
 

 

 

Towards User-Friendly 

Linearizability Checking 
 

 

 

Alaukik Nath Pant 

 

 

 

 

Capstone Final Report for BSc (Honours) in 

Mathematical, Computational and Statistical Sciences 

Supervised by: Associate Professor Ilya Sergey 

AY2020-2021 

 



i



ii

Acknowledgements
This capstone was possible because of the support of faculty, friends,

family and the open source community.

In particular, I would like to thank Dr. Ilya Sergey not only for his ad-

vice on every aspect of this capstone, but also his inspiring foundational

Computer Science courses at Yale-NUS College.

I would like to thank Dr. Michael Emmi for building Violat, the tool

that I build on top of, and for generously giving his time to help me un-

derstand how Violat runs and how to debug it.

I would also like to thank my friends - Max, Michael, Gabriel, Ryan,

Leyli, Adair and Karolina - for making my residential experience at 12-

505, Cendana College a memorable one and for their constant emotional

support.

Lastly, I would like to thank my family for inspiring and supporting

me to be able to delve into a year-long, self-directed project.



iii

YALE-NUS COLLEGE

Abstract
Mathematical, Computational and Statistical Sciences

B.Sc (Hons)

Towards User-Friendly Linearizability Checking

by Alaukik Nath PANT

The technology landscape is quickly moving towards multi-processor

and multi-core computer systems. Hence, multi-threaded software de-

sign is becoming increasingly popular [4]. Multi-threaded software de-

sign often requires implementing Abstract Data Types(ADTs) that rep-

resent concurrent objects such as hashmaps, queues, and skiplists [4].

However, such ADTs are prone to bugs as they may be accessed by multi-

ple processes and threads at the same time. Programmers can, therefore,

reason about the correctness of their concurrent data types using lineariz-

ability as a correctness property.

There are several tools developed in academia to detect linearizability

violations, but such tools are often hard to incorporate in every day use

and industrial code bases. In this project, we integrate and extend one

such tool, Violat, to the IntelliJ IDEA Integrated Development Environ-

ment (IDE) as a plugin. We achieve a plugin that fully automates testing

linearizability violations in Java code bases using IntelliJ IDE.

HTTPS://WWW.YALE-NUS.EDU.SG/


iv

Contents

Acknowledgements ii

Abstract iii

1 Background and Motivation 1

1.1 Linearizability . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Example 1: A linearizable history H1. . . . . . . . . 4

Example 2: A non-linearizable history H2. . . . . . 6

Key Properties of Linearizability . . . . . . . . . . . 7

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Paper Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Tools for Linearizability Checking 9

2.1 On Linearizability Checking . . . . . . . . . . . . . . . . . . 9

2.2 Review of Tools . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Check-Lin . . . . . . . . . . . . . . . . . . . . . . . . 10

Principle . . . . . . . . . . . . . . . . . . . . . . . . . 10

Shortcomings of Check-Lin . . . . . . . . . . . . . . 10

2.2.2 Our Choice: Violat . . . . . . . . . . . . . . . . . . . 12

Principle . . . . . . . . . . . . . . . . . . . . . . . . . 12

Shortcomings of Violat . . . . . . . . . . . . . . . . . 13



v

3 A tour of ViolatIntegration 15

3.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Interpretation of result . . . . . . . . . . . . . . . . . 19

3.1.2 How to fix your code based on the results . . . . . . 20

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Details of Implementation 22

4.1 Structure of ViolatIntegration . . . . . . . . . . . . . . . . . 22

4.2 Developing a Specification Generator . . . . . . . . . . . . 23

4.3 Using PSI Files . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Bugs Discovered in Violat . . . . . . . . . . . . . . . . . . . 25

4.5 Containerized Run-time Environments . . . . . . . . . . . 26

5 Discussion 28

5.1 Comparison with Lin-Check . . . . . . . . . . . . . . . . . . 28

5.1.1 Process of testing . . . . . . . . . . . . . . . . . . . . 28

5.1.2 Performance . . . . . . . . . . . . . . . . . . . . . . . 30

5.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography 33

A Artifacts 36

A.1 Artifact Check-list . . . . . . . . . . . . . . . . . . . . . . . . 36

A.2 Requirements to Run the Artifacts . . . . . . . . . . . . . . 37

B ViolatIntegration Tutorial 38

B.1 Installation of ViolatIntegration . . . . . . . . . . . . . . . . 38



vi

B.2 ViolatIntegration Settings . . . . . . . . . . . . . . . . . . . 38

B.3 Run Configuration . . . . . . . . . . . . . . . . . . . . . . . 39

B.4 Getting and Interpreting the Results . . . . . . . . . . . . . 44



vii

List of Tables

1.1 Concurrent invocations of the incrementAndGet() method. 2

3.1 Enumeration of sequential executions of QueueWrong. . . . 19

3.2 Linearizability violations in open source repositories. . . . 21



viii

List of Figures

1.1 Implementation of the CounterWrong class in Java . . . . . 2

1.2 History H1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 History H1 with linearization points. . . . . . . . . . . . . . 5

1.4 History H2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 History H2 with linearization points. . . . . . . . . . . . . . 6

2.1 Result for ArrayBlockingQueue using Check-Lin. . . . . . . 11

3.1 An implementation of QueueWrongClass. . . . . . . . . . . 16

3.2 Violations that Violat Console shows. . . . . . . . . . . . . 17

3.3 A look into Violation 16. . . . . . . . . . . . . . . . . . . . . 18

5.1 Example input program for Lin-Check. . . . . . . . . . . . 29

B.1 ViolatIntegration’s Setting . . . . . . . . . . . . . . . . . . . 39

B.2 Run Configuration. . . . . . . . . . . . . . . . . . . . . . . . 40

B.3 Run Configuration when choosing a class. . . . . . . . . . . 41

B.4 Run Configuration when selecting necessary fields. . . . . 42

B.5 Different ways of running ViolatIntegration. . . . . . . . . 44



1

Chapter 1

Background and Motivation

Concurrency bugs in software development are costly and hard to detect.

However, concurrency remains important in the near future.

Concurrency’s importance stems from the the current reality of Moore’s

law, i.e. the prediction that the transistor count per chip, which is a mea-

sure of a computer’s processing performance, will double in approxi-

mately every two years [14]. While Moore’s Law has not been broken,

we cannot continue to add more transistors in the same space every year

without overheating [8]. As a result, the field of shared-memory multi-

processors, i.e. multicores, has become increasingly important in Com-

puter Science. Multicore processors enable the concurrent programming

of software, which refers to writing code that splits into multiple tasks

that can be executed concurrently on the same chip or different chips [7].

Multi-core architectures serve as an an "inflection" point in the soft-

ware development industry because of the difficulties in multi-core pro-

gramming [19]. In particular, tasks can be delayed or stopped in today’s

computer systems without warnings due to interruptions, cache misses

and a variety of other reasons [8]. As a result, multiple sequences of oper-

ations can run in overlapping periods of time, and hence, it is challenging



Chapter 1. Background and Motivation 2

public class CounterWrong {
private int c;
public CounterWrong() {c = 0};
public int incrementAndGet() return ++c;

}

Fig. 1.1. Implementation of CounterWrong class in Java [2].

Thread A Thread B
[A] read c (c=0)

[B] read c (c=0)
[A] incrementAndGet() (c=1)

[B] incrementAndGet() (c=1)

Table 1.1. Concurrent invocations of the incrementAndGet() method.

to figure out how to write correct concurrent code.

Consider the CounterWrong class ADT implementation in Figure 1.1.

Suppose threads A and B are both trying to run the incrementAndGet()

method. It seems correct that c should be 2 at the end of both operations.

However, it is possible that both A and B read c as 0 before either of them

write to it. As a result, as shown in the Table 1.1, we might get c=1 instead

of c=2 at the end of both the operations.

Programming high-performance software requires more complicated

and optimized implementations of common ADTs than the CounterWrong

shown in Figure 1.1, which can lead to bugs that are even more difficult

to detect.

1.1 Linearizability

Given the difficulty of writing concurrent code, specifying and verifying

a given program helps ensure program correctness. Linearizability is the



Chapter 1. Background and Motivation 3

key correctness property of concurrent objects. We now present defini-

tions that will help us understand linearizability.

1. Action

An action is an invocation or return of a particular method for a

given thread [16].

2. Operation

An operation is a pair of call action and return action where the

call action and the return action are matching, i.e. are applied on

the same object and thread [16]. For example, the invocation call

to the incrementAndGet() method in Figure 1.1 and its return are

two separate examples of an action and the pair is considered an

operation.

3. History and Sub-history

A history is a sequence of actions. A sub-history of a history, H, is a

sub-sequence of the actions of H [16].

4. Sequential History and Well Formed History

A history, H, is sequential if its first action is an invocation and ev-

ery invocation is immediately followed by a matching return and

every return is followed by an invocation except possibly the last

one [16]. A thread sub-history of H is a sequence of actions carried

out by a given thread. A well-formed history’s thread sub-histories

are all sequential [16].

5. Sequential Specification



Chapter 1. Background and Motivation 4

For a given object, a sequential specification is a set of sequential

histories for that object. A sequential specification helps us identify

whether the thread history of a single object is legal [7].

6. Linearizability

A history associated with a data structure is linearizable if there is a

schedule of operations, whose operations when executed return the

same result as the history specified by the sequential specification

of this data structure [16, 7].

In more intuitive terms, linearizability specifies what return values

are allowed when multiple threads perform a schedule of operations

given our knowledge of the expected return values of operations when

performed sequentially. Consider the histories H1 and H2 in Figures 1.2-

1.5 of a queue, a first in, first out (FIFO) data structure, generated using a

linearizability visualizer [22].

A queue comes with two operations:

1. Enqueqe(E) inserts an item in the queue.

2. Dequeqe(D) removes and returns the oldest item to be enqueued

into the queue.

In these histories, processes are represented as horizontal axes. Each ac-

tion is represented as a small vertical tick and each operation is repre-

sented as a horizontal line.

Example 1: A linearizable history H1.

We argue the history H1 shown in Figure 1.2 is linearizable because we

can sequence the events as shown in Figure 1.3:



Chapter 1. Background and Motivation 5

process B
p.E(y) p.Ok() p.D() p.Ok(x)

process A
p.E(x) p.Ok() p.D() p.Ok(y) p.E(z)

Fig. 1.2. History H1.

Fig. 1.3. History H1 with linearization points.

The order of the events is as follows:

1. p.E(x) - Enqueue x into the queue.

2. p.E(y) - Enqueue y into the queue.

3. p.D() = x - Dequeue and get x.

4. p.D() = y - Dequeue and get y.

Note that the black vertical lines in Figure 1.3 represent the "linearization

points", where the methods "take effect". Each operation has a lineariza-

tion point at some point between its invocation and response [7]. We

observe that enqueuing x and enqueuing y happen in overlapping pe-

riods of time, assuming time moves from left to right. We also observe

that when we sequence our operations from left to right, i.e. create a se-

quential specification, we get x when we dequeue for the first time. To

prove linearizability, we choose two points in the overlapping horizontal

lines where each operation appears to “take effect” instantaneously such



Chapter 1. Background and Motivation 6

process B
p.E(y) p.Ok()

process A
p.E(x) p.Ok() p.D() p.Ok(y)

Fig. 1.4. History H2.

Fig. 1.5. History H2 with linearization points.

that enqueuing x happens before enqueuing y. As a result, our schedule

aligns with the sequential specification and the history H1 is linearizable.

Since x and y are enqueued in overlapping periods of time, one can

argue that we can pick linearization points such that y is enqueued be-

fore x. We argue that this history is still not considered non-linearizable

because we just have to show one set of linearization points to prove the

linearizability of an execution.

Example 2: A non-linearizable history H2.

We argue the history H2 shown in Figure 1.4 is non-linearizable. In this

history, we notice that the first time we dequeue, we get a y. However,

as shown in Fig 1.5 by the black vertical lines, even if we pick the latest

possible linearization point in the first operation and the earliest possible

point in the second operation, the operation of enqueuing y cannot occur

before the one enqueuing x. Hence, history H2 is non-linearizable.



Chapter 1. Background and Motivation 7

Key Properties of Linearizability

1. Linearizability is a local property [7]. A system is linearizable if and

only if each object belonging to this system is linearizable.

2. Linearizability is more of a property of an execution than that of an

object [7]. An object is linearizable if all its possible executions are

linerizable.

3. Linearizability is a non-blocking property. A pending invocation

does not have to wait for another pending invocation to return be-

cause each invocation except the last one is immediately followed

by a return in a linearizable history [8].

1.2 Contributions

Writing concurrent code often requires implementing optimized imple-

mentations of concurrent ADTs that may or may not be linearizable. While

there are various tools to check the linearizability of concurrent ADTs

produced in academia [1, 4, 16], these tools do no have much adoption in

industry [13]. We present ViolatIntegration, a plug-in for IntelliJ IDEA,

which we developed in order to fully automate the process of linearizabil-

ity checking for user-defined ADTs.

In summary, we present the following contributions.

1. An investigation and experimentation with several state of the art

tools for linearizability testing;

2. a comparison of Violat with other tools;



Chapter 1. Background and Motivation 8

3. an extension of Violat to a larger class of programs;

4. an integration of Violat to the popular IDE for Java, IntelliJ IDEA,

as a plugin called ViolatIntegration;

5. a tutorial on using ViolatIntegration to validate concurrent programs.

1.3 Paper Outline

In the following chapters, we describe the principles and limitations of

various academic tools and our rationale for picking Violat (Chapter 2);

present ViolatIntegration through an example as a plugin for IntelliJ IDEA

that fully automates linearizability checking (Chapter 3); describe some

of the interesting details that went into extending Violat and integrating it

into a plugin (Chapter 4); and end with a comparison of ViolatIntegration

with another industrial tool and a discussion of future work (Chapter 5).



9

Chapter 2

Tools for Linearizability

Checking

In this chapter, we investigate two state-of-the-art tools for linearizability

checking and choose a tool to improve.

2.1 On Linearizability Checking

The problem of verifying that an execution is linearizable by exhaustively

searching for a schedule that is equivalent to the sequential specification

of the same execution is NP-Complete. Hence, linearizability checking

tools that check all possible schedules of a history perform poorly [16].

For this project, we reviewed several methods and tools developed in

academia to detect linearizability violations in concurrent programs. In

this report, we present two shortlisted state-of-the-art tools, Check-Lin

[16] and Violat [4]. Ultimately, we build an IntelliJ IDEA plugin on top of

Violat to detect linearizability violations for reasons discussed below.



Chapter 2. Tools for Linearizability Checking 10

2.2 Review of Tools

2.2.1 Check-Lin

Principle

Check-Lin is based on the empirical observation that linearizability of

an execution is frequently seen in a sub-schedule [16]. For this reason,

Check-Lin considers only a few of operations as opposed to exhaustively

searching through all of them in each schedule. The number of opera-

tions in the aforementioned sub-schedule which witness linearizability

is known as "linearizability depth". The algorithm starts to search for

witnesses of linearizability at low linearizability depths before moving

deeper [16]. To do so, Check-Lin generates a set of schedules that are

guaranteed to find all linearizability witnesses at depth d called a "strong

d-hitting family". The authors argue that if we check a strong d-hitting

family with a linearizability depth d ≤ 5, then that is enough to show lin-

earizability for 99.9% of experimented linearizable traces [16]. Hence, we

conclude that Check-Lin is efficient and practical for showing lineariz-

ability of an execution trace.

Shortcomings of Check-Lin

Check-Lin, written using the Scala programming language, can poten-

tially be used to detect linearizability violations in several Java Virtual

Machine(JVM)-based languages. However, as we discuss below, Check-

Lin has some major drawbacks that make it an unfavourable candidate

for an average user.



Chapter 2. Tools for Linearizability Checking 11

Fig. 2.1. Result for ArrayBlockingQueue using Check-Lin.

1. The main drawback of Check-Lin is that its result is hard to inter-

pret. Figure 2.1 shows a sample result we generate using Check-

Lin to check linearizability violations in an ArrayBlockingQueue

from Java’s java.util.concurrent package at different depths D.

The result of Check-Lin shows what percentage of a family of a

"strongly d-hitting family" of schedules witness linearizability at a

depth D. For example, for a depth of 4 in Figure 2.1, this statistic

is 86%. We believe that, for the average user, this result is not only

difficult to interpret but also does not help them debug their code.

2. Check-Lin requires the user to provide a JSON specification file de-

scribing their ADT and there is insufficient instruction on how to

write such specifications.

3. Check-Lin is not well tested on user-defined ADTs. In fact, there are



Chapter 2. Tools for Linearizability Checking 12

no examples of the authors using the tool on user-defined ADTs,

outside of those found on Java’s java.util.concurrent package.

2.2.2 Our Choice: Violat

Principle

Violat is a tool that generates tests of observational refinement for concur-

rent objects and uses those tests to discover violations to linearizability.

An implementation of a data structure O is said to be an observational re-

finement of another implementation O′ if every behaviour of a program

using O can be observed using O′ [6]. Tests of observational refinement

coincide with tests of linearizability [6].

To generate tests of observational refinement, Violat takes a three step

approach, which we enumerate below.

1. Violat generates a schema that has descriptions of parallel sequences

of invocations of the methods associated with a given object where

each invocation is separated by "||". For example, for the CounterWrong

class in Figure 1.1, a schema would look like the following:

incrementAndGet(); incrementAndGet() || incrementAndGet().

2. Violat sequentially executes the methods of the given ADT imple-

mentation and labels each such schema with expected outcomes

calculated from the result of these executions.[4].

3. Violat creates a self contained Java class from each schema [4] and

tests the classes created with two back-end analysis engines: i) Java

Concurrency Stress testing tool(JCStress) [18] and Java Pathfinder[21].



Chapter 2. Tools for Linearizability Checking 13

The aforementioned back-end analysis engines give the output of the ex-

ecution traces that lead to linearizability violations, which helps the user

identify the source of their mistakes and amend them. For this reason,

Violat’s output is more user-friendly than Check-Lin..

Shortcomings of Violat

Violat, however, is not entirely suitable for a developer to seamlessly test

their ADT implementation for reasons discussed below.

1. For the first two steps of test generation, Violat requires a speci-

fication of the given concurrent object describing the methods and

constructor in JSON format. While Violat’s paper mentions that this

specification can be generated from an object’s byte-code [4], it does

not provide a command to do this.

2. Violat, like Check-Lin, is not well tested. There are no examples

of Violat being used on ADTs outside of those already packaged

with Java. Our own experiments reveal that Violat does not work

correctly for simple user-defined Java classes due to unexpected in-

teractions between Violat and JCStress [17].

3. Violat requires the Java class being tested in the system classpath or

in a user-provided Java archive (JAR). Ideally, for wide spread use,

we would just want to click on a class and get the required output.

While Violat may not be user-friendly, its output helps the user iden-

tify the execution trace that led to linearizability violations and amend

their ADT implementation. Hence, we decide that Violat better serves

the average user than Check-Lin, whose output is a score that is hard



Chapter 2. Tools for Linearizability Checking 14

to interpret. If we can create a tool on top of Violat that automates the

process of checking linearizability violations, then that would reduce the

barriers to test concurrent ADTs implemented in Java. Since IntelliJ IDEA

IDE is a popular application to write Java code in with several features

such as source code editing, build automation and a debugger, integrat-

ing Violat on top of it can be useful. While there are several IDEs such

as Eclipse, Emacs and Kite to write Java code in, IntelliJ IDEA has robust

developer support to write tools on top of it. In particular, IntelliJ has

individual software components called plugins that are extensions that

can add new functions to it. Hence, we implement a plugin, presented

in the next chapter, for the IntelliJ IDEA IDE with the goal of completely

automating linearizability checking.



15

Chapter 3

A tour of ViolatIntegration

In this chapter, using an example, we present ViolatIntegration as a plu-

gin that fully automates the process of checking linearizability violations

in ADTs written in Java. We then describe the results of using ViolatInte-

gration to test ADTs found in open source repositories.

3.1 Motivating Example

Consider the QueueWrong class shown in Figure 3.1, which we adapted

from an open source implementation [2]. It represents a simple imple-

mentation of a first-in, first-out (FIFO) data structure, meaning the first

integer to be put into QueueWrong using the put(int) method is also the

first element to be removed by the get() method. Note that this queue

uses a shared array called items with a capacity for 100 elements. Also

note that the shared variable indPut stores the index where the put(int)

operation will put an integer. Likewise, the shared variable indGet rep-

resents the index of the element we get from the get() operation. Both

indPut and indGet are incremented each time we call their associated



Chapter 3. A tour of ViolatIntegration 16

public class QueueWrong {
private int indGet;
private int indPut;
private int countElements;
private int[] items;

private int inc(int i) {
return (++i == items.length ? 0 : i);

}

public QueueWrong() {
items = new int[100];
indPut = 0;
indGet = 0;
countElements = 0;

}

public void put(int x) throws Exception {
if (countElements == items.length) {

throw new Exception("Queue is full");
}
items[indPut] = x;
indPut = inc(indPut);
countElements++;

}

public int get() throws Exception {
if (countElements == 0) {

throw new Exception("Queue is empty");
}
int ret = items[indGet];
indGet = inc(indGet);
countElements--;
return ret;

}
}

Fig. 3.1. Implementation of QueueWrong in Java [2].

methods using the inc() method. Finally, the countElements shared

variable keeps a count of the number of elements in the queue.

As the name suggests, the QueueWrong class has problems. We notice



Chapter 3. A tour of ViolatIntegration 17

Fig. 3.2. Violations that Violat console shows.

that the shared memory locations held by the variables indGet, indPut,

countElements and items can be concurrently accessed and modified.

In other words, when one process is accessing the QueueWrong object,

another process can change this object’s contents through the aforemen-

tioned variables. Although operations can overlap on a shared object in a

linearizable system, each operation appears to take effect instantaneously

at its linearizaton point. Hence, the QueueWrong object might be problem-

atic because its contents can be changed by another process while a given

process is still accessing it.

We will check this data structure for linearizability violations using

ViolatIntegration. A step-by-step tutorial describing the the configura-

tion required to use ViolatIntegration to test an ADT like this is avail-

able at Appendix B. Once we set-up the required configuration for the

QueueWrong class and run Violat, we get a total of 45 violations, as shown

in the Violat Console at the bottom of Intellij IDEA (Figure 3.2). Each vi-

olation shows the combination of invocations that led to an error. Let us

explore violation 16 shown in Figure 3.3 by clicking on it, and understand

what it means.



Chapter 3. A tour of ViolatIntegration 18

Fig. 3.3. A look into Violation 16.

The violation under consideration is represented by the following pro-

gram schema:

put(0); get()|| put(0); get(); put(0).

Here, our schema has two parallel threads. The sequence of methods

of the QueueWrong object invoked by each thread is separated by "||".

The methods invoked by the first thread are written in red while those

invoked by the second thread are written in blue.

We now shuffle all possible invocations of the methods associated

with the aforementioned threads and record the return value of each

shuffle [4]. Recall that the put(0) method invocation has a void return

type, represented by a "_" string in the outcome list. Also recall that get()

returns whatever was put into QueueWrong first. Both get() and put()

return an Exception if the QueueWrong is empty or full respectively. Ad-

ditionally, note that while we can shuffle operations invoked by differ-

ent threads in any order, the order of the operations within each thread

must be maintained. For example, put(0) from the first thread, whose

method names are colored in red, always comes before get() from the



Chapter 3. A tour of ViolatIntegration 19

Number Combination Outcome
1. [put(0), get(), put(0), get(), put(0)] [_, 0, _, 0, _]
2. [put(0), put(0), get(), get(), put(0)] [_, _, 0, 0, _]
3. [put(0), get(), put(0), get(), put(0)] [_, 0, _, 0, _]
4. [put(0), get(), put(0), put(0), get()] [_, 0, _, _, 0]
5. [put(0), put(0), get(), get(), put(0)] [_, _, 0, 0, _]
6. [put(0), put(0), get(), get(), put(0)] [_, _, 0, 0, _]
7. [put(0), put(0), get(), put(0), get()] [_, _, 0, _, 0]
8. [put(0), put(0), get(), put(0), get()] [_, _, 0, _, 0]
9. [put(0), put(0), get(), get(), put(0)] [_, _, 0, 0, _]

10. [put(0), get(), put(0), put(0), get()] [_, 0, _, _, 0]

Table 3.1. Enumeration of sequential executions of QueueWrong.

same thread. There are 10 ways to shuffle the method invocations this

way, as shown in the Table 3.1. We notice that there are only 4 unique

outcomes, all highlighted in yellow in the Table 3.1. We can now anno-

tate our schema with the 4 expected outcomes.

Next, we can generate tests that run the schema’s threads and their

associated methods in parallel. We can then record the result of each

invocation and check if the recorded outcome is expected. This is done by

one of the two selected analysis back-ends: the Java Concurrency Stress

Testing Tool(JCStress) or Java Pathfinder(JPF).

3.1.1 Interpretation of result

Given the aforementioned context, we expect a developer to interpret the

result in Figure 3.3 as follows:

To expose linearizability violations in the QueueWrong class, Violat explored

75 program paths. Out of the 75, 63 program paths gave "_, 0, _, 0, _" as their

outcome, which aligned with the expected outcome of the given schema. How-

ever, 6 program paths had "_, 0, _, java.lang.Exception, _" as their outcome and



Chapter 3. A tour of ViolatIntegration 20

the remaining 6 had "_, 0, _, java.lang.Exception, _". Both of these outcomes do

not align with the expected results found by enumerating sequential executions.

This violation suggests that the implementation of QueueWrong has executions

that are not linearizable. This violation also suggests that there might be con-

currency bugs in one or more of the methods mentioned in the schema, i.e put()

and get().

3.1.2 How to fix your code based on the results

Since this is a relatively small program, we revisit the get() and put()

methods in the QueueWrong Class in Figure 3.1. We know that when the

tests invoke the schema’s threads in parallel, the same memory locations

held by variables such as indGet, indPut, countElements and items are

concurrently accessed. An easy solution is to synchronize the call to the

methods get() and put() on the current instance (obtain lock on the cur-

rent instance) so that other processes cannot change the shared variables

when a given process is accesing the QueueWrong object. In other words,

we just add the synchronized modifier in front of get() and put() meth-

ods and Violat reports 0 violations after.

3.2 Experiments

Using a similar process to the one mentioned above, we also search for

linearizability violations in ADT implementations written in Java in open

source github repositories using our plugin. Prior to our plugin, Violat

was only tested on classes found in java.util.concurrent package. This



Chapter 3. A tour of ViolatIntegration 21

Number Class Name Number of Violations
1. AccountABA 76
2. QueueWrong 45
3. Account 0
4. LazyList 1
5. Sequence 85
6. StampedAccount 56
7. LinkedList 58
8. MyHashMap 27
9. NonBlocking 16

10. QueueSynchronized 0
Total 365

Table 3.2. Linearizability violations in open source repositories.

is the first time Violat is used to discover violations in user-defined ADTs

and that too in a fully automated manner.

In Table 3.2, we list the number of violations we found for each of the

10 ADT implementations we picked . In the process of doing these exper-

iments, we also found some bugs in the source code of Violat, which we

have discussed in Section 4.4. The source to implementations of classes

mentioned in Table 3.2, their associated repository, instructions on repro-

ducing these results and the output that ViolatIntegration gives is avail-

able in Appendix A.

In summary, in this chapter, we present ViolatIntegration, using ex-

amples, as a user-friendly plugin for IntelliJ IDEA to check linearizability

violations without going into the details of its implementation.



22

Chapter 4

Details of Implementation

This chapter gives a high-level description of the implementation of Vio-

latIntegration and describes some of the interesting details of extending

Violat and integrating it into IntelliJ IDEA as a plugin.

4.1 Structure of ViolatIntegration

Most of the effort of this capstone was dedicated to building ViolatInte-

gration, which can be built from the source provided in Appendix A. Vio-

latIntegration is primarily written in Java with a few supporting features

written in Kotlin. The plugin is designed using the IntelliJ Platform Plu-

gin Template [10] as a base, which makes the the process of configuring

the project scaffold, Continuous Integration(CI), testing and deployment

easier. To build features on top of this template, we utilize the IntelliJ

Platform SDK DevGuide [11]. We also take inspiration from the imple-

mentation and design of several open source projects, most notably the

IntelliJ Platform SDK Code Samples [12] and Infer Integration [9], a plu-

gin that integrates Facebook’s Infer Static Analyzer tool [5], which detects

data races at scale.



Chapter 4. Details of Implementation 23

The most important sections in the implementation of the plugin is in

the src directory of our code-base, which contains packages with imple-

mentations of the features of our plugin. We briefly describe each pack-

age and its contribution to the plugin implementation below.

1. actions: This package contains all actions. Each action invokes a

functionality of the plugin.

2. model: This package contains classes that model Violat’s Installa-

tion, checkers, testers, artifacts, build tools, specification, Violat’s

Version and Java classes representing ADTs. More information about

each element being modelled can be found in Appendix B.

3. pluginconfig: This package contains classes that configure the plu-

gin with information such as the path to a valid Violat installation

at start-up time.

4. resultparsers: This package contains classes that parse the result

of Violat.

5. specgenerator: This package contains classes that generate a spec-

ification (JSON file) from a class file.

6. toolwindows: This package contains classes that describe the UI of

the various forms used in the plugin.

4.2 Developing a Specification Generator

In this section, we describe the aforementioned specgenerator package

in detail. As mentioned in Section 2.2.2, Violat’s final output depends



Chapter 4. Details of Implementation 24

on the specification describing the implementation of the ADT including

features such as the constructor and the method signatures as a JSON

file. However, even for small ADTs, manually writing such a specifica-

tion might end up being long and confusing. Hence, we extend Violat’s

functionality by writing a Specification Generator in this package.

The design of the specgenerator package entails using the Reflection

Application Programming Interface(API) [15] and setting certain param-

eters that Violat expects as default values. In particular, once the user

selects a class to test, the package loads the relevant class at run-time

utilizing Java’s Reflection API. Then, it extracts information such as the

names of the methods associated with this concurrent object, the return

types of the methods and the parameters of the methods. In the gener-

ated specification, the number of threads is set to the default value of 2

and the maximum number of invocations in each thread is set to be 3.

While we can let the user input these values, the values to be inserted

might not be intuitive. After all, theoretically, some concurrency bugs

can only be found when using a large number of threads and invoca-

tions. Fortunately, it is reported that 96% of such bugs can be found with

just 2 threads [4]. Hence, the aforementioned numbers of threads and

invocations are sufficient and enable Violat to get a probabilistically cor-

rect output at a reasonable amount of time. In this way, we automate the

generation of a specification describing an ADT.



Chapter 4. Details of Implementation 25

4.3 Using PSI Files

To further automate linearizability checking, we use IntelliJ’s feature called

Program Structure Interface (PSI), which parses files and creates a syn-

tactic and semantic code model [11]. A PSI file has information about the

hierarchy of elements in a given programming language, which we use

for the following purposes:

1. to get the name of the class along with the associated package when

we select a user-defined ADT,

2. to find the path to the selected class using various packages that

link PSI files with utilities for working with files,

3. to script command line commands and create an execution pipeline

for Violat.

4.4 Bugs Discovered in Violat

Next, in order to create an automated execution pipeline that does not

break, we deal with the shortcomings of Violat. Violat is an academic

tool that is not well tested on data structures outside of those in the

java.util.concurrent package. In this section, we enumerate the bugs

found in Violat’s source code and discuss their resolutions.

1. Violat sometimes gives an error alerting us that there are "No valid

entries in array weights". We raise this as an issue on Violat’s source-

code issue tracker [20], but a resolution is yet to be found. Keeping

this issue in mind, we ensure that our plugin does not break when



Chapter 4. Details of Implementation 26

we get this error by showing that no bugs have been found on the

Violat console.

2. Violat gives a compilation error when the selected ADT implemen-

tation is not packaged and a run-time error when there is a number

in the name of the ADT implementation [17]. The solution to the

second problem is to change the regular expression associated with

the expected name of the ADT implementation. We alert the au-

thor of Violat about this bug, but we ask the user to package their

implementation and avoid numbers in the name of their ADT for

now.

3. Our experiments also reveal that the histories checker fails non-

deterministically for user-defined ADTs. Hence, we avoid adding

this checker to the current implementation of the plugin.

Given these limitations of Violat, we develop features in the plugin that

Violat currently supports.

4.5 Containerized Run-time Environments

We also provide a containerized run-time environment to run Violat. Af-

ter all, end users of ViolatIntegration might struggle to reproduce the

results that we get as it requires a Node.js run-time for JavaScript, Java-8,

Gradle, Maven and Java Pathfinder as an executable in the user’s path.

In fact, some of the issues raised in Violat’s github page are related to the

required run-time environment. Since the aim of our plugin is to make

the process of using Violat as seamless as possible, we provide a suitable



Chapter 4. Details of Implementation 27

run-time environment using containers. A container solves the problem

of getting software to run reliably in different computing environments.

Docker [3] is a popular container that abstracts the problem of setting up

a configuration for your project and also has support in the IntelliJ plat-

form as a Docker Plugin [3]. There are two ways in which the user can

setup Docker to run ViolatIntegration.

1. Docker Image - The user can build a docker image from the Dock-

erfile we provide and run the container from the existing image.

2. Dockerfile - The user can run a container from the Dockerfile itself,

which can be done by building a image from the Dockerfile and

using the associated container of this image.

Alternatively, if the user wishes to build ViolatIntegration from the source,

we provide a Dockerfile that helps the user run an instance of the IDE

with Violat installed. More instructions on how to do this is found on the

develop branch of the associated github repository.

In summary, in this chapter, we discuss our use of APIs, PSI files, con-

tainers and debugging techniques to deliver a fully automated lineariz-

ability checking plugin.



28

Chapter 5

Discussion

In this chapter, we compare ViolatIntegration with the only other simi-

lar industrial tool available for JVM-based languages. We then conclude

with a discussion of future work and the contribution of ViolatIntegra-

tion in making linearizability checking more accessible.

5.1 Comparison with Lin-Check

The only other user friendly tool to expose linearisability violations on

JVM-based languages that we found is Lin-Check [2], different from Check-

Lin mentioned in Section 2.2.1. In this section, we compare Lin-Check

with ViolatIntegration on different grounds.

5.1.1 Process of testing

The process of testing an ADT is simpler in ViolatIntegration. To use

Lin-Check, the user has to download Lin-Check’s artifact and add it as a

dependency and manually write tests for their ADT implementations.

Lin-Check requires detailed information about the execution environ-

ment such as the number of threads to use and different scenarios to



Chapter 5. Discussion 29

@StressCTes(name = "key", gen = IntGen.class, conf = "1:5")
@StressCTest
public class HashMapLinearizabilityTest {

private HashMap<Integer, Integer> map = new HashMap<>();;

@Operation
public Integer put(@Param(name = "key") int key, int value) {

return map.put(key, value);
}
...

@Test
public void test() {

LinChecker.check(HashMapLinearizabilityTest.class);
}
...

}

Fig. 5.1. Example input program for Lin-Check [2].

execute [2]. All of this information can be fed to Lin-Check with anno-

tations such as "@StressCTest" and "@Operation". For example, to test an

implementation of a HashMap using Lin-Check, part of the input that the

user has to give is shown in Figure 5.1. On the other hand, ViolatIntegra-

tion does not require any written inputs from the user while providing

meaningful information about the execution traces that led to lineariz-

ability violations. All that the user has to do is to download the plugin

from the JetBrains marketplace, select the class that they want to test and

click a few buttons on their IDE. Hence, we argue that the process of

testing an ADT for linearizability violations is less complicated using Vi-

olatIntegration. However, we acknowledge that Lin-Check gives a good

framework to test only certain methods and is more customizable at the

cost of complexity.



Chapter 5. Discussion 30

5.1.2 Performance

Since Lin-Check was specifically designed as an industrial tool, it reveals

violations much faster and it always looks for the first possible violation.

In ViolatIntegration, we do give the option to only check 1 program path,

but this does not necessarily give a violation in nuanced data structures

where bugs are harder to detect. However, Lin-Check does not have the

feature to show multiple violations like ViolatIntegration. Hence, in com-

parison to Violat, Lin-Check trades speed for accuracy.

5.1.3 Results

Although presented differently, both Lin-Check and Violat give us mean-

ingful results that inform us which methods, when run concurrently, lead

to linearizability violations. After-all, both Violat and Lin-Check share a

common back-end analysis engine - JCStress. Hence, we argue that both

Lin-Check and Violat are comparable in terms of the presentation of re-

sults.

5.2 Future Work

The focus of this project was to establish an infrastructure on top of Violat

to automate the process of checking linearizability by building a working

plugin in the IntelliJ IDE. We achieved this goal and successfully passed

all of JetBrain’s requirements to publish the initial version of our plugin

manually in the marketplace. Given the successful deployment, releasing

future versions of the plugin will be simpler. Hence, further work can

focus on the following areas:



Chapter 5. Discussion 31

1. Fix the bugs associated with Violat mentioned in Section 4.4.

2. Once the histories checker has been fixed, add visualisation effects

for checking linearizability within IntelliJ.

3. Build a user interface for the user to conveniently change the gen-

erated specification so that the decision on what methods and the

number of threads/invocations to use are easy to specify.

4. Make the user interface of ViolatIntegration more responsive.

We may also add support for Violat for ADTs written in other JVM-based

languages, i.e. Scala and Kotlin, using IntelliJ PSI. Additionally, we may

consider adding support for Lin-Check in the same plugin to give the

user multiple options to check their ADT implementation for lineariz-

ability violations.

5.3 Conclusion

In this work, we introduce the difficulties of testing concurrent programs

and present a plugin that fully automates checking the linearizability cor-

rectness condition. We explore two state-of-the-art academic linearizabil-

ity checking tools, Lin-Check and Violat. We argue that Violat, though

not entirely user-friendly, is more useful as it gives the specific execution

trace that led to a violation. We then describe our work in extending Vio-

lat by adding a specification generator on top of it. Finally, we outline our

discoveries and experience engineering ViolatIntegration using IntelliJ’s

plugin development framework.



Chapter 5. Discussion 32

The experiments in Section 3.2, where we reveal linearizability vio-

lations in ADT implementations from multiple open source repositories,

shows that mainstream developers can now test their Java classes easily

and in an automated fashion using ViolatIntegration. As a result, in addi-

tion to the more customizable Lin-Check industrial tool, users now have

the option to check linearizability violations in their ADT implementa-

tions in a fully automated manner using ViolatIntegration.

We hope for a wider adoption of ViolatIntegation in industrial and

personal code bases. Our expectation is that using ViolatIntegation will

potentially make the arduous process of writing correct concurrent code

easier. As of 4th April 2021, we see 40 downloads in JetBrains market-

place and hope for more downloads. We have even published ViolatInte-

gration as an open source repository on github. We welcome developers

to extend its functionality or edit it in other meaningful ways that will

make linearizability checking more user-friendly.



33

Bibliography

[1] Sebastian Burckhardt, Chris Dern, Madanlal Musuvathi, and Roy

Tan. “Line-Up: A Complete and Automatic Linearizability Checker”.

In: ACM SIGPLAN Notices. Vol. 45. 2010, pp. 330–340 (cit. on p. 7).

[2] Devexperts. Lin-Check. https://github.com/devexperts/lin-

check. Last Accessed: 2021-03-24 (cit. on pp. 2, 15, 16, 28, 29).

[3] Docker. Empowering App Development for Developers. https://www.

docker.com/. Last Accessed: 2021-03-16 (cit. on p. 27).

[4] Michael Emmi and Constantin Enea. “Violat: Generating Tests of

Observational Refinement for Concurrent Objects”. In: Computer

Aided Verification(CAV). 2019, pp. 534–546 (cit. on pp. iii, 7, 9, 12,

13, 18, 24, 41).

[5] Facebook. Infer Static Analyzer. https://fbinfer.com/. Last Ac-

cessed: 2021-03-13 (cit. on p. 22).

[6] Ivana Filipović, Peter O’Hearn, Noam Rinetzky, and Hongseok Yang.

“Abstraction for concurrent objects”. In: Theoretical Computer Sci-

ence 411.51-52 (2010), 4379–4398 (cit. on p. 12).

[7] Maurice Herlihy. Art of Multiprocessor Programming. Elsevier Sci-

ence amp; Technology, 2008, pp. 45–48 (cit. on pp. 1, 4, 5, 7).

https://github.com/devexperts/lin-check
https://github.com/devexperts/lin-check
https://www.docker.com/
https://www.docker.com/
https://fbinfer.com/


Bibliography 34

[8] Maurice Herlihy and Jeannette Wing. “Linearizability: A Correct-

ness Condition for Concurrent Objects”. In: ACM Transactions on

Programming Languages and Systems 12 (1990), pp. 463– (cit. on pp. 1,

7).

[9] Friedrich Hudinjan. Infer Integration - Plugins: JetBrains. https://

plugins.jetbrains.com/plugin/12847-infer-integration. Last

Accessed: 2021-03-17 (cit. on p. 22).

[10] JetBrains. Intellij Platform-plugin-template. https://github.com/

JetBrains/intellij-platform-plugin-template#plugin-template-

structure. Last Accessed: 2021-03-14 (cit. on p. 22).

[11] JetBrains. IntelliJ Platform SDK - Help. https://plugins.jetbrains.

com/docs/intellij/welcome.html. Last Accessed: 2021-03-21 (cit.

on pp. 22, 25).

[12] JetBrains. IntelliJ Platform SDK Code Samples. https://github.com/

JetBrains/intellij-sdk-code-samples. Last Accessed: 2021-03-

21 (cit. on p. 22).

[13] Nikita Koval, Maria Sokolova, Alexander Fedorov, Dan Alistarh,

and Dmitry Tsitelov. “Testing concurrency on the JVM with lincheck”.

In: PPoPP ’20: 25th ACM SIGPLAN, California, USA, February 22-26,

2020. ACM, 2020, pp. 423–424 (cit. on p. 7).

[14] Ethan Mollick. “Establishing Moore’s Law”. In: Annals of the History

of Computing, IEEE 28 (Aug. 2006), pp. 62 –75. DOI: 10.1109/MAHC.

2006.45 (cit. on p. 1).

https://plugins.jetbrains.com/plugin/12847-infer-integration
https://plugins.jetbrains.com/plugin/12847-infer-integration
https://github.com/JetBrains/intellij-platform-plugin-template##plugin-template-structure
https://github.com/JetBrains/intellij-platform-plugin-template##plugin-template-structure
https://github.com/JetBrains/intellij-platform-plugin-template##plugin-template-structure
https://plugins.jetbrains.com/docs/intellij/welcome.html
https://plugins.jetbrains.com/docs/intellij/welcome.html
https://github.com/JetBrains/intellij-sdk-code-samples
https://github.com/JetBrains/intellij-sdk-code-samples
https://doi.org/10.1109/MAHC.2006.45
https://doi.org/10.1109/MAHC.2006.45


Bibliography 35

[15] Oracle. The Reflection API. https://docs.oracle.com/javase/

tutorial/reflect/index.html. Last Accessed: 2021-03-29 (cit. on

p. 24).

[16] Burcu Kulahcioglu Ozkan, Rupak Majumdar, and Filip Niksic. “Check-

ing linearizability using hitting families”. In: Proceedings of the 24th

ACM SIGPLAN. ACM, 2019, pp. 366–377 (cit. on pp. 3, 4, 7, 9, 10).

[17] Alaukik Pant. Violat Tests. https://github.com/alaukiknpant/

violatTests. Last Accessed: 2021-03-10. 2021 (cit. on pp. 13, 26).

[18] Aleksey Shipilev. Code Tools: jcstress. https://wiki.openjdk.java.

net/pages/viewpage.action?pageId=42598465. Last Accessed:

2021-03-24 (cit. on p. 12).

[19] Herb Sutter. A Fundamental Turn Toward Concurrency in Software.

https://www.technologyreview.com/2016/03/23/8768/intel-

puts- the- brakes- on- moores- law/. Last Accessed: 2021-03-18.

MIT Technology Review, 2005 (cit. on p. 1).

[20] Violat Issue Tracker. IRangeError: Chance: No valid entries in array

weights · Issue 10 · michael-emmi/violat. https://github.com/michael-

emmi/violat/issues/10. Last Accessed: 2021-03-16 (cit. on p. 25).

[21] Willem Visser, Corina Pasareanu, and Sarfraz Khurshid. “Test in-

put generation with Java PathFinder”. In: ACM SIGSOFT Software

Engineering Notes. Vol. 29. July 2004, pp. 97–107 (cit. on pp. 12, 41).

[22] Michael Whittaker. Linearizability Visualizer. https://github.com/

mwhittaker/linearizability. Last Accessed: 2021-02-10. 2015 (cit.

on p. 4).

https://docs.oracle.com/javase/tutorial/reflect/index.html
https://docs.oracle.com/javase/tutorial/reflect/index.html
https://github.com/alaukiknpant/violatTests
https://github.com/alaukiknpant/violatTests
https://wiki.openjdk.java.net/pages/viewpage.action?pageId=42598465
https://wiki.openjdk.java.net/pages/viewpage.action?pageId=42598465
https://www.technologyreview.com/2016/03/23/8768/intel-puts-the-brakes-on-moores-law/
https://www.technologyreview.com/2016/03/23/8768/intel-puts-the-brakes-on-moores-law/
https://github.com/michael-emmi/violat/issues/10
https://github.com/michael-emmi/violat/issues/10
https://github.com/mwhittaker/linearizability
https://github.com/mwhittaker/linearizability


36

Appendix A

Artifacts

We provide the source code of our plugin, the plugin delivered as a com-

pressed file in the JetBrains marketplace and the code to reproduce the

experiments we run in open source repositories using our plugin.

A.1 Artifact Check-list

1. Source code:

We can build the project from source by opening the source code in

IntelliJ and running the Run Plugin Gradle task. We can find the

source code in the repository available in the following link:

https://github.com/alaukiknpant/intellijViolatPlugin.

2. Plugin in Marketplace:

The plugin has passed all of JetBrains’ verification requirements

and is published in JetBrains marketplace in the following link:

https://plugins.jetbrains.com/plugin/16397-violatintegration.

3. Reproducible Experiments:

https://github.com/alaukiknpant/intellijViolatPlugin
https://plugins.jetbrains.com/plugin/16397-violatintegration


Appendix A. Artifacts 37

Once the plugin has been downloaded in our IntelliJ IDE, we can

reproduce the results presented in the experiments mentioned in

Section 3.2. The repository associated with the experiments can be

found in the following link:

https://github.com/alaukiknpant/usingViolatIntegration.

A.2 Requirements to Run the Artifacts

1. Node.js runtime for JavaScript: version 10.0 or greater

2. Java SE Development Kit: version 8

3. Gradle build tool: at least version 6

4. Maven project management tool

5. Java Pathfinder(JPF) available in your executable

More information on how to add JPF as an executable can be found in the

following link:

http://javapathfinder.sourceforge.net/Running_JPF.html.

https://github.com/alaukiknpant/usingViolatIntegration
http://javapathfinder.sourceforge.net/Running_JPF.html


38

Appendix B

ViolatIntegration Tutorial

We present a tutorial showing a step-by-step process to test the QueueWrong

class shown in Figure 3.1.

B.1 Installation of ViolatIntegration

There are two ways to install the plugin. In the Settings/Preferences dia-

log , we select Plugins and search for ViolatIntegration and click install.

Alternatively, the plugin archive is also available in the JetBrains Market-

place as a ZIP file.1 After downloading the ZIP file, the user must again

navigate to Settings/Preferences dialog , select Plugins and click on the

Settings button and then finally click Install Plugin from Disk. After

this, the user must select the archive file and they are ready to detect lin-

earizability violations in the IntelliJ Platform .

B.2 ViolatIntegration Settings

Once the plugin has been installed, the user has to provide a valid path

to their Violat installation using the Violat | Settings tab in their menu

1https://plugins.jetbrains.com/plugin/16397-violatintegration

https://plugins.jetbrains.com/plugin/16397-violatintegration


Appendix B. ViolatIntegration Tutorial 39

Fig. B.1. ViolatIntegration’s Setting.

bar as shown in Figure B.1. If the user does not have a valid Violat instal-

lation, the plugin also comes with a link that guides the user to Violat’s

source code.

B.3 Run Configuration

IntelliJ IDEA utilizes run configurations in order to represent a set of

startup properties for running an application. Before detecting the vi-

olations associated with the QueueWrong class, we need to specify a run

configuration for Violat. A Violat Run Configuration can be added by

navigating to Run | Edit Configurations in the menu bar at the top of

the screen and choosing Violat via the + button. After following these

steps, a window similar to the one shown in Figure B.2 appears. The user

should keep an eye for Run Configuration Errors such as the one shown



Appendix B. ViolatIntegration Tutorial 40

Fig. B.2. Run Configuration.

in Figure B.2, where we get an error because no Checker has been selected.

Now that we have opened the Violat Run Configuration Editor, we need

to select our implementation of the QueueWrong class that we want to

test. We can do so by clicking on the folder icon in the text field with a

browse button next to the Choose Class tag, as pointed by the red arrow in

Figure B.3. Then, a window showing the file structure of our project ap-

pears, from which we can select the QueueWrong class. After selecting the

relevant class, the name of the class along with its package name appears

in text field. At this point, we will enumerate the the next configurations

that the user must set up, which is also illustrated in Figure B.4.

1. Violat Installation: The user can choose which installation they

want to use out of all the installations of Violat that they have added.



Appendix B. ViolatIntegration Tutorial 41

Fig. B.3. Run Configuration when choosing a class.

2. Tester: There are two testers that are integrated into Violat. We can

use either of the testers, although JPF is the recommended tester.

(a) JPF (Java Pathfinder): JPF is a system developed by NASA

used to verify executable Java bytecode programs for several

purposes. In our case, Java Pathfinder exhaustively explores

program paths via partial-order reduction and finds consis-

tency violations, and thus linearizability violations [4, 21].

(b) JCStress (Java Concurrency Stress testing tool): JCStress is used

to produce a number of tests to stress test program paths to

find consistency violations, and thus linearizability violations.

JCStress is not the recommended tester.

3. Check and Add ADT Button: This button checks if the selected



Appendix B. ViolatIntegration Tutorial 42

Fig. B.4. Run Configuration when selecting necessary fields.

implementation of the ADT is valid. If yes, it creates a specification

(JSON file) and artifact (JAR file) associated with the ADT imple-

mentation and adds the path of the generated files in the relevant

text boxes. The text field placed above the Check and Add ADT But-

ton is highlighted in green if the entire process is successful and in

red otherwise. Note that this process might take a bit of time as it

involves generating an artifact and a specification.

4. Check and Add Specification Button: If we press this button, we

can add the aforementioned generated specification (JSON file) de-

scribing our ADT, or choose a specification we wrote ourselves or

edit the generated specification and add it to our Run Configura-

tion. The associated text field will be highlighted in green if suc-

cessful and in red otherwise.



Appendix B. ViolatIntegration Tutorial 43

5. Add Checkers: We must select exactly one checker using the + sign.

The possible options for checkers are:

(a) VALIDATOR: If we select this checker, Violat gives us execu-

tions that that do not yield the predicted outcomes, signaling

a violation to linearizability.

(b) HISTORIES: This checker generates figures relating to check-

ing linearizability violations. Unfortunately, this feature was

not well tested in Violat for user defined ADTs. Hence, we

add a "[IN PROGRESS]" tag next to it in anticipation that this

feature will be fixed in future releases of Violat.

6. Check and Add Artifacts Button: If we press this button, the path

to the aforementioned generated artifact (Jar file) or an artifact we

specify ourselves is added to the Run Configuration. The text field

associated with artifacts will then be highlighted in green if success-

ful and in red otherwise.

7. Show all Violations Checkbox: It can take a while to uncover all

violations via Violat as the testers can explore a large number of

program paths. Hence, not checking this box signals Violat to test

only 1 program path. Not checking this box can yield violations

faster, but can also give us less violations or incorrectly signal that

there are no violations.

8. Apply Button: This button just saves the run configuration that will

be applied to Violat. We press this button once we are done with all

the aforementioned fields.



Appendix B. ViolatIntegration Tutorial 44

Fig. B.5. Different ways of running ViolatIntegration.

B.4 Getting and Interpreting the Results

Once we have set up the Run Configuration in the manner mentioned

above, we can get the results associated with our QueueWrong Class by

going to Violat | Run or clicking the play button next to the sign that

shows the name of our generated Violat Run Configuration, as shown

in Figure B.5. For the QueueWrong Class, we get a total of 45 violations,

shown in Figure 3.2.


	Acknowledgements
	Abstract
	Background and Motivation
	Linearizability
	Example 1: A linearizable history H1.
	Example 2: A non-linearizable history H2.
	Key Properties of Linearizability


	Contributions
	Paper Outline

	Tools for Linearizability Checking
	On Linearizability Checking
	Review of Tools
	Check-Lin
	Principle
	Shortcomings of Check-Lin

	Our Choice: Violat
	Principle
	Shortcomings of Violat



	A tour of ViolatIntegration
	Motivating Example
	Interpretation of result
	How to fix your code based on the results

	Experiments

	Details of Implementation
	Structure of ViolatIntegration
	Developing a Specification Generator
	Using PSI Files
	Bugs Discovered in Violat
	Containerized Run-time Environments

	Discussion
	Comparison with Lin-Check
	Process of testing
	Performance
	Results

	Future Work
	Conclusion

	Bibliography
	Artifacts
	Artifact Check-list
	Requirements to Run the Artifacts

	ViolatIntegration Tutorial
	Installation of ViolatIntegration
	ViolatIntegration Settings
	Run Configuration
	Getting and Interpreting the Results


