
84

Certifying the Synthesis of Heap-Manipulating Programs

YASUNARI WATANABE, Yale-NUS College, Singapore and National University of Singapore, Singapore

KIRAN GOPINATHAN, National University of Singapore, Singapore

GEORGE PÎRLEA, National University of Singapore, Singapore

NADIA POLIKARPOVA, University of California, San Diego, USA

ILYA SERGEY, Yale-NUS College, Singapore and National University of Singapore, Singapore

Automated deductive program synthesis promises to generate executable programs from concise specifications,

along with proofs of correctness that can be independently verified using third-party tools. However, an

attempt to exercise this promise using existing proof-certification frameworks reveals significant discrepancies

in how proof derivations are structured for two different purposes: program synthesis and program verification.

These discrepancies make it difficult to use certified verifiers to validate synthesis results, forcing one to write

an ad-hoc translation procedure from synthesis proofs to correctness proofs for each verification backend.

In this work, we address this challenge in the context of the synthesis and verification of heap-manipulating

programs. We present a technique for principled translation of deductive synthesis derivations (a.k.a. source

proofs) into deductive target proofs about the synthesised programs in the logics of interactive program

verifiers. We showcase our technique by implementing three different certifiers for programs generated via

SuSLik, a Separation Logic-based tool for automated synthesis of programs with pointers, in foundational

verification frameworks embedded in Coq: Hoare Type Theory (HTT), Iris, and Verified Software Toolchain

(VST), producing concise and efficient machine-checkable proofs for characteristic synthesis benchmarks.
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1 INTRODUCTION

As projects like CompCert (Leroy 2006) and CertiKOS (Gu et al. 2016) demonstrate, developing
verified software is an extremely laborious process. In addition to writing code, it requires writing
matching formal specifications, as well as proofs that the former satisfies the latter. A promising
approach to reducing the amount of effort involved is to automate parts of the development using
deductive program synthesis (Kneuss et al. 2013; Manna andWaldinger 1980; Polikarpova and Sergey
2019), which allows the programmer to focus on writing the specifications, letting the synthesiser
search for a corresponding program together with its proof.
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As a simple example, consider implementing a verified bank account data structure that stores a
user identifier along with the user’s balance in a C-like imperative language with pointers. The
constructor procedure mk_acc of this data structure might be given the following specification in
Separation Logic (SL) (O’Hearn et al. 2001; Reynolds 2002):

{r 7→ −} mk_acc(r, id, bal) {r 7→ x ∗ account(x , id, bal)} (1)

In the spec above, the precondition asserts that the parameter r is a location that initially stores some
unimportant value (−). The postcondition asserts that, after a call to mk_acc(r, id, bal) terminates,
r should point to some location x that contains an account data structure initialised with id and bal

(and the memory of the data structure does not include r, as indicated by the separating conjunction
connective ∗). The definition of account from the postcondition is given by the following predicate:

account(x , id, bal) ≜ [x , 2] ∗ x 7→ id ∗ (x + 1) 7→ bal (2)

That is, account is a record of size two starting at a location x , whose first field stores the value id,
and the second stores bal. Given the specification (1), the deductive synthesiser SuSLik (Polikarpova
and Sergey 2019) is able to automatically derive an implementation satisfying this spec (Fig. 1).1

1 void mk_acc (r, id, bal) {

2 {r 7→ −}
3 let z = malloc(2);

4 {r 7→ − ∗ [z, 2] ∗ z 7→ − ∗ (z + 1) 7→ −}
5 *r = z;

6 {r 7→ z ∗ [z, 2] ∗ z 7→ − ∗ (z + 1) 7→ −}
7 *z = id;

8 {r 7→ z ∗ [z, 2] ∗ z 7→ id ∗ (z + 1) 7→ −}
9 *(z + 1) = bal;

10 {r 7→ z ∗ [z, 2] ∗ z 7→ id ∗ (z + 1) 7→ bal}
11 }

12 {r 7→ x ∗ account(x, id, bal)}

Fig. 1. mk_acc: code and proof outline.

The Challenge: certifying automated program synthe-

sis. But can we trust the correctness proof produced
by SuSLik? Automated program synthesisers are quite
complex, and it is hard to guarantee that they are free
of bugs. Moreover, a realistic verification project will
likely have portions that are beyond the capabilities of
any synthesiser, and hence we need to make sure that
synthesis results integrate well with parts of the system
that are implemented and verified manually. A promis-
ing approach to addressing both of these concerns is
to make the synthesiser produce certificates, allowing for independent checking of its results in
foundational verification tools, which are embedded into proof assistants such as Coq and provide
the highest assurance guarantees due to their minimal trusted code base.
In theory, it should be easy to generate certificates for deductive synthesisers: after all, they

synthesise programs together with their łproofsž! In practice, however, it is far from straightforward,
because these proofs are structured very differently from the proofs in foundational verifiers. SL
verifiers typically work by using symbolic execution to propagate the symbolic state from the
precondition forward through the program (see even lines 2ś10 in Fig. 1), and only at the end do
they check that the final symbolic state (line 10) entails the given postcondition (line 12). On the other
hand, a deductive synthesiser is forced to use information from both the pre- and the post-condition,
manipulating both in the process, because it cannot rely on the program to guide the search. Apart
from this fundamental discrepancy, there are many low-level differences in the structure of the
proofs, both between synthesis and verification, as well as between different foundational verifiers.
As a result, our first attempt at translating SuSLik proofs into three different Coq-based verifiers
resulted in three custom proof traversal procedures, intertwined with bookkeeping machinery and
rule translation logic, leading to massive code duplication and a very brittle codebase overall.
In this paper, we present modular proof interpreters, a technique for certifying deductive syn-

thesis in custom verification backends. The technique is inspired by the continuation-passing
programming style, and supports writing proof translation logic in a uniform and modular way.

1For now, let us ignore the assertions of the form {. . . } on the even-numbered lines of the listing in Fig. 1.
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Key insights. In the simplest case, translating a source proof generated by the synthesiser into a
target proof understood by the verifier would involve mapping each individual application of a
source inference rule in to a sequence of applications of target inference rules. This, however, does
not work for our problem due to non-local differences in the rule application order employed by the
synthesiser and the verifiers. Our first key idea is to equip the proof translator with a way to define

the order in which the translated results of synthesis rule applications are executed in the script of
the back-end verifier. Our approach requires traversing the source proof just once: the translator
needs to define, for each source rule, in a modular fashion, which parts of its translation should be
applied in the target verification script immediately, and which parts should be deferred until later
stages. Intuitively, this dichotomy corresponds to partitioning forward-style program verification
into symbolic execution (immediate steps) and entailment checking (deferred steps). Pragmatically,
this technique manifests in collecting deferred target proof steps in the proof interpreter state, and
applying those steps at leaves of the generated target proof tree.
As it turns out, simply deferring certain target proof steps is not enough: any changes in the

target proof context since the moment certain deferred steps were scheduled, can render those steps
invalid at the point of their application. Our second key idea is to allow the translator to define
the logic for maintaining a backend-specific proof context, and also to pass it as an argument to
the deferred proof steps at the time of their applications, making their treatment similar to that of
composed continuations in interpreters for programs written in continuation-passing style.
We define the traversal of source proof trees to be parametric wrt. the target proof context and

deferred steps. This way, the translator only needs to provide a łsmall-stepž modular interpreter
for each of the source rules. Our generic traversal will execute that interpreter in each of the source
tree nodes, passing its state (i.e., the proof context and deferred steps), thus constructing the target
proof tree in a single pass.

Our contributions. The main conceptual contribution of this work is a realisation of the idea
of modular proof interpretersÐan approach for implementing the translation of synthesis proof
trees into verification proof trees via a uniform source proof traversal, parameterised by the notion
of the target proof context and the execution order of target proof steps. We applied this idea to
SuSLikÐa deductive program synthesis tool based on Separation Logic (Polikarpova and Sergey
2019), allowing for generation of proof certificates from its program derivations.
Our main practical contribution is instantiation of SuSLik’s support for modular proof inter-

preters for three different foundational verification backends, implemented as embeddings into
the Coq proof assistant: Hoare Type Theory (HTT) (Nanevski et al. 2010), Iris (Jung et al. 2018;
Krebbers et al. 2017), and Verified Software Toolchain (VST) (Appel 2011). We provide an extensive
comparison of our three proof interpreter implementations, outlining the main challenges of trans-
lating SuSLik-produced proofs in a synthesis-tailored version of Separation Logic to each of the
backends and elaborating on the main implementation efforts in each case. Finally, we evaluate
our implementation against a series of synthesis benchmarks for heap-manipulating programs,
reporting on the qualitative and quantitative aspects of the produced proof scripts.

Paper outline. In the rest of the paper, we provide a brief background on deductive synthesis
and verification with Separation Logic, building intuition for the addressed challenge (Sec. 2). We
follow with an overview of our approach to proof translation (Sec. 3), zooming in on its integration
with the SuSLik synthesis engine in Sec. 4. We then elaborate on the three specific instances of
our technique in Sec. 5 (HTT), Sec. 6 (Iris), and Sec. 7 (VST). We report on our experiments with
translating SuSLik proofs into each of the three supported backends in Sec. 8 and discuss our
implementation experience and lessons learnt in Sec. 9. We conclude with a survey of related
challenges and techniques, and an outline of the future work in Sec. 10.
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2 SYNTHESIS PROOFS VS VERIFICATION PROOFS

Before we describe the key components of our work, it is essential to explain how exactly the pro-
gram in Fig. 1 was synthesised, and what makes search for a program different from its verification.

Synthesising mk_acc(). A deductive SL-based synthesis takes specification (1) as its initial goal
and searches for a series of inference rule applications which would reduce the initial goal to
trivial subgoals, generating the desired program as a byproduct. A successful series of such rule
applications is demonstrated by the following proof trace, which shows a progressive simplification
of the goal until it becomes trivial (which means the synthesis is done). For our example, the starting
point is the following goal requiring one to find a program that performs the transformation from
a state satisfying the symbolic precondition {r 7→ −} to the one satisfying the postcondition
{r 7→ x ∗ account(x , id, bal)}, assuming that r, id, and bal are program-level variables:

{r, id, bal} ; {r 7→ −} { {r 7→ x ∗ account(x , id, bal)} (3)

The first step of the trace discovered by the synthesis tool immediately elaborates the goal postcon-
dition, by unfolding the predicate occurrence account(. . .) and replacing it by its definition (2):

{r, id, bal} ; {r 7→ −} {
{

r 7→ x ∗ [x , 2] ∗ x 7→ id ∗ (x + 1) 7→ bal

}

(4)

This manipulation of the goal will not produce any immediate program commands, but the new
postcondition makes it apparent that the way to proceed is to allocate two subsequent pointers, as
those are missing from the precondition, hence the following goal transformation, resulting in the
command at line 3 of Fig. 1 and capturing the newly allocated symbolic heap in the precondition:

{

. . . , z
}

;

{

r 7→ − ∗ [z, 2] ∗ z 7→ − ∗ z + 1 7→ −
}

{ {r 7→ x ∗ [x , 2] ∗ x 7→ id ∗ (x + 1) 7→ bal}

Given the similarity of the symbolic heap fragments in the pre- and postcondition, rooted in z and
(existentially quantified) x respectively, the next step will issue a substitution x 7→ z, thus unifying
the corresponding parts in the pre/post:

{. . .} ; {r 7→ − ∗ [z, 2] ∗ z 7→ − ∗ z + 1 7→ −} {
{

r 7→ z ∗
[

z , 2
]

∗ z 7→ id ∗ ( z + 1) 7→ bal
}

The remaining three writes at lines 5, 7, and 9 of Fig. 1 will be synthesised each by considering
the pairs of heaplets of the form, e.g., r 7→ − and r 7→ z in the pre/postcondition respectively, and
assigning the expected value to the source pointer variable (i.e., to r in this case). This allows each
pair of such identical heaplets to be framed out from the goal, as they will no longer be necessary
to produce the rest of the program, simplifying the goal accordingly. For example:

{r, id, bal, z} ; {[z, 2] ∗ z 7→ − ∗ z + 1 7→ −} { {[z, 2] ∗ z 7→ id ∗ (z + 1) 7→ bal} (5)

is the goal after removing the matching r 7→ z from the pre/postcondition. Therefore, after deriving
the necessary łimpedance-matchingž assignments to the locations z and (z + 1) (lines 9 and 11)
and framing out the corresponding assertions (as well as the administrative block assertion [z, 2])
from the pre/postcondition, the goal will be reduced to a trivial one:

{r, id, bal, z} ; {emp} { {emp} (6)

This goal, which calls for transforming an empty symbolic heap emp to itself, can be satisfied
without any code. Thus, it can be dismissed via a terminal axiom of the logic underlying the
synthesis and emitting a program that does nothing.
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Verifying mk_acc(). Let us now ensure that the synthesis result is indeed correct by utilising
rules for SL-based symbolic execuction (Berdine et al. 2005) to verify the obtained program. The
even-numbered lines in Fig. 1 show intermediate assertions derived from the initial precondition
by means of performing a forward-style (a.k.a. strongest-postcondition) symbolic execution of the
program.While the correctness result indeed holds, one can notice that many of those assertions are
quite different from the intermediate goals (4)ś(6) from the deductive program derivation outlined
above. Perhaps the most noticeable difference is the treatment of predicates in the postcondition.
Specifically, a logic-based verifier keeps the instance account(x , id, bal) łfoldedž with its existential
variable x uninstantiated until the final symbolic state is produced at line 10, so the heap entailment

{r 7→ z ∗ [z, 2] ∗ z 7→ id ∗ (z + 1) 7→ bal} ⊢ {r 7→ x ∗ account(x , id, bal)} (7)

could be discharged at the end of the proof. In contrast, the synthesis unfolds the predicate in the
postcondition early to produce the subgoal (4), deriving the allocation command at line 3 of Fig. 1.
Most of the existing automated SL-based verifiers, such as Smallfoot (Berdine et al. 2006), Veri-

Fast (Jacobs et al. 2011), HIP/SLEEK (Chin et al. 2011), and Viper (Müller et al. 2016), follow this
strategy: execute the program symbolically, and then check a symbolic heap entailment. But in syn-
thesis, there is nothing to symbolically execute: unlike a verifier, synthesis interleaves manipulations
with pre- and postconditions to efficiently guide its search for a programÐhence the mismatch.

3 OVERVIEW OF THE APPROACH

Now that we have shown deductive synthesis in action, let us present the main ideas for imple-
menting a translation from synthesis derivations to proofs for a certifying back-end verifier in a
uniform and modular way. For the remainder of the section, we will use a procedure for copying a
pointer-based singly-linked list as our running example.

3.1 Background on Synthetic Separation Logic

We begin with a brief primer on (Cyclic) Synthetic Separation Logic (SSL) (Itzhaky et al. 2021)Ðthe
newly extended logical formalism underlying the deductive synthesis algorithm implemented by
the current version of the SuSLik tool (Polikarpova and Sergey 2019). In SSL, a singly-linked list is
defined by the following inductive predicate, a standard for Separation Logic (Reynolds 2002):

sllα (x , s) ≜ x = 0 ∧ {s = ∅; emp}

| x , 0 ∧
{

s = {v} ∪ s1 ∧ β < α ; [x , 2] ∗ x 7→ v ∗ (x + 1) 7→ nxt ∗ sllβ (nxt, s1)
} (8)

The two clauses in definition (8) correspond to the cases of an empty and non-empty list. In the
former case, the łheadž pointer of the list is null, and the heap allocated for the structure, as well as
its payload, represented by the set s , are empty. In the latter case, the head pointer of the list x is
non-empty, and the heap structure of the list is represented by two subsequent pointers, starting
from x and storing a payload elementv and the pointer nxt to the tail, which has the same structure,
captured by the recursive occurrence of the same predicate sll. Following the choice made by the
SuSLik implementation for more streamlined integration with third-party SMT solvers, we use
mathematical sets to represent the linked list’s payload instead of more traditional algebraic lists. We
will elaborate on the consequences of this choice with regard to certification in Sec. 8.2. The only
other unusual part of the predicate are the cardinality variables (α , β), as well as the constraints on
them (β < α ), which are necessary to reason about termination of synthesised recursive programs
and their auxiliary procedures via the mechanism of cyclic proofs (Rowe and Brotherston 2017).2 For

2The exact usage of cyclic proofs for synthesis of provably terminating recursive programs is orthogonal to this work, and

we refer the reader to the paper by Itzhaky et al. (2021) for the details. That said, cardinality variables will play an important

role for the translation of SL predicates to the logics of Iris and VST, as we will discuss in Sec. 6.
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the purpose of this work, one can think of cardinalities in inductive predicates as integer variables
capturing the fact that the size of a heap, constrained by a recursive occurrence, is strictly smaller
than that of the enclosing data structure, as in, e.g., β < α in the predicate definition (8).
We can now specify a synthesis task for generating a copy of a singly-linked list as follows:

{r 7→ x ∗ sll(x , s)} sll_copy (r) {r 7→ y ∗ sll(x , s) ∗ sll(y, s)} (9)

The procedure takes, as its parameter, a pointer variable r, which initially points to the head of the
list to be copied, and at the endÐto the head of a newly allocated list, holding the same payload s .3

Variable x, y Alpha-numeric identifiers

Size, offset n, ι Non-negative integers

Expression e ::= 0 | true | x | e = e | e ∧ e | ¬e | d

T-expr. d ::= n | x | d + d | n · d | { } | {d } | · · ·

Command c ::= let x = ∗(x + ι) | ∗(x + ι) = e |

let x = malloc(n) | free(x ) | err |

f (ei ) | c ; c | if (e) {c } else {c }

Fig. 2. SusLang syntax.

Given a specification, SuSLik will generate a
program in SusLang, a simple C-like language
with pointers, function calls, and recursion, whose
syntax is given in Fig. 2. SusLang values include
booleans and integers, and a special type loc for
pointer variables. Pointers are isomorphic to un-
signed integers with a designated pointer constant,
0 (null). Expressions include variables, literal con-
stants, equality checks and logical connectives. Ad-
ditional theory-specific expressions are allowed depending on the underlying theory used for check-
ing entailment in derivations; the most up-to-date version of SuSLik by Itzhaky et al. (2021) supports
linear integer arithmetic and sets. The language allows pointer arithmetic in the form x + ι.

To synthesise an implementation of sll_copy in SusLang, the specification (9) is first transformed
to a synthesis goal of the form Γ; P{Q | c , where Γ is the set of currently available program-
level and logical variables (in our example, it is initially just {r,x , s,y}); {P} and {Q} are the
corresponding ascribed pre- and postconditions; and c is an unknown program, yet to be synthesised.
In general, both the pre- and postcondition of specifications and goals can feature a pure and
spatial part, e.g., {P} = {ϕ, P}. The pure part ϕ captures the logical constraints on variables and
values involved in the specification. The spatial part P describes the heap shape using standard SL
assertions, joined by the separating conjunction connective (∗): emp for an empty heap, (x + ι) 7→ e

for an individual address x storing a value e at a (possibly zero) offset ι, a block assertion [x ,n] for a
continuous segment of n elements starting at x , which can be deallocated, and pα (ti ) for a heap of
size α (frequently omitted) described by an occurrence of a predicate p with arguments ti .
When searching for an implementation, the synthesis tries to apply the rules of SSL, building

a derivation for the initial goal. Such a derivation will also contain the desired program c as its
byproduct. Fig. 3 provides the selected rules. Within rules we use lower latin letters x ,y for program
variables (taken from the set ProgVars), e , t for program-level terms (of the syntactic class e in
Fig. 2), Greek letters ν , ω for logical variables, and ϕ, ψ , χ for logical formulas. Assertions are
interpreted in an environment Γ in which some of the variables are universally quantified and
others existentially quantified, with a prefix of the form ∀x .∃y. Program variables are always

included in the universal prefix. Logical variables are split between universal (also called ghost

variables and denoted GV(Γ)) and existential (EV(Γ)). We denote Vars(Γ) = {x ,y} for all quantified
variables. The ∪· operator, used in some of the rules, joins two environments, so in the resulting
environment the quantifiers follow the same ∀.∃ quantifier pattern. We use e[Γ] for the set of all
expressions that can be constructed using program variables in Γ, and κ[Γ]Ðall logical terms that
can be constructed with any variables from Γ. Finally, [σ ]P denotes an application of a substitution
σ to all variables in a formula P .

3 As we use sets for payloads, the specification (9) for singly-linked list copying is a bit more loose than an ideal one: for

instance, it admits programs that drop duplicated elements from the copy of the list. That said, programs that abuse the

specification in this or a similar way would be much more difficult to discover than a łmorally correctž copying procedure.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 84. Publication date: August 2021.



Certifying the Synthesis of Heap-Manipulating Programs 84:7

Emp

⊢ ϕ ⇒ ψ

Γ; {ϕ; emp}{ {ψ ; emp} | skip

Frame

{ϕ; P}{ {ψ ;Q} | c
{

ϕ; P ∗ R
}

{ {ψ ;Q ∗ R}
�

�

� c

Read

∀y.Γ; {ϕ ∧ y = e; (x + ι) 7→ e ∗ P}{Q | c

x ∈ ProgVars y ∈ ProgVars \ Vars(Γ)

Γ;

{

ϕ; (x + ι) 7→ e ∗ P
}

{Q

�

�

� let y = ∗(x + ι); c

Write

Γ; {ϕ; (x + ι) 7→ e ∗ P}{ {ψ ; (x + ι) 7→ e ∗Q} | c

Vars(e) ⊆ ProgVars

Γ; {ϕ; (x + ι) 7→ e ′ ∗ P} {
{

ψ ; (x + ι) 7→ e ∗Q
}

| ∗(x + ι) = e; c

Alloc

Γ;
{

ϕ; [y,n] ∗
(

(y + i) 7→ ti
)

0≤i<n ∗ P
}

{
{

ψ ; [x ,n] ∗
(

(x + i) 7→ ei
)

0≤i<n ∗Q
} �

� c x ∈ EV(Γ)

Γ; {ϕ; P}{
{

ψ ; [x ,n] ∗
(

(x + i) 7→ ei
)

0≤i<n ∗Q
} �

�

� let y = malloc(n); c

Call

∀xi ,νj .∃ωk ; {ϕ
′; P}{ {ψ ′; S} | f (xi )

Γ ∪· ∀σ (ωi ); {[σ ]ψ
′ ∧ ϕ; [σ ]S ∗ R}{Q | c

⊢ ϕ ⇒ [σ ]ϕ ′ dom (σ ) = {xi ,νj ,ωk }

σ (xi ) ∈ e[Γ] σ (νj ) ∈ κ[Γ]

Γ;

{

ϕ; [ σ ] P ∗ R
}

{Q

�

�

� f (σ (xi )); c

Open

Γ ∪· ∀ωjk ; [ti/νi ]
{

ϕ ∧ ej ∧ χj ; R j ∗ P
}

{Q

�

�

� c j for all j=1..r

pα (νi ) :
〈

ej ,
{

ωjk , χj
}〉

R j j=1..r s.t. ωjk < Vars(Γ),GV(ti ) = �

Γ;

{

ϕ; pα (ti ) ∗ P
}

{Q

�

�

�

if ([ti/νi ]e1) {c1}

else if ([ti/νi ]e2) {c2} else · · ·

Close

Γ ∪· ∃ωjk ; P{ [ti/νi ]
{

ϕ ∧ ej ∧ χj ; R j ∗Q
}

�

�

� c j for some j ∈1..r

Predicate pα (νi ) :
〈

ej ,
{

ωjk , χj
}〉

R j j=1..r s.t. ωjk < Vars(Γ)

Γ; P{
{

ϕ; pα (ti ) ∗Q
} �

�

� c

Fig. 3. Selected declarative rules of SSL. The choice of greyed parts is determined by a proof search strategy.

Most of the rules in Fig. 3 (Read, Write, Alloc, Open, and Call) are operational: when read
bottom-up, they advance the synthesis by emitting parts of the program and reducing its goal to
their premises. Perhaps the most interesting of those is the Call rule, which synthesises procedure
calls. The rule combines SL-style framing, with R as the frame, and substitution of actual into formal
parameters via σ , which is also applied to the procedure f ’s postcondition. Existential variables in
the procedure’s environment are renamed to fresh ghost variables in the second premise of the rule.
Formal parameters xi of f are mapped to program expressions e[Γ] using program variables of Γ,
and ghosts νj are mapped to logical terms κ using any variables of Γ. The rule Emp is a terminal one,
and, when applied, corresponds to a successful synthesis of a program branch: empty heaps in both
pre/postconditions mean that there is nothing more for a program to do, assuming the constraints
ϕ ⇒ ψ accumulated in pure parts hold. Finally, the rules Frame and Close are structural ones:
they do not emit a part of the program but rather change the shape of the goal, possibly making
other rules applicable. For instance, Frame removes similar parts of the symbolic heap from the
pre/postcondition, eventually enabling Emp, while Close unfolds a predicate instance in the goal’s
postcondition, replacing its occurrence pα (ti ) by p’s jth clause (for some j), thus revealing more
information about the structure of the expected final heap and potentially enabling Alloc.
The left part of Fig. 4 shows an implementation of sll_copy in SusLang synthesised via SSL

rules as a byproduct of deriving a proof for specification (9).

3.2 From Proof Derivations to Proof Trees

The presentation of the rules in Fig. 3 is declarative and, thus, is intentionally non-deterministic: it
does not immediately provide an exact synthesis algorithm that tries to apply the rules in a certain
order. In fact, such an order can be determined by multiple decisions: for instance, which heaplet of
the form (x + ι) 7→ e is chosen for an application of a rule Read in a precondition of a current goal,
or a call to what procedure f has been synthesised by applying Call. Indeed, an application order
required for a valid derivation is exactly what a synthesis algorithm aims to discover. We refer the
reader to the existing work on deductive program synthesis for a survey of existing techniques for
finding valid derivations efficiently (Itzhaky et al. 2021; Kneuss et al. 2013).
Let us discuss how to encode a valid SSL derivation, once it is built by the synthesis algorithm.

The greyed fragments in Fig. 3 (on the previous page) indicate, for each rule, in its conclusion, the
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1 void sll_copy (loc r) {

2 let x2 = *r;

3 if (x2 == 0) { }

4 else {

5 let v = *x2;

6 let nxt = *(x2 + 1);

7 *r = nxt;

8 sll_copy(r);

9 let y12 = *r;

10 let y2 = malloc(2);

11 *r = y2;

12 *(y2 + 1) = y12;

13 *y2 = v;

14 }

15 }

{emp} ⤳ {emp}

⟨READ r, 0, x, x2⟩

⟨OPEN sll(x2, s)⟩

⟨FRAME r ↦ 0⟩

⟨CLOSE sll(0, ∅), 1⟩

⟨ALLOC ([y, 2] ∗ y ↦ v′ ∗ (y+1) ↦ nxt′), y2⟩

⟨READ x2, 0, v, v⟩

⟨READ x2, 1, nxt, nxt⟩

⟨WRITE r, 0, nxt⟩

⟨CALL (r ↦ nxt ∗ sll(nxt, s1)), [x ↦ nxt, s ↦ s1], sll_copy⟩

⟨CLOSE sll(y, s), 2⟩

⟨READ r, 0, y′, y12⟩

… about 10 more rule applications, ending with ⟨EMP⟩

{r ↦ x ∗ sll(x, s)} ⤳ {r ↦ y ∗ sll(x, s) ∗ sll(y, s)}

{r ↦ x2 ∗ sll(x2, s)} ⤳ {r ↦ y ∗ sll(x2, s) ∗ sll(y, s)}

{r ↦ 0} ⤳ {r ↦ y ∗ sll(0, ∅) ∗ sll(y, s)}

{r ↦ 0} ⤳ {r ↦ 0 ∗ sll(y, ∅)}

{r ↦ x2 ∗ [x2, 2] ∗ x2 ↦ v ∗ (x2 + 1) ↦ nxt ∗ sll(nxt, s1)} ⤳ {…}

{r ↦ x2 ∗ [x2, 2] ∗ x2 ↦ v ∗ (x2 + 1) ↦ nxt ∗ sll(nxt, s1)} ⤳ {…}

{r ↦ x2 ∗ [x2, 2] ∗ x2 ↦ v ∗ (x2 + 1) ↦ nxt ∗ sll(nxt, s1)} ⤳ {…}

{r ↦ y′ ∗ sll(y′, s1) ∗ [x2, 2] ∗ x2 ↦ v ∗ (x2 + 1) ↦ nxt ∗ sll(nxt, s1)} ⤳ {…}

{r ↦ y12 ∗ sll(y12, s1) ∗ sll(nxt, s1) ∗ …} ⤳ {sll(y, s) ∗ …}

{sll(y12, s1) ∗ …} ⤳ {[y, 2] ∗ y ↦ v′ ∗ (y + 1) ↦ nxt′  ∗ sll(nxt′, s′)} ∗ …}

{[y2, 2] ∗ y2 ↦ - ∗ (y2 + 1) ↦ - ∗ sll(y12, s1) ∗ …} ⤳ {[y, 2] ∗ y ↦ v′ ∗ (y + 1) ↦ nxt′  ∗ sll(nxt′, s′)} ∗ …}

⟨EMP⟩

⟨CLOSE sll(y, ∅), 1⟩

{r ↦ 0} ⤳ {r ↦ 0}

{ r ↦ nxt ∗ [x2, 2] ∗ x2 ↦ v ∗ (x2 + 1) ↦ nxt ∗ sll(nxt, s1) } ⤳ {…}

Fig. 4. Singly-linked list copying in SuSLik: synthesised code (left) and simplified proof tree (right).

components of the pre- and postcondition of the goal (and in the case of Close, in the rule’s premise,
a clause index) that need to be known in order to determine how exactly the rule’s application has
reduced a goal to concrete subgoals. In other words, knowing a tree of rule applications (i.e., a proof
tree) rooted in the initial goal, as well as the greyed fragments for each of the rule applications in it,
makes it possible to fully restore the synthesis derivation for that goal and also the program that
was generated. We can encode SSL proof trees as values of the following recursive data type τssl:

ProofTree (Stepssl) τssl ::= ⟨Sssl,τssl⟩

Stepssl Sssl ::= ⟨READ,x , ι, e, y⟩ | ⟨CALL, P ,σ , f ⟩ |
〈

OPEN, pα (ti )
〉

|
〈

CLOSE, pα (ti ), j
〉

| ...

(10)
A node in a proof tree τssl is a pair, composed of a proof step and a list of the node’s children
(an empty list means an application of a terminal rule, e.g., Emp). We define a proof tree so it is
parametric in the payload of its nodes; in the case of SSL, this payload is the individual proof
steps of the synthesis logic (Stepssl). SSL proof steps Sssl couple the name of the applied rule with
the components of the goal in its conclusion and other necessary parameters that control rule
application non-determinism. The right part of Fig. 4 shows an example of a (simplified) valid
proof tree for deriving an implementation of sll_copy, whose nodes contain concrete proof steps.4

For the sake of demonstration, the tree in Fig. 4 also shows how applying the proof rules in the
tree’s nodes transforms the synthesis goal. For example, the left branch of the tree shows the
derivation of the then-branch of sll_copy, which replaces an instance sll(x2, s) with its first clause,
thus deducing x2 = 0 ∧ s = ∅ and performing the corresponding substitutions (elided from the
tree for brevity). What follows in the proof tree are the unfoldings, via the Close rule, of the two
predicate occurrences in the postcondition, which are replaced by the first clause from definition (8).

4We omit the synthesised program part ł. . . | cž from the tree, as we will see shortly how it can be recovered from it.
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The remaining derivation is completed via an application of the Frame and Emp rules. The most
interesting part in the right branch is an application of the Call rule, which is łtriggeredž by the
symbolic heap r 7→ nxt ∗ sll(nxt, s1) in the precondition (highlighted by grey boxes), as captured
by the corresponding proof step.

Recovering the program from a proof tree. With an initial goal and its valid proof tree at hand, we
can now easily generate the synthesised program by defining the following proof tree evaluator :

Esynt : Goal × ProofTree (Stepssl) → Prog

Esynt (G, ⟨Sssl,τssl⟩) ≜ let

(

G,k
)

= Isynt Sssl G in

let c = map Esynt (zip G τssl) in

k c

where

Isynt : Stepssl → Goal→ Goal∗ × (Prog∗ → Prog)

(11)

In the definition above, the source proof tree evaluator takes a tree node and a goal and applies a
proof step interpreter Isynt to the proof step in the node and the goal. The result of this application

is a sequence of subgoals G and a program-constructing function k , whose arity matches the length

of G. The evaluator then proceeds to generate the residual programs by processing the sub-goals

G with the corresponding subtrees τssl (the lengths of the two sequences are assumed to be the
same, which is the case for valid proof trees). Finally, it applies k to the resulting residual programs
c , obtaining the result. The type of Isynt is indicative of its logic. As an example, this how it is
implemented for the proof steps corresponding to applications of Emp and Read:

Isynt ⟨EMP⟩ _ ≜ ([ ], λ [ ].skip)

Isynt ⟨READ,x , ι, e, y⟩ (Γ; {ϕ; (x + ι) 7→ e ∗ P} { Q) ≜

([∀y.Γ; {ϕ ∧ y = e; (x + ι) 7→ e ∗ P} { Q], λ [c].let y = ∗(x + ι); c)

That is, when applied to ⟨EMP⟩ and any goal, Isynt emits an empty list of subgoals to derive, as well
as a 0-arity function (i.e., a constant), which returns the program skip. For ⟨READ,x , ι, e, y⟩, the step
interpreter returns a single modified goal, as well as a function that prepends the read-operation
let y = ∗(x + ι) to the residual program. Looking at the remaining rules in Fig. 3, it is easy to see
that the arity of the function returned as a second component of Isynt’s result matches the number
of subgoals in its first component and in the premise of the corresponding rule. Let us remark that
neither Isynt nor Esynt need to check that their arguments are well-formed, as they are assumed to
be applied only to proof trees that are valid for the corresponding goals.

3.3 Towards Generating Target Proofs from Synthesis Proof Trees

Having seen how one can evaluate a synthesis proof tree to a resulting program, it is natural to
attempt to use a similar approach to evaluate it to another proof tree that can be rendered into
a proof script in a certified verifier. As a tentative certification target, let us take Hoare Type
Theory (HTT) by Nanevski et al. (2010)Ða foundational implementation in Coq of a Separation
Logic for an idealised C-like language with higher-order functions. The left part of Fig. 5 shows an
encoding of the singly-linked list predicate (8), specification (9) and an implementation of sll_copy
from Fig. 4 in HTT. Leaving the explanation of most of the intricacies of HTT until Sec. 5, let us
point out a few differences between logical assertions in the language of SSL and those of HTT.
First, as a way to enable reasoning by reflection in Coq, HTT’s SL-style assertions mention heaps
explicitly, making them the subject of constraints that define their shapes. In this setting, SL’s
separating conjunction (∗) is encoded as a disjoint union (•) of explicit symbolic heaps, which can
be additionally constrained via inductive predicates (as in, e.g., sll nxt s1 h1 at line 6 of Fig. 5).
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1 (* Inductive heap predicate for SL lists *)

2 Inductive sll (x : ptr) s h : Prop :=

3 | sll_1 of x == null of s = [::] ∧ h = Unit

4 | sll_2 of (x == null) = false of

5 ∃ (v : nat) s1 nxt h1, s = v :: s1 ∧

6 h = x 7→ v • x+1 7→ nxt • h1 ∧ sll nxt s1 h1.

7

8 (* Specification for SLL copying *)

9 Definition sll_copy_spec :=

10 ∀ (r: ptr), {(vghosts : ptr * seq nat)},

11 STsep(

12 (* Precondition *)

13 fun h => let: (x, s) := vghosts in

14 ∃ h1, h = r 7→ x • h1 ∧ sll x s h1,

15 [ (* Postcondition *)

16 vfun (_: unit) h =>

17 let: (x, s) := vghosts in

18 ∃ y h1 h2, h = r 7→ y • h1 • h2 ∧

19 sll x s h1 ∧ sll y s h2]).

20

21 (* SLL copying implementation *)

22 Program Definition sll_copy : sll_copy_spec :=

23 Fix (fun (sll_copy : sll_copy_spec) r => Do (

24 x2 <-- @read ptr r;

25 if x2 == null

26 then ret tt (* return unit *)

27 else

28 v <-- @read nat x2;

29 nxt <-- @read ptr (x2+1);

30 r ::= nxt;;

31 sll_copy r;;

32 y12 <-- @read ptr r;

33 y2 <-- allocb null 2;

34 r ::= y2;;

35 (y2+1) ::= y12;;

36 y2 ::= v;;

37 ret tt)).

38 Next Obligation.

39 (* Initialise HTT proof context *)

40 apply: ghR; move=>h_self[x2 s][h'][->]Hsll _.

41 (* Read *) apply: bnd_readR=>/=.

42 (* Open (unfold) SLL instance in the precondition *)

43 case: Hsll; case: ifP; move=>IfCond//_;

44 [move=>[?]->|move=>[v][s1][nxt][h1][?][->]H1].

45 (* Case: empty list (x2 = 0) *)

46 - move:IfCond=>/eqP->. (* substitute x2 7→ 0 *)

47 (* Emp *) apply: val_ret; ∃ null, Unit, Unit;

48 (* Close (unfold) SLL instance in postcondition *)

49 repeat split=>//=; do?[hhauto|constructor 1].

50 (* Case: non-empty list *)

51 - (* Read *) apply: bnd_readR=>//=.

52 (* Read *) apply: bnd_readR=>//=.

53 (* Write *) apply: bnd_writeR=>//=.

54 (* Call *)

55 rewrite (joinC _ h1) joinA; apply: bnd_seq.

56 apply: (gh_ex (nxt, s1)); apply: val_do=>//=_.

57 ∃ h1; split=>//=.

58 move=>h_call [y12][h11][h21][->][H2 H3]_.

59 (* Read *) apply: bnd_readR=>//=.

60 (* Alloc *) apply: bnd_allocbR=>y2//=.

61 (* Write *) apply: bnd_writeR=>//=.

62 (* Write *) apply: bnd_writeR=>//=.

63 (* Write *) apply: bnd_writeR=>//=.

64 (* Emp *)

65 apply: val_ret; rewrite defPtUnO; case/andP=>?.

66 ∃ y2, (x2 7→ v • (x2+1) 7→ nxt • h11),

67 (y2 7→ v • (y2+1) 7→ y12 • h21).

68 repeat split=>//=; first by hhauto.

69 + (* Close SLL instance 1 in postcondition *)

70 by constructor 2=>//=; ∃ v, s1, nxt, h11.

71 + (* Close SLL instance 2 in postcondition *)

72 constructor 2=>//=; first by apply negbTE.

73 by ∃ v, s1, y12, h21.

74 Qed.

Fig. 5. Copying a singly-linked list in HTT/Coq: definitions and specification (left), and proof (right).

Specifications distinguish between program-level variables (e.g., r at line 10) and ghost (i.e., logical)
ones, with the latter passed as a single tuple (cf. vghosts at the same line). Similarly to SusLang,
the language of HTT supports recursion via an explicit Fix operator, but requires the specification
of a recursive function (i.e., its Hoare type) to be declared explicitly, as shown at line 23 of Fig. 5.
The right part of Fig. 5 shows a hand-crafted proof script for verifying the implementation of

sll_copy against its specification sll_copy_spec. The verification conditions in HTT are discharged
by a forward-style symbolic execution, which is driven by the goal’s precondition and the program
structure, while maintaining assumptions about the shape of the heap and relations between
symbolic values in Coq’s native proof context and performing, when required, global substitutions
in both the entire goal and the proof context. Without going any further into the details of HTT-
powered verification, let us notice that the hierarchy of the proof (highlighted by offsets and bullet
separators - and +) is similar to the structure of the proof tree in Fig. 4, and the proof’s individual
steps loosely resemble the corresponding steps in SSL proof tree, as indicated in the comments.
Following this similarity, we start by defining the data type for HTT proof trees as follows:

ProofTree (Stephtt) τhtt ::= ⟨Shtt,τhtt⟩

Stephtt Shtt ::= a sequence of HTT/Coq tactic applications

Let us now define an evaluator, similar to (11), but for translating source trees to target trees:
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Ehtt : ProofTree (Stepssl) → ProofTree (Stephtt)

Ehtt ⟨Sssl,τssl⟩ ≜ let Shtt = Ihtt Sssl in

let τhtt = map Ehtt τssl in

⟨Shtt,τhtt⟩

where

Ihtt : Stepssl → Stephtt

(12)

HTT employs advanced proof automation to manage the proof context and the goal for each step
of the forward symbolic execution, driven by the verification goal precondition and the program.
For instance, the proof step advancing the symbolic execution past the read statement at line 24 of
Fig. 5 corresponds to line 41 of the proof. With this in mind, we can attempt to start defining our
proof step interpreter as follows:

Ihtt ⟨READ,x , ι, e, y⟩ ≜ [apply: bnd_readR=>/=.]

The reason why the right-hand side of the definition above does not utilise any of the components
of the source step is because the information conveyed by the program statement (i.e., the location
from which the read is performed) is sufficient for the verifier’s automation to determine the
remaining parts of the goal that need to be checked and transformed accordingly.

3.4 Contexts for Tracking Dependencies in Target Proofs

Consider the state of the HTT proof of sll_copy after executing the verification script from Fig. 5
up to line 43, as rendered in the display below.

r, x2 : ptr

h' : heap

Hsll : sll x2 s h'

=========================================================================

verify (r 7→ x2 • h') (if x2 == null then ret tt else v <-- read x2; ...)

[vfun _ h => ∃ y h1 h2, h = r 7→ y • h1 • h2 ∧ sll x2 s h1 ∧ sll y s h2]

HTT collects assumptions about the shape of the heap as named hypotheses in the native Coq
context. Therefore, the Coq proof context (above the ==== line) will contain a hypothesis named
Hsll asserting that the symbolic heap h' featured in the goal’s precondition r 7→ x2 • h' is a
singly-linked list starting at x2 that has the sequence s as its payload (i.e., sll x2 s h'). The proof
script steps at lines 43 and 44 mimic the effect of the source step ⟨OPEN, sll(x2, s)⟩ from the source
proof tree (cf. Fig. 4), creating two subgoals with the preconditions adapted according to the two
clauses of the predicate definition (8). It is easy to notice that nothing in the source step indicates
that the predicate occurrence sll(x2, s) to be unfolded in the source poof corresponds to the Coq
hypothesis named Hsll from the target proof: this knowledge is backend-specific.
To accommodate this and similar scenarios requiring the proof translator to keep track of

definitions and dependencies between components in the source and target proofs, which are
paramount in our case studies, we enhance our proof evaluator from Sec. 3.3, making it aware of
the backend-specific proof context. The modified definition is now as follows:

Ehtt : ProofTree (Stepssl) × Contexthtt → ProofTree (Stephtt)

Ehtt (⟨Sssl,τssl⟩ , ctx) ≜ let (Shtt, ctx) = Ihtt Sssl ctx in

let τhtt = map Ehtt (zip τssl ctx) in

⟨Shtt,τhtt⟩

where

Ihtt : Stepssl → Contexthtt → Stephtt × Context
∗
htt

(13)
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As the type of the new version of Ihtt indicates, the proof step interpreter now takes a target-specific
proof context and a source step, and emits a target step and a sequence of proof contexts, the length
of which matches the number of subgoals of the SSL rule corresponding to the source step. As an
example, let us sketch the HTT-specific logic of Ihtt on the OPEN step from the proof tree in Fig. 4:

Ihtt ⟨OPEN sll(x2, s)⟩ ctx =

( [

case: Hsll; case: ifP; move=>IfCond//_;

[move=>[?]->|move=>[v][s1][nxt][h1][?][->]H1].

]

, [ctx, ctx ′]

)

where Hsll = ctx(sll(x2, s))

ctx ′ = ctx ∪ [sll(nxt, s1) 7→ H1]

As the display above shows, the generated proof steps in HTT perform case analysis on the Coq
hypothesis named Hsll, which corresponds to unfolding the predicate occurrence sll(x2, s) in the
goal’s precondition performed by the OPEN step in the source proof in Fig. 4. The witness Hsll
for the occurrence has been recorded upon initialisation of the proof context ctx at the beginning
of the target proof generation (cf. line 40 of Fig. 5), and it is retrieved when translating the OPEN
step. Notice that the interpreter Ihtt generates two different proof contexts for the two subtrees.
The latter one will be used for a łnon-empty listž branch (lines 50ś73), so it is updated with an
entry [sll(nxt, s1) 7→ H1]. This new entry indicates that the predicate occurrence sll(nxt, s1) in the
source proof is described by the hypothesis H1 : sll nxt s1 h1 in the target proof. This piece of
knowledge will become essential when generating HTT proof steps corresponding to the source
step ⟨CALL sll(nxt, s1), [x 7→ nxt, s 7→ s1], sll_copy⟩. Specifically, it will allow the target script
to correctly use the heap h1 (such that sll nxt s1 h1 holds) as an existential witness at line 57 of
Fig. 5 to satisfy the precondition of the recursive call to sll_copy r at line 31 of the implementation.

Expectedly, the mapping from source predicate occurrences to the target proof hypothesis is not
the only piece of information that needs to be tracked for proof generation. We will elaborate on
other components of HTT-specific proof contexts and their initialisation in Sec. 5.

3.5 Deferring Target Proof Steps

Consider lines 66-67, close to the end of the proof script in Fig. 5. As HTT implements forward
symbolic execution, the goal of these steps is to provide existential witnesses for the head pointer
y of the newly created list from the postcondition of the spec (9), as well as two heaps representing
the linked lists: the original one sll(x2, s) and the new one sll(y, s), thus proving the postcondition
by means of symbolic heap entailment. Constructing this target HTT proof step from the source
proof is challenging. As the proof tree in Fig. 4 (right) shows, the information about the shape
of the heap constrained by, e.g., sll(y, s) in the postcondition, is obtained much earlier (wrt. to the
synthesised/verified program) in the source proof, by an application of CLOSE at the bottom of the
right branch, preceding the synthesis of the malloc statement (via ALLOC) in the code shown in
Fig. 4 (left). In contrast, in the target proof, a step that exploits this information (by instantiating
the existential) takes place near the end of the proof branch, when proving the entailment.
A careful reader may notice that this scenario is complicated even more by the fact that, by

the time we need to provide the witness heap revealed by the CLOSE step from the source proof,
the logical (ghost) variable y has been replaced, in all assertions involving it, by a program-level
variable y2, storing the head pointer of the newly allocated list. This is why it is insufficient to
simply defer some target proof steps until the later entailment checking stage: it also should be
possible to adapt them to all changes in the proof context (e.g., variable substitutions) that can take
place after their emission but before their application in the target proof. We address this challenge
in the final version of our generic proof evaluator, defined in Fig. 6.
The evaluator Et is now parameterised by a target backend t (e.g., HTT), which provides the

definitions of a proof context Contextt, proof step Stept, and source step interpreter It. As a minor
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Et : ProofTree (Stepssl) × Contextt × DeferredStept → ProofTree (Step∗t )

Et (⟨Sssl,τssl⟩ , ctx,D) ≜ let (St, ctx,D
′) = It Sssl ctx in

let D ′′ = λctx . ((D ctx) ++ (D ′ ctx)) in

let τt = map Et (zip3 τssl ctx (repeat |τssl | D
′′)) in

if |τt | = 0 then

〈

St ++ (D
′′ ctx), []

〉

else

〈

St,τt

〉

where

It : Stepssl → Contextt → Step∗t × Context
∗
t × DeferredStept

DeferredStept ≜ Contextt → Step∗t

Fig. 6. Generic proof evaluator.

change to simplify the implementation, the payload in the target proof tree is now made to be a
sequence of target steps rather than an individual step. The most significant change comes in a
new parameter D of the evaluatorÐso-called deferred proof steps. As the type DeferredStept of this
component shows, deferred steps are encoded as functions from proof contexts to sequences of
target proof steps. In a normal execution, as long as the source proof tree node still has children,
the evaluator simply accumulates the deferred steps by composing already accumulated ones with
those emitted by the interpretation (via It) of the node’s payload in a way resembling continuation-
passing style. Those accumulated deferred steps are all released once the proof tree branch reaches
its end (detected as |τt | = 0), which corresponds to the entailment checking stage in the forward
execution proofs. Thanks to their type, deferred steps can access the most up-to-date proof context
at the moment of their application, thus circumventing the variable/hypothesis issue outlined
above. Indeed, in order to bootstrap the source tree evaluation, the implementer needs to provide
the initial deferred steps, which are most commonly just a trivial function λ_.[ ].

In Sec. 5, we will elaborate on a concrete scenario of using deferred steps in proof translation to
implement late entailment checking in the generated HTT certificates for SSL proofs.

4 A FRAMEWORK FOR TRANSLATING SYNTHESIS PROOFS

In this section, we focus on the intricacies of implementing the general evaluator infrastructure for
SuSLik, as well as some shared implementation challenges for all Coq-based backends.5

4.1 Constructing Proof Trees

SuSLik’s deductive approachmeans that the sequence of proof steps needed to verify the constructed
program is inherent in the synthesis itself. However, because SuSLik’s original implementation was
geared more towards synthesising the program and less towards accumulating the intermediate
deductive steps in a recoverable format, we had to modify the synthesis procedure to more readily
capture the run-time information needed to generate proofs.
A synthesis goal may be solved by any number of candidate rule applications, which in turn

generate any number of subgoals. SuSLik uses an And/Or tree (Martelli and Montanari 1973) to
express these alternating layers, where proof goals are represented as or-nodes, and candidate rule
applications as and-nodes. An Or-node can be viewed as a disjunction, where the node succeeds if
one of its children (i.e., candidate rule applications) succeeds. An And-node can likewise be treated
as a conjunction, where all of its children (i.e., subgoals) must succeed for the node to succeed.

Whenever an And-node is generated during synthesis, we capture it along with any knowledge
generated by the corresponding rule application that would be useful when reconstructing a proof
later. For example, for the Read rule (Fig. 3) we capture the names of the operation’s source and

5A detailed overview of the framework is available in the first author’s MSc thesis (Watanabe 2021).
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1 // Proof trees

2 case class ProofTree[S](step: S, children: List[ProofTree[S]])

3 type Target

4 // Target proof context

5 trait Context[T <: Target]

6 // Deferred target proof step

7 type Deferred[T <: Target, C <: Context[T]] = C⇒ List[T]

8 // Source step interpreter

9 trait Interpreter[T <: Target, C <: Context[T]] {

10 def apply(value: SSLStep, ctx: C): (List[T], List[C], Deferred[T,C])

11 }

12 // Source proof tree evaluator (provided)

13 class Evaluator[T <: Target, C <: Context[T]] {

14 val interpret: Interpreter[T,C]

15 def compose(d1: Deferred[T,C], d2: Deferred[T,C]): Deferred[T,C]

16 def apply(node: ProofTree[SSLStep], ctx: C, deferred: Deferred[T,C]): ProofTree[T]

17 }

Fig. 7. Scala encoding of main components of evaluator for SSL proof trees in SuSLik.

destination variables, along with the name of the ghost variable that was instantiated by the read,
as in definition (10). By collecting these nodes, we capture all paths explored in the set of possible
rule application sequences, including those that failed.

In addition to capturing information from each step in the proof search, we also discard the steps
that failed, keeping only those that contributed to the final synthesised program. We remove failed
branches by keeping track of which terminal rule applications failed during synthesis, and then for
each one, retracing and pruning ancestors in bottom-up fashion until we reach an Or-node where
one of the other candidates succeeded. After this pruning, we are left with an And/Or tree where
every Or-node has a single corresponding And-node (i.e., every subgoal was solved by applying a
single rule out of all candidates). We translate this to our source proof tree structure, collapsing
these And/Or node pairs into single nodes.
The resulting tree is a compact representation of the steps taken to derive the program, with

each node storing an instance of the datatypes (10) that contain proof information.

4.2 Common Elements of Backend-Specific Translators

SuSLik is implemented in Scala, and so is our certification framework for it. Fig. 7 shows our encod-
ing of the type signatures for the main components of the translator from definition in Fig. 6. Our
implementation provides concrete definitions of the ProofTree data type and the generic Evaluator.
The clients of the framework are responsible for implementing the backend-specific components
for generating a target proof ProofTree[T], i.e., a proof Context[T], and an Interpreter instance.
In the rest of this section, we highlight some implementation insights we observed consistently
across all the backends and have factored out to common libraries. We focus on instrumenting pro-
gram and proof generation; predicate definitions and program specifications are straightforwardly
translated from their representations during the synthesis phase.

1 // Source proof representation

2 case class FreeStep(ptr: Var, block: Block) extends S

3 // Suslang representation

4 case class Free(ptr: Var) extends SusLang

5 def proofToSuslang(step: FreeStep) = Free(step.ptr)

6 // HTT representation

7 case class Dealloc(ptr: HTTVar, offset: Int) extends HTT

8 def proofToHTT(step: FreeStep) =

9 for (i← 0 until block.size) yield Dealloc(ptr, i)

Fig. 8. Two alternative translations of the Free rule.

4.2.1 Translating Programs. For producing pro-
grams in the syntax of each verifier backend, our
first instinct was to translate the synthesised Sus-

Lang programs into the desired syntax. However,
we ultimately found it more reliable to reuse the
infrastructure we developed for proof generation,
that is, defining a program-emitting proof inter-

preter. This is a generalisation of an earlier tech-
nique we saw in Sec. 3.2; just as we showed how a SusLang program can be recovered from the
proof tree, we can do the same for programs expressed in alternative backend-specific languages.
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Consider the Free rule applied to a memory block of size n referenced by a pointer x. While this
corresponds to the SusLang statement free(x) (which makes no reference to n), in the language of
HTT it corresponds to a sequence of n dealloaction statements. The difference is that memory is
freed in SusLang at the level of entire allocated blocks, while HTT’s program language does so at
the level of individual cells. This example demonstrates that one cannot simply generate, e.g., HTT
programs simply by translating the SusLang program. Rather, the proof tree should be used as the
source of the additional information, as shown in Fig. 8. Note how the source proof representation
is more descriptive than either of the target representations. By generating both program and proof
from the same source in this way, we ensure they are structurally aligned, and avoid relying on a
specialised artefact of the synthesis implementation.

4.2.2 Backend-Specific Tactic Libraries. Since all three backends we examined are based on some
version of Separation Logic, most of the operational SSL rules (cf. Read,Write, Alloc, Free in
Fig. 3) have counterpart Coq tactics in the backend frameworks that we can map to directly when
implementing the interpreter. However, the correspondence is not always so straightforward. For
some rules, context-dependent preparation and clean-up is required before and after invoking the
main lemma.We deal with these discrepancies bywriting auxiliary Coq tactics in Ltac, Coq’s Turing-
complete tactic language (Delahaye 2000), to automate the pre/post-processing steps uniformly.
Take the Call rule application in Fig. 5, whose HTT implementation starts in the following way:

rewrite (joinC _ h1) joinA ; apply: bnd_seq.

The sequence of rewrites before the application of bnd_seq (which is the HTT implementation of
the rule for decomposing sequential composition) rearranges the heaplets in the Coq context so
that those affected by the imminent function call are grouped together on the left-hand side of the
rest, but the suitable rewrite sequence depends on each call instance. Since SuSLik does not reason
about heaplets in an order-sensitive way, it is best to handle such fine-grained bookkeeping at the
Coq level, via a tactic that applies this logic in a generic way to any call heap:

Ltac ssl_call_pre h := prepare_call_heap h; rewrite ?joinA -?(joinA h).

Here, prepare_call_heap is an auxiliary tactic that pattern-matches on the heap to perform the
actual rearranging; the takeaway is that our proof interpreter need only invoke ssl_call_pre with
the desired subheap as an argument. For each target backend, we follow this approach and design
similar tactics for the relevant rules to create a small library. This collection of łwrapper tacticsž
serves as an interface to the underlying target framework that is tailored to the way SSL reasons
about programs, leading to more predictable behaviour and readable proof scripts.

4.2.3 Discharging Pure Facts from SL Proofs. When performing search for a proof, SuSLik fre-
quently checks whether the pure part of a goal’s precondition entails that of its postcondi-
tion (as in, e.g., rule Emp in Fig. 3) by invoking an SMT solver, which acts as a validity oracle.

Lemma pure_example k2 vx2 lo1x :

vx2 <= lo1x -> 0 <= vx2 -> vx2 <= 7 ->

0 <= k2 -> ¬(vx2 <= k2) -> k2 <= 7 ->

k2 <= (if vx2 <= lo1x then vx2 else lo1x).

Fig. 9. A pure entailment lemma.

To use a fact returned by the oracle in the Coq proof, we
first capture the entailment in the source proof tree, and
decompose it so that, for every postcondition conjunct C ,
we have one entailment from the set of all precondition
conjuncts whose variable set intersects with C’s. Fig. 9

shows one such lemma, derived from an oracle-validated pure entailment from one of our bench-
marks. For the most part, the extracted lemmas (which, for our benchmarks, largely consist of
arithmetic equalities and inequalities) can be solved by a certified solver, such as CoqHammer (Cza-
jka and Kaliszyk 2018), Micromega (Besson and Makarov 2020), or SMTCoq (Ekici et al. 2017). For
example, CoqHammer can solve the lemma from Fig. 9:

Proof. intros. hammer. Qed.
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In our implementation, by default we emit all such lemmas with accompanying proofs that invoke
CoqHammer, which suffices for our standard benchmarks. Sec. 8.2 discusses our handling of the
lemmas in more advanced cases when CoqHammer is unable to solve them.

Once we obtain our lemmas, we use a Coq feature that allows the user to extend the hint database
used for automated proof search with additional lemmas. For instance, we can provide the above
lemma as a hint to the database ssl_pure:

Hint Resolve pure_example: ssl_pure.

This lets us use it in a proof search while verifying the correctness of the main program, e.g.,
eauto with ssl_pure. We similarly use the hint database to aid our automation tactics in Iris

(cf. Sec. 6) and VST (cf. Sec. 7), by adding framework-specific assumptions, such as predicate
inversion lemmas and valid integer ranges.

5 SYNTHESIS CERTIFICATION VIA HOARE TYPE THEORY

Our first concrete case study in certifying synthesised programs is via Hoare Type Theory (HTT) by
Nanevski et al. (2010), a framework that represents SL specifications in terms of dependently-typed
indexed monads (Nanevski et al. 2008).

5.1 HTT-Style Embedding of Separation Logic and Its Advantages

The task of defining a proof interpreter can be framed as one of bridging the impedance between
SuSLik’s mode of reasoning and that of the target backend. Naturally, the less impedance, the lower
the implementation cost. In our experience, the primary cause of such impedance is the chosen style
of SL embedding into Coq. For instance, both Iris and VST adopt a so-called shallow embedding of
SL propositions, defining the corresponding data types (called iProp in Iris and mpred in VST) for
their semantic models and encoding SL connectives as functions on those data types. In both Iris

and VST, the object languages are deeply embedded: programs being verified are represented via
instances of custom AST data types rather than as programs in Gallina, Coq’s own language.

In contrast, HTT adopts a more lightweight embedding style, encoding SL propositions directly
in terms of Coq’s propositions of the sort Prop, thus reusing most of Coq’s logical connectives. The
HTT-style embedding lets us represent SSL predicates as Coq’s inductive propositions, as shown
in lines 2ś6 of Fig. 5. This encoding of SSL propositions makes it possible to directly inject them
into the spatial assertions of a specification (represented via dependent Coq types), simplifying the
proof effort by giving us access to all of Coq’s regular tactics for reasoning about propositions. For
instance, recall, from Sec. 3.4, how unfolding a predicate occurrence in the precondition (the Open
rule in SSL) can proceed by case analysis on an instance of the inductive proposition sll x2 s h'

in Coq’s native proof context. Programs in HTT are shallowly embedded and are represented as
Gallina programs written in a monadic style. Thanks to this choice, in HTT boolean program
expressions and pure assertions have the same type and can thus be freely interchanged.
We will see in Sec. 6 how that compares to the proof burden in the case of Iris/VST-style

embedding of the logic and the object language.

5.2 Delayed Checking of Postcondition Entailment

While the HTT-style SL embedding makes proof generation pleasant for the most part, some details
of HTT preclude a fully straightforward proof translation. We have already seen one scenario that
requires tracking additional backend-specific knowledge via a proof context: Sec. 3.4 showed how
later steps need to refer to Coq hypothesis names instantiated in earlier steps. We also introduced
the need for deferred proof steps in Sec. 3.5, pointing to the delay between the step where SuSLik
applies the Close rule and the later step in the corresponding HTT proof that uses this knowledge.
We now elaborate further on this postcondition entailment checking processÐfirst, we describe in
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detail the information needed to check entailment; next, we show how using the proof context and
deferred steps in tandem gives us a principled approach to instrumenting it.

How HTT checks postcondition entailment. At the end of a proof branch in HTT, we are asked
to prove that the state of the heap after symbolically executing the program matches that of the
specification’s postcondition. Recall the shape of the postcondition heap from the spec (9):

{r 7→ y ∗ sll(x , s) ∗ sll(y, s)} (14)

To get a fuller picture of what information from the source proof tree is needed and when, for the
remainder of this section, let us reason from the HTT proof interpreter’s point of view. In particular,
suppose the interpreter has reached the terminal Emp rule application in the non-trivial case of the
proof, corresponding to the else-branch of the program. The proof state is as follows, such that
two predicate assertions are available to us as hypotheses, i.e., as items in the precondition:

...

h11, h21 : heap

H2 : sll nxt s1 h11

H3 : sll y12 s1 h21

==================================================================================================

∃ (y : ptr) (h1 h2 : heap), r 7→ y2 • x2 7→ v • (x2+1) 7→ nxt • h11 • y2 7→ v • (y2+1) 7→ y12 • h21 =

r 7→ y • h1 • h2 ∧ sll x2 s h1 ∧ sll y s h2

Let us hone in on the existential h2 and the associated predicate application, sll y s h2. This h2 is
a heap existential, a unique feature of HTT. The framework exploits the observation that the class
of heaps form a partial commutative monoid with the heap union operation, to encode heaplets
algebraically. The consequence is that a spatial assertion is expressed in HTT as an algebraic heap
equality. In particular, assertions that contain predicate applications must be existentially quantified
over the subheaps they describe such that their witnesses make the algebraic equality hold.

We can consult the proof tree in Fig. 4 on how to proceed, focusing on the SSL rules that pertain
to this subheap. First, Close unfolds the predicate occurrence in the post using the second clause:

{[y, 2] ∗ y 7→ v ′ ∗ (y + 1) 7→ nxt ′ ∗ sll(nxt ′, s′)}.

Then (at later stages of the proof, omitted from the figure), each of those heaplets is unified and
framed out with a matching heaplet in the precondition, hence the substitution [y 7→ y2,v ′ 7→ v,

nxt ′ 7→ y12, s′ 7→ s1]. Knowledge of these steps gives us everything we need to proceed.
Let us return to the HTT proof. First, we can derive a suitable existential heap witness for h2 by

fully applying the aforementioned steps; doing so tells us that h2 is eventually expanded to

y2 7→ v • (y2+1) 7→ y12 • h21

Notice how this expansion (provided as the witness in line 67 of Fig. 5) still references a heap variable
h21. This is the label for the subheap that corresponds to the nested sll occurrence that has started
as sll(nxt ′, s′) in our SSL proof; we can also observe the related hypothesis H3 : sll y12 s1 h21

in the Coq proof state shown above. This lets us make progress on the assertion sll y s h2 and
eventually solve it by evaluating, in a delayed fashion, the steps (expansion and unification) in the
order we encountered them in the source proof tree earlier.

Using the proof context and deferred steps. The example shows that solving the entailment requires
us to track the SSL rules that transform the predicate occurrences in the postcondition. Furthermore,
we observe how this information is useful for two purposes: (a) tracing the provenance of a predicate
application so that we may readily identify heap existential witnesses; and (b) determining the
appropriate proof steps that have to be applied to a Coq entailment goal (e.g., the one above) to
either solve it or make progress on it. These observations lead us to make use of the proof context
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for (a), and deferred steps for (b), all the while ensuring that the deferred step computations are

parametrised over a proof context so that (a) can be done as a part of (b).
We provide for (a) by keeping a map in the proof context, from predicate applications to either

their expanded clause assertion form (on encountering a Close) or their heap variable name (on
unification/frame steps). Then, whenever a witness is needed for some heap existential, we use the
map as a lookup table to obtain the maximally expanded subheap of the corresponding predicate
application. We implement (b) by emitting a deferred proof step on each encounter with a Close
or Frame rule, and composing them in the order they were encountered. When these deferred
steps are released at the end of a proof branch, they perform the necessary moves to discharge the
entailment subgoals. For instance, a deferred Close application applies a concrete jth constructor of
the inductive predicate (cf. Fig. 3) to obtain the corresponding assertion, and then instantiates its
existentials. Since the computation is parametrised over a proof context, it can refer to the lookup
table to obtain heap witnesses, within the computation itself.

6 SYNTHESIS CERTIFICATION VIA IRIS

Our second certification backend is the Iris framework for higher-order concurrent separation
logic (Jung et al. 2018). For the Iris backend, we translated SusLang programs to HeapLang (Jung
2020), an example language for heap-manipulating programs bundled with Iris.

6.1 Translating Predicates and Specifications

Iris has been designed as an extensible framework for developing domain-specific separation-style
logics for various languages with state and side-effects. Because of this, it adopts a shallow-style
embedding of SL and a deep embedding for the object language (cf. the discussion in Sec. 5.1).
Due to this dichotomy in the logic/language embedding, Iris maintains a distinction between
program-level expressions and specification assertions, and similarly between program variables,
which must have type val, and specification variables, which can use native Coq types such as Z.
This requires us to differentiate how we translate SSL expressions depending on the context in
which they are used in Iris, but does not otherwise impact the structure of the generated proofs.

A much more significant difference is the encoding of SSL predicates. While HTT represents
spatial assertions as Coq propositions of sort Prop, Iris uses an abstract type iProp to capture
assertions on the state of the heap (Jung et al. 2016). Any spatial predicates must therefore be
encoded as terms of this type. This distinction means that we can no longer encode heap predicates
as Coq’s native Inductive definitions. In particular, as iProp is not a valid Coq sort, we can no
longer declaratively inject an inductively defined predicate (of type Prop) into the type of spatial
assertions. One common way to implement inductive Iris predicates in Coq is by defining them
as Gallina functions that take the parameters of the predicate and then construct a term of type
iProp representing the complete assertion (Krebbers et al. 2017, ğ 3.2). Unfortunately, predicates
in SSL are defined in a way that facilitates the synthesis of if-else statements via the Open rule
(cf. Fig. 3), and encoding them as Gallina functions is not straightforward. Such functions must
always terminate, and this constraint is typically enforced by means of a syntactic check on the
function definition: recursive calls must always be on a structurally decreasing argument. A naïve
translation of an SSL predicate will not satisfy this constraint and will be rejected.
To overcome this hurdle, we explored two alternative ways to represent SSL predicates in Iris:

(1) It is possible to engineer an Iris encoding of inductive SSL predicates as Coq’s Fixpoint defi-
nitions by piggybacking on the mechanism of cardinality variables (cf. Sec. 3.1). Specifically,
numeric relations on the cardinalities present in the clauses of SSL predicates (as, e.g., in (8))
can be employed to provide a decreasing measure for well-formed recursive definitions in Coq.
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1 Inductive sll_card : Set :=

2 | sll_card_0 : sll_card

3 | sll_card_1 : sll_card -> sll_card.

4

5 Fixpoint sll (x: loc) (s: list Z)

6 (α: sll_card) { struct α } : iProp Σ :=

7 match α with

8 | sll_card_0 =>

9 ⌈(x = null_loc) ∧ (s = [])⌉

10 | sll_card_1 β =>

11 ∃ v s1 nxt,

12 ⌈¬(x = null_loc) ∧ (s = [v] ++ s1)⌉ ∗

13 x 7→ #v ∗ (x + 1) 7→ #nxt ∗

14 (sll nxt s1 β)
15 end.

(a) SLL predicate as a recursive Gallina function.

1 Definition sll_copy : val :=

2 rec: "sll_copy" "r" :=

3 let: "x2" := ! ("r") in

4 if: "x2" = #null_loc

5 then ( #() )

6 else (

7 let: "v" := ! "x2" in

8 let: "nxt" := ! ("x2" + #1) in

9 "r" <- "nxt";;

10 "sll_copy" "r";;

11 let: "y12" := ! "r" in

12 let: "y2" := AllocN #2 #() in

13 "r" <- "y2";;

14 ("y2" + #1) <- "y12";;

15 "y2" <- "v").

(b) The sll_copy function in Iris HeapLang.

Fig. 10. Encoding of the sllα heap predicate and sll_copy in Iris.

In order to make this approach work, though, it is necessary to prove some auxiliary lemmas
that enable case-analysis of if-else statements via the assertions in a predicate’s clauses.

(2) Another option is to exploit the fact that Iris is a higher-order separation logic (as is VST), so
inductive predicates can be defined in it using the Knaster-Tarski fixpoint theorem, along with
suitable induction principles. For instance, the sll predicate (8) can be encoded in Iris as:

Definition sllF (f : loc * list Z -> iProp Σ) (arg : loc * list Z) : iProp Σ :=

let (x, s) := arg in

⌈x = null_loc ∧ s = []⌉ ∨

(∃ v s1 nxt, ⌈¬(x = null_loc) ∧ (s = [v] ++ s1)⌉ ∗ x 7→ #v ∗ (x + 1) 7→ #nxt ∗ f (nxt, s1)).

Definition sll := fixpoint.bi_least_fixpoint sllF.

The downside of this approach is the need to prove monotonicity of a predicate-inducing
functional passed to the fixpoint combinator (e.g., sllF above), as well as lemmas for case-based
reasoning about disjoint alternatives from the functional definition. While those proofs are not
difficult, it is still non-trivial to derive them fully automatically from SSL predicate definitions.

Having experimented with both encoding strategies, we have found out that they result in very
similar structure of the proofs for programs being certified. At the end, we have fully implemented
the first strategy, as (a) we found the proofs of its auxiliary lemmas easier to automate (b) it works
even for non-higher-order separation logics. We explain it in more detail below.

6.1.1 Translating Predicates to Recursive Functions. In order to reliably translate SSL predicates into
terminating Gallina functions, we devise a technique to faithfully transform numeric cardinality
constraints into syntactic ones. This translation is based on the following intuition: the constructor
of an inductive data type enforces a relation between the size of a term and its argumentsÐforming a
term by applying a constructor to some arguments ensures that the term itself is strictly larger than
its arguments. Building on this intuition, we can map the relations on cardinalities in each clause
of a SSL spatial predicate to a unique constructor of an inductive data type that enforces the same
relation, and then use these constraints to ensure that our encoding of the predicate as a Gallina
function passes Coq’s syntactic termination checker. For example, we translate the sllα predicate (8)
into the inductive data type and recursive definition shown in Fig. 10a. The first clause of the
original sllα predicate, which enforces no constraints on its cardinality argument, is mapped to
the 0-argument constructor sll_card_0 of the inductive data type sll_card. Meanwhile the second
clause, which requires a strictly decreasing cardinality (β < α ), maps to the 1-argument constructor
sll_card_1. The Iris predicate is then defined as a recursive Gallina function that pattern-matches
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on the cardinality parameter α and then constructs the corresponding iProp assertion, recursively
calling itself on a syntactically smaller cardinality β when needed. This approach generalises
to arbitrary SSL predicates. For instance, to encode cardinality constraints for a predicate that
describes binary trees, we generate an inductive data type with two constructors, one that takes no
arguments (corresponding to leaf nodes, which impose no cardinality constraints), and one that
takes two arguments (corresponding to regular nodes, whose children must have strictly smaller
heaps). In this way, we can faithfully and completely automatically translate SSL predicates into a
form that is compatible with Coq’s termination checker.

6.1.2 Recovering Predicate Selectors. The described translation of predicates comes at a cost. The
original SSL predicates had clause selectors that were pure assertions on the predicate arguments,
and the generated SusLang programs conditioned on these selectors to determine which branch to
take. In sharp contrast, our translated Iris predicates have clause selectors determined purely by
the cardinality constraints, and these are not reflected in any way in the translated programs, since
cardinalities have no computational behaviour. Nonetheless, we want to verify the correctness
of unmodified programs, which condition on unmodified selectors. We emphatically do not want
the programs we generate to condition on the artificial cardinality data type, as our translated
programs should match the original SusLang ones. This mismatch between the structure of the
translated programs and, implicitly, the proof structure in SSL on one hand, and the structure of the
Iris predicates on the other hand, poses a challenge. To overcome it, we must, given a program-level
selector expression, e.g., the one at line 4 in Fig. 10b, be able to, at the level of Iris proofs, recover
the cardinality constructor corresponding to the selected clause. For example, given an assertion
sllα (x , s) and the knowledge ⌈¬(x = null_loc)⌉, obtained upon entering the else-branch of the
program in Fig. 10b, we must be able to infer the fact ⌈∃β,α = (sll_card_1 β)⌉. We can then use
this fact combined with the sllα (x , s) assertion to obtain the second clause of the Iris predicate,
which lets us proceed with the proof in the fashion dictated by the SSL proof tree. To accomplish
this recovery in a general fashion, whenever we translate an SSL predicate to Iris, we automatically
prove inversion lemmas that let us infer the appropriate cardinality constructors given program-level
selectors. For instance, the Iris sll predicate (Fig. 10a) comes bundled with the following lemmas:

Lemma sll_card_0_learn (x: loc) (s: list Z) α:

sll x s α ⊢ sll x s α ∗ ⌈(x = null_loc) -> α = sll_card_0⌉.

Lemma sll_card_1_learn (x: loc) (s: list Z) α:

sll x s α ⊢ sll x s α ∗ ⌈¬(x = null_loc) -> ∃β, α = (sll_card_1 β)⌉.

In our proofs, we use these lemmas in the interpretation of the Open rule (Fig. 3) to ensure the
source and Iris proof trees remain synchronised despite the mismatch in predicate structures.

6.2 Differences in the Treatment of Pointer Assertions

While SusLang and HeapLang are quite similar, they differ in their representations of pointers.
SusLang adopts a C-style model, where pointers are always nullable, whereas HeapLang has
ML-style references and represents nullable pointers as terms of type option val, with the null
pointer being None. Not wanting to modify generated programs to use referencesÐwhich would
have created a divergence in the proof structureÐwe instead modifiedHeapLang to support C-style
pointers. Specifically, in the semantics of our modified HeapLang, we introduced a distinguished
location null_loc corresponding to the null pointer, as seen at line 4 of Fig. 10b. Moreover, we
modified and proved sound the logic rule for memory allocations to return, on top of the usual
l 7→ v spatial assertion, a pure assertion ⌈¬(l = null_loc)⌉. This additional assertion is important,
as without it we would not be able to prove, for example, that newly-allocated memory locations
can be the head of linked lists, as per the second clause of the predicate definition (Fig. 10a).
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1 void sll_copy(loc r) {

2 loc x2 = READ_LOC(r, 0);

3 if (x2 == NULL) { return; }

4 else {

5 int v = READ_INT(x2, 0);

6 loc nxt = READ_LOC(x2, 1);

7 WRITE_LOC(r, 0, nxt);

8 sll_copy(r);

9 loc y12 = READ_LOC(r, 0);

10 loc y2 = (loc) malloc(2 * sizeof(loc));

11 WRITE_LOC(r, 0, y2);

12 WRITE_LOC(y2, 1, y12);

13 WRITE_INT(y2, 0, v);

14 return;

15 }

16 }

1 Definition sll_copy_spec :=

2 DECLARE _sll_copy

3 WITH r: val, x: val, s: (list Z), a: sll_card

4 PRE [ (tptr ssl_val) ]

5 PROP(is_pointer_or_null(r);is_pointer_or_null(x))

6 PARAMS(r)

7 SEP ((data_at (tarray ssl_val 1) [inr x] r);

8 (sll x s a))

9 POST[ tvoid ]

10 EX y: val,

11 EX b: sll_card,

12 PROP( )

13 LOCAL( )

14 SEP ((data_at (tarray ssl_val 1) [inr y] r);

15 (sll y s b);

16 (sll x s a)).

Fig. 11. Definition of sll_copy in C (left) and corresponding specification in VST (right)

7 SYNTHESIS CERTIFICATION VIA VERIFIED SOFTWARE TOOLCHAIN

While our prior case studies have looked at verifying SusLang programs according to various
łC-likež DSLs within Coq, we now ask: can we do the same for the real dealÐexecutable C?With our
final case study, we answer this question in the affirmative, implementing a certification backend
for the Verified Software Toolchain (Appel et al. 2014), using it to translate SusLang programs
into C and certify their correctness with regards to a simplified semantics of C.6 As VST uses a
shallow embedding of separation logic, defining a data type for the model of its assertions similarly
to Iris, the strategy for the proof translation broadly follows the same steps, reusing a few of the
same encoding techniques from the prior section (in particular the encoding of inductive predicates
Sec. 6.1 and the associated inversion lemmas Sec. 6.1.2). In the rest of this section, we will provide
an overview of this backend, focusing on the additional changes that had to be made to make
SuSLik and SusLang conform to the constraints of real world executable code.

7.1 SusLang on Metal: Converting Programs to C and Specifications to VST

Before we set about certifying programs, we must first translate SusLang functions into C and their
specifications to VST. This translation has some subtleties. For instance, Fig. 11 lists the translated
program and specification for our running example ssl_copy, which follow closely from the original
definitions, but make use of some custom data types (loc, ssl_val) and operations to read and write
memory (READ_LOC, WRITE_LOC). As it turns out, these small modifications are crucial for faithfully
realising the simplified memory model assumed by SusLang programs on real hardware.
In particular, a fact that we have glossed over in the prior sections has been the way in which

SusLang arrays can freely contain pointer and integer values, side by side, without issue. More
generally, by allowing these kinds of constructs, SusLang implicitly makes the assumption that
integer and pointer values occupy the same amount of space on the heap, and while, in terms of C
code, this might not be an uncommon assumption, it is an assumption nonetheless, introducing
unsafe implementation-specific behaviour into the generated program.

typedef union sslval {

int ssl_int;

void *ssl_ptr;

} *loc;

Our solution then is quite natural: we encode this assumption within
the C type system. In our translation, we enforce that all allocations,
reads and writes to and from the heap will be done exclusively to terms
of a custom type sslval, defined (left) as a union of integer and pointer

values. Wrapping this up in a type alias, typedef union sslval *loc, and pairing it with corresponding
read and write macros that transparently handle the coercion between types (i.e., defining the
operation to read locations as a compile-time macro #define READ_LOC(x,y) (*(x+y)).ssl_ptr), our

6Due to limitations of SuSLik’s memory model, we must make the simplifying assumption that malloc never returns NULL.
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generated programs thereby both syntactically look and semantically behave exactly as the SusLang
programs they represent, simplifying the subsequent translation of VST specifications and proofs.

7.2 Getting Real: Impedance Mismatching Between SusLang and C Semantics

Having translated SusLang programs to C, the real question is whether we can actually verify
these programs are correct. Thankfully, as VST uses the same forward-execution style of reasoning
as all the prior frameworks, much of the form of these proofs still end up following the same broad
strokes, requiring changes only to account for discrepancies in their semantic models. In the rest of
this section, we comment on the most significant areas where we ran into issues.

7.2.1 Ternary Expressions. Consider the following program statement: *m = (x < y ? 3 : 1); In
programming language with an absence of uncontrolled side-effects such as SusLang, it would
always be safe to treat the evaluation of the entire statement as a single step, i.e., a program
operation writing the value of the expression (x < y ? 3 : 1) directly into the memory at locationm.
In fact, SSL proofs take this even further, treating ternary expressions as single values within
logical specifications, and using them as such within spatial assertions, as inm 7→ (x < y ? 3 : 1)).
Switching back to the semantics of C, where expressions can have arbitrary effects, such treatment
of ternaries is clearly no longer valid. This is reflected in VST, where the evaluation of a ternary
sub-expression is interpreted as an if statement, branching the proof into two separate control flow
paths for each case, in contrast to direct execution in SSL proofs. To thereby keep the SSL and VST

proof contexts synchronised and avoid divergence, we add additional logic to the proof interpreter
to transparently handle such statements. Whenever an ternary expression is evaluated during a SSL
proof, the generated VST proof branches on each cases of the ternary but also provides a unifying
post-condition to the branch that then joins both cases together immediately afterwards using
the fact that the result of the expression is equivalent to a logical ternary expression, using tactics
provided by VST to automatically dispatch the generated obligations.

7.2.2 Splitting and Recombining Memory Blocks. Another translation aspect that required special
care was in managing the particularly loose treatment of memory in SSL. Recall that a contiguous
block of allocated memory in SSL is represented by the spatial assertion [x ,n], with the contents
of this block captured separately as (x + i) 7→ − for each element. This encoding of allocations as
separate blocks and mappings allows SSL proofs to easily mix between single cells in memory
x 7→ − and individual elements of larger blocks [x ,n] ∗ x 7→ −, so that synthesised programs can
pass pointers from the middle of blocks of memory freely to procedures that expect lone pointers.
While mixing these kinds of pointers is valid according to the semantics of C, we ran into difficulties
when certifying such programs in VST, where blocks of memory and their contents are encoded as a
single assertion and can not easily be split. Having experimented with a number of non-trivial logic
memory transformations available in VST (e.g., logically splitting memory blocks into individual
segments and then recombining them back), we opted for a simpler and more principled solution:
constraining SuSLik’s proof search to reject programs that mix pointers from different-size blocks,
allowing pointers to unify only if their associated blocks are of the same size. This restriction did
not prevent any known SuSLik benchmarks from being synthesised.

7.2.3 Integer Semantics and Overflows. Being the only framework beholden to the constraints of
real-world hardware, VST is uniquely challenged amongst the others in that it must necessarily
reason about overflow semantics. This poses a fundamental problem when translating integer-
manipulating programs from SusLang, as SuSLik proofs do not consider overflow, and synthesised
programs may sometimes perform unsafe (bounded-)arithmetic operations. In particular, any
numbers that arise during the execution of programs, intermediate or otherwise, in VST must
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always be guaranteed within the valid ranges of integers before the proof may continue. This
constraint of tracking overflow bounds causes issues even when verifying programs with numeric
variables that only rely on comparisons, i.e., having no chance of overflowÐas the overflow bounds
on these numeric variables must first be established before we can reason about the behaviour of
any comparisons over them. While the differences in the overflow semantics between SusLang

and C are too large to handle in the general case, by adjusting the synthesised program specs
to include assumptions on numeric bounds, and using VST’s native tactics to dispatch overflow
obligations, we were able to certify programs that only rely on arithmetic comparisons, e.g., finding
the maximum or the minimum of a list of integers.

8 EVALUATION

Component Scala Coq

Proof evaluator 1042 -

HTT support 1340 160

Iris support 1317 102

VST support 1887 166

The rest of SuSLik 5508 -

We implemented the entire framework for translating SSL proof
trees to Coq proofs on top of SuSLik in a combination of Scala
(for proof evaluator and individual interpreters) and Coq (for
backend-specific automation described in Sec. 4.2.2 and writ-
ten primarily in Ltac). The table on the right summarises the
overall implementation effort in terms of lines of code. Our im-
plementation and benchmarks are open source and are publicly
available (Watanabe et al. 2021). Each of the three backend-
specific Coq automation libraries can be installed via OCaml’s opam package manager. They are
also available, along with the translated specifications and proofs for our benchmarks, in the
supplementary material for this submission.

8.1 Evaluating Synthesis Certifiers on Standard Heap-Manipulating Benchmarks

Our translation works for unaltered SusLang programs, and the synthesis algorithm has only been
slightly restricted to suit some particular patterns in the certification backends (cf. Sec. 7.2.2). With
this regard, in the evaluation of our approach we aimed to answer the following questions:

(1) How efficient is the certification: what are the sizes of the generated Coq specs and proofs, and
how long does it take to check them via the corresponding SL embeddings?

(2) What design choices in SusLang/SSL and the languages/logics of the verification backends
might pose obstacles to automated certification of synthesised heap-manipulating programs?

Tab. 1 summarises our evaluation results on programs manipulating with individual pointers
and integers, singly- and doubly-linked lists, and binary trees. The reported sizes of Coq artefacts
do not include translated heap predicates and their inversion lemmas (in the case of Iris and VST),
as those are shared between specs of multiple programs. All runtimes are obtained on a 1.90GHz
Intel Core i7-8665U machine with 40GB RAM running Ubuntu 18.04 and Coq 8.11.2.

With regard to Question (1), Tab. 1 demonstrates that all generated proofs are relatively concise,
with those for HTT being slightly longer due to a number of administrative renamings required to
keep the proof in sync with the Coq context. The proof checking times for HTT and Iris are in the
same ballpark, ranging from 2 to 20 seconds for all but three HTT examples. The three outliers for
HTT (max, min, and sll-copy) are due to the use of CoqHammer for discharging pure entailment
lemmas (cf. Sec. 4.2.3) via Ssreflect libraries for Peano numbers and sequences (Gonthier et al.
2009). In the case of Iris, those lemmas are handled for standard Coq numbers and lists via a
more specialised (and hence more efficient) Micromega library (Besson and Makarov 2020). The
significantly longer checking times for VST proofs are due to the generality of its entailer!

tactic (Cao et al. 2018), whose performance can be improved by making proof scripts in VST follow
a certain structure (which is not the case for our auto-generated ones).
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Table 1. Statistics for synthesised programs with pointers from SuSLik benchmark suite. Sizes of generated
Coq artefacts are in lines of code. For HTT, Iris, and VST we report the proof checking times (in seconds).

Group Description Synthesis Time
HTT Iris VST

Spec Proofs Time Spec Proofs Time Spec Proofs Time

Integers

max <0.1 55 18 54.3 25 17 3.4 21 20 6.4

min <0.1 55 18 50.0 25 17 3.5 21 20 79.2

swap2 <0.1 49 15 3.7 23 15 3.7 20 14 132.7

swap4 <0.1 53 23 8.6 29 21 6.5 20 22 649.6

Singly-

Linked

Lists

length 0.6 68 100 2.8 34 53 6.9 - - -

maximum 0.5 68 99 2.8 - - - 21 57 244.8

minimum 0.5 68 99 2.7 - - - 21 57 242

append 0.2 61 89 6.2 34 50 7.4 23 52 312.9

copy 0.4 70 103 64.9 38 67 8.6 33 63 370.1

two-element 0.3 57 50 2.7 28 47 7.3 34 36 171.5

dispose <0.1 55 46 1.7 30 31 4.3 31 28 7.8

singleton <0.1 55 37 2.3 24 32 4.7 34 26 127.4

DLLs
append 2.3 74 154 7.4 51 98 18.4 24 97 594.6

singleton <0.1 55 37 3.1 25 33 6.2 34 27 128.3

Trees

copy 1.3 73 135 6.5 45 83 15.6 32 77 516.5

flatten 0.2 92 138 5.9 56 75 13.5 58 76 685.7

dispose <0.1 58 62 2.4 34 37 5.7 31 32 10.8

size 0.5 64 92 5.4 37 58 9.8 - - -

As for Question (2), Tab. 1 indicates a few benchmarks that failed to verify in Iris and VST. The
two case studies that are not handled in Iris (finding a minimum/maximum of a list of integers)
rely on a ternary operator, which in Iris generates two proof obligations (one for each branch),
significantly deviating from the SSL proof, which does not split on ternary operators. VST could
not handle list length and tree size functions due to the possibility of integer overflows, as the
corresponding checks were missing from the synthesised SusLang programs.

Both these shortcomings can be addressed by modifying SusLang and the corresponding synthe-
sis rules to account for specific backend features, making the synthesiser language be more like an
intermediate representation, serving multiple backends. This is an interesting research direction,
which we are going to explore in the future.

8.2 Encoding Collection Payloads for Advanced Benchmarks

We did not include benchmarks that require extensive support for solving pure entailments via SMT,
such as binary search trees and sorted lists, into the suite of programs in Tab. 1. The reason for that
is in the challenge of encoding payloads for heap-based collections, which SuSLik and our backend
provers address in very different ways, each opting for one suited to its unique requirements.

SuSLik represents collection contents using unordered multi-sets, a suitable choice for a synthe-
siser for performing framing and unification; it is not uncommon, say, for a partitioned set to later
be unified in a different order, so the unorderedness of sets is accommodating of such cases.

The backends, in contrast, represent payloads as algebraic lists, as they are much easier to reason
about in proofs. For example, because list equality assertions use Leibniz equality (=), Coq’s rewriting
tactics can take advantage of them; multi-set equality cannot be encoded this way. For this reason,
we have selected programs that are agnostic to those differences for our łstandardž benchmarks
in Tab. 1. Nonetheless, for HTT we also experimented with more advanced benchmarks that rely on
the collection payloads being implemented as multi-sets, by replacing Leibniz equality for lists with
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the perm_eq relation from Ssreflect/MathComp library (Gonthier et al. 2009; Mahboubi and Tassi
2021; Sergey 2014), which asserts that one list is a permutation of the other. As discussed, this means
that Coq’s rewriting tactics can no longer handle these assertions, so we must make a trade-off to
introduce a non-trivial axiom about the congruence of perm_eq wrt. predicate applications with
otherwise identical arguments, e.g., for sll from Fig. 5:

Axiom sll_perm_eq: ∀x h s1 s2, perm_eq s1 s2 -> sll x s1 h -> sll x s2 h.

In fact, we proved these axioms manually as lemmas for the corresponding predicates, but we
didn’t automate their proofs. An alternative approach would be to employ Coq’s setoid rewriting
mechanism with perm_eq taken as an ad-hoc equivalence relation on lists (Coen 2004; Sozeau 2009).

Table 2. Benchmarks using multiset equality in HTT.

Group Program Synt. time Coq time Lemmas Manual

Doubly-
Linked
Lists

copy 8.7 22.1 7 4
two-element 0.6 11.6 3 3
from-sll 1.2 18.2 5 2

Binary
Search
Trees

find-smallest 2.9 12.2 7 1
insert 33.8 72.9 15 6

rotate-left 6.3 16.9 4 2
rmv-root-left 3.4 26.5 6 2
rmv-root-right 34.7 25.1 6 2
rotate-right 5.6 15.9 4 2

Sorted
Lists

insertion-sort 1.8 10.7 7 0
insert-sort-free 0.6 9.5 5 0

insert 9.7 26.8 18 8
prepend 0.3 6.6 2 0

Several of the programs in these ad-
vanced benchmarks, summarised in Tab. 2,
also feature non-trivial pure lemmas (dis-
cussed in Sec. 4.2.3) that our implementa-
tion’s default proof strategy, CoqHammer,
fails to solve. To make the evaluation ten-
able, we chose to first auto-generate the
proof scripts for the benchmark programs
using our HTT proof interpreter, attempt
to compile them (with CoqHammer), and
only provide manual proofs of those pure
lemmas that CoqHammer fails to discharge.
The figures in the Tab. 2 were obtained by
benchmarking these modified proof scripts.
The last column indicates the number of
pure lemmas that required manual proofs. While this deviates from the idea of full proof automa-
tion, it is still consistent with the intent of the proof scripts, in that they are generated in a way
that the user can easily revisit and verify the output.

9 LESSONS LEARNT

Extensibility of the proof translation. The sceptical reader might be wondering whether our strat-
egy generalisesÐare our backend-specific proof interpreters simply overfitted for the benchmarks
or does our approach actually capture some underlying patterns within each framework? Our
experience from implementing the backends for this paper strongly suggests the latter.
During the development of the backends, we encountered several milestones at which large

swathes of benchmarks were successfully certified. The first such milestone was the handling
of Read andWrite rulesÐwith just these components, our interpreters were able to handle the
certification of all integer-based benchmarks with no further changes. Following this, was the
handling of Open and Free rules which then made the verification of programs that free structures
(sll_free, tree_free) possible. With the addition of Close and Alloc rules, the proof evaluators
were then able to handle the verification of programs that allocate and copy structures. In this way,
the process of implementing the translation was not strongly tied to the choice of benchmarks,
with only a few examples needed to test the implementation of the rules before the entire milestone
would be implemented. The fact that we saw the same milestones across all backends suggests that
our experience will generalise to other targets (Charguéraud 2020; Chlipala 2011).

User experience of implementing backends. An interesting question is, from the perspective of our
subjective user experience, which framework was the easiest to adopt as a certification backend?

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 84. Publication date: August 2021.



84:26 Yasunari Watanabe, Kiran Gopinathan, George Pîrlea, Nadia Polikarpova, and Ilya Sergey

We found out that implementing the HTT backend was the least challenging, with HTT’s embed-
ding style of SL and the object language placing the fewest constraints on context management. This
simplified the implementation of the translator as there was no need to distinguish between pro-
gram and proof-level terms, allowing for a straightforward implementation of the proof evaluator.
Furthermore, HTT makes little use of custom notations, providing a simple łwhat-you-see-is-what-
you-getž experience from the perspective of proof automation: writing domain-specific tactics on
top of it can be done by simply matching on the exact structure of the Coq proof context.

Following HTT, VST came closely second, with its extensive proof automation handling much of
the heap management. In particular, while VST’s deep embedding of the language would, in theory,
require carefully discriminating between program and proof-level terms, in practice, we found
that VST’s tactics would consistently handle this task, automatically discharging any obligations
arising from their discrepancies. Our ranking of VST is influenced by the challenges of introducing
SSL-specific automation to it, a necessity for managing impedance mismatches between synthesis
and certification proof contexts. In contrast withHTT,VSTmakes significant use of custom notation
to simplify the proof context. Because of this, writing non-trivial tactics on top of VST required us
to łpeek behind the curtainž of its notations, making the corresponding automation more fragile.

In the end, implementing the Iris backend was the most difficult. The main set of challenges arose
from interacting with Iris Proof Mode (IPM) (Krebbers et al. 2017). Due to its human prover-oriented
nature, IPM is geared for proofs that perform explicit context and goal management. In a typical
IPM proof, SL hypotheses (i.e., heaplets) are given explicit names, by which they are referred later,
when used. To keep the same proof style, a proof interpreter for Iris would have to keep track of
which heaps and pure assertions in the SSL proof context correspond to which IPM hypotheses
names and ensure this correspondence is maintained as tactics are applied. This is possible, but
would be burdensome. Instead, we opted for a proof style with łnamelessž hypotheses, which
closely matches the SSL proofs but heavily relies on heap unification to dispatch obligations. Sadly,
IPM’s iFrame tactic for heap unification is not particularly robust (compared to VST’s entailer!,
which seems almost magical), so we had to be careful when managing the IPM context to ensure
that the unification will succeed. Another challenge we encountered when developing the proof
interpreter for Iris was in deciphering the error messages that are produced when proofs go wrong.
In particular, Iris’s heavy use of Coq’s coercions and canonical structures (Mahboubi and Tassi
2013) often means that when proofs go wrong, the resulting unification errors are not always clear.
To conclude, we don’t claim that Iris and VST are inherently less suitable for synthesis cer-

tification than HTT. Rather, we hope that our observations will be helpful for enhancing those
frameworks in the future to provide better support for interfacing with program synthesisers.

10 RELATED AND FUTURE WORK

Certifying compilers and proof-carrying code. Our work is a spiritual successor to a 25 year-long
line of research on Proof-Carrying Code (PCC) started by Necula and Lee (1996). The original PCC
proposal by Necula (1997) was to supply proofs, in a logic embedded into the Edinburgh Logical
Framework (Harper et al. 1993), for executable binaries in the DEC Alpha assembly language. This
would allow users of the binaries to independently check that, upon execution, the code does not
violate basic type and memory safety properties. In follow-up work, Necula and Lee (1998) designed
a certifying compiler, which would automatically generate such proofs when producing low-level
assembly from code written in a high-level language. The ideas of PCC and certifying compilation
have been studied extensively in the past two decades, in application to, e.g., validation of temporal
properties of systems code (Henzinger et al. 2002), static analysis via abstract interpretation (Besson
et al. 2006), refinement types (Chen et al. 2010), information flow control (Barthe et al. 2013), security
policies in software-defined networks (Skalka et al. 2019), and other classes of statically enforceable
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program properties. Further research has been conducted on minimising the size of the trusted
code base required to validate the proofs (Appel 2001).
Our work presents a novel application of the main ideas of PCC and certifying compilationÐ

coupling generation of code and a machine-checked proof of its safety specificationÐto the area
of automated program synthesis. Unlike the original work on PCC (Necula 1997), which targeted
basic type- and memory safety properties of untrusted programs, our proposal focuses on a richer
class of full functional correctness specifications.

In this work, we are not addressing the challenge of controlling the sizes of the obtained certifi-
cates or the time it takes to check them, leaving those proof aspects for future work. That said, we
acknowledge the importance of those properties in a security context. For instance, if the time it
takes to check a certificate coming from an untrusted party is not linear in its size, this could lead
to denial-of-service attacks, in which an adversary produces short proofs that take longer to check.

Certified interactive program synthesis. The Fiat framework (Chlipala et al. 2017; Delaware
et al. 2015) implements a certified interactive program synthesiser, by embedding the synthesis
framework directly into the Coq proof assistant. Specifications in Fiat are represented by high-level
non-deterministic functional programs and data types, which are then refined (He et al. 1986), in
a step-wise fashion, into executable implementations in an imperative low-level language with
explicit memory management and, eventually, to assembly (Pit-Claudel et al. 2020). Fiat is aimed
to facilitate certified synthesis by refinement by providing (a) tactics for automating refi nement
proofs in particular restricted domains and (b) a library of lemmas that can be used by the clients
for verifying complex derivations. The main advantage of Fiat is it extensibility: it allows the users
to add new verified compilation rules. In contrast with Fiat’s approach to synthesis, which requires
one to interactively verify a sequence of semantics-preserving optimisations as well as any new
added rules, SuSLik’s synthesis is based on a fully automated proof search in a fixed set of SSL’s
proof rules. That said, our certification experiments (cf. Sec. 8.2) indicated the need to occasionally
ask the user for help with proofs of pure facts that are outside the reach of Coq’s automation.

11 CONCLUSION

Themission of program synthesis is to raise the level of abstraction in specifying tasks for computers
to execute, from the idioms of general-purpose programming languages handled by present-
day compilers, to concise logical descriptions and examples, thus making programming more
accessible. Given this synthesis-as-a-next-generation-compiler view (Yahav 2020), one may hope
to have fully verified program synthesisers with machine-checked correctness guarantees, akin
to the CompCert (Leroy 2006) or CakeML (Kumar et al. 2014) compilers, at some point in the
future. While building a fully certified automated program synthesiser still appears to be a daunting
task, in this work we have shown that implementation of a certifying automated synthesiser for
interesting heap-manipulating programs using the technology at hand is already within our reach.
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