
TESTING STATIC PROGRAM ANALYSES

WITH A STATE-COLLECTING MONADIC

DEFINITIONAL INTERPRETER

HOANG NGOC TRAM

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2022

Supervisor:

Associate Professor Ilya Sergey

Examiners:

Professor Olivier Danvy

Professor Joxan Jaffar

Declaration

I hereby declare that this thesis is my original work and it has been

written by me in its entirety. I have duly acknowledged all the sources of

information which have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

November 25, 2022 Hoang Ngoc Tram
. .

Date Name

i

Acknowledgements

This work was made possible with the help and support of the following

people, to whom I am deeply grateful.

Professor Ilya Sergey’s patience and commitment to teaching allowed

me and many other students to realise and then actualise our passion

for the field. I am thankful for the opportunities he generously provides

and for his tireless guidance, advice, and wisdom throughout the past

four years. I am also grateful to the faculty of the School of Computing

and of Yale-NUS College. Through their patient, kind, and effective

teaching, Professor David Smith and Professor Francesca Spagnuolo share

their love for mathematics; they instill into their students the importance

of sustained work, rigour, and paying close attention to detail. In the

Functional Programming and Proving lectures, Professor Olivier Danvy

challenges his students with difficult but interesting questions that bring

out their curiosity; he pushes them to do better by making them believe in

themselves. The faculty and staff of these institutions never fail to make

students feel like they are a part of a learning community, and for that I

am grateful too.

To Yunjeong, Kiran, and Leyli, thanks for your scientific interest and

for your support and comments. You have been incredibly kind and

patient, and this dissertation truly would not have been the same without

you.

To Alysha, Denise, Raya, and Emma, thanks for being pillars of sanity

throughout our university years and for always filling the room with

ii

laughter, love, and care. Thanks to Nastya, Fiona, and Sangam for

insightful conversations, heartfelt support, and for always staying true to

yourselves and your passions. Thank you Vivien for your gentleness, for

your generous love and care, and for our late night talks about what is

important and what is right. And of course, thank you Maxine, for your

continuous cheering and, through thick and thin, for always being the

light at the end of the tunnel.

To my family, thanks for always believing in me. I love you back

endlessly.

iii

Contents

Declaration i

Acknowledgements ii

Contents iv

Summary vi

List of Figures viii

1 Introduction 1

1.1 Approach and Goal . 2

1.2 Why Scilla? . 3

1.3 Contributions and Outline 3

2 Background 5

2.1 Definitional Interpreter . 5

2.2 Static Analysis . 8

2.2.1 Data Flow Analysis 10

2.2.2 Control Flow Analysis 12

2.3 Monads . 13

2.4 Overview of Scilla . 14

2.4.1 Scilla’s Monadic Interpreter 16

3 Embedding the Harness for Collecting Semantics 20

3.1 Modularity of Semantics Collection 20

4 Specialised Collection and Case Studies 23

4.1 Testing Type Conformance 23

iv

4.1.1 Collection of Type Flows into Identifiers 24

4.1.2 Results of Testing Type Conformance 29

4.2 Testing the Type-Flow Analysis 30

4.2.1 Collection of Type Flows into Type Variables 32

4.2.2 Results of Testing the Type-Flow Analysis 33

5 Related Work 35

6 Discussion 37

6.1 Extensibility and Future Work 37

6.2 Conclusion . 38

Bibliography 40

v

Summary

Static analyses are commonly applied as a foundation for code optimisations

as well as for the detection of safety and security gaps in software systems

[Bug+18; Shi91; Mig10]. To reliably serve these purposes, static analyses

must soundly predict a program’s properties. Although it is possible

to formally prove the soundness of an analyser’s design, in practice,

analysers can be large and complex making it difficult to ensure the

absence of implementation bugs. In an attempt to address this issue,

this project presents an approach of utilising state-collecting monadic

interpreters in order to test static properties derived from static program

analyses. While this approach attempts at finding existent bugs, it does

not serve as a proof of complete absence of bugs. As Dĳkstra famously

said: "Program testing can be used to show the presence of bugs, but

never to show their absence."

Static analyses produce an over-approximation of a program’s run-time

behaviour [NNH04; Shi91; AC76]. One can test these over-approximations

by recording a program’s run-time states and checking if the analyser’s

results are indeed a correct approximation. In other words, given the

static analyses’ predicted set of states a program may encounter, one can

check if the states the program reaches are indeed in the set by evaluating

the program and dynamically collecting intermediate executions.

To this end, we propose the use of a monadic definitional interpreter

equipped with collecting semantics [Rey98b; Dar+17]. While the definitional

interpreter evaluates the program, the monadic data type allows the

vi

collection of necessary information at every intermediate execution [LHJ95;

Ser+13; BHM00]. We can then check whether the dynamic concrete

properties are a subset of the static abstract properties.

In the project, we first present the process of refactoring a production-

scale definitional interpreter of a smart-contract language Scilla to obtain

dynamic collecting capabilities. Scilla is a functional ML-style language

that combines pure functional calculus based on System F and imperative

programming [Ser+19; SKH18].

Having successfully collected some dynamic properties, we present

two case studies of testing static type conformance and static type-flow anal-

ysis. Testing static type conformance means checking whether the static

type-checker’s inferred types of functional expressions are consistent. Ad-

ditionally, in the context of imperative programs, testing type-conformance

implies checking that the intermediate variables and function parameters

are only assigned values of their declared type. Afterwards, we test the

static type-flow analysis implemented as the basis of the monomorphisation

optimisation pass in the Scilla to LLVM compiler [Nag+20]. First, we test

the two mentioned properties on test programs in the Scilla repository.

We then work with a random Scilla program generator that allows us to

perform a more extensive test case study.

vii

List of Figures

2.1 Example of Flow Graph. 10

2.2 Monad Type Signature in OCaml. 13

2.3 Maybe Monad in OCaml. 13

2.4 Implementation of the FungibleToken contract in Scilla. 16

2.5 Snippet of Scilla’s Expression Interpreter 17

4.1 Trace of Run-Time Type Flows . 27

viii

1 Introduction

The demand for static program optimisations is steadily growing as

features, such as polymorphism, are introduced into existing languages

at a real performance penalty [EP17; Shi91; Wee06; Pał+11]. The static

correctness guarantee of such optimisations is only as good as their

implementations. In other words, a single bug in a compilation pass or

even static type-checkers can defy the whole purpose of a strong type-

system and violate run-time guarantees [Hoa+22; Ser+19]. For example,

for smart contract languages which statically enforce properties, such

as preservation of assets [Bla+19] or statically checked communication

protocols [Dar+17], the inability to uphold static guarantees can easily be

exploited by adversarial entities for monetary profit [Nag+20; SKH18].

[7]r0.35

1 read(a);
2 if (a > 42) {
3 x = 1;
4 } else {
5 x = 0; //Not dead code
6 }

As such, the consequences of having bugs in a program analysis tool,

such as announcing non-existent bugs, failing to locate program bugs,

or silently introducing bugs, can be costly. For example, a bug in an

optimising static analysis such as dead-code elimination can occur in a

program seen in Figure 1, if the analysis misclassifies Line 5 as dead code

(code that, upon removal, does not affect program’s results [KRS94]) when

1

is is not safe to do so. In the Figure, there is no guarantee that variable a is

greater than 42, and so deeming Line 5 as dead code to then be removed

is a bug in the analysis.

1.1 Approach and Goal

Following this demand for static program optimisations, this project

proposes a method of testing static analyses that starts with definitional

interpreters [Rey72; MRL13; AR17; Rey98b]. In essence, a definitional

interpreter, implemented for some language X, is a function that evaluates

a program written in language X. Furthermore, definitional interpreters

give a simple, clear, and concrete account of program semantics [Rey98b;

MRL13]. On the other hand, static program analysis abstracts runtime

behaviour opting to provide an over-approximated account of the program

semantics in return for computability [Shi91; NNH04]. In other words,

given a program has a runtime property A, a static-analysis can predict

that the program’s property is among the set of properties {A, B, C}, i.e.,

an over-approximation of the program’s run-time behaviour. As such,

one can then test the abstract set of results of static program analysers

by checking whether they are a super-set of a definitional interpreter’s

concrete set of results. Considering the example program in Figure 1: if

the static dead-code analysis states that Line 5 is safe to remove, one can

evaluate the program using a definitional interpreter which can record

that Line 5 was indeed encountered and is, therefore, not safe for removal.

From this example, we see how given a static assumption, a concrete

intermediate execution state can prove the assumptions false.

In order to obtain concrete intermediate executions, our project equips

the interpreter with a static-collecting monad [BHM00; Ser+13; Fil94].

Monads, originally adapted to encode computational effects in purely

2

functional languages, offer the ability to reinterpret computations such

as making certain computational effects hidden or fully explicit. There-

fore, retrofitting a definitional interpreter with a monad offers modu-

lar embedding of new properties such as intermediate state collection

[LHJ95; Dar+17]. This project aims to provide a proof-of-concept of

testing a constraint-based higher-order program analysis by refactoring a

production-scale definitional interpreter for Scilla.

1.2 Why Scilla?

Scilla is a smart-contract language first introduced in 2018 and has since

been widely researched and used for smart contract and even game

implementations [SKH18; Ser+19]. Scilla combines pure functional

properties based on System F, imperative state-managing computations,

and message-passing semantics for contract communications. Addition-

ally, its semantics are defined with a monadic definitional interpreter

written in OCaml, streamlining the process of modularly implementing a

state-collecting harness. Additionally, Scilla designers recently released

a Scilla to LLVM compiler featuring constraint-based static program

optimisations which we can test with the collecting evaluator [Nag+20].

Finally, Scilla is deployed on top of Zilliqa, a real-world blockchain, high-

lighting the significance of the implementation of Scilla being bug-free

as any bugs in the implementation can have real-world implications.

1.3 Contributions and Outline

In the chapters to follow, we present three key contributions of this project:

• We devise a monad for collecting the semantics of a System F based

language.

3

• We incorporate the collecting harness into Scilla’s continuation-passing

style monadic interpreter (written in OCaml).

• We provide an evaluation of our harness by testing static type confor-

mance and static type-flow analysis on arbitrary Scilla programs.

The remainder of the report is structured as follows. Chapter 2 provides

an overview of the technical background of this project and explains

the concepts of definitional interpreters, static analyses, monads, and

how Scilla is implemented. Chapter 3 details the process of modu-

larly implementing state collecting semantics into Scilla’s definitional

interpreter. Chapter 4 evaluates our concept of testing static analyses

by testing Scilla’s type conformance and static type-flow analysis and

it presents our findings. Chapter 5 describes related work regarding

other methodologies of testing static analyses and how our experiments

fit into the current literature. Finally, Chapter 6 concludes the report by

discussing the extensibility of this approach and future research ideas.

4

2 Background

This chapter provides an overview of components essential to this thesis,

namely definitional interpreters (2.1), static analyses (2.2), monads (2.3),

and Scilla (2.4).

2.1 Definitional Interpreter

This thesis explores the idea of refactoring a definitional interpreter in order

to allow dynamic collection of a program’s properties. As such, it is

important that we first introduce what a definitional interpreter is as well

as review some of its past literature.

Many aspects of simple applicative programming languages can be

defined using logic, meaning one can construct a logical statement that

describes the relations between inputs and outputs of a program [Flo93].

However, while this is true for some properties of first-order languages,

the same approach cannot be applied for higher-order languages. Instead,

as Reynolds has demonstrated, higher-order languages can be defined

with definitional interpreters that are written in a second, potentially better

understood, language [Rey72].

Before discussing what a definitional interpreter is, it is important to

make a distinction between the defined and the defining language, in which

the defined language is the language whose semantics are described via

5

the definitional interpreter written in the defining language. Therefore,

a definitional interpreter is essentially a function, written in a defining

language, that evaluates programs in the defined language [Rey98b; AR17;

Rey72].

Given a functional programming language, its definitional interpreter

defines expressions, i.e., meaningful programs, how expressions are to

be evaluated, and, subsequently, what values these expressions result in.

For example, a definitional interpreter can describe how an expression

1 + 2 can be evaluated to get the value 3. However, an expression such

as 𝑥 + 𝑦 can be evaluated to different values depending on what 𝑥 and 𝑦

denote at the point of evaluation. Therefore, the definitional interpreter

also specifies an environment that stores values bound to variables.

The simplest expressions are constants and variables, where constants,

such as integer 1 or boolean true, are evaluated to be themselves and

variables are evaluated to the value they are bound to in the environment.

An applicative language may also have functions and, thus, function

applications as expressions. For example, 𝑓 (𝑎1, ..., 𝑎𝑛) describes a function

application of some function 𝑓 applied to 𝑛 arguments 𝑎1, ..., 𝑎𝑛 . Given

a language that has functions, it must have expressions that evaluate to

functions, namely lambda abstractions. An example of a lambda abstraction

can be the expression 𝜆𝑥0, ..., 𝑥𝑛 .𝑟 which consists of 𝑛 parameters 𝑥0, ..., 𝑥𝑛

and a body 𝑟 [Rey72; Pie02].

The definitional interpreter outlines every semantic definition of a

language starting general definitions mentioned above down to specific

details of whether the language evaluates partial function applications,

whether it is call-by-value or call-by-name, and other similar properties.

It is interesting to note how some properties of the defined language is not

user defined but rather influenced by the defining language as definitional

interpreters are leaky abstractions [Rey72; DN01]. The term leaky here

6

describes how the defined language gains a property of the defining

language through the definitional interpreter without the user explicitly

implementing the property itself. This is especially true for meta-circular

interpreters which define each component of the defined language with a

corresponding component of the defining language [Rey72]. Although

meta-circular interpreters are considered the most concise and simple

approach to writing an interpreter, a meta-circular interpreter can lead

to misunderstandings of the defining language carrying over into the

defined language as well as difficulties in extending the defined language

with new features.

To work around these issues, Reynolds shows how different tools

can be used to enhance a definitional interpreter. Reynolds explains

how one can transform an interpreter to be free of defining language’s

properties, specifically first-class functions through defunctionalisation and

evaluation order through the continuation-passing-style (CPS) transformation

[Rey72]. Defunctionalisation describes a process of replacing each function

space with a data type which enumerates possible function abstractions

that may arise at a specific point of a program coupled with an apply

function [DN01]. Through defunctionalisation, one can transform whole

higher-order programs into first-order programs, where functions can no

longer be passed as arguments or returned as results. On another hand,

CPS transformation describes the process of introducing continuations

to name the intermediate results of a term and explicitly sequentialise

the computations [DF92]. Therefore, a CPS transformation provides a

"degree of freedom" that allows to meet the condition of independence

from the order-of-application of the defining language [Rey72].

Building on Reynold’s work, Ager et al. applies the results of Reynolds

study to derive semantics where control contexts are built upon the defin-

ing language’s contexts (evaluators), first-class functions (continuations),

7

and data (defunctionalised continuations) [Age+03]. Midtgaard et al.

then contribute to the body of this scholarship by showing how interpreter

performance can improve depending on implementations of low-level

representations, addressing the issue of slow performance associated

with definitional interpreters [MRL13].

In the context of this thesis, the noteworthy detail about definitional

interpreters is that through the evaluation of a program, a definitional

interpreter returns a corresponding concrete result. The use of the term

"concrete" here describes how there is no ambiguity about the execution

of the program and its result. Fortunately, definitional interpreters

written in monadic style allow for a wide variety of collection of the

concrete semantics such as trace semantics, i.e., the collection of streams

of states the interpreter reaches, or the collection of dead code [Dar+17].

Having collected the concrete semantics, one can then test their over-

approximating abstract semantics (collected by static analyses) by checking

whether the abstractions include the concrete data seen by the interpreter.

2.2 Static Analysis

Having discussed definitional interpreters, let us provide an overview of

what an interpreter will be testing in this thesis, namely static analyses. In

this chapter, we elaborate on what a static analysis is, what kind of static

analyses there are, and what purpose they serve. This chapter aims to

provide a general study of static analysis to allow the readers, who are

not yet familiar, to familiarise themselves with the topic.

Static analyses are commonly applied as a basis for code optimisations

and detection of safety and security gaps of software systems [Bug+18;

Shi91; Mig10]. In the context of optimisations, the static analyses’ aim is to

generate code without redundant or superfluous computations, allowing

8

the generated program to be executed more efficiently. To allow for these

optimisations, they must soundly predict the properties of the programs

they analyse. These predictions occur at compile-time meaning the

programs are not evaluated which is why these analyses are considered

"static" [Shi91; NNH04].

The common theme of static analysis is that having not evaluated the

program, the possibilities of what values and behaviours may arise of

the program can be infinite. In order to keep the analysis computable,

one can only provide over-approximating results. This can be seen in

the following example taken from Nielson’s et al. "Principles of Program

Analysis" book:

read(x); (if x > 0 then y := 1 else (y := 2; S)); z := y

where S is some statement that does not reassign to y [NNH04].

Looking at the program, one can deduce that the only assignments to

y that can reach the statement z := y are assignments of 1 and 2. When

running the program, it may be the case that only assignment y := 1

can reach z := y because S does not terminate given x ≤ 0 and y = 2.

However, since the property of S terminating is undecidable, the analysis

is more likely to give a safer approximation of the program behaviour,

namely either 1 or 2will be assigned to z. The analysis may return an even

safer approximation, stating that an integer will be assigned to z, which

we can still accept. An analysis result like that, however, provides less

useful information whereas we prefer a more precise answer, such as a

result that states the values assigned are among 1 or 2 (rather than among

all possible integers). Clearly, the challenge is not to produce the safest

approximation, but rather the most precise, yet still safe, approximation

[NNH04].

9

Figure 2.1: Example of Flow Graph.

2.2.1 Data Flow Analysis

The two most well-known static analyses are Data Flow Analysis and Control

Flow Analysis. Although we will not go into implementation details of

these analyses, this study aims to provide a high-level understanding as

to what they are.

Data Flow Analysis, as per its name, states what useful data reaches

certain points of the program. Some classical Data Flow Analyses in-

clude Available Expressions (to determine which expressions have been

computed at certain points of the program), Reaching Definitions (to

determine which variable definitions reach certain points of programs),

and Live Variables (to determine which variables are still in use at certain

points of programs) [NNH04; AC76].

In Data Flow Analysis, it is customary to think of programs as flow

graphs [NNH04; AC76]. Let us consider the following program for an

analysis such as Reaching Definitions:

y := x; while y > 1 do (y:= y - 1); y := 0

Figure 2.1 shows the program translated into a graph where each node

is an elementary block and each edge describes how control might pass

between the blocks. Knowing the terms, let us re-define the Reaching

Definitions analysis as an analysis that attempts to determine which

10

variable definitions reach what elementary block in the program flow

graph.

There are two ways to approach any Data Flow Analysis, namely

equational approach and constraint-based approach [NNH04; Shi91; AC76].

In the equational approach, one can specify different classes of equations

by finding the relations between the definitions that exit a block and the

definitions that enter the block. For example, the definitions exiting block

1 (1) include the definitions that entered the block and the definition of y

in the block, and (2) exclude all of the previous assignments to y as the

block contains a new definition of y. This can be seen in the following

equation:

RD𝑒𝑥𝑖𝑡(1)= (RD𝑒𝑛𝑡𝑟𝑦(1)\{(y, l)| l ∈ 𝐿𝐴𝐵})∪{(y, 1)}

where 𝐿𝐴𝐵 is the set of labels {1, 2, 3, 4} of the blocks in the flow graph,

RD𝑒𝑥𝑖𝑡(1) and RD𝑒𝑛𝑡𝑟𝑦(1) represent definitions entering and exiting block 1

respectively, and the pair (y, 1) implies assignment to y at block 1. Using

this method, one can write 4 equations that state what definitions leave

each block in the graph at Figure 2.1. While this is one way of obtaining

equations, it is certainly not the only way.

On the other hand, in the constraint-based approach, the idea is to extract

constraints or inclusions from the program [NNH04; KSS17; AC76].

Considering the same block as above, the constraint for an assignment

block becomes the exclusion of all pairs of (y, l) where l ∈ 𝐿𝐴𝐵 from

the set of definitions entering block 1, as well as a constraint that states

the inclusion of the pair (y, 1). These constraints can be written as

RD𝑒𝑥𝑖𝑡(1) ⊇ RD𝑒𝑛𝑡𝑟𝑦(1)\{(y, l)| l ∈ 𝐿𝐴𝐵}

RD𝑒𝑥𝑖𝑡(1) ⊇ {(y, 1)}

We can rewrite these two constraints to make the connection between the

equational and constraint-based methods clearer.

11

RD𝑒𝑥𝑖𝑡(1) ⊇ RD𝑒𝑛𝑡𝑟𝑦(1)\{(y, l)| l ∈ 𝐿𝐴𝐵} ∪{(y, 1)}

It becomes apparent that we obtained a version of the previous equation

except the equality sign is replaced with the inclusion sign. Therefore,

the solution for the equation based approach is also the solution for the

constraint-based approach, whereas the opposite is not always true.

As mentioned above, the most useful static analysis result is the one

that is most precise while still being safe. As such, one aims for the

solution to the Reaching Definition analysis to be the least solution, i.e.,

one that contains the fewest pairs of reaching definitions while still being

consistent with the program. In this example, we find that both the

constraint-based and equational method would conclude with the same

least solution [NNH04; KSS17; AC76].

2.2.2 Control Flow Analysis

In the previous section, we introduced what Data Flow Analysis is and

provided an example of one to introduce the concepts of equational and

constraint-based methods, how constraints are collected, and how the

least solution is computed. Constraint based methods, where the user

aims to find the least solution, are used for Control Flow Analysis as well.

As such, we will not be going through an example of a Control Flow

Analysis, but will rather explain the high level idea of the analysis.

The aim of the Control Flow Analysis is to find which elementary

block will lead to what other elementary block [NNH04; Shi91]. Let us

consider the following example:

let f = fun x => x 0 in
let g = fun y => y + 2 in
in f g

The program describes a function f that expects another function to be

bound to its parameter x. Evaluating the program shows how the defined

12

function g is bound to the parameter x to return the result 2 of the program.

Applying f transfers control to the body of the function, i.e., x 0. The

application of x transfers control to the body of the function bound to

x. The problem that the analysis solves is knowing the body of x, i.e.,

what parameters f is called with. In other words, the analysis aims to

answer the question "For each function declaration, to which functions

application do they flow?" [NNH04; Shi91].

In this section, we explained static analysis, its varying types, and how

it operates. In the context of this thesis, it is important to understand that

static analyses aim to find the most precise approximation of the concrete

semantics of a program. One way to test these approximations is to

collect these concrete semantics by evaluating the program and checking

whether the approximation of the behaviour is a super-set of the collected

concrete semantics. A tool that allows us to collect concrete results are

monads, which we introduce in the following section.

2.3 Monads

module type Monad = sig
type ’a monad
val return : ’a -> ’a monad
val (>≥=) : ’a monad -> (’a -> ’b monad) -> ’b monad

end

Figure 2.2: Monad Type Signature in OCaml.

1 module MaybeMonad = struct
2 type ’a monad = ’a option
3 let return (x: ’a) : ’a monad = Some x
4 let (>≥=) (m: ’a monad) (f: ’a -> ’b monad) : ’b monad =
5 match m with
6 | None -> None
7 | Some x -> f x
8 end

Figure 2.3: Maybe Monad in OCaml.

Monads are a function composition technique that originally became

popular through their use in Haskell, a purely functional programming

13

language. They were first adapted to encode computational effects as they

allow for explicit data and control flow handling by wrapping effectful

intermediary executions [BHM00]. As a result, they can be used to define

programming languages’ semantics [Ser+13].

Traditionally, a type signature of a monad specifies the use of two

polymorphic functions called return and bind (»=), as shown in Figure

2.2 [BHM00; MM17]. For example, the Maybe monad, which can be

seen in Figure 2.3, can act as an alternative to handling exceptions -

instead of raising errors, our monadic function propagates the result

None. Otherwise, we would get a result in the form Some result. The

return function then returns successful output, whereas the bind function

propagates the result or None if the function meets an error. This example

shows us how monads provide a degree of control to the developer as it

allowed for control over the flow of the function by disallowing exceptions,

and of control over what data can be returned.

As mentioned in Section 2.1, a definitional interpreter is a structurally

recursive function that defines a language’s semantics. Through the

monad’s ability to lift and bind program executions, we gain access to

binding desired information to intermediary results, such as intermediary

program properties. In other words, with monads, we gain the ability

to collect program states modularly, i.e., without interrupting the logic

of program execution. One of the interpreters that utilise this monadic

property is, in fact, the Scilla interpreter. In the next section, we introduce

Scilla and discuss the implementation of its definitional interpreter.

2.4 Overview of Scilla

Scilla is a functional language which combines pure functional calculus

based on System F and imperative computations, designed with the

14

aim to implement smart contracts in the form of state-transition systems

that communicate via message passing [Ser+19; SKH18; Hoa+22]. Each

contract implementation follows a template, an example of which can

be seen in Figure 2.4 showing a definition of the most popular contract

used to define fungible tokens. The contract implementation starts

with declaring the Scilla version at Line 1, followed by defining a library

FungibleToken of three pure functions that can be used later in the contract.

The user also has the freedom to import pure functions predefined in the

Scilla repository or in other contracts. From Line 8 to Line 40 follows

the implementation of the FungibleToken contract which expects five

immutable contract parameters, types of which are explicitly declared. A

contract constraint on immutable parameters may be defined at this point

to establish a contract invariant for contract deployment. On Lines 11 to

14, the contract initiates two mutable fields, followed by the definition

of six transitions from Lines 17 to 40. Transitions can be invoked when

an external entity sends a message to the contract which can result in a

change in the contract state, an emission of observable events, and an

addition of a message to outbox of the contract. As seen in Figure 2.4,

the transition BalanceOf responds by sending a message upon the end of

the transition containing the balance of a specific token owner. The user

may also define procedures which, in contrast to transitions, can only be

invoked when called from a transition and not from externally received

messages.

Transitions or procedures may apply defined or imported pure func-

tions as seen in transition BalanceOf using function one_msg, defined in its

own library, on Lines 23 and 27. In fact, most non-trivial Scilla programs

are written in pure functional fragments. The pure fragment of Scilla

conforms to System F calculus [Gir72] which has been extended with

primitive data types, primitive operations, and user-defined algebraic

15

1 scilla_version 0
2 library FungibleToken
3 let min_int : Uint128→ Uint128→ Uint128 = (* ... *)
4 let le_int : Uint128→ Uint128→ Bool = (* ... *)
5 let one_msg : Msg→ List Msg =
6 (* Return singleton List with a message *)
7

8 contract FungibleToken
9 (owner : ByStr20, total_tokens : Uint128,
10 decimals : Uint32, name : String, symbol : String)
11 field balances : Map ByStr20 Uint128 =
12 let m = Emp ByStr20 Uint128 in
13 builtin put m owner total_tokens
14 field allowed : Map ByStr20 (Map ByStr20 Uint128) =
15 Emp ByStr20 (Map ByStr20 Uint128)
16

17 transition BalanceOf (tokenOwner : ByStr20)
18 bal← balances[tokenOwner];
19 match bal with
20 | Some v⇒
21 msg = {_tag : "BalanceOfResponse"; _recipient : _sender;
22 address : tokenOwner; balance : v};
23 msgs = one_msg msg; send msgs
24 | None⇒
25 msg = {_tag : "BalanceOfResponse"; _recipient : _sender;
26 address : tokenOwner; balance : zero};
27 msgs = one_msg msg; send msgs
28 end
29 end
30 transition TotalSupply ()
31 (* code omitted *) end
32 transition Transfer (to : ByStr20, tokens : Uint128)
33 (* code omitted *) end
34 transition TransferFrom (from : ByStr20, to : ByStr20,
35 tokens : Uint128)
36 (* code omitted *) end
37 transition Approve (spender : ByStr20, tokens : Uint128)
38 (* code omitted *) end
39 transition Allowance (tokenOwner : ByStr20, spender : ByStr20)
40 (* code omitted *) end

Figure 2.4: Implementation of the FungibleToken contract in Scilla.

datatypes. While Scilla does not allow users to write recursive programs,

it gives access to a few polymorphic recursive folds guaranteed to always

terminate [Ser+19]. On the other hand, the imperative logic of transitions

contains only primitive state-manipulating logic like assigning to contract

fields [Ser+19].

2.4.1 Scilla’s Monadic Interpreter

Scilla’s semantics are implemented with a monadic definitional interpreter

[SKH18]. In Section 2.1, we discussed how semantics of a language can be

16

1 let rec exp_eval (e, loc) env = match e with
2 let open EvalMonad.Let_syntax in
3 | Literal l→ return (l, env)
4 | Var i→
5 let%bind v = Env.lookup env i in return (v, env)
6 | Let (i, _, lhs, rhs)→
7 let%bind lval, _ = exp_eval lhs env (e, U) in
8 let env’ = Env.bind env (get_id i) lval in
9 let thunk () = exp_eval rhs env’ in
10 wrap_eval thunk (e, E lval)
11 | GasExpr (g, e’)→
12 let thunk () = exp_eval e’ env in
13 let%bind cost = eval_gas_charge env g in
14 checkwrap_op thunk (Uint64.of_int cost)
15 ("Insufficient gas")
16 | ...

Figure 2.5: Snippet of Scilla’s Expression Interpreter

defined using a definitional interpreter. In Section 2.3, we discussed how

monads can be used to redefine a programming language’s semantics. A

monadic definitional interpreter implies that the interpreter’s evaluate

function returns a result type wrapped in a monad type in contrast to

returning just the result type.

For Scilla’s interpreter, the monad serves its key purpose of tracking

resource consumption. Each interaction with a contract or deployment of

a contract requires the emitter to pay a specific amount of gas. If the user’s

remaining amount of gas does not cover the cost of invoked executions,

the interpreter terminates with an out-of-gas error [Ser+19]. This is done

using the implemented state-monad to check whether the execution is

successful so far by tracking intermediate execution states.

An example of monadic evaluation can be seen in the expression

evaluate function in Figure 2.5. The figure shows evaluation of some

of Scilla’s pure components, namely evaluation of literals, variables,

let-bindings, and gas expressions. At Line 2, the definition of the monad

is imported along with its two standard operations return and bind which

is encoded with the let%bind notation.

The defined monad data type used by the interpreter can be seen here:

type (’a,’b) result = Ok of ’a | Error of ’b

17

type nonrec (’a, ’b, ’c) t = ((’a, ’b) result -> ’c) -> ’c

which we find to be a continuation-passing style (CPS) monad. As a

result of the monad being in CPS, it does not explicitly declare the gas

component in its type definition. The gas-tracking component Gas is

later inferred as the monad is used as a gas-aware monad, expanding the

polymorphic type ’c to Gas →’d— a well-known technique for layering

monads [Fil99]. It is exactly this set up that then allows us to extend

the monad to keep track of the program’s concrete semantics, which is

discussed in Chapter 3.

It is worth noting that Scilla is not in full CPS, as that would require

re-serialisation of closures [Ser+19]. To be in full CPS, continuations

are always passed as an argument at every recursive call. However,

the interpreter contains components that "cut" the CPS execution to

intermittently check whether the user’s allotted amount of gas covers

their future computations. To "cut" the CPS execution, in this case, implies

explicitly handling the continuation parameter of a CPS computation,

usually done with the purpose of implementing some logic to determine

whether or not to pass the continuation. Scilla gas accounting is enabled

by pre-processing Scilla programs and wrapping every expression in a

GasExpr which details the cost of computing the given expression. When

the evaluator encounters GasExpr (as seen on Lines 11-15 of Figure 2.5),

the interpreter calls checkwrap which checks whether there is enough gas

resources for future computations, then decreasing the remaining amount

of gas or propagating an error message. The implementation of checkwrap

can be seen here:

(* Gas accounting *)
let checkwrap_op op_thunk cost emsg k remaining_gas =
if remaining_gas > cost then
op_thunk () k (remaining_gas - cost)

else k (Error emsg) remaining_gas

Finally, Line 10 calls function wrap_evalwhich virtualises the recursive

18

call to collect specific runtime data but is ignored during evaluation,

discussed in the next chapter.

19

3 Embedding the Harness for
Collecting Semantics

As we have seen in Section 2.2, the result of static analyses is typically

defined as an over-approximation of a program’s concrete semantics.

Therefore, in order to test the soundness of these analyses, we implement

an additional harness for the definitional interpreter to collect concrete

semantics, ideally, without altering the interpreter’s logic. In this section,

we introduce the process of embedding the collecting semantics monad

into Scilla’s interpreter for a simple collection of trace-semantics. The

detailed account of more complex dynamic collecting is then described in

the context of the case studies in Chapter 4.

3.1 Modularity of Semantics Collection

The original interpreter’s structure streamlines the process of modularly

introducing the collecting harness which is done by extending the existing

CPS monad. Let us recall that, given the CPS monadic result type

type nonrec (’a, ’b, ’c) t = ((’a, ’b) result -> ’c) -> ’c

the interpreter’s designers are able to incorporate gas-tracking semantics

by fine-tuning the abstract type ’c to be uint64 →’d. Here, uint64 is

an OCaml 64-bit integer used to represent the allotted amount of gas

for future computations, and ’d is another abstract type. Instrumenting

the interpreter with the semantics collecting harness then follows the

20

implementation of tracking gas consumption.

Let us denote CollectedStates to be a data type that stores intermediate

execution states. We then extend the abstract type ’c to expect gas

and CollectedStates arguments. In other words, we aim to refine the

continuation’s return type to be uint64 →CollectedStates →’d, thus

adding the semantic collecting component.

Similarly to how gas is handled, we need a procedure that appends

new traces of states onto CollectedStates. The logic of what information

is collected to grow the intermediary CollectedStates is contained within

method wrap_eval. As we have seen in Figure 2.5, when evaluating the

Let-expression, we "cut" the CPS execution by creating a closure thunk

and explicitly updating the CollectedStates data type in the function

wrap_eval. Once updated, we evaluate thunk to resume the evaluation of

the program. The implementation of wrap_eval, shown below, shows the

implementation of the method, where update_seman traverses the expres-

sion being evaluated and extracts and appends appropriate information.

let wrap_eval thunk collected_seman k remaining_gas
current_seman_collect =
thunk () k remaining_gas

(update_seman current_seman_collect collected_seman)

A simple example of using the harness is extracting the footprint of

expression evaluations, i.e., a chronological list of expressions that the

interpreter evaluates. Given a program with a simple control flow below:
let x = Int32 42 in
let f = fun (z : Int) => x in
let y = x in
let a = y in
a

the resulting collected trace, when pretty-printed, is:
Let: x <- (Lit (Int32 42)) = ((Int32 42))
Fun: Var z -> (Variable x)
Let: f <- (Fun: Var (z) Body: Variable x) = (<closure>)
Variable: x -> (Int32 42)
Let: y <- (Variable x) = (Int32 42)
Variable: y -> (Int32 42)
Let: a <- (Variable y) = (Int32 42)
Variable: a -> (Int32 42)

21

In the trace, we can see how a let-binding is evaluated to bind some

literal value to a variable, how an anonymous function is evaluated into

a closure, and how a variable is evaluated into a literal it is bound to in

the environment. Given the collected data, one can manipulate it to give

more interesting accounts of data flow such as what values or variables

flow into which variable definitions. The results of said manipulations

can be seen below:
Variable x -> (Lit (Int32 42))
Variable f -> (Fun: Var (z) Body: Variable x)
Variable y -> (Variable x <- Lit (Int32 42))
Variable a -> (Variable y <- Variable x <- Lit (Int32 42))

This harness can then be extended to collect more advanced information

such as the types that flow into entities or the data that flows into

parameters. The extensions of the harness are detailed in later sections

discussing performed case studies.

While we show only a small example of how intermediary execution

states are collected in the pure fragment of Scilla, the addition of wrap_eval

is propagated throughout the whole Scilla language. This includes the

recording evaluation of contract parameters, mutable fields, transition and

procedure parameters, as well as the evaluations of impure statements

within. Although the idea is simple, the majority of effort is put into

retrofitting every element of the language with care to make sure all

necessary information is collected soundly. It is of utmost importance

that the collected data is truthful and sound to begin with, as it is later

used to test static results.

22

4 Specialised Collection and
Case Studies

In the previous section, we outline the implementation of the general

framework for dynamic semantic collection. Therefore, we now explore

how to populate and refine our collected data to test specific static program

analyses. In this section, we offer how the collected semantics are used to

test static type conformance and the static type-flow analyses implemented

in the Scilla to LLVM compiler.

4.1 Testing Type Conformance

Following the well-known mantra "well-typed programs do not go wrong",

Scilla designers equipped the interpreter with a static type-checker to

ensure type soundness. The definition of type soundness in Scilla states

that "given sufficient amount of gas, for a well-typed term e, e should

evaluate to a value v of the same type without error" [Ser+19; Hoa+22].

In other words, given enough gas for future executions, a term of some

inferred type, say T, should successfully evaluate to a value of the same

type T. Beyond the pure fragment of Scilla, when executing imperative

programs, it is important to check that intermediate values and function

parameters with a declared type get assigned values of that exact type.

Given a type-driven compiler, the violation in the mentioned property

can lead to a runtime error.

23

4.1.1 Collection of Type Flows into Identifiers

Before diving into how we collect type flows, it is important to make

the distinction between pure and impure Scilla and how they are typed.

The pure fragment of Scilla refers to the expressions, whereas the impure

fragment of Scilla refers to the imperative fragment consisting of state-

ments, fields, contract and transition parameters. As expressions produce

a value, all expressions are typed with a type that describes what values

can be produced. For example, an expression such as

let x = Int32 42 in
let f = fun (z: Int32) => z in
f x

has type Int32, which is a 32-bit integer type in Scilla. Therefore, when

testing type-conformance for the pure fragment of Scilla, we ensure that

all types inferred by the type-checker are consistent with run-time types

of expressions. A statement, however, does not produce a value and,

therefore, cannot have a type. As such, when checking type conformance

for the impure segment of Scilla, we simply check whether a typed

identifier such as a mutable field or a parameter received a value of its

corresponding type.

Scilla programs come in either type-annotated (after type-checking) or

unannotated (when evaluating) forms. In other words, when performing

type-checking, a type-unannotated program is passed to the type-checker.

The type-checker then returns the program with type annotations and

whether or not is type-checks. The goal of the case study is to ensure

that the type annotations of identifiers are consistent with their recorded

run-time types. This is done by checking if the run-time flow of literals

(which are typed) into an identifier conforms with its respective declared

or inferred type. In other words, given a variable, a parameter, or a field

is annotated to be of type T by the type-checker, we check that only terms

24

of type T flow into it.

Collection of Type Flows of Pure Scilla

To better understand how to collect the information we need to test

type-conformance, let us properly define what it means for a type to flow

into an identifier: a type T is considered to flow into an identifier when

the evaluator binds the evaluated term e of type T to the identifier in the

environment. For example, a type T flows into a function parameter when

the function is applied to an expression e of type T.

Let us discuss the collection of type flows in the pure fragment of

Scilla first. It is important to note that if an identifier has an explicitly

declared type, we record it as well. When evaluating expressions, only

let-expressions, function applications, and match-expressions update the

environment by binding identifiers to values in the environment.

In the let-expressions, recording what type flows into an identifier

is straight forward. Given a let-expression let a = Int32 42, we record

how the type Int32 flows into an identifier a.

In the match-expressions, we consider how a value is pattern-matched

and then traverse its type to find what type flows into the declared variable.

Consider the following match-expression:

let x = Pair {Bool Int32} True 2 in
match x with
| Pair a b => a
end

Knowing that x is of the type Pair {Bool Int32}, one can traverse its type

and check what it is pattern matched to to record how the type Bool flows

into the identifier a and the type Int32 flows into identifier b.

Given function declaration and function application expressions below:

let f = fun (x : Int32) => x in
let a = Int32 1 in
f a

25

since a is passed to parameter x, it is intuitive that the type Int32 flows

into the parameter x. The collection procedure, however, is a little more

intricate. In Scilla, anonymous functions are evaluated to be OCaml

closures that expect Scilla arguments. Therefore, when a function appli-

cation is evaluated, the OCaml closure is applied to the respective Scilla

arguments. Since the function is stored as a closure in the environment, at

the point of evaluating the function application, we no longer have access

to the parameters of the function to record what values flow into which

parameters.

To solve this, we incorporate the procedure of recording what is passed

to the function parameters into the closure as well. In other words, when

a function is evaluated, it is stored as a closure that records the argument’s

types that flow into the function parameters before evaluating the body

of the function given the said arguments.

Having detailed how type flow collection is recorded for expressions,

let us look at an example below.

let x = Int32 42 in
let f = fun (z : Int32) =>

let b = x in
fun (c : Int32) => z

in
let a = Int32 1 in
let d = Int32 2 in
f a d

This program is taken from the collection of test programs written

by the Scilla designers. Evaluating said program with the harnessed

evaluator would return a trace seen in Figure 4.1.

Collection of Type Flows of Impure Scilla

Having described our approach of collecting type flows for the pure

fragment of Scilla, we move onto handling the impure fragments contain-

ing statements, transitions, procedures, fields, and contract definitions.

As most statements in Scilla are either load or store statements that

26

Variable x: Int32 <- (Lit (Int32 42): Int32)
Variable f: Int32 <- (Fun (Var z: Int32): Int32)
Variable a: Int32 <- (Lit (Int32 1): Int32)
Variable d: Int32 <- (Lit (Int32 2): Int32)
Variable z: Int32 <- (Variable a: Int32) <- (Lit (Int32 1): Int32)
Variable b: Int32 <- (Variable x: Int32) <- (Lit (Int32 42): Int32)
Variable c: Int32 <- (Variable d: Int32) <- (Lit (Int32 2): Int32)

Figure 4.1: Trace of Run-Time Type Flows

bind a value to a newly declared variable, similarly to handling the let-

expressions, we simply record the type of the value being stored in an

identifier. When a transition, procedure, or contract are applied to some

arguments, we simply record the parameter’s type and what type flows

into said parameter. The collection of the types that flow into a map

identifier is a little less straightforward as it requires traversal of the map

type. Consider an example where, given a map m of type

Map ByStr20 (Map ByStr20 Int128)

a map-update statement such as

m[k1][k2] := v

is clearly updating the value of the type Int128where v should of the type

Int128, k1 and k2 should be of the type ByStr20. Here, Int128 is a Scilla

type for 128 bit integers, and ByStr20 is a Scilla type for a hexadecimal

Byte String representing a 20 byte address. When collecting information

about this statement, we traverse the map’s type to find what type is the

identifier m[k1][k2] (Int128), and then record how variable v’s type flows

into the identifier as well. The resulting collected trace looks similar to

the one seen in Figure 4.1.

Side Note on Name Shadowing

During the implementation of the collection harness, an issue occurred

to us when we attempted to organise the collected information. When

27

collecting the types that flow into the identifiers, we were only identifying

the identifiers by their name. In other words, for a program such as

let b = Int32 42 in
let b = True in
b

we would collect how both types Int32 and Bool flow into some identifier

b, which clearly violates type conformance. Although the issue was

thought of, it did not come up when testing against the collection of

user-written or randomly generated Scilla programs (Section 4.1.2). In

fact, all user-written programs steer clear of reusing the same name for

variables, fields, or parameters, and randomly generated programs always

come up with a new name for any newly declared identifier. Therefore,

for the program above, it is sufficient for us to simply overwrite type

flows of redundant variable definitions. In other words, if a declared

variable hasn’t been used before it is re-declared with a new definition,

we overwrite the previous type flow, no longer considered live, with the

new one.

In the future implementations, however, it is best to not overwrite any

type flows to honor the completeness of type flow collection. Instead, one

could traverse the Scilla program before the evaluation and tag different

variables with the location they were defined at. By doing so, given the

following program

1 let b = Int32 2 in
2 let f = fun (x: Int32) => x in
3 let z = f b in
4 let b = True in
5 b

our collection results will be able to differentiate that the variable b used

on Line 3 is the one defined on Line 1, whereas the variable b seen on

Line 5 is the one defined on Line 4.

28

4.1.2 Results of Testing Type Conformance

Our strategy for testing the type conformance, and therefore, Scilla’s static

type-checker, involves confirming that the inferred type of an identifier

is indeed accurate to what is seen in run-time. In essence, we check that

given an identifier x of type T, i.e., x: T, only values of type T flow into

it. It is important that we make the following clarification to our type

conformance definition: if some type U is a sub-type of type T, it is still safe

to assign a value of type U to an identifier of type T. However, assigning a

value of type T to a variable of type U is not safe. It is also important to

note that the type conformance is checked with respect to runtime types.

In other words, all type variables are already instantiated with ground

types when checked.

The testing framework works as following:

• Given a Scilla program, we first run the type-checker to find all of the

inferred types of the identifiers.

• We evaluate the Scilla program using our evaluator with the collecting

harness to collect all of the types that flows into all of the identifiers.

• We then check whether the types flowing into said identifiers are

assignable to their inferred type.

The framework was first run on 105 Scilla "good" test programs

written by designers of the language [Hoa21]. Since all the programs

are human written and considered to be "good", i.e., soundly written, no

bugs were found when evaluating said programs. However, this is to be

expected as testing on a few well-written programs does not not yield

substantial results.

In addition to testing using human written programs, the harness was

able to test type conformance on randomly generated programs. As part

29

of this project, we had an opportunity to work along with researchers who

implemented random generation of Scilla programs using QuickChick.

As part of their project, the researchers were able to efficiently generate

well-typed System F programs along with imperative state-manipulating

code to create full-blown Scilla smart contracts [Hoa+22]. Testing against

randomly generated programs not only allows the harness to test against

more programs, but also against a wider variety of programs with

potentially more interesting type flows.

When testing type conformance against these randomly generated

Scilla contracts, we found an unusual bug in the type-checker. The

harness discovered how values of sub-types of ByteString are implicitly

up-cast to ByteString. Scilla type system details the address sub-typing

hierarchy where an address type ByStr20 with ... end is a sub-type of

ByStr20, an address type ByStr20 with contract ... end is a sub-type of

ByStr20 with end, and other such relations between address types. Our

harness was able to detect how variables with the sub-types of ByStr20,

such as ByStr with end, are implicitly up-cast to ByStr20. Assigning

a value of the type ByStr20 to an identifier of the type ByStr20 with

end should be considered unsound and caught by the type-checker.

However, since the identifier’s type is up-cast to ByStr20, such error is not

noted. While this bug does not compromise safety guarantees of contract

execution, it might affect the correctness of the compiler.

4.2 Testing the Type-Flow Analysis

One great property that the compiler from Scilla to LLVM takes advantage

of is when a smart contract is deployed, all libraries it might potentially

need are known at compile time. This allows for a whole-program op-

timisation such as full monomorphisation of polymorphic definitions

30

[Nag+20]. Scilla features polymorphism as it is considered one of the

linchpins of modern typed functional languages which, unfortunately,

comes with a real performance penalty [EP17]. One of the key tools to

combating the performance penalty is monomorphisation where instead

of evaluating the polymorphic terms, the program generates specialised

implementations of said terms instantiated with necessary ground types.

To find out which ground types are necessary for the functions to be instan-

tiated with, the compiler performs a carefully designed type-flow analysis

that conservatively determines which types variables are instantiated

with which ground types [Wee06; Nag+20].

The outcome to the type-flow analysis is the collection of all type

variables in the program paired with all ground types it might be instan-

tiated with. As discussed in Section 2.2, the type-flow analysis safely

approximates which ground types a type variable may be instantiated

with. Therefore, we can test the analysis using our collecting interpreter to

check whether the type variables are indeed instantiated with predicted

ground types by evaluating the program. For example, consider the

following Scilla program
let id = tfun ’X => fun (x: ’X) => x in
let idint = @id Int32 in
let a = Int32 42 in
let idstring = @id String in
let s = "hello world!" in
idstring s

we can see that the polymorphic function id is instantiated with the types

Int32 and String before being applied to a value of the type Int32 and a

value of the type String respectively. By evaluating the program, we can

dynamically collect how the types applied to the type parameter ’X are

indeed Int32 and String. Recalling that the static analyses are allowed

to over-approximate results, if the analyses predicts that ’X would be

instantiated with ground types Int32, String, and Bool, albeit a little

odd, it would still be a valid result. However, we do not accept under-

31

approximated analyses results. For example, if the analysis predicts that

only Int32 instantiates ’X, it would not be considered a sound result.

While the Scilla to LLVM compiler has a few different optimisations,

we decided to test the monomorphisation pass because (1) the type-flow

analysis is one of the more complex and intricate analysis implemented

in the compiler, making it less trivial to test and more suitable for an

interesting case study, and (2) a buggy and imprecise type-flow analysis

implies initialisation of polymorphic functions with types that are not

used, generating redundant functions and thus compromising the idea of

"optimisations", or not initialising with a type that is used which can lead

to run-time errors.

4.2.1 Collection of Type Flows into Type Variables

The methodology for collecting which ground types flow into which type

variables is akin to the method of collecting the type flows into identifiers

discussed in Section 4.1.1. Instead of looking for places where a value

is bound to an identifier, we look for the code where a type variable is

substituted, namely at type applications.

Similarly to functions, when the interpreter evaluates Scilla type

functions, it creates an OCaml closure that expects a Scilla ground type

as an argument before substituting the appropriate type variable for the

ground type into the body of the function. The closure is then stored

in the environment. Therefore, when we evaluate type applications, we

no longer have access to the type function parameter to record which

ground type flows into the type parameter. As such, we incorporate the

collection procedure into the type function closure as well. The closure

then contains the process of recording what ground types are applied

to which type parameters, before substituting the parameters with the

ground types and evaluating the function body.

32

4.2.2 Results of Testing the Type-Flow Analysis

As mentioned above, the aim is to check the soundness of type-flow anal-

ysis by checking whether the predicted set of ground types to instantiate

a type variable is a super-set of the actual set of runtime ground types

instantiating the type variable. The testing framework works as follows:

• Given a Scilla program, we first run the type-flow analysis compiler

pass to find the predicted set of types instantiating a type variable.

• We run the evaluator with the harness to collect all types applied to the

type variable.

• We check whether the later set is a subset of the former set.

Similarly to the testing type conformance, we first tested against

the user-written "good" test programs in the Scilla repository1. While

running the test harness did not reveal much, it acted as a sanity check

for the harness.

More interesting results arose when we tested the harness against

randomly generated Scilla programs. We found that type-flow analysis to

be incredibly robust as no bugs were found in the process of testing it. In

fact, our tests revealed that the analysis’ predicted set of ground types is the

exact set dynamically collected for all randomly generated programs. This

precision, however, can be explained by the fact that all type abstractions

from the randomly generated programs were instantiated exactly once.

Ideally, if the random program generator generated programs with type

abstractions instantiated more than once or even type abstractions within

type abstractions, there could be a greater guarantee of the possibility

of finding implementation bugs. However, this can be part of the future

work of this project.

1https://github.com/Zilliqa/scilla

33

Only in the cases when type application occurred in different branches

of match-expressions did the analysis return expected over-approximation

of dynamically collected ground types. For example, given a program

such as

let f = tfun ’X => fun (x: ’X) => x in
let a = True in
match a with
| True => let fstring = @f String in f "abc"
| False => let fbool = @f Bool in f False
end

the type-flow analysis will account for both branches of the match-

expression and predict that the type variable ’X might be instantiated

with either types String or Bool. Collecting what types ’X is instantiated

with in concrete execution, of course, returns that ’X is only instantiated

with type String. As these over-approximations are valid, our harness

found no bugs in these test cases.

34

5 Related Work

Researchers have looked into many techniques of testing soundness of

static analyses with a wide spectrum of degree of human effort. Some

have written manual proofs to prove an analysis’ soundness, as shown by

Midtgaard et al. who proved the soundness of Shivers’ methodology of

analysing a program’s control-flow [MAM12]. Similarly, Blazy et al. then

contributed to the body of scholarship by performing formal verification

using the Coq proof assistant to prove soundness of the results of a static

analyser [Bla+13]. Both methods require an incredibly high degree of

human effort but can ensure the absolute absence of program bugs.

Beyond formalising proofs, testing properties of static analyses by

generating wide spectrum of programs, as done in this thesis, is, of

course, not novel. Bugariu et al. presented an automatic technique to test

soundness and precision of abstract domains by generating random test

programs using gray-box fuzzing [Bug+18]. Similarly, Midtgaard and

Møller employed QuickCheck to validate algebraic properties of abstract

domains through generation of random abstract state components [MM17].

Klinger et al. and Taneja et al. evaluated different analyzers’ soundness

and precision with randomly generated programs, where the former used

differential testing between analyzers, and the later computed sound and

maximally precise programs using SMT solvers before comparing them

to static analyser’s results [KCW19; TLR20].

35

Additionally, as briefly mentioned in Chapter 2, implementing collect-

ing semantics in a monad as part of an evaluator has been explored as

well [Dar+17; Ser+13]. These implementations, however, have only been

implemented for toy functional languages and outside of the context of

OCaml. Furthermore, these approaches were then only used to redefine

a program’s semantics or abstract a language’s semantics.

The novelty of our work lies in adopting the idea of monadic collecting

semantics in a definitional interpreter to test static analyses of higher-order

languages.

36

6 Discussion

6.1 Extensibility and Future Work

The aim of this project was to refactor a production-scale definitional inter-

preter to contain a state-collecting harness to test static type-conformance

and static type-flow analysis. For our future work, as mentioned in

Section 4.2.2, the probability of finding an implementation bug would

benefit is the randomly generated programs had multiple instantiations

of a type abstraction or nested type abstractions. Additionally, we could

extend our harness to test other existing static optimisations in the Scilla

to LLVM compiler such as dead-code elimination, uncurrying analysis,

early evaluations of library functions [Nag+20], or even potential analyses

that are not yet implemented such as just in time compilation or loop

optimisations. This extensibility comes from the straightforwardness of

specialising what data can be dynamically collected.

Another tool that could be interesting to test is CoSplit [PKS21]. CoSplit

is a static program analysis tool that infers smart contract properties such

as the ownership and commutativity summaries, which are then used to

maximise parallelism. To infer these properties, CoSplit performs static

analysis on smart contracts written in Scilla, which we can test with our

harness.

To discuss the extensibility of the project’s idea to other languages,

37

it is important to recall the context in which this project was performed

in. Scilla provided us with many infrastructures upon which we piggy-

backed on such as a definitional interpreter equipped with a CPS monad

and, most significantly, a random Scilla program generator. Without

randomly generated programs, the analysis might not have been as

fruitful and extensive. However, given a developer has a definitional

interpreter they are familiar with, it suffices to refactor it to become

monadic (without CPS) to allow for dynamic state collection [Hoa21].

This enhanced definitional interpreter then becomes a useful debugging

tool for testing new language features or its corresponding static analyses.

6.2 Conclusion

In this project, we present a detailed account of embedding an state-

collecting harness into a definitional interpreter to test static program

analyses. We start by providing a thorough study of technical terms

heavily relied on in the project’s report (Chapter 2). We then transform the

definitional interpreter’s CPS monad to take into account the dynamic state

collection (Chapter 3). Finally, we described two case studies of testing

static type conformance and static type-flow analysis by specialising

collected properties, with which we evaluate the static properties through

user-written and randomly generator Scilla programs (Chapter 4).

Our two cases studies revealed interesting details about the software

we were testing. Firstly, testing type conformance revealed an odd

bug of implicit up-casting of an address type performed by the type-

checker. While the bug does not compromise safety guarantees of contract

execution, it affects the correctness of the compiler. This newly found

bug has been disclosed to the Scilla developers, and has been fixed in

the updated version of Scilla. Secondly, testing the type-flow analysis

38

revealed the immaculate precision of the analysis, although the precision

could be due to how types are instantiated in the randomly generated

Scilla programs.

While our methodology does not prove complete lack of bugs, we

have demonstrated how this simple technique can be a stepping stone to

a compiler developer’s bug-free dreams.

39

Bibliography

[AC76] Frances E. Allen and John Cocke. “A program data flow

analysis procedure”. In: Communications of the ACM 19.3

(1976), p. 137 (cit. on pp. vi, 10–12).

[Age+03] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan

Midtgaard. “A functional correspondence between evalua-

tors and abstract machines”. In: Proceedings of the 5th ACM

SIGPLAN international conference on Principles and practice of

declaritive programming. 2003, pp. 8–19 (cit. on p. 8).

[AR17] Nada Amin and Tiark Rompf. “Type soundness proofs with

definitional interpreters”. In: Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages.

2017, pp. 666–679 (cit. on pp. 2, 6).

[BHM00] Nick Benton, John Hughes, and Eugenio Moggi. “Monads and

effects”. In: International Summer School on Applied Semantics.

Springer. 2000, pp. 42–122 (cit. on pp. vii, 2, 14).

[Bla+13] Sandrine Blazy, Vincent Laporte, André Maroneze, and David

Pichardie. “Formal verification of a C value analysis based

on abstract interpretation”. In: International Static Analysis

Symposium. Springer. 2013, pp. 324–344 (cit. on p. 35).

[Bla+19] Sam Blackshear, Evan Cheng, David L Dill, Victor Gao, Ben

Maurer, Todd Nowacki, Alistair Pott, Shaz Qadeer, Dario

40

Russi Rain, Stephane Sezer, et al. “Move: A language with

programmable resources”. In: Libra Assoc (2019) (cit. on p. 1).

[Bug+18] Alexandra Bugariu, Valentin Wüstholz, Maria Christakis,

and Peter Müller. “Automatically testing implementations

of numerical abstract domains”. In: Proceedings of the 33rd

ACM/IEEE International Conference on Automated Software En-

gineering. 2018, pp. 768–778 (cit. on pp. vi, 8, 35).

[Dar+17] David Darais, Nicholas Labich, Phuc C Nguyen, and David

Van Horn. “Abstracting definitional interpreters (functional

pearl)”. In: Proceedings of the ACM on Programming Languages

1.ICFP (2017), pp. 1–25 (cit. on pp. vi, 1, 3, 8, 36).

[DF92] Oliver Danvy and Andrzex Filinski. “Representing control: A

study of the CPS transformation”. In: Mathematical structures

in computer science 2.4 (1992), pp. 361–391 (cit. on p. 7).

[DN01] Olivier Danvy and Lasse R Nielsen. “Defunctionalization at

work”. In: Proceedings of the 3rd ACM SIGPLAN international

conference on Principles and practice of declarative programming.

2001, pp. 162–174 (cit. on pp. 6, 7).

[EP17] Richard A Eisenberg and Simon Peyton Jones. “Levity poly-

morphism”. In: ACM SIGPLAN Notices 52.6 (2017), pp. 525–

539 (cit. on pp. 1, 31).

[Fil94] Andrzej Filinski. “Representing monads”. In: Proceedings of

the 21st ACM SIGPLAN-SIGACT symposium on Principles of

programming languages. 1994, pp. 446–457 (cit. on p. 2).

[Fil99] Andrzej Filinski. “Representing layered monads”. In: Pro-

ceedings of the 26th ACM SIGPLAN-SIGACT symposium on

Principles of programming languages. 1999, pp. 175–188 (cit. on

p. 18).

41

[Flo93] Robert W Floyd. “Assigning meanings to programs”. In:

Program Verification. Springer, 1993, pp. 65–81 (cit. on p. 5).

[Gir72] Jean-Yves Girard. “Interprétation fonctionnelle et élimination

des coupures de l’arithmétique d’ordre supérieur”. Thèse

d’État. Paris, France: Université de Paris VII, 1972 (cit. on

p. 15).

[Hoa+22] Tram Hoang, Anton Trunov, Leonidas Lampropoulos, and

Ilya Sergey. “Random testing of a higher-order blockchain

language (experience report)”. In: Proceedings of the ACM on

Programming Languages 6.ICFP (2022), pp. 886–901 (cit. on

pp. 1, 15, 23, 30).

[Hoa21] Tram Hoang. “Testing Static Code Analysis with Monadic Def-

initional Interpreter”. Bachelor’s Thesis. 2021 (cit. on pp. 29,

38).

[KCW19] Christian Klinger, Maria Christakis, and Valentin Wüstholz.

“Differentially testing soundness and precision of program an-

alyzers”. In: Proceedings of the 28th ACM SIGSOFT International

Symposium on Software Testing and Analysis. 2019, pp. 239–250

(cit. on p. 35).

[KRS94] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. “Partial

dead code elimination”. In: ACM Sigplan Notices 29.6 (1994),

pp. 147–158 (cit. on p. 1).

[KSS17] Uday Khedker, Amitabha Sanyal, and Bageshri Sathe. Data

flow analysis: theory and practice. CRC Press, 2017 (cit. on pp. 11,

12).

[LHJ95] Sheng Liang, Paul Hudak, and Mark Jones. “Monad trans-

formers and modular interpreters”. In: Proceedings of the 22nd

42

ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages. 1995, pp. 333–343 (cit. on pp. vii, 3).

[MAM12] Jan Midtgaard, Michael D Adams, and Matthew Might. “A

structural soundness proof for Shivers’s escape technique”.

In: International Static Analysis Symposium. Springer. 2012,

pp. 352–369 (cit. on p. 35).

[Mig10] Matthew Might. “Abstract interpreters for free”. In: Interna-

tional Static Analysis Symposium. Springer. 2010, pp. 407–421

(cit. on pp. vi, 8).

[MM17] Jan Midtgaard and Anders Møller. “Quickchecking static anal-

ysis properties”. In: Software Testing, Verification and Reliability

27.6 (2017), e1640 (cit. on pp. 14, 35).

[MRL13] Jan Midtgaard, Norman Ramsey, and Bradford Larsen. “En-

gineering definitional interpreters”. In: Proceedings of the 15th

Symposium on Principles and Practice of Declarative Programming.

2013, pp. 121–132 (cit. on pp. 2, 8).

[Nag+20] Vaivaswatha Nagaraj, Jacob Johannsen, Anton Trunov, George

Pırlea, Amrit Kumar, and Ilya Sergey. “Compiling a Higher-

Order Smart Contract Language to LLVM”. In: arXiv preprint

arXiv:2008.05555 (2020) (cit. on pp. vii, 1, 3, 31, 37).

[NNH04] Flemming Nielson, Hanne R Nielson, and Chris Hankin.

Principles of program analysis. Springer Science & Business

Media, 2004 (cit. on pp. vi, 2, 9–13).

[Pał+11] Michał H Pałka, Koen Claessen, Alejandro Russo, and John

Hughes. “Testing an optimising compiler by generating ran-

dom lambda terms”. In: Proceedings of the 6th International

Workshop on Automation of Software Test. 2011, pp. 91–97 (cit. on

p. 1).

43

[Pie02] Benjamin C Pierce. Types and programming languages. MIT

press, 2002 (cit. on p. 6).

[PKS21] George Pırlea, Amrit Kumar, and Ilya Sergey. “Practical smart

contract sharding with ownership and commutativity analy-

sis”. In: Proceedings of the 42nd ACM SIGPLAN International

Conference on Programming Language Design and Implementation.

2021, pp. 1327–1341 (cit. on p. 37).

[Rey72] John C. Reynolds. “Definitional Interpreters for Higher-Order

Programming Languages”. In: Proceedings of 25th ACM Na-

tional Conference. Reprinted in Higher-Order and Symbolic

Computation 11(4):363-397, 1998, with a foreword [Rey98a].

Boston, Massachusetts, 1972, pp. 717–740 (cit. on pp. 2, 5–7).

[Rey98a] John C Reynolds. “Definitional interpreters for higher-order

programming languages”. In: Higher-order and symbolic com-

putation 11.4 (1998), pp. 363–397 (cit. on p. 44).

[Rey98b] John C Reynolds. “Definitional interpreters revisited”. In:

Higher-Order and Symbolic Computation 11.4 (1998), pp. 355–

361 (cit. on pp. vi, 2, 6).

[Ser+13] Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midt-

gaard, David Darais, Dave Clarke, and Frank Piessens. “Monadic

abstract interpreters”. In: Proceedings of the 34th ACM SIGPLAN

conference on Programming language design and implementation.

2013, pp. 399–410 (cit. on pp. vii, 2, 14, 36).

[Ser+19] Ilya Sergey, Vaivaswatha Nagaraj, Jacob Johannsen, Amrit

Kumar, Anton Trunov, and Ken Chan Guan Hao. “Safer smart

contract programming with Scilla”. In: Proceedings of the ACM

on Programming Languages 3.OOPSLA (2019), pp. 1–30 (cit. on

pp. vii, 1, 3, 15–18, 23).

44

[Shi91] Olin Shivers. “Control-Flow Analysis of Higher-Order Lan-

guages or Taming Lambda”. Technical Report CMU-CS-91-

145. PhD thesis. Pittsburgh, Pennsylvania: School of Computer

Science, Carnegie Mellon University, May 1991 (cit. on pp. vi,

1, 2, 8, 9, 11–13).

[SKH18] Ilya Sergey, Amrit Kumar, and Aquinas Hobor. “Scilla: a

smart contract intermediate-level language”. In: arXiv preprint

arXiv:1801.00687 (2018) (cit. on pp. vii, 1, 3, 15, 16).

[TLR20] Jubi Taneja, Zhengyang Liu, and John Regehr. “Testing static

analyses for precision and soundness”. In: Proceedings of the

18th ACM/IEEE International Symposium on Code Generation

and Optimization. 2020, pp. 81–93 (cit. on p. 35).

[Wee06] Stephen Weeks. “Whole-program compilation in MLton”. In:

ML 6 (2006), pp. 1–1 (cit. on pp. 1, 31).

45

	Declaration
	Acknowledgements
	Contents
	Summary
	List of Figures
	Introduction
	Approach and Goal
	Why Scilla?
	Contributions and Outline

	Background
	Definitional Interpreter
	Static Analysis
	Data Flow Analysis
	Control Flow Analysis

	Monads
	Overview of Scilla
	Scilla's Monadic Interpreter

	Embedding the Harness for Collecting Semantics
	Modularity of Semantics Collection

	Specialised Collection and Case Studies
	Testing Type Conformance
	Collection of Type Flows into Identifiers
	Results of Testing Type Conformance

	Testing the Type-Flow Analysis
	Collection of Type Flows into Type Variables
	Results of Testing the Type-Flow Analysis

	Related Work
	Discussion
	Extensibility and Future Work
	Conclusion

	Bibliography

