
A FRAMEWORK

FOR

CERTIFIED PROGRAM SYNTHESIS

YASUNARI WATANABE

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF COMPUTING

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2021

Supervisor:

Associate Professor Ilya Sergey

Examiners:

Professor Abhik Roychoudhury

Associate Professor Martin Henz

Declaration

I hereby declare that this thesis is my original work and it has been written by

me in its entirety. I have duly acknowledged all the sources of information which

have been used in the thesis.

This thesis has also not been submitted for any degree in any university

previously.

April 2, 2021 Yasunari Watanabe
. .

Date Name

i

Acknowledgements

This work was made possible thanks to the help of many individuals—

Ilya Sergey, whose patient mentorship over the past two years has given me a

deep appreciation for the field. I am very grateful for the valuable guidance that

helped shape me into a better researcher.

Kiran Gopinathan and George Pîrlea, who implemented the certification for

VST and Iris respectively. I owe much of the abstract evaluator design to their

insightful observations about the synthesis/verification gap and subsequent

discussions.

Everyone at the VERSE research group, for the many conversations shared

over lunch at 99 Buona Vista Kitchen.

And my family, for remaining a steadfast presence across the ocean during

these highly unusual times.

ii

Contents

Declaration i

Acknowledgements ii

Contents iii

Summary v

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 The Need For Automated Certification 2

1.2 Contributions and Overview . 3

2 Background: Synthesis and Verification 5

2.1 Synthesis With Cyclic Synthetic Separation Logic 5

2.1.1 Specifications and Predicates 5

2.1.2 Synthesis By Proof Search 6

2.1.3 Synthesis of sll_copy . 8

2.2 Verification With Hoare Type Theory 10

2.2.1 Framework Overview . 10

2.2.2 Verification of sll_copy . 11

2.3 Synthesis and Verification: A Divide 12

3 A Framework For Evaluating Proofs 13

3.1 Encoding Derivations As Proof Trees 13

3.2 Constructing Proof Trees . 14

3.2.1 Extraction From And/Or Trees 14

3.2.2 Finalizing Branch Abductions 16

3.2.3 Program Recovery From A Proof Tree 18

iii

3.3 An Evaluator to Translate Synthesis Proofs 19

3.3.1 Modular Proof Step Interpreters 20

3.3.2 Contexts For Tracking Verifier State 21

3.3.3 Deferring Target Proof Steps 22

3.3.4 Putting It All Together . 24

3.4 Extension: Controlling the Release of Deferreds 25

4 The Evaluator in Action: HTT 28

4.1 Translating Programs . 28

4.2 Translating Predicates . 29

4.3 Translating Proofs . 30

4.3.1 Wrapper Tactics . 30

4.3.2 Tracking Named Hypotheses 31

4.3.3 Delayed Checking of Postcondition Entailment 32

4.4 Handling Postcondition Pure Constraints 36

4.4.1 Extracting Pure Lemmas . 36

4.4.2 Pluggable Automation . 37

5 Evaluation and Case Studies 39

5.1 Standard Heap-Manipulating Benchmarks 39

5.2 Advanced Benchmarks: Encoding Collection Payloads 40

6 Related Work 44

6.1 Certifying Compilers and Proof-Carrying Code 44

6.2 Translation Validation . 45

6.3 Certified Interactive Program Synthesis 46

6.4 Certified Solvers . 46

7 Discussion and Conclusion 48

7.1 Extensibility To Other Verification Frameworks 48

7.2 Future Work . 49

7.3 Conclusion . 50

Bibliography 51

iv

Summary

We present a generic framework for automated post-hoc certification of deduc-

tively synthesized programs. Our theoretical contribution is an abstract proof

evaluator, which parses a synthesis derivation trace to generate a certificate of

functional correctness for any trusted verifier. Our practical contributions are a

Scala implementation of this evaluator for SuSLik [PS19], a state-of-the-art deduc-

tive synthesizer; an instantiation of it for Hoare Type Theory (HTT) [NVB10], a

foundational program verification framework; and extensive evaluation on a set

of indicative benchmarks.

Deductive synthesis produces programs from user-provided specifications, by

conducting a proof search on a set of inference rules and emitting the program

as a byproduct of the search. The deductive program synthesizer SuSLik

can synthesize a broad class of imperative heap-manipulating programs from

Hoare-style specifications by applying rules of cyclic synthetic separation logic

(SSL) [Itz+21].

Although such programs are said to be correct by construction, in practice

the implementation of the synthesizer itself is large and complex—a recipe for

introducing bugs. Verifying the correctness of the synthesizer’s codebase is

untenable; however, doing so for each synthesized program is both sound and

achievable.

A first attempt at post-hoc certification might extract the successful rule

derivations that produced a synthesis result, and execute the corresponding

proof steps in the program logic of the target verifier to construct a certificate.

Unfortunately, a fundamental gap separates the proof strategies of synthesis

and verification: synthesis transforms a goal’s pre- and postcondition through

rule applications, while verification does forward-style symbolic execution to

v

transform the precondition only, delaying the postcondition entailment check to

the very end.

Our proof evaluator is designed to overcome this discrepancy. We isolate all

verifier-specific reasoning to a proof step interpreter interface that each verifier

can implement, to share generic traversal logic among all instantiations of the

evaluator. The interpreter locally maps the synthesizer’s rule derivations to

equivalent proof steps of a target verifier, but we also equip it with two features

to reason non-locally about derivations before and after the current one in a

principled manner. A proof context accumulated throughout the evaluation

allows the interpreter to store verifier-specific information for later access, while

an interface for deferred steps allows it to emit steps corresponding to the current

derivation in a delayed fashion.

We showcase the evaluator’s features with an instantiation for HTT. Its

shallow embedding makes for a pleasant implementation experience overall, but

several non-trivialities arise from HTT’s need to reason about heaps explicitly.

We address them through a combined use of the evaluator’s features and tactic

engineering in Coq, the proof assistant into which HTT is embedded. We also

present strategies to extract pure entailments and automate their proofs using

certified solvers, and discuss their limitations.

Finally, we validate our approach to certifying programs in HTT against 18

standard benchmark programs that operate on various data structures. Addi-

tionally, we experiment with 11 advanced benchmarks that either require an

alternative encoding of collection payloads or manual proofs of complex pure

entailment lemmas.

vi

List of Tables

5.1 Scala implementation size in lines of code. 39

5.2 Statistics for synthesized programs with pointers from SuSLik bench-
mark suite. Sizes of generated Coq artifacts in lines of code; proof
checking times in seconds. 40

5.3 Benchmarks using multi-set equality in HTT. 41

vii

List of Figures

1.1 Code of sll_copy. 2

2.1 Selected declarative rules of SSL	. Grayed parts indicate fragments
instantiated non-deterministically by elements of the synthesis goal. . 7

2.2 Singly-linked list copying in SuSLik: synthesized code (left) and
simplified proof tree (right). 9

2.3 Copying a singly-linked list in HTT/Coq: definitions and specification
(left), and proof (right). 10

3.1 Spec and code of min. 16

3.2 Simplified proof tree highlighting branch abduction for a program to
find the minimum of two integers. 17

3.3 Main components of the proof evaluator encoded in Scala. 25

4.1 Two alternative translations of the Free rule. 29

4.2 A pure entailment lemma. 37

5.1 Manual proof of a lemma asserting that two predicate applications
parameterized by equivalent multi-sets are equally valid. 41

5.2 Manual proof of an extracted pure entailment lemma that the hammer
tactic failed to solve. 42

viii

1 Introduction

Testing shows the presence, not the absence of bugs.

—Dĳkstra

Demand for provable program correctness has grown, as we entrust software

systems to manage everything from stock exchanges to city power grids. Yet,

developing certified software remains a laborious task. In order to demonstrate a

program’s correctness, a human must write a program specification, implemen-

tation, and proof that the latter satisfies the former. For this reason, well-known

verification projects such as CompCert [Ler06] and CertiKOS [Gu+16] have each

taken several person-years of effort to complete.

One promising way to alleviate this human burden is to automate parts of the

task through deductive program synthesis. Using this approach, a programmer can

write a program specification, and thendelegate the derivation of a corresponding

program implementation and correctness proof to a deductive synthesizer.

Consider a simple example of a procedure that copies a singly linked list.

{r 7→ x ∗ sll(x , S)} void sll_copy(loc r)
{
r 7→ y ∗ sll(x , S) ∗ sll(y , S)

}
(1.1)

In this declarative specification, we observe a predicate sll that asserts the presence

of a singly linked list. The precondition asserts that location r points to location

x, and that x contains a singly linked list that stores the elements of multi-set

S. The separating conjunction connective ∗ indicates that the memory location

described by r is disjoint from the region of memory occupied by the linked list.

1

1 void sll_copy (loc r) {
2 let x2 = *r;
3 if (x2 == 0) { }
4 else {
5 let v = *x2;
6 let nxt = *(x2 + 1);
7 *r = nxt;
8 sll_copy(r);
9 let y12 = *r;

10 let y2 = malloc(2);
11 *r = y2;
12 *(y2 + 1) = y12;
13 *y2 = v;
14 }
15 }

Figure 1.1: Code of sll_copy.

The postcondition asserts that there is still

a linked list rooted at x, but also that loca-

tion r now points to some location y which

also stores a linked list containing the same

elements.

SuSLik [PS19] is a deductive synthesizer

that can automatically generate validprogram

implementations for specifications of this na-

ture. For specification (1.1), it produces the imperative program shown in Fig. 1.1,

expressed in C-style syntax.

1.1 The Need For Automated Certification

But how can we guarantee that the program in Fig. 1.1 is correct with respect

to specification (1.1)? After all, the synthesizer is itself a program written by

humans. Its implementation is large and complex, so it is difficult to guarantee

the total absence of bugs.

One approach is tomake the synthesizer produce certificates of correctness that

can be easily validated by verification frameworks, or verifiers. These frameworks

are typically embedded into proof assistants such as Coq, which have a minimal

trusted codebase, and are thus widely considered to have the highest possible

correctness guarantees.

Since a deductive synthesizer derives a program via a proof search over

the space of the program logic’s inference rules, it should be easy enough to

instrument this certificate extraction, given that the necessary proof steps are

effectively encoded in the derivation of the program—or so it seems.

In reality, the process is far more complex, due to a discrepancy between a

proof in a verification framework and a deductive synthesis “proof”. Verifiers

usually conduct proofs by symbolically executing through a program structure

that is known ahead of time. Such a proof proceeds by forward-propagating the

precondition’s symbolic state at each step of the program, and then checking

that the final symbolic state after completing the execution matches that of the

2

postcondition. Meanwhile, a synthesizer does not have this program structure

readily available to guide the proof (in fact, it is the very thing it needs to

synthesize). It therefore resorts to manipulating both the pre- and postcondition

to perform its proof search.

In an earlier effort [Wat20], we resolved this discrepancy in an ad-hoc manner,

but thismade the codebase rather brittle oncewe began to expand the certification

coverage to a wider class of programs. Furthermore, we encountered extensive

code duplication once we started to target multiple verification frameworks

for the certificate generation, because adding support for a new verifier meant

encoding another custom traversal of the SuSLik derivation tree with its own

bookkeeping machinery. A more unified approach was needed.

1.2 Contributions and Overview

In the following chapters, we describe an automated and modular technique for

producing correctness certificates of deductively synthesized programs. We

present four key contributions:

1. A generic design for a proof evaluator, which parses a SuSLik derivation trace

and generates a proof for a chosen verifier.

2. A practical implementation of this proof evaluator for SuSLik, written in Scala.

3. An instantiation of the proof evaluator for Hoare Type Theory (HTT) [NVB10],

a foundational program verification framework.

4. An extensive evaluation of HTT translation on a series of characteristic

benchmarks.

The rest of this work is structured as follows. Ch. 2 gives background

knowledge on how SuSLik deductively synthesizes programs by application

of SSL	 rules, and how program correctness is proved in the HTT framework.

Ch. 3 describes the proof evaluator and explains the observations that motivated

our design choices. Ch. 4 shows the proof evaluator in action with HTT as

the verification framework, outlining how our evaluator design and some Coq

proof engineering allows us to overcome various nontrivialities. Ch. 5 evaluates

3

our certification technique against a benchmark suite and highlights several

particularly notable case studies. Ch. 6 compares our approach to existing

literature on proof-carrying code, automated program synthesis, and certified

solvers. Finally, Ch. 7 concludes by discussing the extensibility of this approach

to other verification frameworks and future work.

4

2 Background:
Synthesis and Verification

You make ’em, I amuse ’em.

—Dr. Seuss, on children

In this chapter, we describe state-of-the-art approaches to deductive synthesis

(Sec. 2.1) and verification (Sec. 2.2) of imperative programs.

2.1 Synthesis With Cyclic Synthetic Separation Logic

In deductive program synthesis, the synthesizer takes a user-provided declarative

specification as its initial synthesis goal. It then searches for a series of valid

applications of inference rule that transform the initial goal until it is reduced

to a trivial entailment. The desired program is obtained as a byproduct of this

proof search. Here, we examine a particular synthesis tool, SuSLik [PS19], to see

how this works in practice.

2.1.1 Specifications and Predicates

Let us revisit our sll_copy example from Ch. 1. Specification (1.1) is expressed

in cyclic synthetic separation logic (SSL) [Itz+21], a variant of Separation Logic

(SL) [Rey02] used by SuSLik. Both the precondition and postcondition are

assertions. An SL-style assertion {P} consists of a pure and spatial part,
{
φ, P

}
.

The pure part φ expresses logical constraints on the assertion’s variables and

values. The spatial part P describes the heap shape using standard SL assertions;

a collection of heaplets is joined by the separating conjunction connective (∗):

1. emp asserts an empty heap.

5

2. (x + ι) 7→ e asserts a heaplet defined at one location, storing a value e at a

(possibly zero) offset ι from an address x.

3. [x , n] asserts a contiguous block of n elements starting at x that can be

deallocated.

4. pα (ti) constrains the shape of a size-α heap with a predicate occurrence with

arguments ti (the heap size is often abbreviated).

SSL	 defines the singly linked list predicate that appears in specification (1.1)

as follows:

sllα (x , s) , x � 0 ∧ {s � ∅; emp}

| x , 0 ∧
{
s � {v} ∪ s1 ∧ β < α; [x , 2] ∗ x 7→ v ∗ (x + 1) 7→ nxt ∗ sllβ (nxt, s1)

} (2.1)

The first clause states that, if x is a null pointer, it contains no elements and

consists of an empty heap. The second clause states that otherwise, x points

to a contiguous two-cell memory block. The first location stores the payload

v of the head of the linked list; and the second location stores the location nxt,

which contains the remainder of the linked list, as indicated by the recursive

assertion using the sll predicate. The annotations α, β are cardinality variables

that are used in cyclic proofs [RB17]. SSL	 takes any constraint defined on these

cardinalities as a termination measure for the synthesized recursive programs

and their auxiliary procedures. That is, cardinalities represent the size of the

heap on which a predicate is defined, and the constraints (such as β < α) show

that it is strictly decreasing in an inductive definition.

2.1.2 Synthesis By Proof Search

SuSLik transforms the user-provided specification (1.1) into an initial synthesis

goal of the form Γ; P{Q| c, where {P} and {Q} are the pre- and postconditions

of the specification; Γ is the set of program-level variables (which appear in the

program’s parameter list) and logical variables (which appear in the assertions);

and c is the yet unknown program statement to be synthesized for this goal.

Then, starting from the initial goal, SuSLik conducts a proof search, enumerating

all SSL	 inference rules whose semantics enable it to be applied to the current

6

Emp
` φ ⇒ ψ

Γ;
{
φ; emp

}
{

{
ψ; emp

}�� skip

Frame{
φ; P

}
{

{
ψ; Q

}�� c
{
φ; P ∗ R

}
{

{
ψ; Q ∗ R

}��� c

Read
∀y.Γ;

{
φ ∧ y � e; (x + ι) 7→ e ∗ P

}
{Q�� c

x ∈ PV y ∈ ProgVars \ Vars(Γ)

Γ;
{
φ; (x + ι) 7→ e ∗ P

}
{Q

��� let y � ∗(x + ι); c

Write
Γ;

{
φ; (x + ι) 7→ e ∗ P

}
{

{
ψ; (x + ι) 7→ e ∗Q

}�� c
Vars(e) ⊆ ProgVars

Γ;
{
φ; (x + ι) 7→ e′ ∗ P

}
{{

ψ; (x + ι) 7→ e ∗Q
}
| ∗(x + ι) � e; c

Alloc
Γ;

{
φ;

[
y , n

]
∗
(
(y + i) 7→ ti

)
0≤i<n ∗ P

}
{{

ψ; [x , n] ∗
(
(x + i) 7→ ei

)
0≤i<n ∗Q

} �� c x ∈ Existentials(Γ)

Γ;
{
φ; P

}
{

{
ψ; [x , n] ∗

(
(x + i) 7→ ei

)
0≤i<n ∗Q

}��� let y � malloc(n); c

Call
∀xi , ν j .∃ωk ;

{
φ′; P

}
{

{
ψ′; S

}�� f (xi)
Γ ∪· ∀σ(ωi);

{
[σ]ψ′ ∧ φ; [σ]S ∗ R

}
{Q�� c

` φ ⇒ [σ]φ′
dom (σ) � {xi , ν j , ωk }

σ(xi) ∈ e[Γ] σ(ν j) ∈ κ[Γ]

Γ;
{
φ; [σ] P ∗ R

}
{Q

��� f (σ(xi)); c

Open
Γ ∪· ∀ω jk ; [ti/νi]

{
φ ∧ e j ∧ χ j ; R j ∗ P

}
{Q

��� c j for all j�1..r

pα (νi) :
〈
e j ,

{
ω jk , χ j

}〉
R j j�1..r

is s.t. ω jk < Vars(Γ),GV(ti) � ∅

Γ;
{
φ; pα (ti) ∗ P

}
{Q

����
if ([ti/νi]e1) {c1}

else if ([ti/νi]e2) {c2} else · · ·

Close
Γ ∪· ∃ω jk ; P{ [ti/νi]

{
φ ∧ e j ∧ χ j ; R j ∗Q

}��� c j for some j ∈1..r

Predicate pα (νi) :
〈
e j ,

{
ω jk , χ j

}〉
R j j�1..r

is s.t. ω jk < Vars(Γ)

Γ; P{
{
φ; pα (ti) ∗Q

}���� c

Figure 2.1: Selected declarative rules of SSL	. Grayed parts indicate fragments
instantiated non-deterministically by elements of the synthesis goal.

goal, and backtracking on failure (i.e., when no synthesis rules are applicable). A

successful synthesis builds a valid derivation from the initial goal, and emits a

corresponding program c as a byproduct. Fig. 2.1 show some selected SSL	 rules.

Their declarative style does not provide an exact algorithm to enforce a particular

rule application order. That is, for a given synthesis goal, the choice of suitable

instantiations of the grayed parts of each rule depends on the proof search

strategy. This captures the inherent non-determinism of the synthesis approach.

For instance, multiple candidate Read rule applications may be enabled for a

synthesis goal if there is more than one heaplet of the form (x + ι) 7→ e in the

precondition. A deductive synthesis proof search aims to discover precisely the

valid rule application order for each specification. Existing work on deductive

program synthesis employs various techniques to implement the derivation

search efficiently [Kne+13; Itz+21].

We now briefly describe the different categories of rules, and how each one is

used to advance the synthesis.

Operational rules. These include Read, Write, Alloc, Open, and Call; they

emit program statements as part of their application. A particularly intricate rule

is Call, which synthesizes procedure calls. In the style of SL’s frame rule, the goal

precondition’s sub-heap R that doesn’t pertain to a procedure call f is framed out

for local reasoning. The formal parameters xi of f are matched with expressions

e[Γ] using Γ’s program variables, and its ghosts are mapped to κ[Γ] using any

7

variables in Γ; this is done by a substitution map σ. Applying Call produces

two subgoals, which correspond to the two premises in the rule description. The

first is entailment of f ’s precondition from the goal’s precondition after framing,

which introduces f ’s existentials wk . The second is entailment of the goal’s

postcondition from f ’s postcondition, where σ renames f ’s existentials to fresh

ghost variables in the new goal precondition.

Terminal rules. These are rules that conclude a successful synthesis of a

program branch. Notably, Emp describes a trivial entailment from an empty heap

to itself. Assuming that any remaining pure constraints φ ⇒ ψ hold, SuSLik can

forego further rule applications.

Structural rules. Instead of emitting program statements, these rules manip-

ulate the synthesis goal in other ways. For example, Frame applies SL-style

framing to remove matching heaplets from the pre- and postcondition. Succes-

sive applications of this rule can gradually reduce the goal’s heap sizes until the

Emp rule is enabled. Close identifies a predicate instance p in the postcondition,

and unfolds its occurrence pα (ti) into some jth clause of the predicate, provided

that the jth clause’s selector is consistent with the goal’s constraints. The assertion

expanded from the clause can introduce additional facts about the expected

postcondition heap shape. For example, the introduction of a block assertion

of a certain size may enable the Alloc rule, an operational rule that allocates a

memory block.

2.1.3 Synthesis of sll_copy

Fig. 2.2 compares the two complementary results of running SuSLik on the

sll_copy specification (1.1). On the left is the synthesized implementation in

SusLang, a toy C-like language of SuSLik. On the right are the SSL	 rule

derivations that contributed to the synthesis of this program. Note that a typical

SuSLik run also produces many unsuccessful derivations that the proof search

then backtracks from; these have been elided from the presentation in Fig. 2.2. An

encoding of these successful derivations, expressed as a proof tree, and interleaved

with the intermediate synthesis goals, is formally discussed in Sec. 3.1. For now,

8

1 void sll_copy (loc r) {
2 let x2 = *r;
3 if (x2 == 0) { }
4 else {
5 let v = *x2;
6 let nxt = *(x2 + 1);
7 *r = nxt;
8 sll_copy(r);
9 let y12 = *r;

10 let y2 = malloc(2);
11 *r = y2;
12 *(y2 + 1) = y12;
13 *y2 = v;
14 }
15 }

{emp} ⤳ {emp}

⟨READ r, 0, x, x2⟩

⟨OPEN sll(x2, s)⟩

⟨FRAME r ↦ 0⟩

⟨CLOSE sll(0, ∅), 1⟩

⟨ALLOC ([y, 2] ∗ y ↦ v′ ∗ (y+1) ↦ nxt′), y2⟩

⟨READ x2, 0, v, v⟩

⟨READ x2, 1, nxt, nxt⟩

⟨WRITE r, 0, nxt⟩

⟨CALL (r ↦ nxt ∗ sll(nxt, s1)), [x ↦ nxt, s ↦ s1], sll_copy⟩

⟨CLOSE sll(y, s), 2⟩

⟨READ r, 0, y′, y12⟩

…

{r ↦ x ∗ sll(x, s)} ⤳ {r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

{r ↦ x2 ∗ sll(x2, s)} ⤳ {r ↦ y ∗ sll(x2, s) ∗ sll(y, s)}

{r ↦ 0} ⤳ {r ↦ y ∗ sll(0, ∅) ∗ sll(y, s)}

{r ↦ 0} ⤳ {r ↦ 0 ∗ sll(y, ∅)}

{r ↦ x2 ∗ [x2, 2] ∗ x2 ↦ v ∗ (x2 + 1) ↦ nxt ∗ sll(nxt, s1)} ⤳ {…}

{r ↦ x2 ∗ [x2, 2] ∗ x2 ↦ v ∗ (x2 + 1) ↦ nxt ∗ sll(nxt, s1)} ⤳ {…}

{r ↦ x2 ∗ [x2, 2] ∗ x2 ↦ v ∗ (x2 + 1) ↦ nxt ∗ sll(nxt, s1)} ⤳ {…}

{r ↦ y′ ∗ sll(y′, s1) ∗ [x2, 2] ∗ x2 ↦ v ∗ (x2 + 1) ↦ nxt ∗ sll(nxt, s1)} ⤳ {…}

{r ↦ y12 ∗ sll(y12, s1) ∗ sll(nxt, s1) ∗ …} ⤳ {sll(y, s) ∗ …}

{sll(y12, s1) ∗ …} ⤳ {[y, 2] ∗ y ↦ v′ ∗ (y + 1) ↦ nxt′ ∗ sll(nxt′, s′)} ∗ …}

{[y2, 2] ∗ y2 ↦ - ∗ (y2 + 1) ↦ - ∗ sll(y12, s1) ∗ …} ⤳ {[y, 2] ∗ y ↦ v′ ∗ (y + 1) ↦ nxt′ ∗ sll(nxt′, s′)} ∗ …}

⟨EMP⟩

⟨CLOSE sll(y, ∅), 1⟩

{r ↦ 0} ⤳ {r ↦ 0}

{ r ↦ nxt ∗ [x2, 2] ∗ x2 ↦ v ∗ (x2 + 1) ↦ nxt ∗ sll(nxt, s1) } ⤳ {…}

Figure 2.2: Singly-linked list copying in SuSLik: synthesized code (left) and simplified
proof tree (right).

it suffices to informally observe the close structural correspondence between the

SusLang program and SSL	 proof tree.

Following a value read from location r, the program diverges into two

branches; this is captured by theOpen rule, which unfolds the inductive predicate

in the precondition because its clause selectors match the branch conditions. The

“if” case of the program has no program statements, so the corresponding left

branch of the proof tree has no operational steps; the branch is discharged by

applying oneClose rule each for the two inductive predicates in the postcondition

and framing out r’s heaplet with Frame, which enables the Emp rule. The

program’s “else” case, corresponding to the right branch of the proof tree, issues

a series of operational steps before applying similar reduction by framing to

the goal’s assertions to enable the Emp rule (the latter steps are not shown

in Fig. 2.2). Midway through this proof branch, we can see Sec. 2.1.2’s Call rule

semantics in action. In the goal state immediately before the rule is applied,

the symbolic heap r 7→ nxt ∗ sll(nxt, s1) (the grayed parts of the precondition)

indicate heaplets that remain in focus after framing because they are used in

the procedure call. Comparing that to the next goal state after applying Call,

we observe the appearance of a new singly linked list rooted at a fresh ghost

variable y′, and a change of r’s referent from nxt to y′.

9

1 (* Inductive heap predicate for SL lists *)
2 Inductive sll (x : ptr) s h : Prop :=
3 | sll_1 of x == null of s = [::] ∧ h = Unit
4 | sll_2 of (x == null) = false of
5 ∃ (v : nat) s1 nxt h1, s = v :: s1 ∧
6 h = x 7→ v • x+1 7→ nxt • h1 ∧ sll nxt s1 h1.
7
8 (* Specification for SLL copying *)
9 Definition sll_copy_spec :=

10 ∀ (r: ptr), {(vghosts : ptr * seq nat)},
11 STsep(
12 (* Precondition *)
13 fun h => let: (x, s) := vghosts in
14 ∃ h1, h = r 7→ x • h1 ∧ sll x s h1,
15 [(* Postcondition *)
16 vfun (_: unit) h =>
17 let: (x, s) := vghosts in
18 ∃ y h1 h2, h = r 7→ y • h1 • h2 ∧
19 sll x s h1 ∧ sll y s h2]).
20
21 (* SLL copying implementation *)
22 Program Definition sll_copy : sll_copy_spec :=
23 Fix (fun (sll_copy : sll_copy_spec) r => Do (
24 x2 ← @read ptr r;
25 if x2 == null
26 then ret tt (* return unit *)
27 else
28 v ← @read nat x2;
29 nxt ← @read ptr (x2+1);
30 r ::= nxt;;
31 sll_copy r;;
32 y12 ← @read ptr r;
33 y2 ← allocb null 2;
34 r ::= y2;;
35 (y2+1) ::= y12;;
36 y2 ::= v;;
37 ret tt)).

38 Next Obligation.
39 (* Initialize HTT proof context *)
40 apply: ghR; move=>h_self[x2 s][h’][->]Hsll _.
41 (* Read *) apply: bnd_readR=>/=.
42 (* Open (unfold) SLL instance in the precondition *)
43 case: Hsll; case: ifP; move=>IfCond//_;
44 [move=>[?]->|move=>[v][s1][nxt][h1][?][->]H1].
45 (* Case: empty list (x2 = 0) *)
46 - move:IfCond=>/eqP->. (* substitute x2 7→ 0 *)
47 (* Emp *) apply: val_ret; ∃ null, Unit, Unit;
48 (* Close (unfold) SLL instance in postcondition *)
49 repeat split=>//=; do?[hhauto|constructor 1].
50 (* Case: non-empty list *)
51 - (* Read *) apply: bnd_readR=>//=.
52 (* Read *) apply: bnd_readR=>//=.
53 (* Write *) apply: bnd_writeR=>//=.
54 (* Call *)
55 rewrite (joinC _ h1) joinA; apply: bnd_seq.
56 apply: (gh_ex (nxt, s1)); apply: val_do=>//=_.
57 ∃ h1; split=>//=.
58 move=>h_call [y12][h11][h21][->][H2 H3]_.
59 (* Read *) apply: bnd_readR=>//=.
60 (* Alloc *) apply: bnd_allocbR=>y2//=.
61 (* Write *) apply: bnd_writeR=>//=.
62 (* Write *) apply: bnd_writeR=>//=.
63 (* Write *) apply: bnd_writeR=>//=.
64 (* Emp *)
65 apply: val_ret; rewrite defPtUnO; case/andP=>?.
66 ∃ y2, (x2 7→ v • (x2+1) 7→ nxt • h11),
67 (y2 7→ v • (y2+1) 7→ y12 • h21).
68 repeat split=>//=; first by hhauto.
69 + (* Close SLL instance 1 in postcondition *)
70 by constructor 2=>//=; ∃ v, s1, nxt, h11.
71 + (* Close SLL instance 2 in postcondition *)
72 constructor 2=>//=; first by apply negbTE.
73 by ∃ v, s1, y12, h21.
74 Qed.

Figure 2.3: Copying a singly-linked list in HTT/Coq: definitions and specification (left),
and proof (right).

2.2 Verification With Hoare Type Theory

Whereas synthesis is the derivation of a program that meets a user specification,

verification is about checking that an already available program does indeed fulfill

some specification.

To appreciate how these related notions differ, we now show how a program

like sll_copy can be verified in a program verification framework.

2.2.1 Framework Overview

Hoare Type Theory (HTT) [NVB10] is a foundational framework for verifying

correctness in the proof assistant Coq. It implements a SL-based program logic

for an idealized C-style imperative programming language.

Fig. 2.3 shows the result of verifying the sll_copy program in HTT. It offers

some important insights into thewayHTTproofs reason about program state, and

how that differs from SSL	 reasoning. The left hand side of the figure includes

the HTT equivalents of the sll predicate (2.1), the specification of sll_copy (1.1),

and the corresponding implementation as synthesized by SuSLik (Fig. 1.1), all

expressed in Coq’s specification language Gallina.

10

One immediate observation is that HTT predicates and specificationsmention

heaps explicitly. Specifically, the spatial assertions are expressed as algebraic

equalities. The idea is that the framework encodes SL’s separating conjunction (∗)

as a disjoint union (•) of explicit symbolic heaps. In turn, each symbolic heap

can be constrained by inductive predicates, which appear as conjunctions with

the proposition asserting heap equality. For instance, the inductive predicate

sll nxt s1 h1 (line 6 of Fig. 2.3) constrains the heap h1, which is a subheap of the

larger heap h constrained by the main predicate definition. In Ch. 4, we revisit

these disparities between SSL	 and HTT to discuss how our technique allows us

to overcome them in a principled way. For now, let us focus on the proof.

The right side of Fig. 2.3 shows a handcrafted proof that shows the correctness

of the sll_copyprogram implementationwrt. its specification sll_copy_spec. The

proof methodology employs forward-style symbolic execution to transform the

precondition incrementally until it matches the postcondition, where the proof

direction is largely guided by the structure of the program. Some bookkeeping

steps are interspersed between these operational steps; they label and retrieve any

assumptions about the shape of the heap, pure constraints, or relations between

symbolic values in Coq’s native proof context. A walkthrough of Fig. 2.3’s proof

touches on each of these points.

2.2.2 Verification of sll_copy

The proof begins by initializing the Coq context; the program’s ghost variables

(logical variables that appear in the precondition) are given names after applying

lemma ghR to instantiate them. The assumption representing the inductive

predicate in the precondition is also given a name, Hsll. Note that this assumption

name is local to Coq’s context, and has no formal equivalent in SuSLik; Ch. 3

discusses this type of local context tracking.

The first line of the program (line 24 in Fig. 2.3) reads from a pointer r, so our

corresponding first proof step after initialization (line 41) applies the bnd_readR

lemma. The next line in the program (line 25) is a conditional statement, using

the two selectors of the sll predicate as the branching conditions. The proof

therefore unfolds the predicate instance in the precondition (line 43), by case

11

analysis on the assertion we named Hsll earlier. In both branches, the selector

is stored with the name IfCond, and the unfolded predicate clause’s quantified

variables are introduced and added to the Coq context. The proof steps for

storing values and allocating memory proceed similarly to value reads—HTT has

dedicated lemmas for them. The proof handles the recursive procedure call (line

31) by first reordering the precondition heaplets so that the ones pertaining to the

footprint of the procedure call all appear on the left hand side of the rest (line 55).

We have seen similar reasoning in the way the Call rule handles procedure calls

by framing Sec. 2.1.2; the difference is the need for manual heaplet reordering

in HTT. Next, gh_ex provides witnesses for the call’s precondition ghosts and

val_do symbolically executes the call (line 56); since the call’s precondition heap

contains an inductive predicate, we provide a corresponding heap witness h1,

which we previously obtained by unfolding a predicate in line 44. Each proof

branch ends by reconciling the postcondition with the precondition state after

symbolically executing all statements in the corresponding program branch. This

reconciliation turns out to be a characteristic step that verification frameworks

expect but synthesis doesn’t provide. For now, it suffices to observe that the

Close rules that appeared in the middle of a proof branch in the SSL	 proof

tree (Fig. 2.2) has its corresponding steps in HTT appear at the end of the proof

branch (lines 49, 70, 72). We defer more detailed discussion to Ch. 4, where we

relate it to the proof evaluator design.

2.3 Synthesis and Verification: A Divide

We have taken a cursory look at the proof of sll_copy’s correctness, in terms

of both SSL	 (Sec. 2.1.3) and HTT’s program logic (Sec. 2.2.2). While there is

certainly a loose similarity between the general proof strategies, we also observed

some notable differences, such as the need to track the names of symbolic values

in the Coq context, and the out-of-order appearance of the Close rule. In the

next chapter, we introduce a framework for proof evaluation that handles these

discrepancies in a generic way.

12

3 A Framework For
Evaluating Proofs

Like a bridge over troubled water, I will ease your mind.

—Simon and Garfunkel

This chapter proposes a method to overcome the gap between synthesis

and verification observed in Sec. 2.3, by way of a generic framework for proof

evaluation. We show how to represent SSL	 derivations as proof trees (Sec. 3.1),

and extract such an encoding from SuSLik’s synthesis (Sec. 3.2). Then, we

describe the design for a proof evaluator that traverses this proof tree to generate a

program certificate for any target verifier (Sec. 3.3).

3.1 Encoding Derivations As Proof Trees

Wefirst describe the design of a proof tree encoding of the intermediate derivations

that can be evaluated into a certificate for any target verification framework.

SuSLik synthesizes programs through a proof search strategy described in

Sec. 2.1.2. Let us discuss how a valid SSL	 derivation can be encoded, once it

is built by the synthesis algorithm. In Fig. 2.1, the grayed fragments of each

rule’s conclusion denote the parts of a synthesis goal (or other information, such

as a predicate clause index in the rule premise for Close) that determine how a

rule is applied to reduce it to concrete subgoals—in other words, they represent

the parameters of each rule application instance. This means that by knowing

a tree of the SSL	 rules applied to each synthesis goal starting from the initial

one, along with the grayed fragments that instantiate each rule application, we

can fully restore the derivation steps taken by the synthesizer, as well as the

13

generated program. We encode SSL	 proof trees as values of the following

recursive data type τssl:

ProofTree (Stepssl) τssl ::� 〈Sssl , τssl〉

Stepssl Sssl ::� 〈READ, x , ι, e , y〉 |
〈
CALL, P, σ, f

〉
|

〈
OPEN, pα (ti)

〉
|

〈
CLOSE, pα (ti), j

〉
| ...

(3.1)

A proof tree node τssl is a pair consisting of a proof step Sssl and a sequence

of child nodes τssl, where the latter is empty for terminal rule applications.

The type of the node is parameterized by its payload type; for a SSL	 proof

tree, these payloads are the individual proof steps (Stepssl) corresponding to

rule derivations. The proof steps encode the name of the applied rule and any

information from the grayed fragments in Fig. 2.1 that control rule application

non-determinism.

Recall, in Sec. 2.1.3, we informallywalked through the derivation of a sll_copy

implementation shown in the right part of Fig. 2.2. We now recognize this proof

tree as a τssl encoding of successful derivations. The nodes contain concrete

proof steps; they are interleaved with the intermediate synthesis goal states,

to demonstrate how each proof step transforms one goal into the next. For

example, the left branch of the tree shows the derivation of the “then” branch of

sll_copy, which replaces an instance sll(x2, s) with its first clause, thus deducing

x2 � 0 ∧ s � ∅ and performing the corresponding substitutions (elided from the

tree for brevity). What follows in the proof tree are the unfoldings, via the Close

rule, of the two predicate occurrences in the postcondition, which are replaced

by the first clause from definition (2.1). The remaining derivation is completed

by an application of the Frame and Emp rules.

3.2 Constructing Proof Trees

We now explain how to extract this encoding from synthesis by augmenting the

original SuSLik implementation to capture run-time deductive reasoning.

3.2.1 Extraction From And/Or Trees

The existing SuSLik implementation had a singular goal of producing a SusLang

program, so it did not preserve run-time information in a recoverable format;

14

some modifications are needed to obtain a τssl encoding. We thus facilitate proof

tree extraction by accumulating the intermediate derivations during synthesis,

and then applying some additional postprocessing so it is easily consumed by

the evaluator.

Extraction starts by accumulating the derivations made by SuSLik. The

synthesizer’s non-deterministic proof search was described in Sec. 2.1.2. At

any point in the search, the state of the current synthesis goal can enable the

application of a set of candidate SSL	 rules. In turn, each candidate rule application

can advance the synthesis by transforming the goal into some number of subgoals.

SuSLik uses an And/Or tree [MM73] to express these alternating layers, where

proof goals are represented as Or-nodes, and candidate rule applications as

And-nodes. An Or-node can be viewed as a disjunction, where the node succeeds

if one of its children (i.e., a candidate rule application) succeeds. An And-node

can likewise be treated as a conjunction, where all of its children (i.e., subgoals)

must succeed for the node to succeed. Whenever an And-node is generated

during synthesis, we capture it along with any knowledge generated by the

corresponding rule application that would be useful when reconstructing a proof

later. For example, for the Read rule (Fig. 2.1) we capture the names of the

operation’s source and destination variables, along with the name of the ghost

variable that was instantiated by the read, as in definition (3.1). By collecting

these nodes, we capture all paths explored in the set of possible rule application

sequences.

After accumulating information from each step of the proof search, we

discard the steps that failed, preserving only those that contributed to the

final synthesized program. We remove failed branches by keeping track of

which terminal rule applications failed during synthesis, and then for each one,

retracing and pruning ancestors in bottom-up fashion until we reach an Or-node

where one of the other candidates succeeded. After this pruning, we are left with

an And/Or tree where every Or-node has a single corresponding And-node (i.e.,

every subgoal was solved by applying a single rule chosen out of all candidates).

Finally, we translate this to our source proof tree structure, collapsing these

And/Or node pairs into single nodes. Since the proof tree is meant to be a

15

self-contained encoding that includes all necessary knowledge for certification,

we also prefix every proof tree with a special initialization node whose payload

is the initial goal (i.e., the specification) instead of a SSL	 rule application.

This completes the conversion of a tree structure designed for exploring the

derivation search space (the And/Or tree) into a retraceable one designed to

compactly represent the successful derivations only.

3.2.2 Finalizing Branch Abductions

We require one last transformation to ensure that the branching logic of the

proof tree encoding is consistent with the actual goal transformations. In order

to determine when and where it is appropriate to introduce a branch, SuSLik

sometimes performs branch abduction. This is a strategy by which the synthesizer

abduces the need for the program flow to diverge on a conditional statement.

When applied, the rule generates a subgoal to synthesize a new branch (based on

some condition) that is rooted at the current goal, or its earliest valid ancestor in the

And/Or tree that has all of the variables used in the condition. A branch abduced

to an ancestor location means that the rule application transforms an earlier

goal, and not the current one. This is a natural behavior for synthesis, because

some progress in the proof search may retroactively enable new insight about an

action to take at a prior step. On the other hand, verification frameworks like

HTT proceed by forward-propagating the precondition’s symbolic state. Thus, a

suitable encoding should ensure that each node’s rule application incrementally

transforms the latest synthesis goal, as we now demonstrate with an example.

{true; r 7→ null}
void min (loc r, int x, int y) {
if (x ≤ y) {
*r = x;

} else {
*r = y;

}
}
{m ≤ x ∧ m ≤ y; r 7→ m}

Figure 3.1: Spec and code of min.

Fig. 3.1 shows the specification and code

of the min program, which finds the mini-

mum of two integers. Each branch in the

implementation assigns a different value to

the location r. Fig. 3.2 shows the correspond-

ing abbreviated proof tree. A few steps into

the derivation, SuSLik first applies the Pick rule, which “picks” program variable

x as an existential witness for postcondition existential m. In the next step B, it

abduces a branch on condition x ≤ y at an ancestor—the initial step A. Since a

16

…
{emp} ⤳ {emp}

…

⟨ABDUCEBRANCH x ≤ y, ⟩

{r ↦ 0} ⤳ {m ≤ x ∧ m ≤ y; r ↦ m}

{r ≠ 0 ∧ x ≤ y; r ↦ 0} ⤳ {x ≤ x ∧ x ≤ y; r ↦ x} {¬(x ≤ y); r ↦ 0} ⤳ {m ≤ x ∧ m ≤ y; r ↦ m}

{¬(r = 0) ∧ ¬(x ≤ y); r ↦ 0} ⤳ {m ≤ x ∧ m ≤ y; r ↦ m}

{¬(r = 0) ∧ ¬(x ≤ y); r ↦ 0} ⤳ {y ≤ x ∧ y ≤ y; r ↦ y}

⟨EMP⟩

{r ≠ 0; r ↦ 0} ⤳ {m ≤ x ∧ m ≤ y; r ↦ m}

⟨PICK m → x⟩

{r ≠ 0; r ↦ 0} ⤳ {x ≤ x ∧ x ≤ y; r ↦ x}

…

…

{emp} ⤳ {emp}

⟨EMP⟩

…

A

A

… …

B

C D

⟨PICK m → y⟩

Figure 3.2: Simplified proof tree highlighting branch abduction for a program to find
the minimum of two integers.

valid proof tree only encodes successful derivations, we know this abduction

succeeded. Indeed, in the left branch (corresponding to the “if” case of the syn-

thesized program), it adds the constraint to the precondition to the parent goal,

and completes the derivation, with m instantiated with x. However, in the right

branch (corresponding to the “else” case), the negation of the constraint ¬(x ≤ y)

is added to the initial goal’s precondition, and m is subsequently instantiated

with y by a different Pick rule application. As the synthesis goal before step B

is not transformed by step B into the goal before step D, this proof tree does

not accurately represent the actual proof a verifier would need to conduct; for

example, the Pick rule should be applied with different existential witnesses for

each branch.

We can resolve this discrepancy by rearranging the proof tree nodes that

perform branch abduction to their correct location:

A . . . B
D

C
⇒ B

D

A . . . C

Here, the branch prefixed by step D is abduced at step B. The node for step B can

be transplanted to its correct location before A, so that the proof tree encoding

captures synthesis goal transformations that are consistent wrt. the SSL	 rule

semantics.

17

The evaluator introduced in Sec. 3.3 uses this node as the bootstrapping point

for the rest of the evaluation.

The resulting tree is a compact representation of the steps taken to derive the

program, with each node storing an instance of the data types (3.1) that contain

proof information.

3.2.3 Program Recovery From A Proof Tree

We now take a brief detour to reinforce the idea that this proof tree encoding

captures the deductive steps taken during synthesis, before embarking on our

main journey to generate proof certificates in the next section. Since a SusLang

program is a byproduct of a deductive synthesis (Sec. 2.1) whose derivations are

encoded by the proof tree, it is possible to recover the program after synthesis by

simply traversing the extracted proof tree.

Let us define the following proof tree evaluator, which parses a source proof

tree to recover a program:

Esynt : ProofTree (Stepssl) → Prog

Esynt (〈Sssl , τssl〉) , let k � Isynt Sssl in

let c �map Esynt (τssl) in

k c

where

Isynt : Stepssl → (Prog∗ → Prog)

(3.2)

In the definition above, the source proof tree evaluator takes a tree node and

applies a proof step interpreter Isynt to the proof step in the node. As described by

its type, the interpreter returns a program-constructing continuation function

k, whose arity is the length of τssl. The evaluator then proceeds to generate the

residual programs by processing the child source nodes τssl. Finally, it applies k

to the resulting residual programs c, obtaining the result.

As an example, we provide a partial implementation of this interpreter for

18

the proof steps corresponding to applications of Emp and Read:

Isynt 〈EMP〉 , λ [].skip

Isynt 〈READ, x , ι, e , y〉 , λ [c].let y � ∗(x + ι); c

That is, when applied to 〈EMP〉, Isynt emits a 0-arity function (i.e., a constant),

which returns the program skip. For 〈READ, x , ι, e , y〉, the step interpreter

returns a function that prepends the read-operation let y � ∗(x + ι) to the

residual program. Looking at the remaining rules in Fig. 2.1, it is easy to see that

the arity of the function returned by Isynt matches the number of subgoals in the

premise of the corresponding rule. Importantly, neither Isynt nor Esynt need to

check that their arguments are well-formed, as they are assumed to be applied

only to proof trees that are valid for the corresponding goals.

3.3 An Evaluator to Translate Synthesis Proofs

Having shown an instructive evaluator for converting proof trees to SusLang

programs, let us now generalize it to an abstract proof evaluator that evaluates

proof trees into correctness proofs of some target verification framework t:

Et : ProofTree (Stepssl) × Contextt × DeferredStept → ProofTree (Step∗t)

Et (〈Sssl , τssl〉 , ctx, d) , let (St , ctx, d′) � It Sssl ctx in

let d
′′ � λctx. ((d ctx) ++ (d′ ctx)) in

let τt � map Et (zip3 τssl ctx (repeat |τssl | d′′)) in

if |τt | � 0 then
〈
St ++ (d′′ ctx), []

〉
else

〈
St , τt

〉
where

It : Stepssl → Contextt → Step∗t × Context∗t × DeferredStept

DeferredStept , Contextt → Step∗t

(3.3)

We intend this abstractmechanism to be instantiated by an engineer interested

in supporting a particular verification framework. The design of the evaluator is

guided by several usability goals:

1. It has a generic infrastructure that supports correctness proof generation for

any verification framework.

19

2. It requires minimal effort to add support for each verification framework.

3. The interface provides the ideal amount of expressivity for an engineer to

successfully add the necessary support for a framework and resolve any

discrepancies between SSL	 and the framework’s program logic.

The following sections explain each component of Eq. 3.3. In particular, we

describe a pluggable interface for proof step interpretation (Sec. 3.3.1); a context for

forward-propagating verifier-local information (Sec. 3.3.2); and deferred steps to

delay the evaluation of certain proof steps (Sec. 3.3.3). Finally, we summarize

how the components fit together to meet the usability goals in Sec. 3.4.

3.3.1 Modular Proof Step Interpreters

At a high level, Eq. 3.3 expresses a tree traversal, where evaluator Et maps a source

proof tree τssl ::� 〈Sssl , τssl〉 (3.1) to a target proof tree τt ::�
〈
St , τt

〉
. Crucially,

the node-wise mapping from source step to target step—a verifier-specific

operation—is delegated to a proof step interpreter It. By applying interpreter It to

Sssl, the evaluator obtains a target proof step sequence St, which it can then use

to construct its return value. Finally, the evaluator recursively applies itself to

each child source node τssl, obtaining the corresponding child target nodes τt

(the lengths of the two sequences are assumed to be the same, which is the case

for valid proof trees).

This separates concerns between generic traversal logic and verifier-specific

logic. By defining the interpreter as amodular interface, support can be added for

each verifier by defining a new implementation. Note how this is a generalization

of the interpreter Isynt that appeared in Sec. 3.2.3

Let us examine the interpreter in greater detail. Definition (3.3) describes the

type of It as follows:

It : Stepssl → Contextt → Step∗t × Context∗t × DeferredStept (3.4)

For now we disregard Contextt and DeferredStept, both auxiliary information

that enhances the interpreter’s capabilities, as we elaborate on each of them in

20

Sec. 3.3.2 and Sec. 3.3.3 respectively. Then, at its core, the interpreter maps a

SSL	 proof step Stepssl to an equivalent proof step sequence Step∗t for verifier t.

Without an evaluator framework, adding support for each new verifier would

result in a lot of code duplication. In contrast, proof evaluation with a pluggable

interpreter makes for an easily extensible design. By only requiring the engineer

in charge of supporting the verifier to write a new interpreter instance, we reduce

their scope of implementation, so that it suffices to reason locally about each

source step in isolation.

For example, consider the first Read rule application in the proof tree on the

left side of Fig. 2.2, and compare it to the corresponding HTT proof step in line

41 of Fig. 2.3. The encoded derivation:

〈READ, r, 0, x , x2〉

has sufficient information to generate the target step:

apply: bnd_readR=>/=.

Thus, the interpreter simply needs to include this one-to-one mapping to support

Read rule translation:

Ihtt 〈READ, x , ι, e , y〉 , [apply: bnd_readR=>/=.]

But this approach does not work in every case, as hinted in Sec. 2.3. What

if the interpretation of some source step needs additional insight on earlier or

later SSL	 rule applications to generate the correct target proof steps? In the

following sections, we discuss enhancements to the basic design we covered,

that equip the interpreter with two standardized ways of employing non-local

reasoning.

3.3.2 Contexts For Tracking Verifier State

One way the interpreter might reason non-locally is if it needs to access some

knowledge encountered or generated earlier in the evaluator’s traversal of the

source proof tree. Then, it is not enough for the interpreter to only be aware of the

21

current source step; we must introduce a mechanism to “remember” information

for later access. To accommodate the need to keep track of definitions and

dependencies between components in the source and target proofs, which are

paramount in our case studies, our proof evaluator (3.3) tracks a verifier-specific

proof context.

Consider the Open rule, which unfolds a predicate occurrence in the precon-

dition. From the sll_copy proof tree in Fig. 2.2, we know that the rule is applied

with the predicate sll(x2, x). In Sec. 2.2.2, we observed that the corresponding

HTT proof step (line 43 of Fig. 2.3) performs case analysis on that predicate, by

referring to Hsll, the named hypothesis in the Coq context asserting that this

predicate constrains some symbolic heap. The hypothesis was introduced with

this name at the beginning of the proof (in line 40), along with the precondition

ghost variables.

The evaluator’s proof context can store such information. In definition (3.3),

observe how the evaluator is parameterized by the proof context ctx. The

interpreter It consumes ctx and returns a sequence of updated child contexts

ctx (whose length matches the number of child nodes τssl). These contexts are

threaded through to each recursive application of the evaluator to the child

nodes. In functional programming terms, this proof context is effectively an

accumulator that is continually updated throughout the traversal’s lifespan.

3.3.3 Deferring Target Proof Steps

The interpreter may also be applied to a SSL	 rule, but then decide that the

corresponding target proof step should appear at a later point in the evaluation.

We observed this kind of non-local reasoning in lines 66-67 of Fig. 2.3.

As HTT implements forward symbolic execution, the goal of these steps is

to provide existential witnesses for the head pointer y of the newly created list

from the postcondition of the spec (1.1), as well as two heaps representing the

linked lists: the original one sll(x2, s) and the new one sll(y , s), thus proving the

postcondition by means of symbolic heap entailment. Constructing this step in

the target HTT proof from the source proof turns out to be challenging. The

reason, as the proof tree in Fig. 2.2 shows, is that the information about the shape

22

of the heap constrained by, e.g., sll(y , s) in the postcondition, is obtained much

earlier in the source proof, by an application of the Close rule, preceding the

synthesis of the malloc statement. In contrast, in the target proof, a step that

exploits this information (by instantiating the existential) takes place near the

end of the proof branch, when proving the entailment.

This scenario is complicated even more by the fact that, by the time we need

to provide the witness heap revealed by the Close rule from the source proof,

the logical (ghost) variable y has been replaced, in all assertions involving it, by

a program-level variable y2, storing the head pointer of the newly allocated list.

This is why it is insufficient to simply defer some target proof steps until the

later entailment checking stage: it also should be possible to adapt them to all

changes in the proof context (e.g., variable substitutions) that can take place after

their emission but before their application in the target proof.

The discrepancy arises from the difference in the proof strategy taken by

deductive synthesis and verification. Each SSL	 rule derivation can transform

both the pre- and postcondition of the synthesis goal (Sec. 2.1.2), whereas verifiers

like HTT symbolically execute steps to transform the precondition, and only

show its entailment to the postcondition at the end of a proof branch (Sec. 2.2.1).

This means that for any SSL	 rule that transforms the postcondition, the verifier

needs to delay the execution of its equivalent target step.

We equip our evaluator with this functionality in the form of deferred proof

steps, represented as the evaluator’s third and final parameter d. As the type

DeferredStept of this component shows, deferred steps are encoded as functions

from proof contexts to sequences of target proof steps. In a normal execution,

as long as the source proof tree node still has children, the evaluator simply

accumulates the deferred steps by composing already accumulated ones with

those emitted by the interpretation (via It) of the node’s payload in a way

resembling continuation-passing style. Those accumulated deferred steps are all

released once the proof tree branch reaches its end (detected as |τt | � 0), which

corresponds to the entailment checking stage in the forward execution proofs.

Thanks to their type, deferred steps can access the most up-to-date proof context

at the moment of their application, thus, circumventing the variable/hypothesis

23

issue outlined above. Indeed, in order to bootstrap the source tree evaluation,

the implementer needs to provide the initial deferred steps, which are most

commonly just a trivial function λ_.[].

In Sec. 4.3.3, we elaborate on the instrumentation of the full postcondition

entailment-checking procedure for HTT that utilizes the proof context and

deferred steps.

3.3.4 Putting It All Together

This completes our exposition of the full evaluator definition (3.3). The evaluator

Et takes three parameters: a source proof tree node 〈Sssl , τssl〉; a proof context

ctx; and the accumulated deferred steps d. It applies the interpreter It to the

source node’s payload step Sssl and the proof context, to obtain three results: the

corresponding target step sequence St, the transformed contexts ctx to evaluate

with each child node (so that each child node can be evaluated with a different

context), and any newly emitted deferred steps d
′, which are then composed with

the existing deferred steps to form d
′′. The evaluator then recursively applies

itself to each of the child source nodes τssl, with its corresponding transformed

proof context in ctx and the updated deferred step sequence d
′′; this returns

the sequence of target proof nodes τt corresponding to each child. Finally,

if the evaluator has reached the end of a proof branch, then all accumulated

deferred steps up to this point are released with the current proof context ctx,

and its results are concatenated with the target step sequence St returned by

the interpreter; a terminal target proof node is returned with these steps as the

payload and with no children. Otherwise, the evaluator returns a target node

with payload St and children τt.

We now revisit the three design goals proposed at the beginning of this

section, making references to Fig. 3.3, which shows an implementation of this

evaluator in Scala.

1. There is a clear delineation between the generic source proof tree traversal

and the verifier-specific components, with the latter handled by the proof step

interpreter and proof context. Both are thus encoded as interfaces, or as Scala

traits, in Fig. 3.3; these can be extended to support each verifier.

24

1 // Proof trees
2 case class ProofTree[S](step: S, children: List[ProofTree[S]])
3 type Target
4 // Target proof context
5 trait Context[T <: Target]
6 // Deferred target proof step
7 type Deferred[T <: Target, C <: Context[T]] = C ⇒ List[T]
8 // Source step interpreter
9 trait Interpreter[T <: Target, C <: Context[T]] {

10 def apply(value: SSLStep, ctx: C): (List[T], List[C], Deferred[T,C])
11 }
12 // Source proof tree evaluator (provided)
13 class Evaluator[T <: Target, C <: Context[T]] {
14 val interpret: Interpreter[T,C]
15 def compose(d1: Deferred[T,C], d2: Deferred[T,C]): Deferred[T,C]
16 def apply(node: ProofTree[SSLStep], ctx: C, deferred: Deferred[T,C]): ProofTree[T]
17 }

Figure 3.3: Main components of the proof evaluator encoded in Scala.

2. The interpreter has a narrow job scope—node-wise translation of source to

target proof steps. The simplicity, reflected in the interpreter’s type signature,

eases the burden of adding support for a new verifier.

3. The proof context allows the interpreter to store information generated during

one application and then retrieving it in a later application. Deferred steps

allow it to delay the appearance of a SSL	 rule to a later point in the target proof.

Both equip the interpreter with tools to reason non-locally in a principled way.

3.4 Extension: Controlling the Release of Deferreds

To simplify the exposition, Sec. 3.3’s design of the evaluator releases deferred steps

at the terminal node of each proof branch, which captures the way verifiers delay

reasoning about the postcondition until the end. However, more fine-grained

control over the timing of release is possible by accumulating and releasing

deferred steps in stackable, isolated environments.

Such a feature is useful in relation to how SuSLik synthesizes procedure calls

via the Call rule (Sec. 2.1.2). Actual insight on the possibility of a procedure call

is obtained by abduction, as expressed in the SSL	 rule CallSetup:

CallSetup

Γ;
{
φ; P

}
{

{
ψ; S

}�� c1 Γ ∪· BV(c1);
{
ψ; S ∗ R

}
{Q�� f (ei); c2

Γ;
{
φ; P ∗ R

}
{Q�� c1; f (ei); c2

(3.5)

When applied to a procedure specification and synthesis goal, the rule compares

the procedure’s precondition to the goal to see if a call is applicable. If some

25

preparatory steps c1 are needed to bring the goal precondition to a heap S that

can be unified with the call’s precondition, the rule abduces that fact.1 The rule

then replaces the goal postcondition with S (remembering the original assertion

so it can be restored later when the Call rule executes the call), and tries to act

on that abduction by synthesizing the steps needed to reach S. Since our proof

tree encoding only stores successful derivations, any invocations of CallSetup

are guaranteed to be accompanied by a subsequent application of Call, possibly

with some other preparatory steps in between.

This call-producing derivation sequence, bookended by the two procedure

call rules, represents a distinct synthesis environment from the original one, as the

entire postcondition of the goal is swapped out. Consequently, any postcondition-

transforming SSL	 rule applications (like Frame in Fig. 2.1) invoked within the

abduction refer to a different postcondition from those outside of the abduction.

However, the interpreter is not aware of this, because for the most part, we

restrict it to local reasoning about individual SSL	 rules in isolation (aside from

the exceptions discussed in Sec. 3.3.2 and Sec. 3.3.3).

One could devise an ad-hoc way to detect when the proof enters/exits call

abduction by tracking the information in the verifier-specific proof context. But

this is arguably a generic maneuver that is best handled at the evaluator-level,

which we can do by extending our evaluator (3.3) to represent the layers of

evaluation environments as a stack.

Et : ProofTree (Stepssl) × Contextt × DeferredStackt → ProofTree (Step∗t)

Et (〈Sssl , τssl〉 , ctx,D) , let (St , ctx, d) � It Sssl ctx in

let D′ �




λctx. (d ctx) :: D ifA(Sssl) � push

λctx. (tlD) ifA(Sssl) � pop

λctx. (((hdD) ctx) ++ (d ctx)) :: (tlD) ifA(Sssl) � noop

in

let τt � map Et (zip3 τssl ctx (repeat |τssl | D′)) in

ifA(Sssl) � pop then
〈
St ++ ((hdD) ctx), τt

〉
else

〈
St , τt

〉
where

It : Stepssl → Contextt → Step∗t × Context∗t × DeferredStept

A , Stepssl → push | pop | noop

DeferredStept , Contextt → Step∗t

(3.6)

Et’s third parameter is now a stack of accumulated deferred steps D, instead

1The synthesizer invokes a call abduction oracle to implement the necessary goal decomposition
for abducing calls efficiently [Itz+21].

26

of just one; the stack is updated toD′ according to the appropriate stack action

corresponding to the current source step, provided by a classifying function

A. With this approach, accumulation of deferred steps is local to the current

evaluation environment (i.e., top layer of the stack). A can return three action

types—push to push a new layer onto the stack (i.e., start a new evaluation

environment); pop to release all deferred steps accumulated in the current layer

and pop it from the stack; and noop to continue accumulating in the current

layer. The initialization (Sec. 3.2.1) and CallSetup rule steps emit the push action;

the Emp and Call rule steps emit the pop action. Like the earlier design, the

implementer must provide an initial deferred stack consisting of a single layer

to bootstrap the evaluation; we also assume the well-formedness of the stack

because only valid proof trees are meant to be evaluated. An application of this

feature to verification in HTT is discussed in Sec. 4.3.3.

27

4 The Evaluator in Action: HTT

Earlier, we showed how program correctness proofs proceed in Hoare Type

Theory (HTT) [NVB10], In this chapter, we apply the proof evaluation framework

outlined in Ch. 3 to automate the certification of SuSLik programs using HTT

as the target verifier. We describe the implementation of all components of the

certification: programs (Sec. 4.1), predicates (Sec. 4.2), and proofs (Sec. 4.3). We

also show how we extract and automate the proofs of pure entailments in the

postcondition with the aid of certified solvers (Sec. 4.4).

4.1 Translating Programs

HTT certificates express program implementations in terms of its own idealized

C-like language. Since all SusLang statements have a counterpart in this language,

our first instinctwas to obtain a program inHTT’s language by directly translating

from the synthesized SusLang output. However, we found it more reliable to

reuse the evaluator infrastructure we originally developed for proof generation,

repurposing it for program generation.

This stems from the fact that in deductive synthesis, the resulting program

implementation is a byproduct of the derivation process (Sec. 2.1); the proof tree

is the real source of truth. In fact, we previously demonstrated a procedure to

recover a program from a proof tree encoding Sec. 3.2.3.

Consider the Free rule, which deallocates a whole memory block in the

precondition. During synthesis, applying this rule to a location x that references

a memory block generates a single SusLang statement free(x), which captures

28

1 // Source proof representation
2 case class FreeStep(ptr: Var, block: Block) extends S
3 // Suslang representation
4 case class Free(ptr: Var) extends SusLang
5 def proofToSuslang(step: FreeStep) = Free(step.ptr)
6 // HTT representation
7 case class Dealloc(ptr: HTTVar, offset: Int) extends HTT
8 def proofToHTT(step: FreeStep) =
9 for (i ← 0 until block.size) yield Dealloc(ptr, i)

Figure 4.1: Two alternative translations of the Free rule.

the semantics of this deallocation. The equivalent statement in the language of

HTT, however, slightly differs; unlike its SusLang counterpart, a single statement

only deallocates one memory cell. That means that in order to deallocate an

entire block of size n, the programmust contain n instances of the statement. This

information about block size, while clearly used at the time of rule application

(and captured in the proof tree node in Fig. 4.1), is discarded when encoded as a

SusLang statement. The example demonstrates why it is better to use the proof

tree as the source of truth for both program and proof, rather than relying on a

specialized byproduct of synthesis for the former. That way, we ensure that both

are structurally aligned.

4.2 Translating Predicates

Fortunately, SSL	 predicates are structurally similar to HTT predicates in that

they are both relationally defined, so the translation goes smoothly. The insight is

that HTT encodes program-logic-level assertions as native Gallina propositions

of type Prop. As a result, we can represent SSL	 predicates in HTT as inductive

propositions, as shown in lines 2–6 of Fig. 2.3. Once defined, those propositions

can be directly injected into the spatial assertions of a specification, such that

when it comes time to reason about the specification in a proof, the effort is vastly

simplified, because we can employ all of Coq’s native tactics for reasoning about

propositions. For instance, recall, from Sec. 2.2.2, how unfolding a predicate

occurrence in the precondition (the Open rule in SSL) can proceed by case

analysis on an instance of the inductive proposition sll x2 s h’ in Coq’s native

proof context.

HTT’s shallow embedding underlies this insight. That is, the specifications

29

and programs are encoded directly in terms of types and programs of the host

language (i.e., Coq’s Gallina). In contrast, deeply embedded frameworks define their

own languages and logics as a separate layer on top of the host language. Sec. 7.1

touches on work done by collaborators to adapt the certification procedure to

support such frameworks, which face additional challenges in automating proofs

due to the added layer of indirection.

4.3 Translating Proofs

The largest part of the implementation effort concerns proof translation, which is

done by defining an instance of a proof step interpreter Sec. 3.3.1 that the evaluator

can use.

4.3.1 Wrapper Tactics

Since both SSL	 and HTT are derived from Separation Logic, most of the

operational SSL	 rules (cf. Read, Write, Alloc, Free in Fig. 2.1) have counterpart

Coq tactics in the target frameworks that the interpreter can map to directly.

Other rules require additional effort to fully support. Earlier, we explained

the semantics of the Call rule Sec. 2.1.2, which performs a number of steps:

1. Frame out the precondition subheap not affected by the call.

2. Map the procedure call’s formal parameters and precondition ghost variables

to expressions in the current goal.

3. Create a goal to show entailment from the current goal’s precondition to the

call’s precondition.

4. Create a goal to show entailment from the current goal’s precondition with

the footprint replaced by the call’s postcondition, to the current goal’s post-

condition.

The HTT proof step corresponding to (1) is:

rewrite (joinC _ h1) joinA ; apply: bnd_seq.

30

This performs a sequence of rewrites to the precondition heap, rearranging the

heaplets in the Coq context so that those affected by the imminent function call

are grouped together on the left-hand side of the rest. The challenge, however, is

that the suitable rewrite sequence depends on each call instance—specifically,

the rewrite sequence is determined by the current precondition heaplet order,

and the subheap that needs to be grouped. Since SuSLik does not reason about

heaplets in an order-sensitive way, it is best to handle such fine-grained bookkeeping

at the Coq level.

Coq provides a Turing-complete tactic language, Ltac [Del00], to uniformly

automate such pre/post-processing steps that don’t correspond to one of the

main lemmas. We can write one such tactic that applies the rewrite logic in a

generic way to any call heap:

Ltac ssl_call_pre h := prepare_call_heap h; rewrite ?joinA -?(joinA h).

Here, prepare_call_heap is an auxiliary tactic that pattern-matches on the heap

to perform the actual rearranging. The takeaway is that our proof step interpreter

need only invoke ssl_call_prewith the desired subheap as an argument.

We follow this approach for any other rule whose equivalent main lemma in

HTT requires extra preparation or clean-up before and after its invocation. This

collection of “wrapper tactics” serves as an interface to the underlying target

framework that is tailored to the way SSL	 reasons about programs, leading to

more predictable behavior and readable proof scripts.

4.3.2 Tracking Named Hypotheses

The proof context is a feature of the evaluator that allows for verifier-specific state

tracking (Sec. 3.3.2). Remembering the current names of Coq hypotheses is one

important way HTT uses this feature. Recall how an inductive predicate was

named Hsll at the beginning of the proof and then later used for case analysis in

the step corresponding to the Open rule, in the proof walkthrough from Sec. 2.2.2.

To emulate this reasoning uniformly, the HTT implementation of the proof step

interpretermaintains amap from inductive predicate instances to Coq hypothesis

names in the proof context. A unique name for an inductive predicate hypotheses

31

is obtained by concatenating the predicate name, arguments, and cardinality.

This mapping is updated whenever an argument value is substituted for another

one, or when a new inductive predicate is introduced as a Coq hypothesis. To

refer to an inductive predicate by its hypothesis name, the interpreter can simply

look it up in this mapping.

4.3.3 Delayed Checking of Postcondition Entailment

In Sec. 2.2.2, we observed a complexity in the way HTT checks entailment of the

specification’s postcondition from the precondition after symbolically executing

all program statements at the end of a proof branch. We now show how our

proof evaluation framework facilitates the automatic handling of this entailment

checking. The case study highlights two important outcomes of our proof

evaluator design, which emphasizes isolating verifier-specific translation logic to

a proof step interpreter:

1. The interpreter can reason about each SSL	 step in isolation. This is reflected

in the simplicity of its type signature (Eq. 3.3), where the only inputs are a

SSL	 step and context object.

2. Yet the interpreter can perform actions that are non-local to the current SSL	

step being examined. The proof context allows the current interpretation to

access information from an earlier proof step. The deferred steps allow the

current interpretation to take effect at a later proof step.

The previous section discussed one usage of the proof context. We also

introduced the need for deferred steps in Sec. 3.3.3, pointing to the delay

between the step where SuSLik applies the Close rule and the later step in

the corresponding HTT proof that uses this knowledge. The postcondition

entailment checking process requires both mechanisms to work in tandem. First,

we describe in detail the information needed to check entailment; next, we show

a principled approach to instrumenting it using the evaluator.

How HTT checks postcondition entailment At the end of a proof branch in

HTT, we are asked to prove that the state of the heap after symbolically executing

32

the program matches that of the specification’s postcondition. Recall the shape

of the postcondition heap from specification (1.1):

{
r 7→ y ∗ sll(x , s) ∗ sll(y , s)

}
(4.1)

To get a fuller picture of what information from the source proof tree is needed

andwhen, for the remainder of this section, let us reason from theHTT proof step

interpreter’s point of view. In particular, suppose the interpreter has reached the

terminal Emp rule application in the non-trivial case of the proof, corresponding

to the “else” branch of the program. The proof state is as follows, such that

two predicate assertions are available to us as hypotheses, i.e., as items in the

precondition:
...
h11, h21 : heap
H2 : sll nxt s1 h11
H3 : sll y12 s1 h21
==
∃ (y : ptr) (h1 h2 : heap),
r 7→ y2 • x2 7→ v • (x2+1) 7→ nxt • h11 • y2 7→ v • (y2+1) 7→ y12 • h21 =
r 7→ y • h1 • h2 ∧ sll x2 s h1 ∧ sll y s h2

Let us hone in on the existential h2 and the associated predicate application,

sll y s h2. This h2 is a heap existential, a unique feature of HTT. The framework

exploits the observation that the class of heaps form a partial commutative monoid

with the heap union operation, to encode heaplets algebraically. The consequence

is that a spatial assertion is expressed in HTT as an algebraic heap equality.

In particular, those that contain predicate applications must be existentially

quantified over the subheaps they describe such that their witnesses make the

algebraic equality hold.

We can consult the proof tree in Fig. 2.2 on how to proceed, focusing on

the SSL	 rules that pertain to this subheap. First, Close unfolds the predicate

occurrence in the postcondition using the second clause:

{ [
y , 2

]
∗ y 7→ v′ ∗ (y + 1) 7→ nxt

′
∗ sll(nxt

′, s′)
}
.

Then (at later stages of the proof, omitted from the figure), each of those heaplets

is unified and framed out with a matching heaplet in the precondition, hence

33

the substitution [y 7→ y2, v′ 7→ v, nxt
′
7→ y12, s′ 7→ s1]. Knowledge of these

steps gives us everything we need to proceed.

Let us return to the HTT proof. First, we can derive a suitable existential

heap witness for h2 by fully applying the two-step sequence. Doing so tells us

that h2 is eventually expanded to:

y2 7→ v • (y2+1) 7→ y12 • h21

Notice how this expansion (provided as the witness in line 67 of Fig. 2.3) still

references a heap variable h21. This is the label for the subheap that corresponds

to the nested sll occurrence that has started as sll(nxt
′, s′) in our SSL	 proof; we

can also observe the related hypothesis H3 : sll y12 s1 h21 in the Coq proof

state shown above. This allows us to make progress on the assertion sll y s h2

and eventually solve it by evaluating, in a delayed fashion, the steps (expansion and

unification) in the order we encountered them in the source proof tree earlier.

Using the proof context and deferred steps The example tells us that solving

the entailment requires us to track the SSL	 rules that transform the predicate

occurrences in the postcondition. Furthermore, we observe how this information

is useful in twoways: (a) tracing the provenance of a predicate application so that

we may readily identify correct heap existential witnesses; and (b) determining

the appropriate proof steps that have to be applied to a Coq entailment goal

(e.g., the one above) to either solve it or make progress on it. These observations

lead us to make use of the proof context for (a), and deferred steps for (b), all

the while ensuring that the deferred step computations are parameterized over a proof

context so that (a) can be done as a part of (b).

We can provide for (a) by keeping a map in the proof context, from predicate

applications to either their expanded clause assertion form (on encountering a

Close) or their heap variable name (on unification/frame steps). Then, whenever

a witness is needed for some heap existential, we simply need to use the map as

a lookup table to obtain the maximally expanded subheap of the corresponding

predicate application. Next, we can implement (b) by emitting a deferred

proof step on each encounter with either of the pertinent rules, and composing

them in the order they were encountered. When these deferred steps are

34

released at the end of a proof branch, they perform the necessary moves to

discharge the entailment subgoals. For instance, a deferred Close application

applies a concrete jth constructor of the inductive predicate (cf. Fig. 2.1) to obtain

the corresponding assertion, and then instantiates its existentials. Since the

computation is parameterized over a proof context, it can refer to the lookup

table to obtain heap witnesses, within the computation itself.

Using stacked deferred step evaluation environments Other than at the end

of a branch, an HTT proof also does a similar entailment-check as part of a

procedure call (Sec. 2.1.2). Here, it needs to check that the precondition of the

current synthesis goal is unifiable with that of the call.

Recall from Sec. 3.4 that SuSLik synthesizes procedure calls by abducing that

it is possible, emitting any preparatory steps to adjust the synthesis goal to a

state where the call can take place, and then symbolically executing the call. We

noticed that the synthesizer operates in a distinct evaluation environment during

call abduction, and developed an enhanced evaluator design (3.6) that allows

deferred steps to be accumulated in a separate stack layer during call abduction,

and then released when the call is made. This allows us to directly reuse the

same method we devised in this section for entailment-checking at the Emp rule,

to also handle it at the Call rule.

Incidentally, the latter task is strictly simpler than the former in the current

version of SuSLik, due to an implementation detail of the synthesizer: only

Frame rule steps appear during call abduction because the synthesis proof search

algorithm does not try to apply the Close rule when in that mode. As a result,

we do not observe the sort of nested predicate unfoldings that is common for

regular postcondition entailment. This is also why the manual proof of sll_copy

in Fig. 2.3 is able to discharge the call entailment check on line 57 using only a

regular simplification tactic—the Coq context has the postcondition assertion

that needs to be framed out so it is solved trivially, without relying on insights

from synthesis.

Nonetheless, the resilience of an evaluator design should be judged not only

on whether it can generate valid proofs (which, as we have shown, ours does),

35

but also on how closely the generated proofs align with SuSLik’s reasoning

process, so that proof support does not break irreconcilably when the synthesizer

is upgraded with more powerful reasoning capabilities. Our approach based

on stackable deferred steps would remain viable if, for instance, SuSLik were

later equipped with a more insightful call abduction oracle such that it became

necessary to emit the Close rule inside a call abduction. Such extensibility is

indicative of the generality of our evaluator design.

4.4 Handling Postcondition Pure Constraints

So far, we have emphasized the spatial part of the entailment-checking process.

We conclude this chapter by describing how pure facts are proved in HTT

using knowledge from the synthesis. This aspect is somewhat distinct from the

preceding discussion, as the SSL	 rule derivations (and therefore proof tree

evaluation) do not tell us much about how to reason about pure constraints. For

that, we turn to oracles.

When searching for a proof, SuSLik frequently checks whether the pure part

of a goal’s precondition entails that of its postcondition (as in, e.g., rule Emp in

Fig. 2.1) by invoking an SMT solver, which acts as a validity oracle. We now show

how to incorporate this oracular insight into our proofs by extracting them as

standalone Coq lemmas (Sec. 4.4.1) and then solving them automatically using

certified solvers (Sec. 4.4.2).

4.4.1 Extracting Pure Lemmas

To use an oracle-validated fact in the Coq proof, we first capture the entailment

as a node in the proof tree, and then generate a Coq lemma from it during

evaluation.

Certified solvers in Coq (discussed more in the next section) rely on all facts

available to them in their invoked context to find a valid proof for an entailment.

It is thus desirable to aid their search by limiting the statement of the lemma to

only include antecedents that can contribute to the particular entailment, so that

finding a solution is tractable. Unfortunately, the oracle used by SuSLik only

36

returns boolean answers with no further insight on the proof construction.

One way to immediately prune some unnecessary conjuncts from the an-

tecedent is to discard those that refer to cardinality variables. This works for

HTT, which does not use cardinality variables at all; it would not be suitable for

other frameworks that do (Sec. 7.1).

Lemma pure_example1 k2 vx2 lo1x :
vx2 <= lo1x -> 0 <= vx2 -> vx2 <= 7 ->
0 <= k2 -> ¬(vx2 <= k2) -> k2 <= 7 ->
k2 <= (if vx2 <= lo1x then vx2 else lo1x).

Figure 4.2: A pure entailment lemma.

Another, more generally applica-

ble pruning strategy is through syn-

tactic analysis on the variables—if an

antecedent conjunct shares no variables

with any of the other conjuncts that contribute to the proof of the entailment, we

can safely elide it. Formally, we decompose the full entailment into individual

lemma statements such that for every postcondition conjunct i ∈ Cpost, we have

one entailment from the set of all precondition conjuncts j ∈ Cpre whose variable

set intersects with i’s by transitive closure. We implement this as a reachability

check. LetVar(n) be the set of variables used in a conjunct expression n. For every

postcondition conjunct i ∈ Cpost, we construct an undirected graph Gi of nodes

{i} ∪ Cpre such that an edge connects two nodes n1 , n2 if Var(n1) ∩ Var(n2) , ∅.

Then, we can find the subset of precondition conjuncts that excludes those with

no possibility of contributing to the entailment proof. Fig. 4.2 shows one such

extracted and pruned lemma, derived from an oracle-validated pure entailment

from one of our benchmarks.

Though this is a mere syntactic analysis that may not find the most minimal

conjunct set (e.g., the lemma in Fig. 4.2 is provable using only the first and fifth

antecedents), it has been mostly sufficient for simplifying the lemmas to a level

that is tractable for automated solving, as we describe in the next section.

4.4.2 Pluggable Automation

For the most part, the extracted lemmas (which, for our benchmarks, largely

consist of arithmetic equalities and inequalities) can be solved by a certified

solver, such as CoqHammer [CK18], Micromega [BM20], or SMTCoq [Eki+17].

For example, CoqHammer’s hammer tactic is a powerful automation tool that

finds proofs with an external first-order automated theorem prover (ATP), and then

37

reconstructs them in Coq. In fact, it can solve the lemma from Fig. 4.2:

Proof. intros. hammer. Qed.

In our implementation, by default we emit all such lemmas with accompanying

proofs that invoke CoqHammer, which suffices for our standard benchmarks.

Sec. 5.2 discusses our handling of the lemmas in more advanced cases when

hammer is unable to solve them.

Once we obtain our lemmas, we use a Coq feature that allows the user

to extend the hint database used for automated proof search with additional

lemmas. For instance, we can provide the above lemma as a hint to the database

ssl_pure:

Hint Resolve pure_example1: ssl_pure.

This lets us use it in a proof search while verifying the correctness of the main

program, e.g., eauto with ssl_pure.

38

5 Evaluation and Case Studies

We implemented the SSL	 proof tree extraction logic, proof evaluator, and HTT

proof step interpreter in Scala. The source code is publicly available.1

We also developed HTT’s verifier-specific automation (Ch. 4) tactics in Coq’s

tactic language Ltac. A lightweight Coq library that bundles these tactics can be

installed via OCaml’s opam package manager. It is also open source, along with

all proof scripts generated as part of the benchmark suite.2

Table 5.1: Scala implementa-
tion size in lines of code.

Component Scala Coq

Proof evaluator 1042 -

HTT support 1340 160

The rest of SuSLik 5508 -

Tab. 5.1 summarizes the overall implementa-

tion effort in terms of lines of code. Our evaluation

focuses on two criteria. The first is the efficiency

of verifying synthesized certificates, in terms of

Coq specification/proof sizes and proof-checking

times. The second is the presence of observable

gaps between the language/logic of the synthesizer and verifier that complicate

our automated certification efforts.

We discuss the first item wrt. our standard benchmarks (Sec. 5.1), and the

second item wrt. our advanced benchmarks (Sec. 5.2).

5.1 Standard Heap-Manipulating Benchmarks

Tab. 5.2 summarizes our evaluation results on programsmanipulating individual

pointers and integers, singly- and doubly-linked lists, and binary trees. All

certificates are generated for unaltered SusLang programs. The reported sizes

1https://github.com/TyGuS/suslik/tree/certification
2https://github.com/TyGuS/ssl-htt

39

https://github.com/TyGuS/suslik/tree/certification
https://github.com/TyGuS/ssl-htt

Table 5.2: Statistics for synthesized programs with pointers from SuSLik benchmark
suite. Sizes of generated Coq artifacts in lines of code; proof checking times in seconds.

Group Description Synthesis Time Spec Proofs Proof Checking Time

Integers

max 0.6 55 18 57.6
min 0.3 55 18 52.6

swap2 0.5 49 15 3.4
swap4 0.4 53 23 8.1

Singly-
Linked
Lists

maximum 0.7 68 99 3.0
minimum 1.6 68 99 3.2
length 0.8 68 100 3.1
append 0.4 60 89 6.2
copy 0.8 70 103 50.8

two-element 0.6 57 50 2.8
dispose 0.1 55 46 1.8
singleton 0.1 54 33 1.8

DLLs
append 2.7 74 154 6.5
singleton 0.1 55 37 2.5

Trees

copy 1.3 73 135 6.8
flatten 0.4 92 138 6.2
dispose <0.1 58 62 2.4
size 0.5 64 92 4.0

of Coq artifacts do not include translated heap predicates, as those are shared

between specifications of multiple programs. All results are obtained on a

3.10GHz Intel Core i7-5557U machine with 8GB RAM running macOS 10.15.7

and Coq 8.11.1.

Tab. 5.2 demonstrates that all generated proofs are relatively concise. Some

are more lengthy than others, due to a number of administrative renamings

required to keep the proof in sync with the Coq context (Sec. 4.3.2). The proof

checking times range from 2 to 8 seconds for all but three HTT examples. The

three outliers (integer minimum/maximum, and singly linked list copying) are

due to the use of CoqHammer for discharging pure entailment lemmas that rely

on a formalization of Peano numbers and sequences imported from the Ssreflect

library [GMT09].

5.2 AdvancedBenchmarks: EncodingCollectionPayloads

In the suite of programs in Tab. 5.2, we did not include benchmarks that require

extensive support for solving pure entailments via SMT, such as binary search

trees and sorted lists. The reason for that lies in the challenge of encoding payloads

for heap-based collections. SuSLik and HTT address this in very different ways,

each opting for one suited to its unique requirements.

40

Table 5.3: Benchmarks using multi-set equality in HTT.

Group Program Synt. time Coq time Lemmas Manual

Doubly-
Linked
Lists

copy 5.2 12.1 7 4
two-element 0.5 6.2 3 3

from-sll 1.0 8.6 5 2

Binary
Search
Trees

rotate-left 3.9 8.7 4 2
rotate-right 3.6 8.6 4 2

insert 18.5 33.9 15 6
rmv-root-left 1.9 14.2 6 2
rmv-root-right 16.8 16.4 6 2
find-smallest 1.7 6.7 7 1

Sorted
Lists

prepend 0.1 4.0 2 0
insert 6.2 17.6 18 5

insertion-sort 1.0 6.2 7 0
insert-sort-free 0.5 5.2 5 0

SuSLik represents collection contents using unordered multi-sets, a suitable

choice for a synthesizer for the purpose of performing framing and unification.

It is not uncommon, say, for a partitioned set to later be unified in a different

order, so the unorderedness of sets is accommodating of such cases.

Lemma sll_perm_eq x h s t :
perm_eq s t -> sll x s h -> sll x t h.
Proof.
move=>Hpermeq Hsll1.
case: Hsll1=>cond.
- move=>[Hsll1_pure ->].
constructor 1=>//; sslauto.
- move=>[v] [s2] [nxt] [h’].
move=>[Hsll1_pure [-> Hssl2]].
constructor 2=>//.
∃ v, s2, nxt, h’.
sslauto.
assumption.

Qed.

Figure 5.1: Manual proof of a lemma as-
serting that two predicate applications pa-
rameterized by equivalent multi-sets are
equally valid.

HTT, in contrast, represents pay-

loads as algebraic lists, as they aremuch

easier to reason about in proofs. For ex-

ample, because list equality assertions

use the propositional equality (=), Coq’s

rewriting tactics can take advantage of

them; multi-set equality cannot be en-

coded thisway. For this reason, we have

selected programs that are agnostic to

those differences for our “standard” benchmarks in Tab. 5.2. Nonetheless, we

also experimented with more advanced benchmarks, summarized in Tab. 5.3,

that rely on the collection payloads being implemented asmulti-sets, by replacing

regular list equality with the perm_eq predicate from the Ssreflect/MathComp

library [MT17; GMT09], which asserts that one list is a permutation of the other.

As discussed, this means that Coq’s rewriting tactics can no longer handle these

assertions, so we must make a trade-off to introduce a non-trivial axiom about

the congruence of perm_eq across predicate applications with otherwise identical

arguments. For our advanced benchmark programs, we proved these axioms

41

manually as lemmas. Fig. 5.1 shows one such lemma for the sll predicate from

Fig. 2.3, proved by unfolding the same constructor in both predicate applications,

and then showing that the pure part of one entails the pure part of the other.

Several of the programs in these advanced benchmarks also feature non-

trivial pure lemmas (discussed in Sec. 4.4.1) that our implementation’s default

proof strategy, CoqHammer’s hammer tactic, fails to solve. To make the evaluation

tenable, we chose to first auto-generate the proof scripts for the benchmark

programs using our HTT proof step interpreter, attempt to compile them (with

hammer), and only provide manual proofs of those pure lemmas that hammer fails

to discharge. The figures in the Tab. 5.3 were obtained by benchmarking these

modified proof scripts. The last column indicates the number of pure lemmas

that required manual proofs. While this deviates from the idea of full proof

automation, it is still consistent with the intent of the proof scripts, in that they

are generated in a way that the user can easily revisit and verify the output.

Lemma pure_example2 lo2x vx2 k2 hi1x lo1x :
vx2 <= lo2x -> 0 <= vx2 -> hi1x <= vx2 ->
k2 <= vx2 -> vx2 <= 7 -> 0 <= k2 -> k2 <= 7 ->
(if k2 <= ((if vx2 <= lo1x then vx2 else lo1x))
then k2 else (if vx2 <= lo1x then vx2 else lo1x)) =
(if vx2 <= (if k2 <= lo1x then k2 else lo1x)
then vx2 else (if k2 <= lo1x then k2 else lo1x)).

Proof.
move=>H1 H2 H3 H4 H5 H6 H7;
case (vx2 <= lo1x) eqn:H8;
case (k2 <= lo1x) eqn:H9;
case (k2 <= vx2) eqn:H10;
sauto.
Qed.

Figure 5.2: Manual proof of an extracted pure entail-
ment lemma that the hammer tactic failed to solve.

In our experience, it was

not too difficult to manually

prove pure lemmas that Co-

qHammer failed to handle.

Fig. 5.2 shows one such lemma

whose automated proof failed,

extracted from the certificate

of one of the advanced bench-

mark programs that inserts an

element into a binary search tree. While being relatively complex with seven

antecedents, and some with nested ternary expressions, the proof proceeded

by exhaustively enumerating the conditions, and then discharging the rest with

sauto, a tactic in CoqHammer’s toolset that provides an enhanced alternative to

Coq’s native auto tactic.

We suspect the hammer tactic fails to automate this reasoning because the

correct assertions to case-analyze on are located deep inside the ternary expres-

sions, rather than being accessible as standalone facts. In fact, in discussing

CoqHammer’s limitations, the authors recognize that they currently take a rela-

42

tively simplistic approach to detecting propositions in subterms [CK18], so this

may be an instance of that observation. Sec. 6.4 describes CoqHammer (and

hammers in general) in greater detail.

Among our advanced benchmarks, this example is fairly representative of

those lemmas whose proofs need human intervention. Correspondingly, the

structure of their respective manual proofs also heavily rely on case analyzing

the proper conditions.

43

6 Related Work

In this chapter, we survey existing techniques related to our work. Sec. 6.1

and Sec. 6.2 discuss our work’s roots in proof-carrying code and translation

validation, respectively; Sec. 6.3 contrasts our approach to interactive certified

synthesis; and Sec. 6.4 provides further exposition on our usage of CoqHammer

and on certified solvers in general.

6.1 Certifying Compilers and Proof-Carrying Code

Our work is the latest application of the widely studied technique of proof-

carrying code (PCC). PCC was first proposed in 1996 as a way to produce certified

binaries that supply a formal proof of the code along with the native code, so

that an operating system kernel could independently verify type and memory

safety properties about an untrusted binary before executing it [NL96]. The

method [Nec97] expressed safety proofs in terms of a logic embedded in the

Edinburgh Logical Framework [HHP93] and targeted the DEC Alpha assembly

language. A subsequent effort designed a certifying compiler [NL98] that compiles

programs written in a high-level language into these PCC binaries, whose safety

properties can then be easily validated. Further work reduced the size of the

trusted codebase by extracting a certified verifier from a Coq proof, using the

PCC approach itself [App01].

Since its conception, PCC has been extended and applied to a number of

domains, such as:

• Verifying temporal safety properties in systems code [Hen+02].

44

• Automatically generating safety invariant certificates for a PCC framework

via abstract interpretation [BJP06].

• A type-preserving compiler from a source language with a rich type system

to an untyped low-level language by carrying proof terms throughout the

compilation [CCS10].

• Certifying and validating information-flow properties at the bytecode level

[BPR13].

• Enforcing behavioral properties wrt. a program’s interaction with software-

defined networks [Ska+19].

Our work presents a new application of the PCC approach to automated

programsynthesis, continuing in the traditionof pairingprogramcodegeneration

with proofs of desirable properties. Whereas the original proposal [Nec97]

supplies proofs of a program’s safety properties, our work certifies their full

functional correctness, by leveraging the deductive reasoning capabilities of the

synthesizer.

6.2 Translation Validation

Pnueli, Siegel, and Singerman [PSS98]’s work on translation validation is an

alternative post-hoc technique for verifying translators such as compilers and

code generators. It involves defining an analyzer which, given a source program

and generated target program, produces a correctness proof if the translation is

valid, similar to our abstract proof evaluator design.

Our work differs from translation validation in the way verification proceeds.

In translation validation (which supports certification of general translators, such

as compilers), correctness is expressed in terms of the target system’s refinement

of the source system. Thus, the correctness of target programs are verified

using simulation techniques. Meanwhile, our technique is specific to certifying

deductive synthesizers. By narrowing our focus, we remove the need to obtain a

refinement mapping, as the deductive synthesis itself gives us a proof “for free”,

45

which then need only be checked in a system with a smaller trusted codebase

such as Coq.

6.3 Certified Interactive Program Synthesis

The Fiat framework [Del+15; Chl+17] implements certified interactive program

synthesis. It encodes programs as abstract data types (ADTs), and embeds

the synthesis procedure directly into the Coq proof assistant to obtain the

highest correctness guarantee. The synthesis is done by refinement, where a high-

level specification that may admit multiple implementations is incrementally

refined [HHS86] via a user-guided search aided by a set of automation tactics,

until a satisfactory ADT is obtained; the resulting ADT can be extracted to

executable OCaml code. The framework provides refinement automation tactics

for certain restricted domains, as well as a library of lemmas to handle other

domains for more advanced use cases. While synthesis using Fiat requires a

user to interactively choose the desired refinement sequence at each step, SuSLik

performs fully automated synthesis by proof search.

6.4 Certified Solvers

We match SuSLik’s delegation of pure entailments to a validity oracle (realized

in the implementation as a third-party SMT solver) with a similar delegation to

certified solvers to discharge the equivalent proof obligations in the verification

frameworks.

On its own, a standard Coq installation already comes equipped with robust

proof automation tactics. The auto tactic does a proof search by enumerating

basic tactics reflexivity, assumption, and applywith the lemmas accessible by

it. A variant tactic eauto is capable of unifying the goal with a lemma even when

there are no immediate instantiations available, by using existential variables and

substituting witnesses later. Micromega [BM20], a module bundled with Coq, is

a collection of decision procedures for solving proof goals that have a particular

form relying on no heuristics. Its tactic lia supports linear integer arithmetic

and inequality goals. These suffice for simple cases.

46

Hammers are suitable for more difficult proofs in large projects that havemany

lemmas in scope (and thus more potential proof sequence combinations). These

tools employ advanced techniques to trigger, with one command, an efficient

three-part proof search [Bla+16]:

1. Premise selection. Choosing which available lemmas are potentially useful for

proving the goal.

2. Translation. Converting the goal and selected premises in the proof assistant’s

logic to an expression in the logic of an automated theorem prover (ATP).

3. Reconstruction. Converting a solution found by ATP back to the logic of the

proof assistant, so it can be accepted as a valid proof.

We previously discussed our usage of CoqHammer [CK18] in HTT (Sec. 4.4.2)

and some limitations we encountered (Sec. 5.2). Its hammer tactic takes this

three-step approach: it learns a suitable set of premises with the aid of machine

learning algorithms trained on past proofs from the Coq standard library,

translates expressions from the Calculus of Inductive Constructions (CIC)—the

type theory implemented by Coq—to a first-order logic problem, and reproves

the goal in Coq using the ATP proof trace as a hint. The reasoning during the last

step is aided by the other component of CoqHammer, sauto. This tactic, which

implements a proof search strategy by type inhabitation [Cza20], empirically

outperformedCoq’s own auto tactic, and can be used as a standalone replacement

to it independently of hammer.

Whereas CoqHammer works with general ATPs, SMTCoq [Eki+17] is a

separate tool that operates specifically in the problem domain of satisfiability

modulo theories (SMT). The tool integrates Coq with external SMT solvers. It

increases the confidence in the result produced by an external solver by checking

the generated proof witness in Coq; the checking procedure itself is certified as

it is also implemented in Coq.

For our HTT implementation, we chose to handle pure entailments with

CoqHammer and obtained promising results. We discussed our usage of it in

Sec. 4.4.2, and some limitations we encountered in Sec. 5.2.

47

7 Discussion and Conclusion

We conclude this work by noting parallel efforts to instantiate the evaluator with

other verifiers (Sec. 7.1) and discussing future work (Sec. 7.2).

7.1 Extensibility To Other Verification Frameworks

Other than HTT (Ch. 4), the abstract evaluator has been successfully instanti-

ated by collaborators to two additional foundational verification frameworks,

Iris [Jun+18] and Verified Software Toolchain (VST) [App+14]. A separate

work [Wat+21] summarizes the findings from Ch. 3 and Ch. 4, discusses the ex-

perience of adding support for Iris and VST, and compares the three frameworks

in terms of the relative ease of adapting each one as a certification target.

Both Iris and VST are deeply embedded frameworks, in contrast to HTT’s

shallow embedding, which is cause for some additional discrepancy between

SusLang/SSL	 and the target language and logic. For example, while HTT’s

encoding of spatial assertions as native Gallina propositions enables a relational

definition of predicates (Sec. 4.2), both Iris and VST use a custom abstract type

to do the same. This means that instead of encoding inductive predicates as

propositions, they must be defined as computations (i.e., functions) that return

the custom type—a nontrivial conversion. It is resolved by using the cardinality

variables (Sec. 2.1) to specify the termination measure for the recursive functions.

Nonetheless, the results obtained for the two frameworks indicate the gener-

ality of the abstract evaluator design. With a few exceptions, both Iris and VST

successfully handle most of the standard benchmarks in Tab. 5.2. Iris does not

48

certify two case studies, finding the minimum and maximum of a list of singly

linked list of integers, whose SSL	 specification uses a ternary operator; Iris

needs to generate proof obligations for each branch, so the proof diverges from

the one encoded in the proof tree. VST does not handle list length and tree size;

the framework verifies C programs that run on real hardware, so it needs to

account for additional error modes like integer overflow, which SusLang does

not. All of these exceptions arise due to verifier-specific details that are too far

removed from the SusLang/SSL	 representation of programs and proofs; thus

they are beyond the scope of the evaluator design.

7.2 Future Work

In Sec. 6.4, we contrasted Fiat’s interactive synthesis approach with SuSLik’s

automated one. However, our experiments (cf. Sec. 5.2) also demonstrate some

cases where the certification of a SuSLik-synthesized program needs manual

assistance, when faced with complex pure entailments beyond the scope of Coq’s

proof automation capabilities. We believe that by combining fully automated

deductive synthesis with interfaces for a user to provide manual proofs for non-

trivial facts, we may be able to achieve an optimal balance between minimizing

the proof burden on the user and expanding the domain of certifiable programs.

Controlling certificate sizes and proof checking times could be another

potential area of exploration. Our proof-tree-guided certification technique does

considerably minimize the amount of additional proof search needed by the

verifier (on top of what was already done by the synthesizer). Nonetheless, our

work emphasizes full functional correctness for a broad range of programs, and

so it does not explicitly optimize for concise certificates or instant verification.

As our results show, checking time still suffers even for some simple programs

due to the challenge of automating pure lemma proofs. Yet we recognize the

importance of such properties in a security context that demands an efficient and

scalable verification methodology—in fact, minimizing run-time certification

overhead was a central concern in the original PCC proposal [NL96]—so we

leave this for future work.

49

7.3 Conclusion

Our results hint at a more accessible and secure future where users can obtain

correct programs by providing concise descriptions. While a fully verified

synthesizer is a heavy undertaking, in this work we have shown the viability

of a post-hoc approach to automatically synthesizing certified programs with

currently available technology. Furthermore, we have demonstrated that the

technique can be made verifier-agnostic by designing a suitable abstraction to

match the impedance between synthesis and verification.

50

Bibliography

[App+14] AndrewW.Appel, RobertDockins,AquinasHobor, Lennart Beringer,

Josiah Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy.

Program Logics for Certified Compilers. Cambridge University Press,

2014 (cit. on p. 48).

[App01] AndrewW. Appel. “Foundational Proof-Carrying Code”. In: LICS.

IEEE Computer Society, 2001, pp. 247–256 (cit. on p. 44).

[BJP06] Frédéric Besson, Thomas P. Jensen, and David Pichardie. “Proof-

carrying code from certified abstract interpretation and fixpoint

compression”. In: Theor. Comput. Sci. 364.3 (2006), pp. 273–291 (cit. on

p. 45).

[Bla+16] Jasmin Christian Blanchette, Cezary Kaliszyk, Lawrence C Paulson,

and JosefUrban. “Hammering towardsQED”. In: Journal of Formalized

Reasoning 9.1 (2016), pp. 101–148 (cit. on p. 47).

[BM20] Frédéric Besson and EvgenyMakarov.Micromega: solvers for arithmetic

goals over ordered rings. Online documentation available at https:

//coq.inria.fr/refman/addendum/micromega.html. 2020 (cit. on

pp. 37, 46).

[BPR13] Gilles Barthe, David Pichardie, and Tamara Rezk. “A certified

lightweight non-interference Java bytecode verifier”. In: Math. Struct.

Comput. Sci. 23.5 (2013), pp. 1032–1081 (cit. on p. 45).

[CCS10] Juan Chen, Ravi Chugh, and Nikhil Swamy. “Type-preserving com-

pilation of end-to-end verification of security enforcement”. In: PLDI.

ACM, 2010, pp. 412–423 (cit. on p. 45).

51

https://coq.inria.fr/refman/addendum/micromega.html
https://coq.inria.fr/refman/addendum/micromega.html

[Chl+17] Adam Chlipala, Benjamin Delaware, Samuel Duchovni, Jason Gross,

Clément Pit-Claudel, Sorawit Suriyakarn, PengWang, and Katherine

Ye. “The End ofHistory?Using a ProofAssistant to Replace Language

Design with Library Design”. In: SNAPL. Vol. 71. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2017, 3:1–3:15 (cit. on

p. 46).

[CK18] Lukasz Czajka and Cezary Kaliszyk. “Hammer for Coq: Automation

for Dependent Type Theory”. In: J. Autom. Reason. 61.1-4 (2018),

pp. 423–453 (cit. on pp. 37, 43, 47).

[Cza20] Łukasz Czajka. “Practical proof search for Coq by type inhabitation”.

In: International Joint Conference on Automated Reasoning. Springer.

2020, pp. 28–57 (cit. on p. 47).

[Del+15] Benjamin Delaware, Clément Pit-Claudel, Jason Gross, and Adam

Chlipala. “Fiat: Deductive Synthesis of Abstract Data Types in a

Proof Assistant”. In: POPL. ACM, 2015, pp. 689–700 (cit. on p. 46).

[Del00] David Delahaye. “A Tactic Language for the System Coq”. In: LPAR.

Vol. 1955. LNCS. Springer, 2000, pp. 85–95 (cit. on p. 31).

[Eki+17] Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy

Katz, Andrew Reynolds, and Clark W. Barrett. “SMTCoq: A Plug-In

for Integrating SMT Solvers into Coq”. In: CAV. Vol. 10427. LNCS.

Springer, 2017, pp. 126–133 (cit. on pp. 37, 47).

[GMT09] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale

Reflection Extension for the Coq system. Tech. rep. 6455. Microsoft

Research – Inria Joint Centre, 2009 (cit. on pp. 40, 41).

[Gu+16] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu,

Jieung Kim, Vilhelm Sjöberg, and David Costanzo. “CertiKOS: An

Extensible Architecture for Building Certified Concurrent OS Ker-

nels”. In: OSDI. USENIX Association, 2016, pp. 653–669 (cit. on

p. 1).

52

[Hen+02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, George C.

Necula, Grégoire Sutre, and Westley Weimer. “Temporal-Safety

Proofs for Systems Code”. In: CAV. Vol. 2404. LNCS. Springer, 2002,

pp. 526–538 (cit. on p. 44).

[HHP93] Robert Harper, Furio Honsell, and GordonD. Plotkin. “A Framework

for Defining Logics”. In: J. ACM 40.1 (1993), pp. 143–184 (cit. on

p. 44).

[HHS86] Jifeng He, C. A. R. Hoare, and Jeff W. Sanders. “Data Refinement

Refined”. In: ESOP. Vol. 213. LNCS. Springer, 1986, pp. 187–196

(cit. on p. 46).

[Itz+21] Shachar Itzhaky, Hila Peleg, Nadia Polikarpova, Reuben Rowe, and

Ilya Sergey. Cyclic Program Synthesis. Conditionally accepted for

publication at PLDI’21. 2021 (cit. on pp. v, 5, 7, 26).

[Jun+18] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan,Ales Bizjak, Lars

Birkedal, and Derek Dreyer. “Iris from the ground up: A modular

foundation for higher-order concurrent separation logic”. In: J. Funct.

Program. 28 (2018), e20 (cit. on p. 48).

[Kne+13] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter.

“Synthesis modulo recursive functions”. In: OOPSLA. ACM, 2013,

pp. 407–426 (cit. on p. 7).

[Ler06] Xavier Leroy. “Formal certification of a compiler back-end or: pro-

gramming a compiler with a proof assistant”. In: POPL. ACM, 2006,

pp. 42–54 (cit. on p. 1).

[MM73] Alberto Martelli and Ugo Montanari. “Additive AND/OR Graphs”.

In: ĲCAI. Ed. by Nils J. Nilsson. 1973, pp. 1–11 (cit. on p. 15).

[MT17] AssiaMahboubi andEnrico Tassi.Mathematical Components. Available

at https://math-comp.github.io/mcb. 2017 (cit. on p. 41).

[Nec97] George C. Necula. “Proof-Carrying Code”. In: POPL. ACM Press,

1997, pp. 106–119 (cit. on pp. 44, 45).

53

https://math-comp.github.io/mcb

[NL96] George C. Necula and Peter Lee. “Safe Kernel Extensions Without

Run-Time Checking”. In: OSDI. ACM, 1996, pp. 229–243 (cit. on

pp. 44, 49).

[NL98] George C. Necula and Peter Lee. “The Design and Implementation

of a Certifying Compiler”. In: PLDI. ACM, 1998, pp. 333–344 (cit. on

p. 44).

[NVB10] Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. “Struc-

turing the verification of heap-manipulating programs”. In: POPL.

2010, pp. 261–274 (cit. on pp. v, 3, 10, 28).

[PS19] Nadia Polikarpova and Ilya Sergey. “Structuring the Synthesis of

Heap-Manipulating Programs”. In: PACMPL 3.POPL (2019), 72:1–

72:30 (cit. on pp. v, 2, 5).

[PSS98] Amir Pnueli, Michael Siegel, and Eli Singerman. “Translation val-

idation”. In: International Conference on Tools and Algorithms for the

Construction and Analysis of Systems. Springer. 1998, pp. 151–166

(cit. on p. 45).

[RB17] Reuben N. S. Rowe and James Brotherston. “Automatic cyclic termi-

nation proofs for recursive procedures in separation logic”. In: CPP.

ACM, 2017, pp. 53–65 (cit. on p. 6).

[Rey02] John C. Reynolds. “Separation Logic: A Logic for Shared Mutable

Data Structures”. In: LICS. IEEE Computer Society, 2002, pp. 55–74

(cit. on p. 5).

[Ska+19] Christian Skalka, John Ring, David Darais, Minseok Kwon, Sahil

Gupta, Kyle Diller, Steffen Smolka, and Nate Foster. “Proof-Carrying

Network Code”. In: CCS. ACM, 2019, pp. 1115–1129 (cit. on p. 45).

[Wat+21] Yasunari Watanabe, Kiran Gopinathan, George Pîrlea, Nadia Polikar-

pova, and Ilya Sergey. Certifying the Synthesis of Heap-Manipulating

Programs. Conditionally accepted at ICFP’21. 2021 (cit. on p. 48).

[Wat20] Yasunari Watanabe. “Building a Certified Program Synthesizer”.

Bachelor’s thesis. Yale-NUS College, 2020 (cit. on p. 3).

54

	Declaration
	Acknowledgements
	Contents
	Summary
	List of Tables
	List of Figures
	Introduction
	The Need For Automated Certification
	Contributions and Overview

	Background: Synthesis and Verification
	Synthesis With Cyclic Synthetic Separation Logic
	Specifications and Predicates
	Synthesis By Proof Search
	Synthesis of sll_copy

	Verification With Hoare Type Theory
	Framework Overview
	Verification of sll_copy

	Synthesis and Verification: A Divide

	A Framework For Evaluating Proofs
	Encoding Derivations As Proof Trees
	Constructing Proof Trees
	Extraction From And/Or Trees
	Finalizing Branch Abductions
	Program Recovery From A Proof Tree

	An Evaluator to Translate Synthesis Proofs
	Modular Proof Step Interpreters
	Contexts For Tracking Verifier State
	Deferring Target Proof Steps
	Putting It All Together

	Extension: Controlling the Release of Deferreds

	The Evaluator in Action: HTT
	Translating Programs
	Translating Predicates
	Translating Proofs
	Wrapper Tactics
	Tracking Named Hypotheses
	Delayed Checking of Postcondition Entailment

	Handling Postcondition Pure Constraints
	Extracting Pure Lemmas
	Pluggable Automation

	Evaluation and Case Studies
	Standard Heap-Manipulating Benchmarks
	Advanced Benchmarks: Encoding Collection Payloads

	Related Work
	Certifying Compilers and Proof-Carrying Code
	Translation Validation
	Certified Interactive Program Synthesis
	Certified Solvers

	Discussion and Conclusion
	Extensibility To Other Verification Frameworks
	Future Work
	Conclusion

	Bibliography

