nodes, a Byzantine consensus can be reached via
* (a) making an agreement to proceed Iin three phases
* (b) Increasing the quorum size

 These ideas are implemented in PBFT, which relies on cryptographically signed
messages and partial synchrony.

* In open systems (blockchains), consensus can be reached via a universally
accepted Fork-Chain-Rule:

* [t measures the amount of work, while comparing two “conflicting” proposals

YSC4231: Parallel, Concurrent
ana Distributed Programming

VWrapping Up

Concurrency is Tricky

* |t can be very confusing

|t takes a lot of time to get right

e ... but we simply cannot get away without it
e ... because we want our programs to be
e ... We want our interfaces to be responsive

e ... and we want our systems to be reliable

We learned to unaderstand concurrency
and to Implement it correctly and

Amdahl’'s Law

Safety, Liveness

Dining Philosophers Problem

Programming with Threads

—vent Orderings and Mutual Exclusion
Linearizability and Sequential Consistency
Spin-locks and contention

Monitors: waiting and signalling

Design of concurrent objects

-ine-grained, lazy, and optimistic locking

Concurrent Stacks, Queues, Skiplists

Concurrent

-limination, A

Thread pools

Data race detection

SA problem

Asynchronous Computations via Futures

Data parallelism, Splitters and Combiners

Actors and message-passing

Distributed consensus,

Paxos, PBFT, Blockchains

We learned to unaderstand concurrency

and to Implement it correctly and

Amdahl’'s Law

Safety, Liveness

Dining Philosophers Problen

—vent Orderings and Mutual

Linearizability and Sequentis
Spin-locks and contention

Monitors: waiting and signalling

Design of concurrent objects

 (Concurrent Stacks, Queues, Skiplists

Programming with Threads ’ Scala

ction

nination, A

Computations via

* Actors and message-passing

Distributed consensus,

Paxos,

SA problem

-ine-grained, lazy, and optimistic locking

—utures

Data parallelism, Splitters and Combiners

Blockchains

Stuff we Didn’t Discuss

More Concurrent Algorithms

 (Concurrent Hashing, Counting Networks, Priority Queues

Compilers and Concurrency

 Automated Parallelisation, Memory Models for C/C++11 and Java

Concurrent Garbage Collection

Software Transactional Memory

Web Services, Distributed File Systems, Gossip Protocols, Apache ZooKeeper

Verification of Concurrent Algorithms

* Linearisability proofs, Program Logics, embedding into Cog

Formalisation and Verification of Distributed Protocols

 [/O Automata, TLA+, Proof Automation, Composition, Invariant Inference

Whnere to go rrom Here

[a I- Programming Languages for Concurrency

* Erlang (everything is an actor)
ERLANG =
* (Go (lightweight threads) o

a\ o Kotlin (Coroutines for asynchronous programming)

* Rust (really cool type system prevents data races)

Research in Concurrency

» Conferences (proceedings available on the web):
— Principles of Distributed Computing (PODC)
— International Symposium on DIStributed Computing (DISC)
— Principles and Practice of Parallel Programming (PPoPP)
— Symposium on Operating Systems Principles (SOSP)
— Operating Systems Design and Implementation (OSDI)
— Programming Language Design and Implementation (PLDI)

« Researchers to check out

— Edsger Dijkstra, Leslie Lamport, Barbara Liskov, Nancy Lynch,
Maurice Herlihy, Faith Ellen, James Aspnes, Nir Shavit

Papers On Distributed Consensus

L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133-169, 1998.

L. Lamport. Paxos made simple. SIGACT News, 32, 2001.

T.D. Chandra et al. Paxos made live: an engineering perspective. PODC 2007

B. W. Lampson, The ABCD's of Paxos. PODC 2001

P. Kellomé&ki. An Annotated Specification of the Consensus Protocol of Paxos Using Superposition in PVS. 2004

C. Dragoi et al. PSync: a partially synchronous language for fault-tolerant distributed algorithms. In POPL, 2016.

M. Jaskelioff and S. Merz. Proving the correctness of disk Paxos. Archive of Formal Proofs, 2005.

C. Hawblitzel et al. lronFleet: proving practical distributed systems correct. In SOSP 2015.

D. Ongaro and J. K. Qusterhout. In search of an understandable consensus algorithm. USENIX Annual Technical Conference, 2014
B.M. Oki and B. Liskov, Viewstamped Replication: A General Primary Copy. PODC 1988

O. Padon, et al. Paxos made EPR: decidable reasoning about distributed protocols. PACMPL, 1(OOPSLA):108:1-108:31, 2017.

V. Rahli, et al. Formal specification, verification, and implementation of fault-tolerant systems using EventML. In AVOCS. EASST, 2015.
A. Pillai, Mechanised Verification of Paxos-like Consensus Protocols, BSc Thesis, 2018

R. van Renesse and D. Altinbuken. Paxos Made Moderately Complex. ACM Comput. Surv., 47(3):42:1-42:36, 2015.

J.R. Wilcox et al., Verdi: a framework for implementing and formally verifying distributed systems, PLDI 2015

A. Garcia-Pérez et al., Paxos Consensus, Deconstructed and Abstracted, ESOP 2018

Papers On Distributed Consensus

L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133-169, 1998.

L. Lamport. Paxos made simple. SIGACT News, 32, 2001.

T.D. Chandra et al. Paxos made live: an engineering perspective. PODC 2007

B. W. Lampson, The ABCD's of Paxos. PODC 2001

P. Kellomé&ki. An Annotated Specification of the Consensus Protocol of Paxos Using Superposition in PVS. 2004

C. Dragoi et al. PSync: a partially synchronous language for fault-tolerant distributed algorithms. In POPL, 2016.

M. Jaskelioff and S. Merz. Proving the correctness of disk Paxos. Archive of Formal Proofs, 2005.

C. Hawblitzel et al. lronFleet: proving practical distributed systems correct. In SOSP 2015.

D. Ongaro and J. K. Qusterhout. In search of an understandable consensus algorithm. USENIX Annual Technical Conference, 2014
B.M. Oki and B. Liskov, Viewstamped Replication: A General Primary Copy. PODC 1988

O. Padon, et al. Paxos made EPR: decidable reasoning about distributed protocols. PACMPL, 1(OOPSLA):108:1-108:31, 2017.

V. Rahli, et al. Formal specification, verification, and implementation of fault-tolerant systems using EventML. In AVOCS. EASST, 2015.
A. Pillai, Mechanised Verification of Paxos-like Consensus Protocols, BSc Thesis, 2018

R. van Renesse and D. Altinbuken. Paxos Made Moderately Complex. ACM Comput. Surv., 47(3):42:1-42:36, 2015.
J.R. Wilcox et al., Verdi: a framework for implementing and formally verifying distributed systems, PLDI 2015

A. Garcia-Pérez et al., Paxos Consensus, Deconstructed and Abstracted, ESOP 2018

Papers on BFT, Blockchains, Smart Contracts

L. Lamport et al. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 4(3): 382-401, 1982
M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In OSDI, 1999

R. Guerraoui et al. The next 700 BFT protocols. In EuroSys 2010

_. Lamport. Byzantizing Paxos by Refinement. In DISC, 2011

C. Cachin et al. Introduction to Reliable and Secure Distributed Programming (2. ed.). Springer, 2011

L. Lamport. Mechanically Checked Safety Proof of a Byzantine Paxos Algorithm (2013)

M. Castro. Practical Byzantine Fault Tolerance. Technical Report MIT-LCS-TR-817. Ph.D. MIT, Jan. 2001.
V. Rahli et al. Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coqg. ESOP, 2018

L. Luu et al. A Secure Sharding Protocol For Open Blockchains. ACM CCS, 2016

M. Al-Bassam et al. Chainspace: A Sharded Smart Contracts Platform. NDSS 2018

E. Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains, MSc Thesis, 2016

D. Maziéres. The Stellar Consensus Protocol: A Federated Model for Internet-level Consensus, 2016.

G. Pirlea, |. Sergey. Mechanising blockchain consensus. In CPP, 2018.

|. Sergey, A. Hobor. A Concurrent Perspective on Smart Contracts. In WTSC 2017

Papers on BFT, Blockchains, Smart Contracts

L. Lamport et al. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 4(3): 382-401, 1982
M. Castro and B. Liskov. Practical Byzantine Fault Tolerance. In OSDI, 1999

R. Guerraoui et al. The next 700 BFT protocols. In EuroSys 2010

L. Lamport. Byzantizing Paxos by Refinement. In DISC, 2011

C. Cachin et al. Introduction to Reliable and Secure Distributed Programming (2. ed.). Springer, 2011

L. Lamport. Mechanically Checked Safety Proof of a Byzantine Paxos Algorithm (2013)

M. Castro. Practical Byzantine Fault Tolerance. Technical Report MIT-LCS-TR-817. Ph.D. MIT, Jan. 2001.
V. Rahli et al. Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coqg. ESOP, 2018

L. Luu et al. A Secure Sharding Protocol For Open Blockchains. ACM CCS, 2016

M. Al-Bassam et al. Chainspace: A Sharded Smart Contracts Platform. NDSS 2018

E. Buchman. Tendermint: Byzantine Fault Tolerance in the Age of Blockchains, MSc Thesis, 2016

D. Maziéres. The Stellar Consensus Protocol: A Federated Model for Internet-level Consensus, 2016.

G. Pirlea, I. Sergey. Mechanising blockchain consensus. In CPP, 2018.

l. Sergey, A. Hobor. A Concurrent Perspective on Smart Contracts. In WTSC 2017

Related Classes at NUS School of Computing

o C54231: Parallel and Distributed Algorithms

 Parallel programming: mutual exclusion, semaphores, consistency, wait-free
synchronization. Distributed computing: time, global state, snapshots, message
ordering. Relationships: consensus, fault-tolerance, transactions, self-stabilization.

o CS5223: Distributed Systems

* Process Management Communica
Synchronisation; Distributed Real-ti

Fault Tolerant Distributed Systems; Distributed Simulation; WWW

e Aut

Spri

UMmr

Y

on In Distri

me Systenr

buted Systems; Distr

term: theory-oriented (Prof. Haifeng Yu),

term: practice-oriented (Prof. Jialin Li)

ibuted
s; File Systems; Nami

ng Security;

Q . Davidlohr Bueso
-

A programmer had a problem. He thought to himself, "
know, I'll solve it with threads!"”. has Now problems. two he

(@davidlohr

/716 AM - Jan 9, 2013 -

4.5K Retweets 1.4K Likes

plue.nus.edu.sg

http://blue.nus.edu.sg

