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• Independent parties (nodes) can go offline (and also back online) 

• Network partitions 

• Message reorderings 

• Malicious (Byzantine) parties
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Byzantine Generals Problem

• A Byzantine army decides to attack/retreat  
• N generals, f of them are traitors (can collude)  
• Generals camp outside the battle field:  

decide individually based on their field information  
• Exchange their plans by unreliable messengers 

• Messengers can be killed, can be late, etc.  
• Messengers cannot forge a general’s seal on a message



Byzantine Consensus

• All loyal generals decide upon the same plan of action. 

• A small number of traitors (f << N) cannot cause the loyal generals to adopt 
a bad plan or disagree on the course of actions.  

• All the usual consensus properties:  
uniformity (amongst the loyal generals), non-triviality, and irrevocability.
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Why is Byzantine Agreement Hard?
• Simple scenario

• 3 generals, general (3) is an imposter traitor 

• Traitor (3) sends different plans to (1) and (2) 

• If decision is based on majority  

• (1) and (2) decide differently  

• (2) attacks and gets defeated  

(1)

(3)

I will attack

Ok, so will I

I retreat
Okay, I retreat tooI a

tta
ck
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• More complicated scenarios 

• Messengers get killed, spoofed  

• Traitors confuse others: 
(3) tells (1) that (2) retreats, etc 



Byzantine Consensus in Computer Science
• A general is a program component/replica/node  

• Replicas communicate via messages/remote procedure calls  
• Traitors are malfunctioning replicas or adversaries 

• Byzantine army is a deterministic replicated service
• All (good) replicas should act similarly and execute the same logic 
• The service should cope with failures, keeping its state consistent across the replicas 

• Seen in many applications: 
• replicated file systems, backups, distributed servers 
• shared ledgers between banks, decentralised blockchain protocols 



Byzantine Fault Tolerance Problem
• Consider a system of similar distributed replicas (nodes) 

• N replicas in total 

• f of them might be faulty (crashed or compromised) 

• All replicas initially start from the same state 

• Given a request/operation (e.g., a transaction), the goal is to 

• guarantee that all non-faulty replicas agree on the next state  

• provide system consistency even when some replicas may be inconsistent 



Previous lecture: Paxos
• Communication model

• Network is asynchronous: messages are delayed arbitrarily, 
but eventually delivered; they are not deceiving. 

• Protocol tolerates (benign) crash-failure  

• Key design points

• Works in two phases — secure quorum, then commit 

• Require at least 2f + 1 replicas to tolerate f faulty replicas 



• N = 3, f = 1  

• N/2 + 1 = 2 are good 

• everyone is proposer/acceptor 

Paxos and Byzantine Faults
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What went wrong?

• Problem 1:  
Acceptors did not communicate with each other to check the 
consistency of the values proposed to everyone. 

• Let us try to fix it with an additional Phase 2 (Prepare), executed 
before everyone commits in Phase 3 (Commit).



Phase 1: “Pre-prepare”

HW

11

1



Phase 2: “Prepare”

got H from 1
W? H?

1

got H from 1



Phase 2: “Prepare”

got W from 1
W? H?

1

got W
 fro

m 1



Phase 2: “Prepare”

got H from 1

W? H?

1

got W
 fro

m 1



Phase 2: “Prepare”

W? H?

1

Two out of three 
want to commit W 

It’s a quorum for W!

Two out of three 
want to commit H 

It’s a quorum for H!



Phase 3: “Commit”

W H

1



What went wrong now?

• Problem 2:  
Even though the acceptors communicated, the quorum size was  
too small to avoid “contamination” by an adversary. 

• We can fix it by increasing the quorum size relative to  
the total number of nodes.



Choosing the Quorum Size
• Paxos: any two quorums must have non-empty intersection

f + 1 f + 1

Sharing at least one node: must agree on the value

N ≥ 2 * f + 1
z }| {



Choosing the Quorum Size

f + 1 f + 1

An adversarial node in the intersection can “lie” about the value: 

to honest parties it might look like there is not split, but in fact, there is!



                    2 * f + 1                                             2 * f + 1            

N ≥ 2 * f + 1z }| {

Choosing the Quorum Size

Up to f adversarial nodes will not manage to deceive the others.

• Byzantine consensus: let’s make a quorum to be ≥ 2/3 * N + 1 
any two quorums must have at least one non-faulty node in their intersection.

f + 1



Two Key Ideas of Byzantine Fault Tolerance

• 3-Phase protocol: Pre-prepare, Prepare, Commit 
• Cross-validating each other’s intentions amongst replicas 

• Larger quorum size: 2/3*N + 1 (instead of N/2 + 1) 
• Allows for up to 1/3 * N adversarial nodes 
• Honest nodes still reach an agreement



Practical Byzantine Fault Tolerance 
(PBFT) 

• Introduced by Miguel Castro & Barbara Liskov in 1999 
• almost 10 years after Paxos  

• Addresses real-life constraints on Byzantine systems: 
• Asynchronous network 
• Byzantine failure 
• Message senders cannot be forged (via public-key crypto)



PBFT Terminology and Layout
• Replicas — nodes participating in a consensus  

(no more acceptor/proposer dichotomy) 

• A dedicated replica (primary) acts as a proposer/leader 
• A primary can be re-elected if suspected to be compromised 
• Backups — other, non-primary replicas 

• Clients — communicate directly with primary/replicas 
• The protocol uses time-outs (partial synchrony) to detect faults 

• E.g., a primary not responding for too long is considered compromised



Overview of the Core PBFT Algorithm

Request → Pre-Prepare → Prepare → Commit → Reply

z}|{

Executed by ReplicasExecuted by 

Client



client C

replica 0

replica 1

replica 2

replica 3

m(v) [pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]

Request

Client C sends a message to all replicas



client C

replica 0

replica 1

replica 2

replica 3

m(v)

Pre-prepare
• Primary (0) sends a signed  pre-prepare message with the to all backups 

• It also includes the digest (hash) D(m) of the original message

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]



client C

replica 0

replica 1

replica 2

replica 3

m(v)

Prepare
• Each replica sends a prepare-message to all other replicas 
• It proceeds if it receives 2/3*N + 1 prepare-messages consistent with its own

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]



client C

replica 0

replica 1

replica 2

replica 3

m(v)

Commit
• Each replica sends a signed commit-message to all other replicas 
• It commits if it receives 2/3*N+1 commit-messages consistent with its own

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]



client C

replica 0

replica 1

replica 2

replica 3

m(v)

Reply
• Each replica sends a signed response to the initial client 
• The client trusts the response once she receives N/3 + 1 matching ones

[pre-prepare, 0, m, D(m)] [prepare, i, 0, D(m)] [commit, i, 0, D(m)] [reply, i, …]



What if Primary is compromised?
• Thanks to large quorums, it won’t break integrity of the good replicas 
• Eventually, replicas and the clients will detect it via time-outs 

• Primary sending inconsistent messages would cause the system to  
“get stuck” between the phases, without reaching the end of commit  

• Once a faulty primary is detected, backups-will launch a view-change,  
re-electing a new primary 

• View-change is similar to reaching a consensus but gets tricky in the 
presence of partially committed values 

• See the Castro & Liskov ’99 PBFT paper for the details…



PBFT in Industry
• Widely adopted in practical developments: 

• Tendermint
• IBM’s Openchain
• Zilliqa
• Libra/Novi
• Solana

• Used for implementing to speed-up blockchain-based consensus 
• Many blockchain solutions build on similar ideas 

• Stellar Consensus Protocol, HotStuff



PBFT Shortcomings

• Can be used only for a fixed set of replicas 

• Agreement is based on fixed-size quorums 

• Open systems (used in Blockchain Protocols) rely on alternative 
mechanisms of Proof-of-X (e.g., Proof-of-Work, Proof-of-Stake)



Blockchain Consensus 
Protocols



What blockchain does
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ol• transforms a set of transactions 
into a globally-agreed sequence 

• “distributed timestamp server” 
(Nakamoto 2008)

39

transactions 
can be anything
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GB = genesis block

42



How blockchain protocols work
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• distributed 
• multiple nodes 

• all start with same GB

44

what everyone 
eventually agrees on

view of all 
participants’ state



• distributed 
• multiple nodes 
• message-passing 

over a network 

• all start with same GB
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• distributed 
• multiple nodes 
• message-passing 

over a network 

• all start with same GB 
• have a transaction pool 
• can create (mint) blocks
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• distributed ⇒ concurrent 
• multiple nodes 
• message-passing over a 

network 

• multiple transactions can 
be issued and propagated 
concurrently

48



• distributed ⇒ concurrent 
• multiple nodes 
• message-passing over a 

network 

• blocks can be created 
without full knowledge of all 
transactions

49



• chain fork has 
happened, but nodes 
don’t know about it

50
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• as block messages 
propagate, nodes become 
aware of the fork



Problem: need to choose
• blockchain “promise” =  

one globally-agreed chain 

• each node must choose one chain 
• nodes with the same information 

must choose the same chain

52
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Problem: need to choose
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• blockchain “promise” =  
one globally-agreed chain 

• each node must choose one chain 
• nodes with the same information 

must choose the same chain



Solution: fork choice rule
•Fork choice rule (FCR, >): 
• given two blockchains, says which one is “heavier” 
• imposes a strict total order on all possible blockchains 
• same FCR shared by all nodes 

•Nodes adopt “heaviest” chain they know 

• “Lying” to different nodes is computationally very expensive 
and cannot be done for multiple subsequent blocks

56



… > [GB, A, C] > … > [GB, A, B] > … > [GB, A] > … > [GB] > …

57

FCR (>)

Bitcoin: FCR based on “most cumulative work”. 
New blocks take a lot of time and CPU to create.



• distributed 
• multiple nodes 
• all start with GB 
• message-passing over a network 
• equipped with same FCR 

• Quiescent Consistency:  
when all block messages have been 
delivered, everyone (good) agrees 

58

Quiescent consistency



Why it works
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Invariant: local state + “in-flight” = global

60

global system step



Invariant is inductive

state 
1

state 
2

state 
3

state 
4

state 
5

61

system step

invariant holds

invariant holds

system step invariant holds

system step invariant holds

system step invariant holds



Invariant implies Quiescent Consistency

•QC: when all blocks delivered, everyone agrees 

How: 
• local state + “in-flight” = global 
• use FCR to extract “heaviest” chain out of local state

62

• since everyone has same initial state & same FCR 
➢consensus
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1 Introduction
The notion of decentralised blockchain-based consensus is
a tremendous success of the modern science of distributed
computing, made possible by the use of basic cryptography,
and enabling many applications, including but not limited
to cryptocurrencies, smart contracts, application-speci�c
arbitration, voting, etc.
In a nutshell, the idea of a distributed consensus proto-

col based on blockchains, or transaction ledgers,1 is rather
simple. In all such protocols, a number of stateful nodes
(participants) are communicating with each other in an asyn-
chronous message-passing style. In a message, a node (a)
can announce a transaction, which typically represents a
certain event in the system, depending on the previous state
of the node or the entire network (we intentionally leave
out the details of what can go into a transaction, as they are
application-speci�c); a node can also (b) create and broad-
cast a block that contains the encoding of a certain vector
of transactions, created locally or received via messages of
type (a) from other nodes. Each recipient of a block message
should then validate the block (i.e., check the consistency of
the transaction sequence included in it), and, in some cases,
append it to its local ledger, thus, extending its subjective
view of the global sequence of transactions that have taken
place in the system to date. The process continues as more
messages are emitted and received.
In order to control the number of blocks in the system,

distributed ledger protocols rely on certain cryptographic
primitives, such as a hash-function hash de�ned both on
transactions and blocks, a notion of a proof object necessary
for de�ning the validity of a block, and an implementation of
a Validator Acceptance Function (VAF) that is used to ensure
that a blockb is validwrt. to a proof object pf . Having a block
b and a proof object pf , one can check very fast whether
VAF b pf is true or false. What appears to be di�cult is
to produce an instance of a proof object pf , as it requires
computing a pre-image of the hash function with respect
to the current state of the local ledger of a speci�c node.
The exact speci�cs of designing a VAF and a discipline for
minting blocks with VAF-valid proof objects, is a subject of
active research, which is far beyond the scope of this paper,
with the best known approaches being Proof-of-Work [9,
24] and Proof-of-Stake [3]. The computational hardness or

1Hereafter, wewill be using the terms “(transaction) ledger” and “blockchain”
interchangeably.
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• Executed by each node locally, alter the replicated state. 

• Simplest variant: transferring funds from A to B,  
       consensus: no double spending. 

• More interesting: deploying and executing replicated computations

Smart Contracts

Blockchain Transactions

| {z }



Smart Contracts
• Stateful mutable objects replicated via a consensus protocol 

• State typically involves a stored amount of funds/currency 

• One or more entry points: invoked reactively by a client message 

• Main usages:  
• crowdfunding and ICO 
• multi-party accounting  
• voting and arbitration  
• puzzle-solving games with distribution of rewards  

• Supporting platforms: Ethereum, Solana, Sui, Avalanche, Cardano,…



contract Accounting {
  /* Define contract fields */
  address owner;
  mapping (address => uint) assets;

  /* This runs when the contract is executed */
  function Accounting(address _owner) {
    owner = _owner;
  }

  /* Sending funds to a contract */
  function invest() returns (string) {
    if (assets[msg.sender].initialized()) { throw; }
    assets[msg.sender] = msg.value;
    return "You have given us your money";
  }
}

Mutable fields

Constructor

Entry point

• msg argument is implicit 
• funds accepted implicitly 
• can be called as a function 

from another contract

Smart Contracts are Like Concurrent Objects
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Abstract. In this paper, we explore remarkable similarities between
multi-transactional behaviors of smart contracts in cryptocurrencies such
as Ethereum and classical problems of shared-memory concurrency. We
examine two real-world examples from the Ethereum blockchain and an-
alyzing how they are vulnerable to bugs that are closely reminiscent
to those that often occur in traditional concurrent programs. We then
elaborate on the relation between observable contract behaviors and
well-studied concurrency topics, such as atomicity, interference, synchro-
nization, and resource ownership. The described contracts-as-concurrent-
objects analogy provides deeper understanding of potential threats for
smart contracts, indicate better engineering practices, and enable appli-
cations of existing state-of-the-art formal verification techniques.

1 Introduction

Smart contracts are programs that are stored on a blockchain, a distributed
Byzantine-fault-tolerant database. Smart contracts can be triggered by blockchain
transactions and read and write data on their blockchain [38]. Although smart
contracts are run and verified in a distributed fashion, their semantics suggest
that one can think of them as of sequential programs, despite the existence of a
number of complex interaction patterns including e.g., reentrancy and recursive
calls. This mental model simplifies both formal and informal reasoning about
contracts, enabling immediate reuse of existing general-purpose frameworks for
program verification [5,16,31,32] that can be employed to verify smart contracts
written in e.g. Solidity [15] with only minor adjustments.

Although all computations on a blockchain are deterministic,3 a certain amount
non-determinism still occurs due to races between transactions themselves (i.e.
which transactions are chosen for a given block by the miners). We will show in
that non-determinism can be exploited by adversarial parties and makes reason-
ing about contract behavior particularly subtle, reminiscent to known challenges
involved in conventional concurrent programming.

In this paper we outline a model of smart contracts that emphasizes the
properties of their concurrent executions. Such executions can span multiple

3 This requirement stems from the way the underlying Byzantine distributed ledger
consensus protocol enables all involved parties to agree on transaction outcomes.
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Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.
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threads using concurrent objects in shared memory.

call/send context switching

contract state object state—

—



Reentrancy and multitasking

1010 // Burn DAO Tokens

1011 Transfer(msg.sender, 0, balances[msg.sender]);
1012 withdrawRewardFor(msg.sender); // be nice, and get his rewards

1013 totalSupply -= balances[msg.sender];
1014 balances[msg.sender] = 0;
1015 paidOut[msg.sender] = 0;
1016 return true;
1017 }

Fig. 2. DAO code fragment [23].

Unfortunately, the DAO internal state still indicates that the account is funded
since its account balance has not yet been zeroed out in line 1014. Accordingly,
a malicious msg.sender can initiate a second withdrawal by calling back into the
DAO contract, which will in turn send a second payment when control reaches
line 1012 again. In fact, the malicious msg.sender can then initiate a third, fourth,
etc. withdrawal, all of which will result in payment. Only at the end is his account
zeroed out, after being paid many multiples of its original balance.

Previous analyses of this bug have indicated that the problem is due to re-
cursion or unintended reentrancy. In a narrow sense this is true, but in a wider
sense what is going on is that sequential code is running in what is in many
senses a concurrent environment.

3 Interference and Synchronization

Having showed that concurrent-type behavior exists and causes problems in
real contracts on the Blockchain, we will now examine other ways that our
concurrent-objects-as-contracts viewpoint can help us understand how contracts
can behave on the blockchain.

3.1 Atomic updates in shared-memory concurrency

Figure 3 depicts a canonical example (presented in a Java 8-like pseudocode) of
a wrongly used concurrent object, which is supposed to implement an “atomic”
counter with methods get and set. The implementation of the concurrent
counter on the left is obviously thread-safe (i.e., data race-free), thanks to the use
of synchronized primitives [17]. What is problematic, though, is how an instance
of the Counter class is used in the multithreaded client code on the right.

Specifically, with two threads running in parallel and their operations inter-
leaving, the call to incr() within thread2’s body could happen, for instance,
between the assignment to a and the call c.set(a + 1) within the incr() call of
thread1. This would invalidate the condition in the following assert statement,
making the overall program fail non-deterministically for a certain execution!

The issue arises because the implementation of incr() on top of Counter does
not provide the atomicity guarantees, expected by the client code. Specifically,
the code on the right is implemented in the assumption that there will be no

interference between the statements of incr(), hence the counter c is going to be
incremented by 1, and a and b will be the same by the end of its execution. Indeed,

6



Reentrancy and multitasking
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DAO: withdrawRewardFor()

Manipulation with DAO_recipient.call.value(…):

Inv(contract.state, balance)

c.atomicMethod()

Environment

c.atomicMethod() c.atomicMethod()

Environment

Inv Inv Inv Inv Inv Inv

Inv balances[msg.sender] = 0



Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.

call/send context switching

contract state object state—

Reentrancy (Un)cooperative multitasking—

—

Invariants Atomicity—



Querying an Oracle

Transaction 1
c.prepareRequest()

o.raiseEvent()

o.respond()

c.__callback(data)

Transaction 2



Call/Return in Two Transactions

Transaction 1
c.prepareRequest()

o.raiseEvent()

o.respond()

c.__callback(data)

Transaction 2

Block N Block N+M



function enter() {
  if (msg.value < 50 finney) {
     msg.sender.send(msg.value);
     return; 
  }
  warrior = msg.sender; 
  warriorGold = msg.value; 
  warriorBlock = block.number; 
  bytes32 myid = 
      oraclize_query(0,”WolframAlpha","random number between 1 and 9"); 
}

BlockKing via Oraclize 

function __callback(bytes32 myid, string result) { 
  if (msg.sender != oraclize_cbAddress()) throw; 
  randomNumber = uint(bytes(result)[0]) - 48; 
  process_payment();
}

More on that in the paper.



Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.

Reentrancy (Un)cooperative multitasking

call/send context switching

contract state object state—

—

—

Invariants Atomicity—

Non-determinism data races—



To Take Away
• Byzantine Fault-Tolerant Consensus is a common issue addressed  

in distributed systems, where participants do not trust each other. 
• For a fixed set of nodes, a Byzantine consensus can be reached via 

• (a) making an agreement to proceed in three phases 
• (b) increasing the quorum size 
• These ideas are implemented in PBFT, which relies on cryptographically signed 

messages and partial synchrony. 
• In open systems (blockchains), consensus can be reached via a universally 

accepted Fork-Chain-Rule: 
• It measures the amount of work, while comparing two “conflicting” proposals



YSC4231: Parallel, Concurrent  
and Distributed Programming

Wrapping Up



Concurrency is Tricky



• It can be very confusing 

• It takes a lot of time to get right

Concurrency is Tricky

• … but we simply cannot get away without it 

• … because we want our programs to be fast

• … we want our interfaces to be responsive 

• … and we want our systems to be reliable



• Amdahl’s Law 

• Safety, Liveness 

• Dining Philosophers Problem 

• Programming with Threads  

• Event Orderings and Mutual Exclusion 

• Linearizability and Sequential Consistency 

• Spin-locks and contention 

• Monitors: waiting and signalling 

• Design of concurrent objects

• Fine-grained, lazy, and optimistic locking 

• Concurrent Stacks, Queues, Skiplists 

• Concurrent Elimination, ABA problem 

• Thread pools 

• Data race detection 

• Asynchronous Computations via Futures 

• Data parallelism, Splitters and Combiners 

• Actors and message-passing 

• Distributed consensus, Paxos, PBFT, Blockchains

We learned to understand concurrency  
and to implement it correctly and efficiently
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Stuff we Didn’t Discuss
• More Concurrent Algorithms 

• Concurrent Hashing, Counting Networks, Priority Queues 

• Compilers and Concurrency 

• Automated Parallelisation, Memory Models for C/C++11 and Java 

• Concurrent Garbage Collection 

• Software Transactional Memory 

• Web Services, Distributed File Systems, Gossip Protocols, Apache ZooKeeper 

• Verification of Concurrent Algorithms 

• Linearisability proofs, Program Logics, embedding into Coq 

• Formalisation and Verification of Distributed Protocols 

• I/O Automata, TLA+, Proof Automation, Composition, Invariant Inference 



Where to go From Here

• Programming Languages for Concurrency 

• Erlang (everything is an actor) 

• Go (lightweight threads) 

• Kotlin (Coroutines for asynchronous programming) 

• Rust (really cool type system prevents data races)



Research in Concurrency
• Conferences  (proceedings available on the web):  
– Principles of Distributed Computing (PODC) 
– International Symposium on DIStributed Computing (DISC) 
– Principles and Practice of Parallel Programming (PPoPP) 
– Symposium on Operating Systems Principles (SOSP) 
– Operating Systems Design and Implementation(OSDI) 
– Programming Language Design and Implementation (PLDI) 

• Researchers to check out 
– Edsger Dijkstra, Leslie Lamport, Barbara Liskov, Nancy Lynch,  

Maurice Herlihy, Faith Ellen, James Aspnes, Nir Shavit



• L. Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998.  
• L. Lamport. Paxos made simple. SIGACT News, 32, 2001.  
• T.D. Chandra et al. Paxos made live: an engineering perspective. PODC 2007 
• B. W. Lampson, The ABCD's of Paxos. PODC 2001 
• P. Kellomäki. An Annotated Specification of the Consensus Protocol of Paxos Using Superposition in PVS. 2004 
• C. Dragoi et al. PSync: a partially synchronous language for fault-tolerant distributed algorithms. In POPL, 2016. 
• M. Jaskelioff and S. Merz. Proving the correctness of disk Paxos. Archive of Formal Proofs, 2005. 
• C. Hawblitzel et al. IronFleet: proving practical distributed systems correct. In SOSP 2015. 
• D. Ongaro and J. K. Ousterhout. In search of an understandable consensus algorithm. USENIX Annual Technical Conference, 2014 
• B.M. Oki and B. Liskov, Viewstamped Replication: A General Primary Copy. PODC 1988 
• O. Padon, et al. Paxos made EPR: decidable reasoning about distributed protocols. PACMPL, 1(OOPSLA):108:1–108:31, 2017.  
• V. Rahli, et al. Formal specification, verification, and implementation of fault-tolerant systems using EventML. In AVOCS. EASST, 2015.  
• A. Pillai, Mechanised Verification of Paxos-like Consensus Protocols, BSc Thesis, 2018 
• R. van Renesse and D. Altinbuken. Paxos Made Moderately Complex. ACM Comput. Surv., 47(3):42:1–42:36, 2015.  
• J.R. Wilcox et al., Verdi: a framework for implementing and formally verifying distributed systems, PLDI 2015 
• Á. García-Pérez et al., Paxos Consensus, Deconstructed and Abstracted, ESOP 2018
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• CS4231: Parallel and Distributed Algorithms 
• Parallel programming: mutual exclusion, semaphores, consistency, wait-free 

synchronization. Distributed computing: time, global state, snapshots, message 
ordering. Relationships: consensus, fault-tolerance, transactions, self-stabilization. 
 

• CS5223: Distributed Systems 
• Process Management Communication in Distributed Systems; Distributed 

Synchronisation; Distributed Real-time Systems; File Systems; Naming Security; 
Fault Tolerant Distributed Systems; Distributed Simulation; WWW 

• Autumn term: theory-oriented (Prof. Haifeng Yu),  
Spring term: practice-oriented (Prof. Jialin Li)

Related Classes at NUS School of Computing



The End
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