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Chapter 1

Introduction

The notion of automatic programming has been considered as a "holy

grail" [15] by computer scientists, and for good reason – why work when

you can delegate work? One such example of automatic programming

is program synthesis: given a user-provided specification, the program

synthesizer constructs a procedure that satisfies the specification. That is,

the role of the user is to simply inform the machine about what they de-

sire; the machine then, through some – to the user – highly magical pro-

cess, churns out a program that does exactly what the user wants. Suc-

cesses of the field include FlashFill, a feature of Excel 2013 that can gener-

ate spreedsheet table transformations from examples [16], code comple-

tion in IDEs [22], and the recent observation that the synthesis of correct-

by-construction imperative C-like programs with pointers can be imple-

mented in Separation Logic1 as proof search [21]. This observation, and

its tool SUSLIK, forms the basis of this project.

1A program logic used variously in Facebook’s static analysis tool Infer [7], and the
Verifiable Software Toolchain (VST) project [1]. Will be elaborated on in chapter 2.
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Furthermore, constructing programs in this fashion comes with nu-

merous other benefits beyond appealing to the laziness of the program-

mer. Software bugs, often extremely costly,2 are an inevitable product

of programming, especially when we are concerned with stateful pro-

grams. Writing good specifications that describe what a program should

do is very helpful in this regard – we can quickly verify that our program,

for a certain input, satisfies this specification. However, it is significantly

more difficult to ensure that this program satisfies the specfication for all

possible program inputs. Consequently, the automatic generation of pro-

grams that satisfy – in a fashion that can be proven mathematically – the

provided specifications is incredibly appealing.

1.1 The Problem with Specifications

As with most things in life, however, one should not trust in claims that

are too good to be true. Program synthesis comes with its own set of

issues. This project seeks to remedy one of the most glaring – the trade-off

between strong and concise specifications [9]. Like a mischieveous genie,

synthesizers tend to provide users with what they asked for, rather than

what they meant: if a specification is verbose, its own formulation may be

considerably more difficult than writing the program itself; on the other

hand, if it is too concise, the intent of the user might not be captured by

the synthesized program. While a deductive program synthesiser like

SUSLIK generates correct-by-construction programs from their declarative

2One need only look at the Ariane 5 Disaster [10], which resulted because of software
trying to cast a 64-bit variable to 16-bit; numerous bugs in Ethereum resulting in losses
amounting to around 450 million [2], etc.
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specifications, ultimately this "correctness" is reliant on the specification

being able to encapsulate completely what the user means [4, 11].

1.2 Input-Output Examples

This project explores one possible solution to this. We extend SUSLIK

by allowing it to take concrete, user-provided input-output examples, in

addition to an incomplete specification. Consequently, the synthesizer

can use these input-output examples to restrict the search space of SUS-

LIK, and so eliminate the possibility of programs that were semantically

unintended by the user. We draw inspiration from the idea of Storyboard

Programming [24] that allows for the transformation of a visually intuitive

graphical representation of an example into a concise textual format.

1.3 Contribution of this Thesis

This thesis enhances SUSLIK with example-based synthesis by extending

on SUSLIK’s synthesis algorithm to allow for the evaluation of candidate

programs with examples, and by incorporating examples into SUSLIK’s

rules. Notably, these examples should not only be easy to provide, but

should also be able to precisely capture the intent of the user in a number

of concrete scenarios. The thesis proceeds as follows. Firstly, we present

an overview of program synthesis. Then, we discuss our representation

of input-output examples, before showing how we extended SUSLIK’s

basic synthesis algorithm towards example-driven synthesis. Further-

more, we demonstrate how we incorporate examples into SUSLIK’s rules.

Finally, we conclude with case studies, and discuss future work.
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Chapter 2

Background and Overview

The field of program synthesis aims to simplify programming by reduc-

ing the task of writing programs to writing specifications. Users ex-

press their intention through specifications. Then, a program synthesizer

attempts to construct a program that provably satisfies the specification.

There are numerous types of program synthesis, ranging from deduc-

tive, inductive, type-directed, and example-driven. Here, we build on

SUSLIK, an existing deductive synthesizer for programs with pointers.

Recent work has enhanced SUSLIK with a post-hoc certification proce-

dure, providing a fully automated interface for certified synthesis [26].

2.1 Program Synthesis

SUSLIK is a deductive synthesizer. This means that it begins from a user-

provided logical specification. The specification is declarative – that is, it

describes what the heap, or machine state, of the program should look

like before and after a program is run, without saying how to get from

one to the other. The program logic used by SUSLIK for its program

specifications is Separation Logic, an extension of Hoare Logic [5, 14].
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2.1.1 About Hoare Logic

Hoare logic is a formal system that allows one to reason rigorously about

the correctness of computer programs [5]. Hoare logic centers around the

notion of Hoare triples, which are assertions about a machine’s state before

and after some program is run on it. A Hoare triple takes the form of

{P} c {Q}

where P is referred to as the precondition, and Q is referred to as the

postcondition. The Hoare triple {P} c {Q} expresses that whenever we

are given a machine state that satisfies P , the procedure c transforms this

machine state such that Q is satisfied, provided that c terminates.

2.1.2 About Separation Logic

However, Hoare logic does not allow for reasoning about stateful pro-

grams involving pointer manipulations. Separation Logic (SL) bridges

this gap and allows for similarly rigorous reasoning about heap-manipulating

programs with pointers [23]. It is based upon the notion of a separating

conjunction, denoted by ∗. Then, P ∗ Q asserts that P and Q hold for

separate, disjoint portions of memory.

The separating conjunction has a property that makes it extremely

useful – it supports in-place reasoning, whereby only a given portion of a

given pre/postcondition is updated in-place, mirroring the operational

locality of heap update [19]. This makes it amenable to exploitation by

the Curry-Howard isomorphism: one can adapt SL to derive a program

that transforms one state into the other instead of expecting a witness
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program c [25]. This observation captures SUSLIK’s approach to program

synthesis, through the framework of Synthetic Separation Logic [21].

2.1.3 About Synthetic Separation Logic

Synthetic Separation Logic (SSL) is a system of deductive synthesis rules

which prescribes how to decompose SL specifications, while synthesizing

the computations by composing the emitted code.

SUSLIK’s deductive synthesis functions via a proof search in a gener-

alized proof system that combines entailment with Hoare-style reasoning

for as of yet unknown programs [21]. SSL provides a transforming entailment

judgement P Q| c. The statement P Q| c denotes the existence of a

witness program c such that the Hoare triple {P} c {Q} holds, i.e., that

the assertion P transforms intoQ via c. This unifies SL entailment P ` Q

and verification using Hoare logic as {P} c {Q}.

2.1.4 About SUSLIK’s Synthesis

Now, we can describe SUSLIK’s formalization of the synthesis problem.

Program synthesis from a SL specification P ,Q amounts to finding a pro-

gram c, and a derivation of the SSL assertion Γ; P Q| c, where Γ denotes

the machine’s environment (set of immutable program variables).

SUSLIK performs a backtracking search in the space of SSL deriva-

tions, reducing the specification at each step until we get a trivial specifi-

cation. Finally, the witness program emitted at each step of the SSL rules

is composed, and when read in reverse is the synthesized program!

As a taste for this synthesis procedure, consider the specification de-

scribed in Equation 2.1 for a program that swaps the values stored at two
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EMP
Existentials(Γ,P ,Q) = ∅ ` φ⇒ ψ

Γ; {φ; emp} {ψ; emp}| skip

READ
a ∈ GV(Γ,P ,Q) y /∈ Vars(Γ,P ,Q)

Γ ∪ {y} ; [y/a]{φ; 〈x, ι〉 7→ a ∗ P} [y/a]{Q}| c
Γ; {φ; 〈x, ι〉 7→ a ∗ P} {Q}| let y = ∗(x + ι); c

WRITE
Vars(e) ⊆ Γ e 6= e′

Γ; {φ; 〈x, ι〉 7→ e ∗ P} {ψ; 〈x, ι〉 7→ e ∗Q}| c
Γ;
{

φ; 〈x, ι〉 7→ e′ ∗ P
}
 

{ψ; 〈x, ι〉 7→ e ∗Q}

∣∣∣∣ ∗(x + ι) = e; c

FRAME
Existentials(Γ,P ,Q) ∩Vars(R) = ∅

Γ; {φ; P} {ψ; Q}| c
Γ; {φ; P ∗ R} {ψ; Q ∗ R}| c

(A) Basic rules of SSL.

EMP with c7 = skip
{x, y, a2, b2} ;

{
emp

}
 
{

emp
}

c6 = c7
FRAME

{x, y, a2, b2} ;
{

y 7→ a2

}
 
{

y 7→ a2

}∣∣∣∣ c6

c5 = ∗y = a2; c6
WRITE

{x, y, a2, b2} ;
{

y 7→ b2

}
 
{

y 7→ a2

}∣∣∣∣ c5

c4 = c5
FRAME

{x, y, a2, b2} ;
{

x 7→ b2 ∗ y 7→ b2
}
 
{

x 7→ b2 ∗ y 7→ a2
}∣∣∣ c4

c3 = ∗x = b2; c4
WRITE

{x, y, a2, b2} ;
{

x 7→ a2 ∗ y 7→ b2
}
 
{

x 7→ b2 ∗ y 7→ a2
}∣∣∣ c3

c2 = let b2 = ∗y; c3
READ

{x, y, a2} ;
{

x 7→ a2 ∗ y 7→ b
}
 {x 7→ b ∗ y 7→ a2}

∣∣∣∣ c2

c1 = let a2 = ∗x; c2
READ

{x, y} ;
{

x 7→ a ∗ y 7→ b
}
 {x 7→ b ∗ y 7→ a}

∣∣∣ c1

(B) Derivation of swap(x,y)

pointers. SUSLIK derives the witness program swap that satisfies Equa-

tion 2.1 as follows. In Figure 2.1a, we have the basic SSL inference rules.

{x 7→ a ∗ y 7→ b} void swap(loc x, loc y) {x 7→ b ∗ y 7→ a} (2.1)

Figure 2.1b shows the derivation of the program using these rules from

the bottom-up. At each rule application, we have some emitted code ci.

Composing the code from the bottom-up, we have the witness program

c, i.e., the swap procedure, that satisfies the specification in Equation 2.1.

SUSLIK’s synthesis procedure will be examined in greater detail in chap-

ter 3, but for now, Figure 2.1b provides a flavour of how the process is

orchestrated.

2.1.5 About Program Synthesis in General

Up to now, we have only described deductive synthesis, a prominent ap-

proach to program synthesis.
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This process is deductive because we repeatedly apply deductive in-

ference rules to formally prove that a witness program that satisfies the

provided declarative specification exists [18]. Via the Curry-Howard iso-

morphism between programs and constructive proofs, a deductive syn-

thesizer like SUSLIK then extracts, for a given specification, the witness

program from the proof derivation. Owing to the soundness of this pro-

cess, we know that the witness program must therefore be correct-by-

construction according to the specification.

On the other hand, inductive synthesis takes as its specification a set

of example program executions [13]. These example program executions

specify behavior for only a subset of all possible inputs. The synthesizer

then inductively generalizes them into a program that can handle all such

possible inputs. One can immediately see the problem with such an ap-

proach: we cannot represent all possible inputs, and so specifications are

necessarily incomplete. Thus, the synthesizer is prone to generating erro-

neous (in both senses of being wrong wrt. the provided specification, and

of not matching the user’s intent) programs. Nevertheless, for domain-

specific use-cases like automated programming of bit-vectors, or string

transformations in spreadsheets [16, 17], such an approach is useful since

defining a complete specification is intractable, and yet, up to a certain

threshold, inaccurate synthesis might still be acceptable.

2.2 Example-Driven Synthesis

Example-driven synthesis is a form of inductive synthesis; its goal is to

generate a program that matches a given set of input-output examples.
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{r 7→ x ∗ ls(x, S)} listcopy(r) {r 7→ y ∗ ls(x, S) ∗ ls(y, S)}

FIGURE 2.2: SL specification, and graphical description, for listcopy

To see why this enhancement to SUSLIK might be useful, consider a pro-

cedure listcopy that duplicates a list [9]. Figure 2.2 describes its SL spec-

ification, and a graphical description. The predicate ls(x, S) in the pre-

and postcondition denotes that we have a symbolic heap corresponding

to a linked list, with the head at pointer x, containing elements from the

set S. Then, the postcondition simply describes the expected behavior of

our listcopy function: the final heap, in addition to containing the orig-

inal linked list, will also contain another linked list starting from y with

elements from S.

Observe that the specification is deliberately concise: we do not spec-

ify anything about the structure of the linked lists, nor do we place any

constraints on the elements in the list (except that they belong to S). It is

our hope that the synthesizer is intelligent enough to avoid these pitfalls.

SUSLIK synthesizes the program described in Figure 2.3. It is easy to

check that the program satisfies the ascribed specification in Figure 2.2.

Furthermore, it correctly duplicates the original linked list, preserving

the ordering of the contents. However, there is something strange about

the structure of the resulting linked lists – the tails of each consecutive

node in the two linked lists are swapped! While the synthesized pro-

gram satisfies the specification, and is even correct in certain settings, in
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1 void listcopy (loc r) {
2 let x = *r;
3 if (x = 0) {
4 } else {
5 let v = *x;
6 let nxt = *(x + 1);
7 *r = nxt;
8 listcopy(r);
9 let y1 = *r;

10 let y = malloc(2);
11 *(x + 1) = y1;
12 *r = y;
13 *(y + 1) = nxt;
14 *y = v;
15 } }

FIGURE 2.3: The synthesized listcopy program

a concurrent setting this program is actually incorrect: ls(x,S) cannot be

depended upon to remain unchanged.

Recent work has introduced a number of SL extensions that allow for

read-only annotations on the symbolic heap [3, 6, 8], the most relevant

of which directly extends SUSLIK [9]. While providing annotations alle-

viates the problem of program specification, one must still perform the

identical task of specifying exactly which segments are to be made read-

only. A more intuitive solution might be to allow users to provide exam-

ples of what they mean. This is exactly the task of this thesis.

2.2.1 Example-Driven Synthesis for Functional Programs

Program synthesis – deductive, example-driven, or otherwise – has typ-

ically operated in the domain of functional programs involving struc-

tured data, recursion, and higher-order functions in typed programming

languages. Purely functional programs treat all functions as pure, and

so do not have any side-effects [12, 20]. In contrast, impure procedures

can have side-effects like modifying the program state and mutable data.
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Consequently, functional programs tend to be easier to reason about and

formally verify. A corollary of this is that program synthesis for purely

functional programs tends to be simpler. There exist numerous exam-

ples of example-driven program synthesis [12, 20], but most of them op-

erate in the domain of functional programs. Storyboard programming is

an exception that works for data-structures with pointers [24]. How-

ever, it does not guarantee that its synthesized programs are correct-by-

construction, while SUSLIK does. Existing works have demonstrated that

using examples can prune the search space of the synthesis procedure,

enabling efficient synthesis of non-trivial functional programs [20]. Con-

sider the following toy example expressed in OCaml, a functional lan-

guage.

1 (* Goal type refined by input/output ‘‘example worlds’’ *)
2 let stutter : list -> list |>
3 { [] => []
4 | [0] => [0;0]
5 | [1;0] => [1;1;0;0]
6 } = ?
7 (* Output: synthesized implementation of stutter *)
8 let stutter : list -> list =
9 let rec f1 (l1:list) : list =

10 match l1 with
11 | Nil -> l1
12 | Cons(n1, l2) -> Cons(n1, Cons(n1, f1 l2))
13 in f1

FIGURE 2.4: The examples and synthesized program for stutter

By treating examples as “example worlds” (i.e. a hypothetical evalu-

ation of stutter), candidate terms are evaluated early in the search pro-

cess, pruning the search space dramatically [20]. Furthermore, this allows

one to extract type and example information to synthesize recursive func-

tions efficiently. This idea forms the basis for how we seek to prune our

search space and reject candidate programs based on examples.
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Chapter 3

Synthesis with Examples,

Algorithmically

In this chapter, we discuss the extension of SUSLIK towards example-

driven synthesis.

First, we deconstruct synthesis by discussing the derivation steps in-

volved in synthesizing pick, our motivating example for this chapter.

pick is a simple procedure that, given two pointers, assigns an arbi-

trary constant as their referends. pick was chosen because some of the

rules involved in synthesizing it are non-deterministic. By taming non-

determinism, examples can guide the synthesizer towards a particular

program.

Having seen synthesis in action, we then elaborate on SUSLIK’s syn-

thesis algorithm. Finally, we present our extension, which uses examples

to prune the search space of SUSLIK.
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3.1 SUSLIK’s Deductive Synthesis Algorithm

Consider the following specification for pick:

{x 7→ a ∗ y 7→ b} void pick(loc x, loc y) {x 7→ z ∗ y 7→ z} (3.1)

3.1.1 Program Derivation

We have the resulting program derivation for pick:

EMP with c8 = skip
{x, y, a2, b2} ;

{
emp

}
 
{

emp
}

c7 = c8
FRAME

{x, y, a2, b2} ;
{

x 7→ b2
}
 
{

x 7→ b2
}∣∣∣ c7

c6 = ∗x = b2; c7
WRITE

{x, y, a2, b2} ;
{

x 7→ a2
}
 
{

x 7→ b2
}∣∣∣ c6

c5 = c6
FRAME

{x, y, a2, b2} ;
{

x 7→ a2 ∗ y 7→ b2
}
 
{

x 7→ b2 ∗ y 7→ b2
}∣∣∣ c5

c4 = c5
SUBSTRIGHT

{x, y, a2, b2} ; {x 7→ a2 ∗ y 7→ b2} 
{
b2 = z ; x 7→ z ∗ y 7→ b2

}∣∣∣ c4

c3 = c4
UNIFYHEAPS

{x, y, a2, b2} ;
{

x 7→ a2 ∗ y 7→ b2
}
 
{

x 7→ z ∗ y 7→ z
}∣∣∣ c3

c2 = let b2 = ∗y; c3
READ

{x, y, a2} ;
{

x 7→ a2 ∗ y 7→ b
}
 {x 7→ z ∗ y 7→ z}

∣∣∣ c2

c1 = let a2 = ∗x; c2
READ

{x, y} ;
{

x 7→ a ∗ y 7→ b
}
 {x 7→ z ∗ y 7→ z}

∣∣ c1

FIGURE 3.1: Derivation of pick(x,y) as c1.

Before we go into detail about the rules used at each step, let us first

traverse the program derivation of the specification described in Equa-

tion 3.1. Figure 3.1 shows the derivation of pick using SSL rules, namely

FRAME, EMP, READ, WRITE, UNIFYHEAPS, and SUBSTRIGHT. The proof

tree should be read bottom-up, and each subgoal’s witness program is

named ci, where c1 corresponds to pick’s body. Each intermediate sub-

goal has part of its specification highlighted in gray boxes , which are the
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parts of the specification used in the particular SSL rule. The goal of the

synthesis process is to "empty" the spatial components of the pre/post

condition, so that we can conclude the derivation via the EMP rule.

Beginning from the SL specification (Equation 3.1), the referends of

the program variable x are first READ in, turning into a new program

variable a2 that is fresh in the original goal. This produces the witness

program let a2 = ∗x. The same is done for the referends of the program

variable y, producing the witness program let b2 = ∗y. Next, observe

that in the spatial component of the postcondition, we have an existen-

tial variable z (i.e., a variable in the postcondition that doesn’t appear in

the precondition). Thus, the postcondition allows x and y to point to any

value, so long as they point to the same value. Because z can be any ar-

bitrary value, a unifying substitution σ must be found for some heaplets

of the pre- and postcondition. This is achieved with help of the UNIFY-

HEAPS rule, which non-deterministically selects a heaplet and a unifying

substitution. Taming this non-determinism will be significant in extend-

ing SUSLIK with example-driven synthesis, as will be explained later.

We make a simplifying assumption that UNIFYHEAPS selects the pointer

y and its referend, and unifies it with b2. Note that, as it is non-deterministic,

UNIFYHEAPS could have very well selected the heaplet x 7→ z in the

postcondition, or chose to unify with x 7→ a2 in the precondition instead.

Now, instead of pointing to z, since UNIFYHEAPS has unified z with b2,

y 7→ z is replaced with y 7→ b2, and b2 = z is introduced into the pure

component of the postcondition. The unifying substition σ := [z = b2]

is then applied with the SUBSTRIGHT rule to the postcondition, thereby

also transforming x 7→ z to z 7→ b2.
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Finally, the matching heaplets y 7→ b2 in the pre- and postcondition

can be eliminated with FRAME, leaving us with x 7→ a2 in the precon-

dition and y 7→ b2 in the postcondition. Applying WRITE and FRAME

gives us empty heaplets in the pre- and postcondition together with the

witness program for WRITE, ∗x = b2, and a simple application of EMP

concludes the program derivation. This gives us the synthesized pro-

gram c1, described in Figure 3.2.

1 void pick (loc x, loc y) {
2 let a2 = *x;
3 let b2 = *y;
4 *x = b2;
5 }

FIGURE 3.2: The synthesized pick program

3.1.2 Basic Rules of SSL

The basic rules that were used in the program derivation are represented

formally in Figure 3.3 [21].

The EMP rule is applicable when we have empty heaplets in the pre-

and postcondition, requiring that no existentials remain in the goal and

that the pure precondition implies the pure postcondition. This pure for-

mulae reasoning (the premise ` φ ⇒ ψ) is resolved via an invocation of

an oracle. EMP is a terminal rule, and thus its witness program is skip.

For brevity, we focus on the UNIFYHEAPS rule. The full Zoo of SSL

rules, along with its formal treatment, can be found at [21]. UNIFYHEAPS

deals with existentials in the heap by attempting to find a unifying substi-

tution σ for some sub-heaps of the pre- and postcondition. Because it can

freely choose a sub-heap and a unifying substitution (with the restriction
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EMP
Existentials(Γ,P ,Q) = ∅ ` φ⇒ ψ

Γ; {φ; emp} {ψ; emp}| skip

READ
a ∈ GV(Γ,P ,Q) y /∈ Vars(Γ,P ,Q) Γ ∪ {y} ; [y/a]{φ; 〈x, ι〉 7→ a ∗ P} [y/a]{Q}| c

Γ; {φ; 〈x, ι〉 7→ a ∗ P} {Q}| let y = ∗(x + ι); c

WRITE
Vars(e) ⊆ Γ e 6= e′ Γ; {φ; 〈x, ι〉 7→ e ∗ P} {ψ; 〈x, ι〉 7→ e ∗Q}| c

Γ;
{

φ; 〈x, ι〉 7→ e′ ∗ P
}
 

{ψ; 〈x, ι〉 7→ e ∗Q}

∣∣∣∣ ∗(x + ι) = e; c

FRAME
Existentials(Γ,P ,Q) ∩Vars(R) = ∅ Γ; {φ; P} {ψ; Q}| c

Γ; {φ; P ∗ R} {ψ; Q ∗ R}| c

UNIFYHEAPS
[σ]R′ = R frameable

(
R′
)

∅ 6= dom (σ) ⊆ Existentials(Γ,P ,Q) Γ; {P ∗ R} [σ]
{

ψ; Q ∗ R′
}∣∣ c

Γ; {φ; P ∗ R} 
{

ψ; Q ∗ R′
}∣∣ c

SUBSTRIGHT
x ∈ Existentials(Γ,P ,Q) Σ; Γ; {P} [ψ′/x]

{
ψ ∧ x = ψ′, Q

}∣∣ c
Σ; Γ; {P} 

{
ψ ∧ x = ψ′; Q

}∣∣ c

FIGURE 3.3: Basic rules of SSL.

that the domain of σ contains only existentials), it introduces significant

non-determinism into the synthesis procedure. Concretely, this means

that the synthesis algorithm has to incorporate backtracking in order to

handle the non-determinism.

Thus, one key insight for extending SUSLIK towards example-driven

synthesis is that this non-determinism can be tamed by evaluating can-

didate programs and only accepting the program that satisfies our exam-

ples.

3.2 Using Examples in a Search for a Program

The non-determinism in the synthesis process comes from numerous sources:

the order in which rules are applied, rules that have to make choices, and
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so on.

Whenever the synthesizer runs into an unsolvable goal, it backtracks

and tries to make another choice. However, some strand of nondetermin-

ism (e.g., arising from UNIFYHEAPS) might lead to a goal that is solvable,

since the nondeterminism might be coincidental. We make use of this

to incorporate examples into the synthesis process – by lazily enumer-

ating all possible programs on-demand, we can evaluate each candidate

program with respect to our examples, only accepting a program that

satisfies our examples. We check that a candidate program satisfies our

input-output examples by writing a concrete interpreter. Given a candi-

date program, this interpreter has its machine state – a concrete heap –

instatiated with the input example. Then, once the program is evaluated,

the resulting machine state should be equivalent to the output example

provided.

3.2.1 Input-Output Examples, Defined

We define the form of our input-output examples. These input-output

examples reflect the idea of "example worlds" from subsection 2.2.1.

An input-output example has three components. Firstly, it has an ex-

ecution environment σ that maps variables to natural numbers. Since a

heap in the heaplet model is represented as a finite function from natural

numbers to integers [19], σ keeps track of the distinct memory location in

the heap that is associated with each variable that is a pointer. Secondly,

it has an input heap. The input heap maps from a memory address (an

integer) to a value. The input heap represents the heap prior to running a
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candidate program. Finally, it has an output heap, defined the same way.

The output heap represents the heap after running a candidate program.

With these three components, for every pointer variable, we have an

underlying map that stores a concrete memory address associated with

the pointer, and the value at the memory address of the pointer. Thus,

we are able to keep track of the machine state as we iterate through the

program. The memory address associated with the pointer is only im-

portant insofar as it allows us to keep track of machine state. Hence, the

specific memory address value is irrelevant, and so we can mechanically

generate the execution environment σ from the input and output heap.

A user would present their input-output examples in a form resem-

bling SL specifications, except we have square parentheses instead of

curly parentheses to reflect that these are examples, and no function dec-

laration is necessary. For instance, a user would input

[x 7→ c ∗ . . . ∗ y 7→ d] [x 7→ e ∗ . . . ∗ y 7→ f ] (3.2)

where c, d, e, f are values, as an input-output example. This example will

get parsed into the three components mentioned above, with pointers x

and y allocated arbitrary memory addresses. Then, the program state of

a candidate program would be instantiated as a heap with the memory

address associated with x mapping to c, and with y mapping to d. After

running a candidate program, the program is considered to be "accepted"

if the final machine state, or heap, of the interpreter resembles the output

component of the example.
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Algorithm 3.2.1: synthesize (G : Goal, rules : Rule∗)
Input: Goal G = 〈 f , Σ, Γ, {P}, {Q}〉
Input: List rules of available rules to try
Result: Terminating program c, such that

Σ; Γ; {P}c{Q} is valid
1 function synthesize (G, rules) =
2 withRules(rules,G)
3 function withRules (rs,G) =
4 match rs
5 case [ ] ⇒ Fail
6 caseR :: rs′ ⇒
7 match R(G)
8 case ⊥ ⇒ withRules(rs′)
9 case subderivs ⇒

10 tryAlts(subderivs,R, rs′,G)

11 function tryAlts (derivs,R, rs,G) =
12 match derivs
13 case [ ] ⇒ withRules(rs,G)
14 case 〈goals,K〉 :: derivs′ ⇒
15 match solveSubgoals(goals,K)
16 case Fail ⇒ tryAlts(derivs′,R, rs,G)
17 case c ⇒ c
18 function solveSubgoals (goals,K) =
19 cs := [ ]
20 pickRules = AllRules
21 for G ← goals; c 6= Fail
22 c = synthesize(G, pickRules(G)); do
23 cs := cs ++ [c]
24 if |cs| < |goals| then Fail else K(cs)

3.2.2 Basic Synthesis Algorithm

The SUSLIK synthesizer performs a goal-directed backtracking search

over the space of all valid SSL derivations. We omit the discussion of

optimizations in favour of the basic synthesis algorithm.

Algorithm 3.2.1 [21] describes the pseudocode of SUSLIK’s synthesis

procedure. The algorithm is comprised of four mutually-recursive func-

tions:

• synthesize (G, rules) is invoked on a goal, together with all the SSL

rules. It passes control to the first auxiliary function, withRules.

• withRules (rs,G) iterates through the list rs of remaining rules, trying

to apply each one to the goal G.

A successful application of ruleR results in one or more sub-derivations

subderivs. A sub-derivation is a pair: the first component contains

zero or more sub-goals which must all be solved, and the second

component is a continuation K that combines the results of solving

subgoals into a final program. This is then passed to tryAlts.
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On the other hand, if it fails, we try the next rule from the list rs′. If

there are no rules left, then synthesis for the current goal has failed.

• tryAlts (derivs,R, rs,G) recursively processes the possible sub-derivations

derivs generated byR.

On each sub-derivation, solveSubgoals is invoked to solve all the sub-

goals goals and apply the continuation K that constructs the candi-

date program. If solveSubgoals is successful (line 17), the program c

is returned.

If there are no sub-derivations left to try (line 13), we employ mu-

tual recursion, calling withRules on the remaining rules rs.

• Finally, solveSubgoals (goals,K) attempts to solve the provided set of

subgoals.

It does this by calling synthesize recursively. This propagates the

search problem a level deeper. If no goals fail, their results are com-

bined via K.

Observe that a successful application of a rule results in one or more

sub-derivations. This reflects the non-determinism present in rules like

UNIFYHEAPS.

3.2.3 Example-Driven Synthesis Algorithm

The extensions to the synthesis algorithm to incorporate examples are de-

scribed in Algorithm 3.2.2. The gray boxes highlight parts of the pseu-

docode that were explicitly changed; note, however, that the algorithm

now also takes as input the list of input-output examples described in
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Algorithm 3.2.2: synthesizeWithEg (G : Goal, rules : Rule∗, egs : examples )

Input: Goal G = 〈 f , Σ, Γ, {P}, {Q}〉
Input: List rules of available rules to try

1 function synthesize (G, rules, egs) =
2 match evaluateEgs(withRules(rules,G, egs), egs)
3 case [ ] ⇒ Fail
4 case c :: cs′ ⇒ c
5 function withRules (rs,G, egs) =
6 match rs
7 case [ ] ⇒ Fail
8 caseR :: rs′ ⇒
9 match R(G)

10 case ⊥ ⇒ withRules(rs′,G)
11 case subderivs ⇒
12 tryAlts(subderivs,R, rs′,G, egs)
13 function tryAlts (derivs,R, rs,G, egs) =
14 match derivs
15 case [ ] ⇒ withRules(rs,G, egs)
16 case 〈goals,K〉 :: derivs′ ⇒
17 match solveSubgoals(goals,K, egs)
18 case Fail ⇒
19 tryAlts(derivs′,R, rs,G, egs)
20 case c ⇒
21 c :: tryAlts(derivs′,R, rs,G, egs)

Input: List egs of examples, Interpreter I
Result: Terminating program c,
such that Σ; Γ; {P}c{Q} is valid

22 function solveSubgoals (goals,K, egs) =
23 cs := [ ]
24 pickRules = AllRules
25 for G ← goals; c 6= Fail
26 c = synthesize(G, pickRules(G), egs); do
27 cs := cs ++ [c]
28 if |cs| < |goals| then Fail else K(cs)
29 function evaluateEgs (cs, egs) =
30 ls := [ ]
31 for c← cs do
32 p := True
33 for e← egs do
34 p := p ∧ (evaluate (c, e))
35 if p then ls := c ++ ls
36 ls
37 function evaluate (c, e) =
38 match e
39 case (store, in_heap, out_heap) ⇒
40 c_heap := I (c, in_heap, store)
41 out_heap ⊆ c_heap
42

subsection 3.2.1, egs, along with an interpreter that can be invoked to in-

terpret the C-style program generated by SUSLIK’s synthesis procedure.

• tryAlts now returns an enumeration of all possible candidate pro-

grams obtainable from a set of subderivations and goals, repre-

sented as a list of programs. This is because we want to prune the

set of all possible candidate programs using our examples. While

this may appear inefficient, in the actual implementation, optimiza-

tions like lazy enumeration and memoization feature heavily to en-

sure that we evaluate – on demand – each candidate program as

they are constructed, instead of all at once.

• The interpreter I takes a candidate program, an input concrete heap,
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and an execution environment. The candidate program is written

in a simple imperative C-style language, generated from SUSLIK.

The syntax and semantics of this language can be found in Section

3, [21]. I evaluates the candidate program according to the seman-

tics of this language, but does so concretely instead of performing

symbolic execution by instantiating the program with a concrete

input heap. Then, since the language deliberately has no return

statement, the interpreter returns the program state (heap) after the

program has been interpreted as output.

• evaluate takes a candidate program and an example, and returns a

Boolean value depending on whether or not the program satisfies

the example. Recall that, from subsection 3.2.1, an input-output ex-

ample comprises of an execution environment σ, an input heap, and

an output heap. evaluate invokes the interpreter for the program, I ,

on the candidate program, instantiating it with the input heap. The

interpreter then returns a final heap corresponding to the final state

of the program. If the example’s output heap is a subset of the fi-

nal heap, the program satisfies the example, and so we return True.

Else, we return False.

• evaluateEgs takes in two parameters: a list of candidate programs,

and a list of input-output examples. It iterates through every can-

didate program. If the candidate program satisfies all the provided

examples, then we add the program to our list of successful pro-

grams. Having iterated through all candidate programs, it returns

the list of successful programs.
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• Finally, synthesize. As in Algorithm 3.2.1, synthesize gets the result

from withRules. However, because of our changes to tryAlts, withRules

now returns a list of programs reflecting all candidate programs in-

stead of just one program. This list of programs is passed to our

evaluation pipeline, starting from evaluateEgs, together with our list

of examples. If an empty list is returned by evaluateEgs signifying

that no candidate programs satisfy the examples, then we return

Fail. Otherwise, if evaluateEgs returns a list of programs that sat-

isfy the examples, then we take the head of the list and return that

program as the synthesized program.

With these changes to SUSLIK’s synthesis procedure, SUSLIK can now

incorporate examples by pruning the space of candidate programs in its

backtracking program search. This allows users to provide examples

to guide the synthesis procedure. Notably, the examples can be under-

specified, since the parser and interpreter can work together to automat-

ically generate a concrete heap for each program as described in subsec-

tion 3.2.1. Furthermore, as evaluate checks that the example’s output heap

is a subset of the final heap, the output heap component of each example

has the flexibility of being loosely or tightly defined, allowing for exam-

ples to be under-specified.

This extension to SUSLIK is naive, functioning by pruning an expanded

search space; yet, it forms the foundation for an example-driven synthe-

sis of heap-manipulating programs. However, the algorithm does not

describe how we can use the examples to inform the SSL rules. Chapter 4

discusses how we can do this, providing another level of sophistication

in the integration of examples into the synthesis procedure.
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Chapter 4

Synthesis with Examples,

Logically

In this chapter, we discuss how input-output examples can be incor-

porated into SSL rules. With "example-aware" SSL rules, we can have

"example-aware" program derivations.

4.1 UNIFYHEAPS

Example-driven synthesis relies on the presence of non-determinism, since

it allows for more than one possible program to be generated by the syn-

thesis procedure before being pruned based on whether the candidate

programs satisfy the examples.

4.1.1 The cost of Non-determinism

Accounting for non-determinism is computationally taxing: because the

synthesis algorithm explores the space of all valid SSL derivations that



Chapter 4. Synthesis with Examples, Logically 25

are rooted at the initial synthesis goal, non-determinism causes an expo-

nential blowup. Thus, non-determinism that is coincidental to generation

of correct programs can be removed to improve the runtime of SUSLIK.

4.1.2 Removing unnecessary Non-determinism

As we see in subsection 3.1.1 and subsection 3.1.2, UNIFYHEAPS intro-

duces significant non-determinism as it is free to choose a sub-heap and

a unifying substitution. Typically, non-determinism – as used in the sense

of a non-deterministic finite automaton – is harnessed via a complete

enumeration of all possible outcomes, since it is incredibly difficult, if not

impossible, to introduce truly random choices to a model of computation.

Thus, UNIFYHEAPS can spawn an exponential amount of subgoals

wrt. the number of existential variables in the SL specification and the

number of sub-heaps. Because each choice of unifying substitution is

central to the generation of a correct program, but the specific choice of

sub-heap for the unifying substitution is not, UNIFYHEAPS has an op-

timization whereby it eagerly chooses the first possible sub-heap for the

unifying substitution, discarding the other choices.

4.1.3 The cost of removing Non-determinism

But, consider the derivation of pick(x,y) again, whose SL specification

is attached again below.

{x 7→ a ∗ y 7→ b} void pick(loc x, loc y) {x 7→ z ∗ y 7→ z} (4.1)



Chapter 4. Synthesis with Examples, Logically 26

At the step in our derivation of pick(x,y) wherein UNIFYHEAPS is in-

voked, as we see in subsection 3.1.1,

{x, y, a2, b2} ;
{

x 7→ a2 ∗ y 7→ b2
}
 
{

x 7→ z ∗ y 7→ z
}

the sub-heap y 7→ z in the postcondition has been selected by UNIFY-

HEAPS with y 7→ b2 in the precondition to form a unifying substitution,

resulting in the subgoal

{x, y, a2, b2} ; {x 7→ a2 ∗ y 7→ b2} 
{
b2 = z ; x 7→ z ∗ y 7→ b2

}
and the grayed portion triggers the SUBSTRIGHT rule, giving us

{x, y, a2, b2} ; {x 7→ a2 ∗ y 7→ b2} {x 7→ b2 ∗ y 7→ b2}

The program that will eventually be derived is identical to the program

previously described in Figure 3.2:
1 void pick (loc x, loc y) {
2 let a2 = *x;
3 let b2 = *y;
4 *x = b2;
5 }

This program is provably correct wrt. the SL specification described

in Equation 4.1. However, is the resultant program in agreement with

what the user intended? All is well and good if the user intended for z

to be equal to the value that y is pointing to, i.e., b2. Then, choosing the

first possible sub-heap, in this case y 7→ b2, for the unifying substitution

would be aligned with the expectations of the user.

What if the user intended for z to be equal to the value that x is

pointing to, which is a2, instead of b2?
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Then, because of this optimization, the synthesized program does not

reflect the user’s intentions, since by design it only chooses the first pos-

sible sub-heap for the unifying substitution in UNIFYHEAPS. As a con-

sequence of this eagerness, the user will never be able to synthesize a

program wherein both x and y point to the value, a2, initially pointed to

by x.

4.1.4 Re-introducing Non-determinism to UNIFYHEAPS

As part of optimizations to SUSLIK’s runtime, non-determinism present

in rules like UNIFYHEAPS which do not affect the correctness of gen-

erated programs was removed. However, the synthesized programs,

while provably correct wrt. the provided SL specifications, do not accu-

rately represent the user’s intent. We resolve this by re-introducing non-

determinism to UNIFYHEAPS, thereby allowing user-provided input-output

examples to prune the set of candidate programs instead of forcing the

synthesizer to eagerly choose the first possible program.

UNIFYHEAPS

[σ]R′ = R

∅ 6= dom (σ) ⊆ Existentials(Γ,P ,Q)

Γ; {P ∗ R} [σ]
{

ψ; Q ∗ R′
}∣∣ c

Γ; {φ; P ∗ R} 
{

ψ; Q ∗ R′
}∣∣ c

FIGURE 4.1: Heap unification rule.

Since the semantics of UNIFY-

HEAPS (cf. Figure 4.1) invoke non-

determinism anyway, the optimiza-

tion performed on the actual imple-

mentation of UNIFYHEAPS in SUSLIK

was to eagerly return a singleton list

containing the first result of the rule.

To re-introduce non-determinism, we simply adapt the implementa-

tion of UNIFYHEAPS to return a list containing all the possible results of

the rule.
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4.2 READ

We also incorporate into SUSLIK the ability to instantiate variables in a

SL specification with a variable in the input-output examples.

4.2.1 A program that does nothing

Consider the following modified version of pick, pick_mod.

{
x 7→ a ∗ y 7→ a

}
void pick_mod(loc x, loc y) {x 7→ z ∗ y 7→ z} (4.2)

The changes from pick (cf. Equation 3.1) are highlighted in gray: instead

of the heaplet y 7→ b, we have y 7→ a. The synthesized program, accord-

ing to the above SL specification described in Equation 4.2, is the empty

program: a program that only performs a skip.

Looking at the program derivation, this is unsurprising. Firstly, the

synthesizer applies the READ rule on the ghost variable a, read-ing in a as

a2.

{x, y, a2} ; {x 7→ a2 ∗ y 7→ a2} {x 7→ z ∗ y 7→ z} (4.3)

Next, it unifies z with a2 using the UNIFYHEAPS rule.

{x, y, a2} ; {x 7→ a2 ∗ y 7→ a2} {a2 = z; x 7→ a2 ∗ y 7→ z} (4.4)

Unlike subsection 4.1.3, all that remains is to invoke SUBSTRIGHT, giving

us

{x, y, a2} ; {x 7→ a2 ∗ y 7→ a2} {x 7→ a2 ∗ y 7→ a2} (4.5)
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which can then be FRAME-ed out. The goal is then solved using the EMP

rule.

What is notable is that these rules, with the exception of READ, are

non-operational, and the witness programs that serves as a proof term for

them are all skips. For READ, it produces a witness program let a2 = y,

but it is discarded since a2 is never used. Consequently, the final program

reflects this: it is a sequence of skips, i.e., the empty program.

4.2.2 READEG

As before, the synthesized program is valid wrt. the provided specifica-

tions. However, a user might want for z to denote a value other than a.

Thus, the user might provide an input-output example that specifies this

as such:

[x 7→ a ∗ y 7→ a] [x 7→ v ∗ y 7→ v] (4.6)

where v refers to the desired constant.

We want to unify the existential variable z (cf. Equation 4.2) with the

heaplet x 7→ v or y 7→ v in the output component of Equation 4.6. v is

read into the scope of the program if it is a ghost variable, bound in the

pre- and postcondition, but in this case it is not.

This is handled by a non-deterministic example-aware rule called READEG

that performs the operational READ and the non-operational unification

UNIFYHEAPS together. The logical form of both cases of READEG is pre-

sented in Appendix A. READEG compares the SL specification with the

example. If the example contains ghost variables that do not appear in

the SL specification, then the ghost variables are "materialized" by read-

ing them into local variables whose names are fresh in the scope. If there
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are existential variables in the output component of the example, then

they are unified with the corresponding heaplet in the postcondition. For

both cases, READEG introduces a unifying substitution akin to UNIFY-

HEAPS. However, to reflect the reification of the ghost variables in the

first case, the READEG rule also has as its witness program the witness

program of READ-ing in the ghost variables.

4.2.3 A program that does something

Suppose we used the input-output example described in Equation 4.6.

Then, instead of unifying z with a2, as was done in Equation 4.3 to Equa-

tion 4.4, the synthesizer might invoke READEG. It unifies the heaplets in

the postcondition, x 7→ z and y 7→ z, with the heaplets in the output com-

ponent of the examples, remembering the substitution z = v. This gives

us

{x, y, a2} ; {x 7→ a2 ∗ y 7→ a2} {z = v; x 7→ v ∗ y 7→ z}

READEG, being example-aware, has introduced v into our subgoal. Then,

after applying SUBSTRIGHT so that we also have y 7→ v in the postcon-

dition, we can apply WRITE twice to write the value of v into x and y,

finally deriving the following program:

1 void pick_mod (loc x, loc y) {
2 let a2 = *y;
3 *x = v;
4 *y = v;
5 }

This is a simpler example – since v is not a ghost variable, it does not

need to be materialized. In general, we need to introduce ghost variables

in the examples into the scope of the program, as we shall see in chapter 5.
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Chapter 5

Implementation and Case Studies

We demonstrate our findings from chapter 4 by synthesizing two pro-

grams. The two programs are specified using incomplete specifications,

and are synthesized with the help of our input-output examples. The

first program, fstElement, retrieves the first element of a linked list. The

second program, treeRightChild, retrieves the right child of a tree.

5.1 Running the Project

We implemented our enhancements of SUSLIK with examples in an ex-

tended version of the SUSLIK tool, which we refer to as SUSLIX (Synthe-

sis with Separation Logic and eXamples), available at: https://github.

com/tanyhb1/suslik/tree/suslix. One can find details on running SUS-

LIX in the provided Github repository.

The changes to the original SUSLIK infrastructure amounted to around

1, 000 lines of code, though the material changes to the standard SUS-

LIK algorithm and SSL rules affected around 200 lines of code. Other

than that, SUSLIX augments SUSLIK by adding a concrete interpreter for

https://github.com/tanyhb1/suslik/tree/suslix
https://github.com/tanyhb1/suslik/tree/suslix
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SUSLIK’s target language, the definition of examples and a parser for ex-

amples, case studies, and glue code.

5.2 Case Study 1: fstElement

5.2.1 Inductive Heap Predicates

Firstly, let us look at how linked lists are defined in Separation Logic. SL

can compositionally reason about linked data structures like linked lists

that are defined recursively via inductive heap predicates. For instance,

the definition of a linked list segment is given as below:

lseg(x, y, S) , x = y ∧ {S = ∅; emp}

| x 6= y ∧ {S = {v} ∪ S1; [x, 2] ∗

x 7→ v ∗ 〈x, 1〉 7→ nxt ∗ lseg(nxt, y, S1)}

(5.1)

Thus, the predicate lseg(x, y, S) describes a linked list: it begins at x, ends

at location y, and contains a set of elements S.

5.2.2 Synthesizing fstElement

Synthesizing fstElement is not difficult if a complete specification is pro-

vided to the synthesizer. However, because linked data structures like

linked lists are defined recursively, to provide a complete specification to

SUSLIK, one would have to manually unfold the linked list predicate lseg,

and specify explicitly what each heaplet points to. This could have been

handled by the INDUCTION rule automatically. On the other hand, if the

specification were not explicit enough, SUSLIK would not have enough
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information to synthesize exactly the program that retrieves the first ele-

ment.

We can provide input-output examples to handle this shortcoming.

Consider the following under-specified SL specification for fstElement:

{ret 7→ x ∗ lseg(x, 0, S1)} void fstElement(loc ret) {ret 7→ v ∗ lseg(x, 0, S)}

(5.2)

The specification is deliberately under-specified. It states that, prior to run-

ning fstElement, ret points to the head of the linked list, but after run-

ning fstElement, it points to some value v. Note that the set of elements

in the linked list changes from S1 to S, reflecting the retrieval of a value

by fstElement. In contrast, a complete specification for fstElement (i.e.,

one that the synthesizer would synthesize correctly) would instead have

{ret 7→ x ∗ [x, 2] ∗ x 7→ v ∗ (x + 1) 7→ nxt ∗ lseg(nxt, 0, S1)}

as the precondition of the specification in Equation 5.2. However, this is

clumsy, and requires one to unfold the lseg predicate themselves.

Using SUSLIK’s basic synthesis algorithm without any input-output

examples on our under-specified SL specification described in Equation 5.2,

the program described in Figure 5.1 is derived since the critical step in

the synthesis procedure is to simply invoke UNIFYHEAPS to unify the

heaplets ret 7→ x in the precondition and ret 7→ v in the postcondition of

the specification (rules like READ, etc, are in actuality performed, but are

here omitted for brevity).
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1 void fstElement (loc ret) {
2 }

FIGURE 5.1: The synthesized fstElement program without examples

To inform the synthesizer of their intentions, the user can provide the

following input-output example:

[ret 7→ x ∗ x 7→ v] [ret 7→ v] (5.3)

The input-output example described in Equation 5.3 states two things:

• Input component. The input component states that, before running

a candidate program, the pointer ret should point to x, and that x

in turn is a pointer to v, a logical variable whose scope captures the

pre- and postcondition.

• Output component. The output component states that, after run-

ning a candidate program, ret should point to v, which was the ref-

erend of x.

The (trimmed) program derivation is described in Figure 5.2. We omit

failed paths that were backtracked and some rules for clarity. The rule

HEAPUNIFYUNFOLD basically tries to unfold an inductive predicate in

order to unify the underlying set. Furthermore, since READEG is non-

deterministic as a consequence of being able to make multiple choices, we

only include the path that led to a successful candidate program. In Fig-

ure 5.2, when READEG is triggered, the provided example Equation 5.3

is included in the proof tree to reflect it being used by the example-aware

rule. Different candidate programs were also derived, but were pruned
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EMP with c8 = skip
{ret, x2, v} ;

{
emp

}
 
{

emp
}∣∣∣ c8

c7 = c8
SUBSTLEFT

{ret, x2, v} ;
{
x2 = v ; emp

}
 {emp}

∣∣∣ c7

c6 = c7
SUBSTRIGHT

{ret, x2, v} ; {x2 = v; emp} 
{

S = S1 ; emp
}∣∣∣ c6

c5 = ∗ret = v; c6
WRITE

{ret, x2, v} ;
{
x2 = v; ret 7→ x2

}
 
{

S = S1; ret 7→ v
}∣∣∣ c5

c4 = let v = ∗x2; c5
READEG

{ret, x2} ; [ ret 7→ x ∗ x 7→ v ] [ret 7→ v];
{

ret 7→ x2
}
 
{

S = S1; ret 7→ v
}∣∣∣ c4

c3 = c4
FRAMEUNFOLD

{ret, x2} ;
{

ret 7→ x2 ∗ lseg(x2, 0, S1)
}
 
{

S = S1; ret 7→ v ∗ lseg(x2, 0, S1)
}∣∣∣ c3

c2 = c3
HEAPUNIFYUNFOLD

{ret, x2} ;
{

ret 7→ x2 ∗ lseg(x2, 0, S1)
}
 
{

ret 7→ v ∗ lseg(x2, 0, S)
}∣∣∣ c2

c1 = let x2 = ∗ret; c2
READ

{ret} ;
{

ret 7→ x ∗ lseg(x, 0, S1)
}
 
{

ret 7→ v ∗ lseg(x, 0, S)
}∣∣∣ c1

FIGURE 5.2: Derivation of fstElement(ret) as c1.

by the updated synthesis algorithm (cf. Algorithm 3.2.2) since they did

not satisfy the example.

The resulting program Figure 5.3 does exactly what one expects of it:

to retrieve the first element, it traverses through the linked list pointers

starting with the head pointer. Thus, it reads in x2, and then dereferences

it to retrieve the value that it points to. Finally, it returns this value by

storing it to ret, according to the semantics of the SUSLIK’s target lan-

guage.

1 void fstElement (loc ret) {
2 let x2 = *ret;
3 let v = *x2;
4 *ret = v;
5 }

FIGURE 5.3: The synthesized fstElement program with examples
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5.3 Case Study 2: treeRightChild

5.3.1 Inductive Tree Predicates

As before in subsection 5.2.1, we present the definition of a tree:

tree(x, S) , x = 0 ∧ {S = ∅; emp}

| x 6= 0 ∧ {S = {v} ∪ S1 ∪ S2; [x, 3] ∗ x 7→ v ∗ 〈x, 1〉

7→ l ∗ 〈x, 2〉 7→ r ∗ tree(l, S1) ∗ tree(r, S2)}

(5.4)

That is, the predicate tree(x, S) describes a tree containing a set of ele-

ments S: if x = 0, whereby 0 denotes the null pointer, then it is empty,

otherwise, it contains a left and right tree.

5.3.2 Synthesizing treeRightChild

An incomplete SL specification for treeRightChild is described in Equa-

tion 5.5.

{ret 7→ x ∗ tree(x, S1)} void treeRightChild(loc ret) {ret 7→ r ∗ tree(x, S)}

(5.5)

The incomplete specification states that before running treeRightChild,

ret points to x which is a pointer to the payload of the tree. After running

treeRightChild, it points to some value r. A complete specification, as

explained before, would require that we unfold the inductive predicate

tree ourselves. Instead, the user can provide the following input-output

example:

[ret 7→ x ∗ (x + 2) 7→ r] [ret 7→ r] (5.6)
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EMP with c8 = skip
{ret, x2, r} ;

{
emp

}
 
{

emp
}∣∣∣ c8

c7 = c8
SUBSTLEFT

{ret, x2, r} ;
{
x2 = r ; emp

}
 {emp}

∣∣∣ c7

c6 = c7
SUBSTRIGHT

{ret, x2, r} ; {x2 = r; emp} 
{

S = S1 ; emp
}∣∣∣ c6

c5 = ∗ret = r; c6
WRITE

{ret, x2, r} ;
{
x2 = r; ret 7→ x2

}
 
{

S = S1; ret 7→ r
}∣∣∣ c5

c4 = let r = ∗(x2+ 2); c5
READEG

{ret, x2} ; [ ret 7→ x ∗ (x + 2) 7→ r ] [ret 7→ r];
{

ret 7→ x2
}
 
{

S = S1; ret 7→ r
}∣∣∣ c4

c3 = c4
FRAMEUNFOLD

{ret, x2} ;
{

ret 7→ x2 ∗ tree(x2, S1)
}
 
{

S = S1; ret 7→ r ∗ tree(x2, S1)
}∣∣∣ c3

c2 = c3
HEAPUNIFYUNFOLD

{ret, x2} ;
{

ret 7→ x2 ∗ tree(x2, S1)
}
 
{

ret 7→ r ∗ tree(x2, S)
}∣∣∣ c2

c1 = let x2 = ∗ret; c2
READ

{ret} ;
{

ret 7→ x ∗ tree(x, S1)
}
 
{

ret 7→ r ∗ tree(x, S)
}∣∣∣ c1

FIGURE 5.4: Derivation of treeRightChild(ret) as c1.

whereby (x + 2) is deliberately chosen since, according to the definition

of tree, adding two to the memory address of the root will give the right

child. The (trimmed) program derivation is described in Figure 5.4. The

machinery used in the derivation is identical to that described in subsec-

tion 5.2.2, and so we omit its discussion.

The resulting program Figure 5.5 performs as expected: it retrieves

the right child of the given tree by accessing two memory addresses

ahead of the provided memory address.

1 void treeRightChild (loc ret) {
2 let x2 = *ret;
3 let r = *(x2 + 2);
4 *ret = r;
5 }

FIGURE 5.5: The synthesized treeRightChild program with examples
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Chapter 6

Discussion

6.1 Future Work

6.1.1 List notation/Storyboard programming

A more sophisticated way to handle inductive predicates in example-

driven synthesis is demonstrated in storyboard programming [24]. Here,

ellipses are used to abstract away unnecessary details of the data-structure

that are not manipulated or are manipulated inductively. In this case, the

middle of the linked list is abstracted away as the node mid. This would

allow us to abstract away unnecessary details in our inductive predicates.

6.1.2 Interactive Mode & GUI

SUSLIK also supports an interactive mode for users to interact with the

synthesis procedure. SUSLIX can extend upon this to include the eval-

uation of candidate programs during the example-driven synthesis pro-

cedure: whenever SUSLIX generates a candidate program, it can display

the candidate program together with the input-output examples to the

user and the result of evaluating the program with the examples. The



Chapter 6. Discussion 39

user then has the liberty of deciding whether or not the candidate pro-

gram is acceptable. If so, SUSLIX returns that program. Otherwise, the

synthesis procedure continues.

Providing a clean GUI in the style of (http://comcom.csail.mit.edu/

comcom/#SuSLik) would also be more user-friendly.

6.1.3 Optimizing the Search Procedure

Short-circuit evaluation based on examples can be implemented to opti-

mize the search procedure as a form of example-based refutation. For in-

stance, when unfolding an inductive predicate, it is often the case that nu-

merous subgoals corresponding to the different branches (e.g., every time

a linked list predicate is unfolded, SUSLIK considers two cases: whether

the list has been fully traversed, or not) are spawned. Therefore, some

branches in the proof tree can be ruled out without actually traversing

them. Information about this can be gleaned from examples (e.g., whether

a value is 0 – the null pointer – or not) and used to short-circuit branches

that do not lead to a candidate program.

6.1.4 Rules

The incorporation of user-provided input-output examples into SUSLIK’s

rules described in this Capstone report are rudimentary, and there is a

large space of possibilities for making rules example-aware. One way to

do so while maintaining code cleanliness and modularity would be to

have a non-example-aware version and an example-aware version of the

rules, allowing SUSLIK to access the example-aware version of the rules

only if users provide examples in the first place.

http://comcom.csail.mit.edu/comcom/#SuSLik
http://comcom.csail.mit.edu/comcom/#SuSLik
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Chapter 7

Conclusion

Example-driven synthesis is not novel. It has been thoroughly researched

in the domain of functional programming, and synthesis systems exists

for low-level data-structure manipulations [12, 13, 20, 24]. Building on

this, SUSLIK not only synthesizes heap-manipulating programs, but also

guarantees that the programs are correct by construction [21]. However,

being correct by construction – satisfying ascribed pre/postconditions –

is not a guarantee that a user’s intent has been accurately captured, only

a guarantee that the SSL derivations are sound.

The contribution of this thesis is thus to extend SUSLIK’s synthesis

algorithm towards example-driven synthesis. Users can provide input-

output examples that resemble SL specifications, except that they can be

under-specified for ease of use. These examples provide "hints" about the

user’s intent. Then, the extended synthesis algorithm prunes the search

space of all candidate programs based on these input-output examples.

Finally, we incorporate these examples into some of the SSL rules to al-

low for an "example-aware" program derivation. These enhancements

are implemented in an extended version of the SUSLIK tool, which is

named SUSLIX, for Synthesis with Separation Logic and eXamples.
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Appendix A

Logical Form of READEG

READEG (1)

a ∈ GV
(

Γ, Pε , Qε

)
[σ]R′ = R ∅ 6= dom(σ) ⊆ EV(Γ,P ,Q)

y /∈ Vars(Γ,P ,Q) Γ ∪ {y} ; E ; [σ][y/a]{φ;P ∗R}  [y/a]
{

ψ;Q ∗R′
} ∣∣∣ c

Γ; [φ; 〈x, ι〉 7→ a ∗ Pε] [Qε] ; {φ;P ∗R}  
{

ψ;Q ∗R′
} ∣∣∣ let y = ∗(x + ι); c

FIGURE A.1: Logical form of READEG (1).

READEG (2)

[σ]R′ε = Rε ∅ 6= dom (σ) ⊆ Existentials
(

Γ, Pε , Qε

)
Γ; E ; {P ∗ R} [σ]

{
ψ;Q ∗R′

}∣∣ c

Γ; [Pε ∗ Rε] [Qε ∗ R′ε] ; {φ;P ∗R} 
{

ψ;Q ∗R′
}∣∣ c

FIGURE A.2: Logical form of READEG (2).

Figure A.1 describes the logical form of the first case of the READEG

rule in subsection 4.2.2, while Figure A.2 describes the second case. The

grayed -out portions represent the changes from the standard READ rule

for READEG (1) and from the standard UNIFYHEAPS rule for READEG

(2). E , positioned beside the environment Γ, refers to the provided input-

output examples. Pε and Qε correspond to the input/output compo-

nents of the examples,Rε is a heaplet in the examples.
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