

A Study of Control and Type-Flow Analyses

 for Higher-Order Programming Languages

Gabriel Petrov

Capstone Final Report for BSc (Honours) in

Mathematical, Computational and Statistical Sciences

Supervised by: Ilya Sergey

AY 2020/2021

zĂůĞͲEh^��ŽůůĞŐĞ��ĂƉƐƚŽŶĞ�WƌŽũĞĐƚ��
�
���>�Z�d/KE�Θ��KE^�Ed�

�
ϭ͘� /�ĚĞĐůĂƌĞ�ƚŚĂƚ�ƚŚĞ�ƉƌŽĚƵĐƚ�ŽĨ�ƚŚŝƐ�WƌŽũĞĐƚ͕�ƚŚĞ�dŚĞƐŝƐ͕�ŝƐ�ƚŚĞ�ĞŶĚ�ƌĞƐƵůƚ�ŽĨ�ŵǇ�ŽǁŶ�ǁŽƌŬ�ĂŶĚ�ƚŚĂƚ�

ĚƵĞ�ĂĐŬŶŽǁůĞĚŐĞŵĞŶƚ�ŚĂƐ�ďĞĞŶ�ŐŝǀĞŶ�ŝŶ�ƚŚĞ�ďŝďůŝŽŐƌĂƉŚǇ�ĂŶĚ�ƌĞĨĞƌĞŶĐĞƐ�ƚŽ��>>�ƐŽƵƌĐĞƐ�ďĞ�ƚŚĞǇ�
ƉƌŝŶƚĞĚ͕�ĞůĞĐƚƌŽŶŝĐ͕�Žƌ�ƉĞƌƐŽŶĂů͕�ŝŶ�ĂĐĐŽƌĚĂŶĐĞ�ǁŝƚŚ�ƚŚĞ�ĂĐĂĚĞŵŝĐ�ƌĞŐƵůĂƚŝŽŶƐ�ŽĨ�zĂůĞͲEh^��ŽůůĞŐĞ͘�
�

Ϯ͘� /�ĂĐŬŶŽǁůĞĚŐĞ�ƚŚĂƚ�ƚŚĞ�dŚĞƐŝƐ� ŝƐ�ƐƵďũĞĐƚ�ƚŽ�ƚŚĞ�ƉŽůŝĐŝĞƐ�ƌĞůĂƚŝŶŐ�ƚŽ�zĂůĞͲEh^��ŽůůĞŐĞ� /ŶƚĞůůĞĐƚƵĂů�
WƌŽƉĞƌƚǇ�;zĂůĞͲEh^�,Z�ϬϯϵͿ͘��

�
�
����^^�>�s�>�
�
ϯ͘� /�ĂŐƌĞĞ͕�ŝŶ�ĐŽŶƐƵůƚĂƚŝŽŶ�ǁŝƚŚ�ŵǇ�ƐƵƉĞƌǀŝƐŽƌ;ƐͿ͕�ƚŚĂƚ�ƚŚĞ�dŚĞƐŝƐ�ďĞ�ŐŝǀĞŶ�ƚŚĞ�ĂĐĐĞƐƐ�ůĞǀĞů�ƐƉĞĐŝĨŝĞĚ�

ďĞůŽǁ͗�΀ĐŚĞĐŬ�ŽŶĞ�ŽŶůǇ΁�
�

R�hŶƌĞƐƚƌŝĐƚĞĚ�ĂĐĐĞƐƐ���
DĂŬĞ�ƚŚĞ�dŚĞƐŝƐ�ŝŵŵĞĚŝĂƚĞůǇ�ĂǀĂŝůĂďůĞ�ĨŽƌ�ǁŽƌůĚǁŝĚĞ�ĂĐĐĞƐƐ͘��

�
R��ĐĐĞƐƐ�ƌĞƐƚƌŝĐƚĞĚ�ƚŽ�zĂůĞͲEh^��ŽůůĞŐĞ�ĨŽƌ�Ă�ůŝŵŝƚĞĚ�ƉĞƌŝŽĚ�
DĂŬĞ� ƚŚĞ� dŚĞƐŝƐ� ŝŵŵĞĚŝĂƚĞůǇ� ĂǀĂŝůĂďůĞ� ĨŽƌ� zĂůĞͲEh^� �ŽůůĞŐĞ� ĂĐĐĞƐƐ� ŽŶůǇ� ĨƌŽŵ� ͺͺͺͺͺͺͺͺͺͺͺͺͺ�
;ŵŵͬǇǇǇǇͿ� ƚŽ� ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ� ;ŵŵͬǇǇǇǇͿ͕� ƵƉ� ƚŽ� Ă� ŵĂǆŝŵƵŵ� ŽĨ� Ϯ� ǇĞĂƌƐ� ĨŽƌ� ƚŚĞ� ĨŽůůŽǁŝŶŐ�
ƌĞĂƐŽŶ;ƐͿ͗�;ƉůĞĂƐĞ�ƐƉĞĐŝĨǇ͖�ĂƚƚĂĐŚ�Ă�ƐĞƉĂƌĂƚĞ�ƐŚĞĞƚ�ŝĨ�ŶĞĐĞƐƐĂƌǇͿ͗��
ͺͺͺ͘��
�
�ĨƚĞƌ�ƚŚŝƐ�ƉĞƌŝŽĚ͕�ƚŚĞ�dŚĞƐŝƐ�ǁŝůů�ďĞ�ŵĂĚĞ�ĂǀĂŝůĂďůĞ�ĨŽƌ�ǁŽƌůĚǁŝĚĞ�ĂĐĐĞƐƐ͘�
�

�
R�KƚŚĞƌ�ƌĞƐƚƌŝĐƚŝŽŶƐ͗�;ƉůĞĂƐĞ�ƐƉĞĐŝĨǇ�ŝĨ�ĂŶǇ�ƉĂƌƚ�ŽĨ�ǇŽƵƌ�ƚŚĞƐŝƐ�ƐŚŽƵůĚ�ďĞ�ƌĞƐƚƌŝĐƚĞĚͿ���
ͺͺͺ�
ͺͺͺ�
�

�
�
�
�

ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ�� ������ ������
EĂŵĞ�Θ�ZĞƐŝĚĞŶƚŝĂů��ŽůůĞŐĞ�ŽĨ�^ƚƵĚĞŶƚ�

�
�

ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ�� ����� � �ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ��
^ŝŐŶĂƚƵƌĞ�ŽĨ�^ƚƵĚĞŶƚ�� � � � � �ĂƚĞ��
� �
�
�
ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ�� ������ ������� ͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺͺ��
EĂŵĞ�Θ�^ŝŐŶĂƚƵƌĞ�ŽĨ�^ƵƉĞƌǀŝƐŽƌ� � � � �ĂƚĞ��

�

i

Gabriel Phoenix Petrov
Prof. Ilya Sergey

Gabriel Phoenix Petrov
03 April 2021

ii

Acknowledgements
I can scarcely put into words how grateful I am to the following peo-

ple, for shaping my experiences during my undergraduate education and

helping me become the person I am today.

To my first computer science professor, Prof Aquinas Hobor, for in-

spiring me to pursue a journey in the area, despite the fact that prior to

his class I didn’t even know it was a field. Thank-you, for I have so far

found that journey to be nothing short of incredible.

To my capstone advisor, Prof Ilya Sergey, without whom this thesis

would not exist, for his gracious counsel, for his many classes, for de-

scribing the field of computer science as a forever incomplete jigsaw puz-

zle in sophomore year, and for helping me place the first few pieces down

in their correct spaces.

To Tram and all of my friends - Adair, Alaukik, Alvin, Karolina, Leyli,

Michael, Max, Ryan and more - for far too many moments to count.

To my sisters and my parents, the former, for growing up far faster

than I could’ve thought possible and the latter for never failing to enable

me in my endeavours, for always maintaining their quiet, but unyielding

support. I know I don’t rely on it often, but its presence is a comfort.

Finally, I am grateful to a Chuhu, whose smile somewhere out there

never ceases to make the world shine a little more warmly.

iii

YALE-NUS COLLEGE

Abstract

B.Sc (Hons)

A Study of Control and Type-Flow Analyses for Higher-Order

Programming Languages

by Gabriel PETROV

Higher-order programming languages take inspiration from existing mod-

els of computation, such as System F, in that they provide data and type

abstraction. Whilst these abstractions often make it difficult to reason

about the way a program behaves, there are methods that allow for just

that. Control-Flow Analysis is a powerful static algorithm used to ap-

proximate what values a program’s variables might take on during run-

time. Analogously, Type-Flow Analysis statically approximates what type

expressions may flow to various type variables. In this thesis, we se-

mantically define and present an OCaml implementation of a Type and

Control-Flow Analysis for System F. We further discuss its applications in

compiler design, specifically related to the unsolved problem of monomor-

phization in functional programs.

Keywords: Control-Flow, Type-Flow, System F, Monomorphization

HTTPS://WWW.YALE-NUS.EDU.SG/

iv

Contents

Acknowledgements ii

Abstract iii

1 Introduction 1

1.1 Motivation . 1

1.2 CFAs for Higher-Order Languages 2

1.3 TFAs for Higher-Order Languages 4

1.4 Goals and Outline . 5

2 Background And Overview 7

2.1 Lambda Calculus . 7

2.2 System F . 9

2.3 Control-Flow Analyses . 12

2.4 Type-Flow Analyses . 13

3 Engineering TCFA 15

3.1 CFA Algorithm . 15

3.2 TCFA Algorithm . 22

4 Experiments 27

4.1 Case Studies . 27

4.2 TFA and Higher-Kinded Types 30

v

5 Future Work and Conclusion 33

5.1 Future Work . 33

5.2 Conclusion . 35

Bibliography 36

1

Chapter 1

Introduction

1.1 Motivation

Computers are only able to understand the language of binary, incredibly

long sequences of ones and zeroes, which in turn are largely unreadable

to humans. Thus, in order to bridge the gap between engineers and hard-

ware, and by extension have our computers more seamlessly execute the

more complex tasks required of them, the need arose for automatized

translators of sorts that could convert human-understandable language-

like code into machine-executable binary. These translators are called

compilers.

Whilst the idea is simple, modern compilers are quite incredible and

intricately complex in their design. The actual task of translation aside,

compilers also generate many optimizations statically, i.e. without run-

ning the program, which results in more secure, automatically paral-

lelized, more easily verifiable and generally higher-performance code,

either in execution time or memory usage. Optimizations include “dead

code elimination”, which removes unreachable code, “reaching defini-

tions” that replaces repeated arithmetic with constants and many others.

Chapter 1. Introduction 2

int c;
int a = 1, b = 10;
if (a > b)

c = -1;
else

c = 100;
...

FIGURE 1.1: C code (left) and its CFG (right)

Consider Figure 1.1 that presents a small program in C and the pro-

gram’s control-flow graph (CFG). By simply following every vertex from

the top in the CFG, we can establish at compile time, that the left branch

of this program will never be reached: it is, in essence, “dead code”. In

fact, the whole if-statement could be replaced by the contents of the “else”

branch. However, in order to determine this useful information, a com-

piler needs to know how a program behaves, which is where we intro-

duce the first subject of this capstone: Control-Flow Analyses or CFAs.

CFAs attempt to determine the flow of a program, as well as what val-

ues various program parameters take on, and are the reason that many

optimizations a compiler generates for a program are even possible.

1.2 CFAs for Higher-Order Languages

Naturally, powerful algorithms such as this do not come for free. In

some programming languages functions are treated as “first-class citi-

zens”: they can be passed as arguments, returned as output, assigned to

Chapter 1. Introduction 3

variables and called upon by those variables. This paradigm of program-

ming is known as higher-order, or functional programming, which often

results in less code redundancy, improved modularity and arguably less

error-prone code, and is supported by an array of commonly used lan-

guages, including Haskell, OCaml, Scala, C++, and even Python. Among

them, however, there is a problem known as the higher-order control-

flow problem. In a language without higher-order functions, such as in

our C example above, the arguments of a function or arithmetic are read-

ily available, they are written in plain text within the code; thus the only

challenge that remains is to simply parse the program, as its textual flow

represents its control-flow.

However, in higher-order languages, the source of arguments of a

function may not be immediately determinable from the code; instead

they may rely on another “first-class” function elsewhere. To see how the

control flow graphs of such languages become quickly convoluted due

to their unique treatment of procedures, consider the following OCaml

code:

let foo = fun f -> f 3 in

let bar = fun g -> g 4 in

let inc = fun x -> x + 1 in

foo inc + bar inc

Upon reading the definition of the procedure foo and later bar, it is not

at all clear where f in the application f 3 and g in the application g 4 will

come from, since both f and g are just function parameters. It instead de-

pends on where the functions foo and bar will be used. What values will

flow to f and g will only be determined at runtime, however what might

Chapter 1. Introduction 4

flow to f and g is what a CFA aims to track. Flow of values, however, is

only one part of the story. You also need flow of types, which is where

Type-Flow Analyses (TFAs) come in.

1.3 TFAs for Higher-Order Languages

Higher-order programming languages grant the user the freedom to im-

plement functions that will work with any type, be they integers, strings,

booleans, or any other. These functions are known as “polymorphic”.

template <T>

T max (T a, T b) {

return (a>b?a:b);

}

int main () {

int a = 0, b = 5;

int c = max(a, b);

float d = 3.5, e = 7.5;

float f = max(d, e)

return 0;

}

FIGURE 1.2: Polymorphic Code

In languages that allow for poly-

morphic types, such as Java, C#,

C++, OCaml, Haskell and many

others, it’s perhaps intuitive to as-

sume a degradation in runtime

performance due to these univer-

sal types. To combat this, poly-

morphism is handled at compile

time using optimizations such as

monomorphization. Monomor-

phization is a strategy used to turn

universally quantified code into

specific and perhaps duplicated

code by creating new entities for

every concrete type used. An ex-

ample is the easiest way to understand, so consider Figure 1.2.

We see in the example above that although max is defined with the

polymorphic type T, it is only used with the int and float types. The

Chapter 1. Introduction 5

compiler will therefore generate two specialized versions of the max func-

tion:

int max_d (int a, int b) {

return (a>b?a:b);

}

float max_f (float a, float b) {

return (a>b?a:b);

}

This is the goal of monomorphization: conversion from polymorphic

types to concrete, monomorphic ones. In order to allow for this optimiza-

tion however, we need some way to know what types will flow to our max

function in the first place. This we do by using TFAs.

1.4 Goals and Outline

The answer to the question ”What values and types is the variable f able

to take on?” is quite non-trivial and is the problem that the class of al-

gorithms known as CFAs and TFAs attempt to solve. The rest of this

capstone works towards the development of a Type and Control-Flow

Analysis for functional languages. We’ve chosen System F as our repre-

sentative of higher-order programming. System F, which is covered ex-

tensively in the following chapter, is a minimalistic, but highly expressive

lambda calculus that has been the source of inspiration for many modern

day functional languages, such as Haskell, the ML family, and, to vary-

ing extents, Java, C#, Scala and Rust [4, 7]. In order to build our TFA,

Chapter 1. Introduction 6

we must engineer our CFA and to do that, we first need to implement

System F. Specifically, the contributions of this thesis are that it:

• presents a TCFA algorithm for a System F-like language

• presents an OCaml implementation of that TCFA

• presents testing and applications for it.

The remainder of this report is split into four chapters. Chapter 2 will

describe System F, present a toy implementation and go further in-depth

on the topic of CFAs & TFAs. Chapter 3 begins by formally defining a

CFA and engineering an OCaml implementation of it, before describing

the technical results obtained by this thesis, namely the expanded TCFA

algorithm. Chapter 4 works through several examples of increasing com-

plexity that demonstrate the TCFA in practice and discusses an edge case

of TCFAs. Finally, Chapter 5 quickly explores what this thesis could not,

showing future avenues of inquiry that would be interesting to follow

through with and wraps it up with some concluding thoughts.

7

Chapter 2

Background And Overview

This chapter is a crash-course introduction to a few of the core concepts

used in the rest of this capstone.

2.1 Lambda Calculus

Lambda calculus is a simple, yet extremely expressive formal system de-

signed to denote computation, invented by Alonzo Church. Lambda cal-

culus consists of three design elements, or terms, and the reduction oper-

ations that can be done on them. These terms include:

Variables : x, y, z

Abstractions : λx.t

Application : t1 t2

TABLE 2.1: Lambda Calculus

where t, t1 and t2 are all lambda terms and t2 must evaluate to a “value”.

A value in lambda calculus could be an integer, a boolean or, as it is a

higher-order language, another function abstraction.

Chapter 2. Background And Overview 8

One of the simplest and arguably more important reduction operation

in lambda calculus is β-reduction, whereby in the case of a function appli-

cation (λx.t) v, every bound appearance of the variable x in t is replaced

by the value v, like so:

(λx.t) v =⇒ t[v/x]. (2.1)

To gain some intuition, let’s take a look at an example. Data was first

encoded in lambda calculus through the use of Church numerals, which

are a way to express the natural numbers. The logical method to encode

a natural number n is to use n of some term. Alonzo Church decided to

use applications. The natural number n is thus encoded by a higher-order

function that applies another function n number of times. Thus

0 = λ f .λx.x

1 = λ f .λx. f x

2 = λ f .λx. f (f x),

and so on. Church numerals are not meant to be a practical represen-

tation of numbers, but they do exist to show that no other terms are re-

quired to express computations. We can get the successor of these encod-

ings via the procedure

succ = λn.λ f .λ.x f (n f x).

Running succ on 0 = λ f .λx.x gives λ f .λ.x f ((λ f .λx.x) f x) = λ f .λx. f x

via the β-reduction rules presented above in eq. (2.1), resulting in the

Chapter 2. Background And Overview 9

Church encoding of 1. We could imagine how by applying the successor

function on a Church numeral n m number of times, we would achieve

the addition of two Church encodings. The expressiveness of lambda

calculus is truly wondrous.

A step up from lambda calculus lies simply-typed lambda calculus

(STLC), which adds base types, such as integers or booleans, as well as

the function type contructor→ that builds function types, to our syntax.

We add to Table 2.1 in the following way:

Types : Int|Bool|T → T| . . . , where T ∈ Types

Abstractions : λx : T.t

TABLE 2.2: Additional STLC Syntax

2.2 System F

System F further builds upon the notion of STLC by introducing poly-

morphic types, i.e. types that use the universal quantifier. This however

introduces the need for variables that range over types as well as typed

applications and typed abstractions. Thus, we add capitalized variables

like X, Y, Z and the following two new terms to Table 2.2:

Type Abstractions : ΛX.t

Type Application : t [X]

TABLE 2.3: Additional System F Syntax

Chapter 2. Background And Overview 10

Though unlike lambda calculus, System F isn’t Turing complete due

to its lack of recursion (specifically expressing recursion with types), since

System F builds upon lambda calculus it remains a simple, yet remark-

ably expressive way to represent a large number of programs. Its poly-

morphism is something that many modern languages have drawn inspi-

ration from, thus studying it can improve the state of the art. Its sim-

plicity also lends itself well to the many optimizations that compilers run

on the languages they’re compiling. Thus, some compilers, particularly

those that work with functional programming languages, will often con-

vert the native code into a form of System F (with recursion) and then run

their analyses on that now Turing-complete System F, before continuing

with the compilation. An example of this would be GHC that converts

Haskell code into an intermediate representation called Core, where Core

is one such example of pseudo-System F [3, 10].

During the initial explorations into this topic, we found it useful to

develop a toy System F evaluator in OCaml. The terms that our toy Sys-

tem F language can take on are the same as discussed above, but notably

is the notion of a value, which has changed partially from how we pre-

sented it in the lambda calculus section:

type value =

| IntV of int

| TypV of ty

| Closure of environment * var * exp

and environment = (var * value) list

where in our implementation the type ty is allowed to take on Int, a vari-

able type, a function type, and the polymorphic type. Returned values in

Chapter 2. Background And Overview 11

our toy System F evaluator therefore can be integers, types or closures.

The evaluator itself is reproduced below:

let rec eval env e =

match e with

| IntE i -> IntV i

| VarE x -> lookup x env

| LamE (arg, t, body) -> Closure(env, arg, body)

| AppE (e1, e2) ->

(match(eval env e1, eval env e2) with

| (Closure(cenv, x, body), v) ->

eval ((x,v)::cenv) body

| _ -> failwith "applied non-function")

| TypLamE (v, e') -> Closure(env, v, e')

| TypAppE (e', t) ->

(match(eval env e', t) with

| (Closure(cenv, x, body), v) ->

eval ((x,TypV v)::cenv) body

| _ -> failwith "applied non-type")

The rules for integers and variables are quite intuitive: constants eval-

uate to themselves, whereas variables are looked up in the environment.

Lambda abstractions, both on types and not, return closures. Finally ap-

plications use the provided closures to evaluate the body of those clo-

sures with a β-reduction operation (see eq. (2.1)).

This implementation of a System F evaluator is somewhat incomplete.

It stops as soon as a closure is reached, but never tries to replace variables

Chapter 2. Background And Overview 12

inside the body of those closures with their corresponding values (i.e. β-

reduction isn’t implemented properly: it’s only implied by the captured

pair in the environment, meaning that another pass of the body is neces-

sary to actually have the body reduced). Regardless, it is a toy example,

aimed to aid familiarization with System F and provide a stepping stone

into the main body of this capstone. In the following chapter we develop

a language called Fun for “functional” and present how type and con-

trol flow information can be obtained statically, without evaluating the

expressions.

2.3 Control-Flow Analyses

CFAs have already been introduced in Chapter 1. Among them there

are different tiers of CFA algorithms, each with rising complexity. The

naïve implementation of a CFA would be to assume that all lambda ex-

pressions present within the current function’s scope (or worse yet, the

whole program) can flow into every function application.

A somewhat more involved CFA would be the 0-CFA algorithm pro-

posed by Shivers [8]. Shivers’ algorithm is a context-insensitive control-

flow analysis, meaning that every value is abstracted to the syntax from

which it came, every function is abstracted to the term that created it,

whilst its environment is ignored. This algorithm is still quite imprecise,

however its benefit presents itself in its cubic-time bound, making it one

of the more efficient algorithms in its class [5]. Broadly speaking, 0-CFA

is implemented by the following logic:

1. Every function abstraction flows to itself

Chapter 2. Background And Overview 13

2. For every application F t, if the function abstraction λx.t′ flows to F

and the value v flows to the application’s argument t, then v flows

to x.

3. For every application F t, if the function abstraction λx.t′ flows to

F and the value v flows to the abstraction’s body t′, then v flows to

the abstraction F t. [5]

Finally, there exist the even more precise k-CFA class of CFA algo-

rithms, that improve the control-flow analysis precision via context sen-

sitivity. An example of this would be Shivers’ proposed 1-CFA algorithm

that can perhaps amend 0-CFA’s logic in the following way: the function

abstraction λx.t flows to the variable y, when the function abstraction

λy.t′ is called from F e [5, 9].

2.4 Type-Flow Analyses

A somewhat related analysis is presented by Matthew Fluet: a type-flow

analysis [2]. We gained some intuition about TFAs in Chapter 1, but let’s

take a closer, more in-depth look. If a CFA claims that three functions

- one of type int → int, one bool → bool and one char → char - flow

into the variable x, then if we can algorithmically assert somehow that

x’s static type can only be functions of type int → int and bool → bool,

then we can get a better approximation of our program, a much better

one at that if x is originally defined as polymorphic. This information,

the author claims, can by generated by a TFA. Thus, as CFAs provide

useful approximations because it is unlikely that program variables are

Chapter 2. Background And Overview 14

bound to every function present at runtime, TFAs provide useful approx-

imations because it is unlikely that types of variables are bound to every

type at runtime.

It is worth noting that Fluet’s analysis addresses System F with poly-

morphic recursion and makes multiple compromises in order to accom-

modate for the possibility of the infinite sets of types that can appear

at runtime due to this polymorphism (we examine this problem in Sec-

tion 4.2). Our goal in this manuscript is to study a more conservative

version of System F without polymorphic recursion, as we hope to come

up with a more principled and robust way to implement these analyses.

15

Chapter 3

Engineering TCFA

This chapter begins by formally defining a Control-Flow Analysis algo-

rithm and presenting an OCaml implementation of it, in order to gain

intuition about CFAs, before turning to the details of the brainchild of

this manuscript: the Type and Control-Flow Analysis.

3.1 CFA Algorithm

The CFA algorithm presented in this section gathers control flow from a

lambda calculus equivalent language Fun, defined below.

type label = int

type con = int

type var = string

type term =

| ConT of con

| VarT of var

| FunT of var * e (* λx.e *)

| OpT of e * e

Chapter 3. Engineering TCFA 16

| AppT of e * e (* e1 e2 *)

and e = term * label

Fun only differs from lambda calculus via its inclusion of constants,

binary operations and labels. Labels are a design choice necessary to

identify different terms. However there are examples of control flow

analyses that dispense with the use of labels: in fact many compilers use

an intermediate representation in “continuation passing style”, thus “la-

belling” every subterm by the use of a variable. We found labels to be

more intuitive, but their use further presents the flexibility of the CFA

and its ability to work with general functional programming languages

[1].

Before moving on to the implementation of the CFA, we ought to first

examine the theory behind how the algorithm is supposed to work. The

result of a CFA is a pair, comprised of an abstract cache C and an ab-

stract environment ρ that respectively map labelled points and program

variables to abstract values. Abstract values meanwhile are simply ab-

stractions of the form λx.e. Constants are not considered to be abstract

values as this is purely a Control Flow Analysis, without a Data Flow

component, though it can be extended to include data flow. Thanks to

the way C and ρ are designed, neither labelled points, nor program vari-

ables necessarily have to be distinct, but greater precision is of course to

be gained by making sure they are unique.

Now let’s consider the following example ex1:

((λx.x1)2 (λy.y3)4)5

Chapter 3. Engineering TCFA 17

Ideally, our analysis will be able to conclude that λy.y3 flows to both

x (via β-reduction, see eq. (2.1)) and the labelled points 1, 4, 5, and that

λx.x1 flows to the labelled point 2. An acceptable, albeit somewhat use-

less result would be that both λx.x1 and λy.y3 flow to all labelled points

and all program variables. However, an unacceptable result would be

one that attempted to convince us that nothing flows to x, aka that x

is unbound in the example. This would be semantically incorrect. Our

analysis is allowed to have some degree of imprecision, but it must be

sound.

Now that we know what, concretely, we are attempting to obtain,

what remains of course is how our CFA manages to obtain sound and

meaningful flow information about any expression e∗ written in any Fun-

like language. We do this by generating a set of constraints and condi-

tional constraints of the form

lhs ⊆ rhs

{t} ⊆ rhs =⇒ lhs ⊆ rhs′,

where t is a function abstraction term (λx.b), lhs is of the form {t}, C(l)

or ρ(x), and rhs is of the form C(l) or ρ(x), allowing us to represent how

higher order bodies flow to one another [1]. The former reads “all evalu-

ations of lhs may be observed at rhs”, whereas the latter reads “rhs′ may

evaluate to lhs, provided that t is included in what rhs may evaluate to”.

After these constraints are obtained, a least solution to them needs to be

computed, which will leave us with the control flow information of our

expression.

Chapter 3. Engineering TCFA 18

Armed with these ideas, we turn to the implementation of our CFA.

Below we first represent our two mappings for C and ρ, however it is

worth noting that as neither of them is an actual map, these are simply

the pure syntax used to represent the two:

type abstract =

| AbsC of label (* C(l) *)

| AbsEnv of var (* ρ(x) *)

Next we define our constraint types:

type constr =

| TSub of term * abstract (* {t} < rhs*)

| ASub of abstract * abstract (* lhs < rhs *)

| Cond of

term * abstract * abstract * abstract

(* {t} < rhs => lhs < rhs*)

Finally, we move on to generating the constraints, which we do via the

function C∗. There are five bodies that Fun expressions e∗ may evaluate

to, namely any of the Fun’s terms, paired with some label. Each of these

versions of e∗ will generate a different constraint, as in Table 3.1. The

rule for constants collects no control-flow information, as we mentioned

above. The rule for variables show that whatever a variable may evaluate

to can be observed at the variable’s program point. The rule for function

abstractions show that the term can occur at the abstraction’s label and re-

cursively calls our constraint-generating function C∗ on the abstraction’s

body. The rule for binary operations simply recursively calls C∗ on both

branches.

Chapter 3. Engineering TCFA 19

[ConT] C∗[cl] = ∅

[VarT] C∗[xl] = {ρ(x) ⊆ C(l)}
[FunT] C∗[(fun x ⇒ e)l] = {{fun x ⇒ e} ⊆ C(l)}

∪ C∗[e]
[OpT] C∗[e1 op e2] = C∗[e1] ∪ C∗[e2]

[AppT] C∗[(t
l1
1 tl2

2)
l] = C∗[t

l1
1] ∪ C∗[t

l2
2]

∪ {{t } ⊆ C(l1) =⇒ C(l2) ⊆ ρ(x)

| t = (fun x ⇒ tl0
0)}

∪ {{t } ⊆ C(l1) =⇒ C(l0) ⊆ C(l)

| t = (fun x ⇒ tl0
0)}

TABLE 3.1: Constraint based CFA

Finally, the rule for applications recursively calls C∗ on the abstraction

and the argument, and then collects two conditional constraints. The first

of the two reads “For all terms t of abstraction form (λx.tl0
0), if t can be

observed at program point l1, then what flows to the labelled point l2

flows to x”, whereas the second reads “For all terms t of abstraction form

(λx.tl0
0), if t can be observed at program point l1, then what flows to the

labelled point l0 flows to the labelled point l”.

Transforming these constraints into code was relatively straightfor-

ward. We define a set type Cons that collects constraints and with it de-

fine the function getConstraints which takes a function abstraction list

and an expression and returns a constraint set. We’ve elected to skip over

the more simpler rules and below reproduce only the application rule:

| AppT ((t1, l1), (t2, l2)), l ->

let c1 = getConstraints fn_ts tfn_ts (t1, l1) in

let c2 = getConstraints fn_ts tfn_ts (t2, l2) in

Chapter 3. Engineering TCFA 20

List.fold_left (fun cons t -> match t with

| FunT (v, ty, (t0, l0)) ->

ConsS.add (Cond (t, AbsC l1, AbsC l0, AbsC l))

(ConsS.add (Cond (t, AbsC l1, AbsC l2, AbsEnv v))

cons)

| _ -> failwith "bad fn term list"

) (ConsS.union c1 c2) fn_ts

Running getConstraints on our ex1, ((λx.x1)2 (λy.y3)4)5, returns the

following constraints:

{fun x ⇒ x1} ⊆ C(2);

{fun y⇒ y3} ⊆ C(4);

ρ(x) ⊆ C(1);

ρ(y) ⊆ C(3);

{fun x ⇒ x1} ⊆ C(2) =⇒ C(1) ⊆ C(5);

{fun x ⇒ x1} ⊆ C(2) =⇒ C(4) ⊆ ρ(x);

{fun y⇒ y3} ⊆ C(2) =⇒ C(3) ⊆ C(5);

{fun y⇒ y3} ⊆ C(2) =⇒ C(4) ⊆ ρ(y);

Now, as discussed above, we would like to find the least solution to

this set. To do this, we turn to a graph formulation of the constraints. The

graph’s nodes will be a C(l) and ρ(x) for all labels and variables in our

expression. The solution will output a data field D, that maps entities to

all entities that flow to them. A subset of the constraints produced by C∗

will be described by an edge between nodes as so: a constraint lhs ⊆ rhs

Chapter 3. Engineering TCFA 21

will define an edge from lhs to rhs, whereas a constraint {t} ⊆ rhs =⇒

lhs ⊆ rhs′ gives rise to an edge from lhs to rhs′ and from rhs to rhs′.

To find the least solution, what we must do is a sort of topological

traversing of this newly constructed graph. We initialize D with all con-

straints of form {t} ⊆ rhs, because there is nothing to compute in those

cases. We define a worklist W of nodes whose outgoing edges we would

like to traverse, as well as an edge array E that for each node contains

the constraints that allow computation of successor nodes. However, to

make the algorithm efficient, we make sure to only traverse an edge from

n1 to n2 if our D[n1] contains a term that wasn’t previously there.

We define four helper functions to solve these constraints. They are

initialization, add, build_graph and iteration.

As the name suggests initialization initializes our three data struc-

tures. We then use build_graph to populate the edge array E as de-

scribed above, performing the initial assignments to D via the function

call add(q,d), which adds d to D[q] and q to our worklist if d isn’t al-

ready a subset of D[q] (as discussed above).

Finally, we iterate through our worklist with iteration while the

worklist isn’t empty. For every edge of form lhs ⊆ rhs we run add(rhs,

D[lhs]); for every edge of form {t} ⊆ rhs =⇒ lhs ⊆ rhs′, in order

to adhere to the conditional nature of our conditional constraint, we tra-

verse the edge with add(rhs’, lhs) only if in fact t ∈ D[rhs]. Finally we

return our data array D [1].

In our ex1, after the initialization and building of the graph we obtain

a worklist W : [C(4); C(2)], a data array with nodes C(1) through C(5),

Chapter 3. Engineering TCFA 22

ρ(x) and ρ(y) of which only C(2) and C(4) are non-empty and respec-

tively point to (λx.x1) and (λy.y3), and an edge array with all the appro-

priate edges recorded. Once we iterate through our worklist, adding and

removing from it as described above, we are left with a data array that

looks like so,

C(1)
f low←−− {fun y⇒ y3}

C(2)
f low←−− {fun x ⇒ x1}

C(3)
f low←−− ∅

C(4)
f low←−− {fun y⇒ y3}

C(5)
f low←−− {fun y⇒ y3}

r(x)
f low←−− {fun y⇒ y3}

r(y)
f low←−− ∅

and is consistent with our original guess from when we first presented

this example.

Thus we have our Control-Flow Analysis that can correctly obtain

control-flow information about a program. The challenge that remains

now is expanding this control-flow analysis to be able to gather type-flow

information as well.

3.2 TCFA Algorithm

Expanding the CFA to incorporate types quickly proved to be quite in-

volved. The groundwork was fairly simple; it required a new type to be

defined, as below:

Chapter 3. Engineering TCFA 23

type ty =

| IntTy

| FunTy of ty * ty (* ty → ty *)

| VarTy of var

| ForAllTy of var * ty (* ∀X.T *)

and also for two new terms to be included in Fun and the FunT term to

be edited in order to record its bound variable’s type:

type term =

...

| FunT of var * ty * e

...

| TypLamT of var * e (* type abstractions: \X. body *)

| TypAppT of e * ty (* type app: e [T] *)

The final change was to extend our abstract to be able to record type

environments, like so:

type abstract =

...

| AbsTEnv of ty (* τ(T) *)

Now, having added the two new terms, we must edit our constraint

collecting C∗ function accordingly. We edit and add to Table 3.1 with the

rules presented in Table 3.2. Editing our FunT rule is quite simple. To

retrieve the constraints from a type abstraction is also fairly straightfor-

ward, as it closely followed the logic of a standard lambda abstraction.

Generating a constraint for the type application tl[T], was a bit more

challenging to write. Similarly to a standard application, the constraint

Chapter 3. Engineering TCFA 24

[FunT] C∗[(fun x : (T) ⇒ e) l] = {{fun x : (T)⇒ e} ⊆ C(l)}
∪ C∗[e]

[TypLamT] C∗[(tfun X ⇒ e)l] = {{tfun X ⇒ e} ⊆ C(l)}
∪ C∗[e]

[TypAppT] C∗[(t
l0
0 [T])l] = C∗[tl0

0]

∪ {{t} ⊆ C(l0) =⇒ τ(T) ⊆ τ(X)

| t = (tfun X ⇒ e)}

TABLE 3.2: Constraint-based TCFA

function must first extract all terms of type abstraction form. From then

on, the process was somewhat more involved.

Initially, it seemed as if the two applications would differ in that the

type application would generate different constraints depending on the

type being applied (T), which could be four kinds of type: a ground type,

meaning a type that contains no type variables within it, a variable type,

a function type, or a polymorphic type.

If T were a ground type or a variable type, then the rule had to show

that for all terms of type abstraction form \X.b, T flows into X.

If T were a function type or a polymorphic type, it wasn’t quite clear at

first what the rule would be, but types are types, and just as in a standard

application e1 e2, e2 can reduce to several different forms, so too could T.

So eventually, the rule that was settled on was the same, regardless of T’s

internals, namely the constraint {t} ⊆ C(l) =⇒ τ(T) ⊆ τ(X).

Now came the biggest challenge of the project, namely collecting some

type-flow information from our program. Unfortunately, simply using

our constraint solver from the CFA module was not enough and provided

Chapter 3. Engineering TCFA 25

no type-flow information at all. This is because our solver does some-

thing different. On a conditional branch {t} ⊆ C(l) =⇒ τ(T) ⊆ τ(X),

the solver checks whether t is in fact something that program point l may

evaluate to, and then sets the constraints that all types that flow to T

will now flow to X. However, whilst that is useful, we would like to

specifically find that T flows to X. We append our solver to include this

information when the conditional part of our conditional constraint is

satisfied.

Another issue is that despite tracking type-flow information for bound

types, some type-flow information depends on our control-flow. To un-

derstand how, we must take a step back and look at the bigger picture.

Consider this next example ex2:

(
λ f : (∀T, T → T). (f [Int]) 42

)
id,

where id refers to the identity function that we’ve seen the type-less ver-

sion of twice in ex1, namely λx.x, that now becomes ΛX.λx : (X). x.

The crucial observation to be made is how types flow upon evalua-

tion. The standard control-flow analysis gives us that id might flow to

f . We see that f is instantiated with type Int inside of its body. Thus,

ideally we would like to know that if id flows to f , then what flows to T

(f ’s type), will flow to X (id’s type). Control flow affecting type flow.

A problem arises here, which is that we only learn id flows to f upon

solving the constraints, not from the constraints themselves. Thus if we

want to collect our type-flow information, we’ll have to do it during our

graph traversal.

We first need an environment that will match every variable with that

Chapter 3. Engineering TCFA 26

variable’s type. This environment can be collected through use of a type-

checker: an algorithm that will check the correctness of every variable’s

type within a program and can collect these pairs in the process. Next,

during our graph traversal upon reaching an edge with conditional con-

straint form - {t} ⊆ rhs =⇒ lhs ⊆ ρ(x) - we lookup said environment

for x’s type X. We then find all terms that flow to ρ(x) by looking up

our data array D and extract all types Y that are logically equivalent to X

from all bound variables present within those terms. Finally, we update

our data array with ∀Y, d[τ(X)] := d[τ(X)] ∪Y.

With that, we have successfully obtained the type and control-flow

information in a program. In the following chapter we will go through

some concrete examples and take a closer look at the algorithm’s steps.

27

Chapter 4

Experiments

This chapter focuses on several case studies of increasing complexity and

shows how our TCFA works in practice.

4.1 Case Studies

First, let’s examine a simple type instantiation example on the identity

function id with type Int:

((
tfun X ⇒ (fun x : (X)⇒ x1)2

)3
[Int]

)4

We run our getConstraint function, which generates the following

constraints according to Table 3.2:

{fun x : (X)⇒ x1} ⊆ C(2);

{tfun X ⇒ (fun x : (X)⇒ x1)2} ⊆ C(3);

ρ(x) ⊆ C(1);

{tfun X ⇒ (fun x : (X)⇒ x1)2} ⊆ C(3) =⇒ τ(Int) ⊆ τ(x);

Chapter 4. Experiments 28

In order, we obtain our first constraint via the FunT rule when we

reach program point 2; the second via the TypLamT rule upon reaching

program point 3; the third via the VarT rule upon reaching program point

1 and finally the fourth conditional constraint via our TypAppT rule at

the type application with Int.

To solve these constraints we initialize our data array with our func-

tion and type function terms flowing respectively into program points 2

and 3; our edge array with an edge from ρ(x) to C(1), from C(3) to τ(x)

and from τ(Int) to τ(x) and our worklist with C(3) and C(2).

Our iteration first takes a look at C(3)’s outgoing edges. As the nature

of our conditional constraint demands, we will only explore these edges

if in fact {tfun X ⇒ (fun x : (X) ⇒ x1)2} ⊆ C(3), which a quick look

at our data array tells us is in fact true. We thus append our data array

to reflect that τ(Int) (and Int itself) indeed flows to τ(X). Our worklist

looks up C(2)’s outgoing edges and upon finding nothing, the program

terminates, leaving us with a data array that contains three noteworthy

entries: fun x : (X) ⇒ x1 flows to C(2), tfun X ⇒ (fun x : (X) ⇒ x1)2

flows to C(3) and Int flows to τ(x).

Now let’s take a look at a more complicated example:

(
fun g :

(
(∀S, S→ S)→ Int

)
⇒

(
g1 id4

)5
)6

(
fun f : (∀T, T → T)⇒

(
(f 7 [Int])8 429

)10
)11

where id = tfun X ⇒ (fun x : (X)⇒ x2)3 and henceforth

G = fun g :
(
(∀S, S→ S)→ Int

)
⇒

(
g1 id4

)5

Chapter 4. Experiments 29

and

F = fun f : (∀T, T → T)⇒
(
(f 7 [Int])8 429

)10
.

To avoid repeating already covered concepts, we will skip over the

more straightforward sections of the algorithm, as the idea we are most

interested in is whether the control-flow will affect our type-flow in such

a nested example, where ideally we’d like to know that as F flows to g

then g’s argument type will flow to any equivalent types in F and also

that as id flows to F, then F’s argument type will flow to any equivalent

types in id.

The function getConstraint generates 26 constraints. Our data array

is initialized with the following information:

C(3)
f low←−− {fun x : (X)⇒ x2}

C(4)
f low←−− {tfun X ⇒ (fun x : (X)⇒ x2)3}

C(6)
f low←−− {G}

C(11)
f low←−− {F},

our edge array with a large number of edges and our worklist with C(4),

C(3), C(6) and C(11).

As the algorithm iterates, the first point of interest occurs during the

exploration of C(6)’s outgoing edges. Of those, the one of note is the

conditional constraint {G} ⊆ C(6) =⇒ C(11) ⊆ ρ(g). As G does

indeed flow to C(6), we check our data array and find that F flows to

program point 11, hence, F flows to ρ(g).

But as we mentioned previously, in System F, control-flow affects type

Chapter 4. Experiments 30

flow. It is at this point that our TCFA looks up our environment for g’s

type
(
(∀S, S → S) → Int

)
, where only the arguments’ type (∀S, S → S)

interests us. We then search through F and find all equivalent types, thus

discovering T. Finally, we change our data array to reflect that S flows to

τ(T). We append our worklist to reflect that we must now explore ρ(g)’s

outgoing edges and continue iterating.

Similarly, a few iterations later, we find that {F} ⊆ C(1) =⇒ C(4) ⊆

ρ(f), and as at this point F does in fact flow to C(1), we check our data

array and see that id flows to C(4), hence id flows to ρ(f). Following

the same steps as above, we manage to extract the information that f ’s

argument type T flows to the equivalent type X within id.

The algorithm terminates a few iterations later, producing quite a bit

of information, but the noteworthy ones have already been covered. We

also manage to collect that Int flows to X, much in the same way it was

done in the first example of this chapter.

4.2 TFA and Higher-Kinded Types

There is one issue with this TCFA that remains unsolved and is quite

tricky. Recall the notion of Church numerals, used as a representation for

natural numbers in lambda calculus (see Section 2.1). Now let’s consider

one last case study break. In the interest of space and legibility, we revert

back to standard System F notation in this Section. The term break relies

on two other expressions,

ctwo = ΛX.λ f : (∀X, X → X). λx : (X). f (f x)

Chapter 4. Experiments 31

and

cexp = λm : (∀X .((X → X)→ X)→ X).

λn : (∀X.((X → X)→ X)→ X).

ΛX. (n [X → X]) (m [X]),

which refer to the second Church numeral and to the procedure that per-

forms exponentiation on Church numerals. Meanwhile break looks like

so:

((cexp ctwo) ctwo) [Int].

Running our TCFA on break collects quite a bit of information, but

most notably

D[τ(X)] = X → X; Int; X.

At first glance, this looks exactly correct, and semantically it is. Unfor-

tunately, this is the bane of all graph-traversing algorithms: a cycle. The

tautology “what flows to X, flows to X”, we can ignore. However, an

attempt at expansion on the function type, in order to get a concrete one,

would result in X → X flows to X, hence (X → X) → (X → X) flows

to X, etc, all flowing to X... When instantiated with Int and expanded,

Int → Int and (Int → Int) → (Int → Int), and ((Int → Int) → (Int →

Int))→ . . . are seemingly all possible values of X.

The issue is difficult to fix. It is a problem characteristic to univer-

sally quantified types that are instantiated with other universal types,

thus making the first “higher-kinded” [6]. An extremely conservative

approach would be to disallow any function types using type abstraction

variables (like X → X). This is not ideal. However, as far as we know, no

Chapter 4. Experiments 32

other less conservative approach has been rigorously proven. Perhaps

there is a way to address this circularity that TCFAs run into with lan-

guages that do not implement full-blown polymorphic recursion, or for

specific applications like monomorphization. This is further discussed in

the next chapter’s Section 5.1.

33

Chapter 5

Future Work and Conclusion

This chapter describes some exciting future avenues of inquiry and caps

this manuscript off with some concluding thoughts.

5.1 Future Work

The focus of this work has been to extend established Control-Flow Anal-

yses with an additional Type-Flow Analysis that works with System F.

Future work would focus on three avenues: additions to our current

TCFA, randomized stress testing of this project, and finally exploring

ways to interface with existing state of the art compilers.

An interesting addition to our current TCFA would be to extend it

with the ability to collect Data Flow information. In simple terms this

would involve extending our set of values to include abstract values be-

sides abstractions, specifically constants. This would of course involve

appending our constant rule in Table 3.1, changing it to something sim-

ilar to our variable rule, but also our binary operator rule would likely

have to be appended as well. We would finally have to explore how the

Chapter 5. Future Work and Conclusion 34

addition of the data flow information can affect our control flow, in order

to glean more precise information about the program.

Furthermore, in order to stress test this project well, the ability to in-

terface with a random System F generator would prove especially effec-

tive. Although the actual checking of the results obtained would for now

have to remain manual, as designing a test oracle that could decide au-

tonomously whether a certain output is correct or not sounds remarkably

difficult, the task of interfacing with such a generator doesn’t intuitively

seem like it would present too serious a challenge. As our language Fun

is effectively System F, all that would be required is likely a simple lex-

er/parser that reads through whatever examples the random System F

generator creates, transforms them into Fun and runs them through our

TCFA. Whilst testing, especially compiler testing, is arguably not as com-

mon a practice as it perhaps should be, luckily such random System F

generators do exist.

Finally, the ability to interface with a state of the art compiler for

higher-order languages would be the pinnacle of future work. The one

challenge that remains is the long-standing issue of monomorphization

in System F and functional programs in general. To avoid higher-kinded

types, a robust proof of whether forms of recursion could be implemented

without running into cases such as our example from Section 4.2, would

be a great leap forward in the topic of TFAs. The TCFA presented here

could then help compilers obtain useful control-flow information about

their programs, but also allow them to perform monomorphization on

polymorphic functions, thanks to the type-flow information obtained.

Chapter 5. Future Work and Conclusion 35

5.2 Conclusion

The results obtained in Chapter 3 that formally define and present an

OCaml implementation of a Type and Control Flow Analysis, with the

ability to collect practically precise control and type-flow information

from a program.

In this work we’ve presented a way to extend established Control-

Flow Analyses with an additional Type-Flow Analysis on functional pro-

gramming languages, but in a systematic and robust manner, without at-

tempting to implement polymorphic recursion, and thus without making

the many concessions one would have to make in that case. We do this

by use of the lambda calculus System F, which is a simple, but rich way

to express programs of higher-order languages. We demonstrate the TC-

FAs ability to work with examples of varying degrees of complexity, and

present an edge case with an interesting problem that raises questions

worthy of future exploration. With that, we conclude this capstone.

36

Bibliography

[1] Chris Hankin Flemming Nielson Hanne Riis Nielson. Principles of

Programming Analysis. Springer, 1999, pp. 141–209.

[2] Matthew Fluet. “A Type- and Control-Flow Analysis for System F:

Technical Report”. In: Rochester Institute of Technology Scholar Works

(2013).

[3] GHC Core Team. Glasgow Haskell Compiler: The Core Type. 2020. URL:

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/

compiler/core-syn-type.

[4] Jean-Yves Girard. “Interprétation fonctionnelle et élimination des

coupures de l’arithmétique d’ordre supérieur”. PhD thesis. Univer-

sité Paris 7, 1972.

[5] Matthew Might. k-CFA: Determining types and/or control-flow in lan-

guages like Python, Java and Scheme. 2010.

[6] Benjamin C. Pierce. Types and Programming Languages. MIT Press,

2002.

[7] John C. Reynolds. “Towards a theory of type structure”. In: Pro-

gramming Symposium. Vol. 19. LNCS. Springer, 1974, pp. 408–423.

https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/core-syn-type
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/core-syn-type

Bibliography 37

[8] Olin Shivers. “Control-flow analysis in Scheme”. In: Proceedings of

the ACM SIGPLAN 1988 Conference on Programming Languages De-

sign and Implementation, M. D. Schwartz, Ed. Atlanta, Georgia. ACM.

1988, 164–174.

[9] Olin Shivers. “Control-flow analysis of higher-order languages or

taming lambda”. PhD thesis. Pittsburgh, Pennsylvania: School of

Computer Science, Carnegie Mellon University, 1991.

[10] Vladislav Zavialov. Haskell to Core: Understanding Haskell Features

Through Their Desugaring. 2020.

	Acknowledgements
	Abstract
	Introduction
	Motivation
	CFAs for Higher-Order Languages
	TFAs for Higher-Order Languages
	Goals and Outline

	Background And Overview
	Lambda Calculus
	System F
	Control-Flow Analyses
	Type-Flow Analyses

	Engineering TCFA
	CFA Algorithm
	TCFA Algorithm

	Experiments
	Case Studies
	TFA and Higher-Kinded Types

	Future Work and Conclusion
	Future Work
	Conclusion

	Bibliography

