
Report from Dagstuhl Seminar 23112

Unifying Formal Methods for Trustworthy Distributed
Systems
Swen Jacobs∗1, Kenneth McMillan∗2, Roopsha Samanta∗3, and
Ilya Sergey∗4

1 CISPA – Saarbrücken, DE. jacobs@cispa.de
2 University of Texas – Austin, US. kenmcm@cs.utexas.edu
3 Purdue University – West Lafayette, US. roopsha@purdue.edu
4 National University of Singapore, SG. ilya@nus.edu.sg

Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 23112 “Unifying
Formal Methods for Trustworthy Distributed Systems”.

Distributed systems are challenging to develop and reason about. Unsurprisingly, there have
been many efforts in formally specifying, modeling, and verifying distributed systems. A bird’s eye
view of this vast body of work reveals two primary sensibilities. The first is that of semi-automated
or interactive deductive verification targeting structured programs and implementations, and
focusing on simplifying the user’s task of providing inductive invariants. The second is that of
fully-automated model checking, targeting more abstract models of distributed systems, and
focusing on extending the boundaries of decidability for the parameterized model checking problem.
Regrettably, solution frameworks and results in deductive verification and parameterized model
checking have largely evolved in isolation while targeting the same overall goal.

This seminar aimed at enabling conversations and solutions cutting across the deductive
verification and model checking communities, leveraging the complementary strengths of these
approaches. In particular, we explored layered and compositional approaches for modeling and
verification of industrial-scale distributed systems that lend themselves well to separation of
verification tasks, and thereby the use of diverse proof methodologies.
Seminar March 12–15, 2023 – https://www.dagstuhl.de/23112
2012 ACM Subject Classification Computing methodologies → Distributed algorithms; Theory

of computation → Concurrency; Theory of computation → Program verification
Keywords and phrases Deductive Verification, Distributed Algorithms, Formal Verification,

Model Checking
Digital Object Identifier 10.4230/DagRep.13.3.32

1 Executive Summary

Swen Jacobs (CISPA – Saarbrücken, DE)
Kenneth McMillan (University of Texas – Austin, US)
Roopsha Samanta (Purdue University – West Lafayette, US)
Ilya Sergey (National University of Singapore, SG)

License Creative Commons BY 4.0 International license
© Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey

Dagstuhl Seminar 23112 Unifying Formal Methods for Trustworthy Distributed Systems
took place on March 12–15, 2023 and had 25 participants: 9 female and 16 male, 22 from
academia and 4 from industry, representing 9 different countries.

∗ Editor / Organizer

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

Unifying Formal Methods for Trustworthy Distributed Systems, Dagstuhl Reports, Vol. 13, Issue 3, pp. 32–48
Editors: Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jacobs@cispa.de
mailto:kenmcm@cs.utexas.edu
mailto:roopsha@purdue.edu
mailto:ilya@nus.edu.sg
https://www.dagstuhl.de/23112
https://doi.org/10.4230/DagRep.13.3.32
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/dagstuhl-reports/
https://www.dagstuhl.de

Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey 33

This was a short seminar spanning 2.5 days and included four one-hour keynotes, 16
regular and short (lightning) talks, as well as two two-hour whole-seminar plenary discussions.
The keynote talks were given by
1. Peter Müller (ETH Zurich) on Verified Secure Routing
2. Ken McMillan (UT Austin) on Techniques for Decidable Verification
3. Swen Jacobs (CISPA) on Parameterized Model Checking and Synthesis
4. Murdoch Jamie Gabbay (Heriot-Watt University) on Semitopologies for Heterogeneous

Consensus.
The abstracts of all talks appear in this seminar report, except for one of the keynotes and
two impromptu talks for which we only give the titles here:

“Taming Unbounded Distributed Systems with Modular, Bounded Verification” by Roop-
sha Samanta (Purdue University), and
“Pushing Formal Methods Tools to Industry” by Mike Dodds (Galois).

The two plenary discussions that have taken place during the seminar were focusing on
the topics of (1) performing comparative studies amongst different approaches for validating
distributed systems and (2) grand challenges that call for joint efforts across different
approaches and schools of thought in this area.

The outcome of the first discussion was an informal proposal on a “Distributed System
Verification Competition” – a community effort in the spirit of the famous “VerifyThis”
competition in software verification, which would offer, on a regular basis, a selection of
micro-benchmarks and semi-artificial challenges in verification, validation, and bug-finding in
distributed system, focusing on different aspects of safety, liveness and providing a landscape
to showcase the recent advances in interactive or automated verification.

The second panel has concluded with several ideas of a large-scale verification/validation
effort in distributed systems. The most viable option was suggested based on the topic of
the first keynote talk on Verified Secure Routing, which is currently only partially achieved
by a combination of two specific technologies and leaves a lot of room to improvement, both
in terms of specification of the properties of interest (e.g., liveness) as well as for exploring
possibilities for automating proofs as well as complementing sound verification methods with
testing and dynamic analyses.

Given the short nature of this seminar, the social component of its program was limited
to a dinner in local restaurant “Zum Schloßberg”, during which possibilities for collaboration
have been discussed between the participants. As one outcome of this social interaction,
possible internship opportunities in system verification were offered by one of the industry
participants, with one of the junior participants currently considering taking them for the
Summer 2024.

The seminar has generated several ideas for follow-up meetings. In particular, the following
areas will likely benefit from more focused discussions and exchanges: (a) testing and dynamic
validation of distributed systems; (b) addressing the challenge of so-called “latent proof”
(ignored abstraction gap) in automated verification, and (c) programming-language based
techniques for implementing large-scale systems with a support for formal reasoning and
verification.

23112

34 23112 – Unifying Formal Methods for Trustworthy Distributed Systems

2 Table of Contents

Executive Summary
Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey 32

Overview of Talks
Session types, time, timeout
Laura Bocchi . 36

Commutativity Quotients of Concurrent or Distributed Algorithms
Constantin Enea . 36

Checking Qualitative Liveness Properties of Replicated Systems with Stochastic
Scheduling
Javier Esparza . 37

The semitopology of permissionless consensus
Murdoch Jamie Gabbay and Giuliano Losa . 37

Parameterized Model Checking (and Synthesis)
Swen Jacobs . 38

Verifying Indistinguishability of Privacy-Preserving Protocols
Gowtham Kaki . 38

Improving usability of TLA+ tools for blockchain engineers
Igor Konnov . 39

Random testing of Byzantine fault tolerant algorithms
Burcu Kulahcioglu Ozkan . 39

Verified Causal Broadcast with Liquid Haskell
Lindsey Kuper . 40

Potential-based semantics for causally consistent shared memory
Ori Lahav . 40

Parameterized Verification of Randomized Consensus Algorithms
Marijana Lazic . 41

A simple proof of the FLP impossibility result
Giuliano Losa . 42

Random Testing of Distributed Systems
Rupak Majumdar . 42

Verified Secure Routing
Peter Müller . 43

Interactive Synthesis of Distributed Protocols
Kedar Namjoshi . 43

Reasoning about Byzantine Accountability
Ilya Sergey and George Pîrlea . 43

Finding Infinite Counter Models in Deductive Verification
Sharon Shoham Buchbinder . 44

Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey 35

Deadlock-free asynchronous message reordering in Rust with multiparty session
types
Nobuko Yoshida . 44

A (not very simple) Protocol whose Mechanized Proof is ????
Lenore D. Zuck . 45

Panel discussions
A Competition for Distributed Systems Verification?
Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey 46

Grand Challenges for Distributed Systems Verification
Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey 47

Participants . 48

23112

36 23112 – Unifying Formal Methods for Trustworthy Distributed Systems

3 Overview of Talks

3.1 Session types, time, timeout
Laura Bocchi (University of Kent – Canterbury, GB)

License Creative Commons BY 4.0 International license
© Laura Bocchi

In this talk I give an introduction on binary session types, outline their relation with other
formalisms, in particular communicating finite state machines, and with verification problems.
I then discuss the links between session types and programming languages, and some of their
usage scenarios that include static typing, run-time monitoring, and API generation. Finally,
I present the extension of session types with time constraints and timeouts, discussing recent
and ongoing work, as well as open problems.

3.2 Commutativity Quotients of Concurrent or Distributed Algorithms
Constantin Enea (Ecole Polytechnique – Palaiseau, FR)

License Creative Commons BY 4.0 International license
© Constantin Enea

Joint work of Constantin Enea, Parisa Fathololumi, Eric Koskinen
Main reference Constantin Enea, Parisa Fathololumi, Eric Koskinen: “The Commutativity Quotients of Concurrent

Objects”, CoRR, Vol. abs/2301.05740, 2023.
URL https://doi.org//10.48550/arXiv.2301.05740

Concurrent or distributed algorithms form the foundation of many modern automated services.
Reasoning about the fine-grained complexities (interleavings, invariants, etc.) of these
algorithms, however, is notoriously difficult. Formal proof methodologies for arguing about
their correctness are still somewhat disconnected from the intuitive correctness arguments.
Intuitions are often about a few canonical executions, possibly with few threads, whereas
formal proofs would often use generic but complex arguments about arbitrary interleavings
over unboundedly many threads. As a way to bring formal proofs closer to intuitive
arguments, we introduce a new methodology for characterizing the interleavings of concurrent
or distributed algorithms, based on their commutativity quotient. This quotient represents
every interleaving up to reordering of commutative steps and, when chosen carefully, admits
simple abstractions in the form of regular or context-free languages that enable simple proofs
of correctness.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/arXiv.2301.05740
https://doi.org//10.48550/arXiv.2301.05740
https://doi.org//10.48550/arXiv.2301.05740

Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey 37

3.3 Checking Qualitative Liveness Properties of Replicated Systems
with Stochastic Scheduling

Javier Esparza (TU München, DE)

License Creative Commons BY 4.0 International license
© Javier Esparza

Joint work of Michael Blondin, Javier Esparza, Martin Helfrich, Antonín Kucera, Philipp J. Meyer
Main reference Michael Blondin, Javier Esparza, Martin Helfrich, Antonín Kucera, Philipp J. Meyer: “Checking

Qualitative Liveness Properties of Replicated Systems with Stochastic Scheduling”, in Proc. of the
Computer Aided Verification – 32nd International Conference, CAV 2020, Los Angeles, CA, USA,
July 21-24, 2020, Proceedings, Part II, Lecture Notes in Computer Science, Vol. 12225, pp. 372–397,
Springer, 2020.

URL https://doi.org//10.1007/978-3-030-53291-8_20

We present a sound and complete method for the verification of qualitative liveness properties
of replicated systems under stochastic scheduling. These are systems consisting of a finite-
state program, executed by an unknown number of indistinguishable agents, where the next
agent to make a move is determined by the result of a random experiment. We show that if a
property of such a system holds, then there is always a witness in the shape of a Presburger
stage graph: a finite graph whose nodes are Presburger-definable sets of configurations. Due
to the high complexity of the verification problem (Ackermann-complete), we introduce an
incomplete procedure for the construction of Presburger stage graphs, and implement it on
top of an SMT solver. The procedure makes extensive use of the theory of well-quasi-orders,
and of the structural theory of Petri nets and vector addition systems. We apply our results
to a set of benchmarks, in particular to a large collection of population protocols, a model of
distributed computation extensively studied by the distributed computing community.

3.4 The semitopology of permissionless consensus
Murdoch Jamie Gabbay (Heriot-Watt University – Edinburgh, GB) and Giuliano Losa (Stellar
Development Foundation – San Francisco, US)

License Creative Commons BY 4.0 International license
© Murdoch Jamie Gabbay and Giuliano Losa

Main reference Murdoch Gabbay, Giuliano Losa: “Semitopology: a new topological model of heterogeneous
consensus”, CoRR, Vol. abs/2303.09287, 2023.

URL https://doi.org//10.48550/arXiv.2303.09287

A distributed system is permissionless when participants can join and leave the network
without permission from a central authority. Many modern distributed systems are naturally
permissionless, in the sense that a central permissioning authority would defeat their design
purpose: this includes blockchains, filesharing protocols, some voting systems, and more. Due
to their permissionless nature, such systems are also heterogeneous: participants may only
have a partial view of the system, and they may also have different goals and beliefs. The
traditional notion of consensus, i.e. system-wide agreement, may therefore not be adequate.

This is a mathematical challenge; how should we understand what permissionless consensus
means? And how can we use this understanding to build mathematical models to help us
engineer simple, robust, effective, and secure practical systems?

We study a new definition of permissionless consensus, based on semitopology – like
topology, but without the restriction that intersections of opens be open. Semitopologies have
a rich theory which is related to topology, but with a distinct character and mathematics.
We introduce novel well-behavedness conditions, including an anti-Hausdorff property and a
new notion of ‘topen set, and we show how these structures relate to consensus. We give a

23112

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1007/978-3-030-53291-8_20
https://doi.org//10.1007/978-3-030-53291-8_20
https://doi.org//10.1007/978-3-030-53291-8_20
https://doi.org//10.1007/978-3-030-53291-8_20
https://doi.org//10.1007/978-3-030-53291-8_20
https://doi.org//10.1007/978-3-030-53291-8_20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/arXiv.2303.09287
https://doi.org//10.48550/arXiv.2303.09287
https://doi.org//10.48550/arXiv.2303.09287

38 23112 – Unifying Formal Methods for Trustworthy Distributed Systems

restriction of semitopologies to witness semitopologies, which are an algorithmically tractable
subclass corresponding to Horn clause theories, having particularly good mathematical
properties.

3.5 Parameterized Model Checking (and Synthesis)
Swen Jacobs (CISPA – Saarbrücken, DE)

License Creative Commons BY 4.0 International license
© Swen Jacobs

Joint work of Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith, Josef
Widder, Nouraldin Jaber, Christopher Wagner, Milind Kulkarni, Roopsha Samanta

In this talk, I first gave a short overview of existing results in the area of parameterized model
checking, including an introduction of basic techniques for obtaining decidability results, and
more recent results that build on and extend these techniques [1]. In the second half of the
talk, I presented our own recent work in the area. Here, I introduced the computational model
of global synchronization protocols (GSPs), and described how we obtained decidability and
cutoff results for its parameterized model checking problem [2, 3]. Finally, I showed how
these results not only enable verification, but also synthesis, which furthermore can relieve
the designer of the system from fitting the system into the decidable fragment, instead letting
the synthesis algorithm take care of that [4].

References
1 Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut Veith,

Josef Widder. Decidability of Parameterized Verification. Synthesis Lectures on Distributed
Computing Theory, Morgan & Claypool Publishers 2015

2 Nouraldin Jaber, Swen Jacobs, Christopher Wagner, Milind Kulkarni, Roopsha Samanta.
Parameterized Verification of Systems with Global Synchronization and Guards. CAV (1)
2020: 299-323

3 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, Roopsha Samanta.
QuickSilver: modeling and parameterized verification for distributed agreement-based
systems. Proc. ACM Program. Lang. 5(OOPSLA): 1-31 (2021)

4 Nouraldin Jaber, Christopher Wagner, Swen Jacobs, Milind Kulkarni, Roopsha Samanta.
Synthesis of Distributed Agreement-Based Systems with Efficiently-Decidable Verification.
TACAS (2) 2023: 289-308

3.6 Verifying Indistinguishability of Privacy-Preserving Protocols
Gowtham Kaki (University of Colorado – Boulder, US)

License Creative Commons BY 4.0 International license
© Gowtham Kaki

Joint work of Kirby Linvill, Gowtham Kaki, Eric Wustrow
Main reference Kirby Linvill, Gowtham Kaki, Eric Wustrow: “Verifying Indistinguishability of Privacy-Preserving

Protocols”. Under submission.

Internet users rely on the protocols they use to protect their private information including
their identity and the websites they visit. Formal verification of these protocols can detect
subtle bugs that compromise these protections at design time, but is a challenging task as
it involves probabilistic reasoning about random sampling, cryptographic primitives, and

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
Kirby Linvill, Gowtham Kaki, Eric Wustrow: ``Verifying Indistinguishability of Privacy-Preserving Protocols''. Under submission.
Kirby Linvill, Gowtham Kaki, Eric Wustrow: ``Verifying Indistinguishability of Privacy-Preserving Protocols''. Under submission.

Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey 39

concurrent execution. Existing approaches either reason about symbolic models of the
protocols that sacrifice precision for automation, or reason about more precise models that
are harder to automate and require cryptographic expertise. In this talk I describe a novel
approach to verifying privacy-preserving protocols that is more precise than symbolic models
yet more accessible than computational models. Our approach permits direct-style proofs of
privacy, as opposed to indirect game-based proofs in computational models, by formalizing
privacy as indistinguishability of possible network traces induced by a protocol. We ease
automation by leveraging insights from the distributed systems verification community to
create sound synchronous models of concurrent protocols. Our verification framework is
implemented in F* as a library we call Waldo. I talk about two large case studies of using
Waldo to verify indistinguishability; one on the Encrypted Client Hello (ECH) extension of
the TLS protocol and another on a Private Information Retrieval (PIR) protocol. I describe
subtle flaws we uncovered in the TLS ECH specification that were missed by other efforts.

3.7 Improving usability of TLA+ tools for blockchain engineers
Igor Konnov (Informal Systems – Wien, AT)

License Creative Commons BY 4.0 International license
© Igor Konnov

Joint work of Igor Konnov, Shon Feder, Jure Kukovec, Gabriela Moreira, Thomas Pani

In this talk, I gave a brief introduction into the Cosmos ecosystem and a summary of results
on formal specification & model checking of blockchain protocols conducted at Informal
Systems. We further discussed the benefits and practical challenges of applying Temporal
Logic of Actions (TLA+) and the Apalache model checker in the blockchain industry. The
talk concluded with an introduction of Quint, the new syntax for the logic of TLA+. We
introduced a new specification development cycle, which accommodates the needs of the
protocol designers, blockchain engineers, and verification engineers.

More details about Quint may be found at the project webpage: https://github.com/
informalsystems/quint/.

3.8 Random testing of Byzantine fault tolerant algorithms
Burcu Kulahcioglu Ozkan (TU Delft, NL)

License Creative Commons BY 4.0 International license
© Burcu Kulahcioglu Ozkan

Joint work of Levin N. Winter, Florena Buse, Daan de Graaf, Klaus von Gleissenthall, Burcu Kulahcioglu Ozkan
Main reference Levin N. Winter, Florena Buse, Daan de Graaf, Klaus von Gleissenthall, Burcu Kulahcioglu Ozkan:

“Randomized Testing of Byzantine Fault Tolerant Algorithms”, Proc. ACM Program. Lang.,
Vol. 7(OOPSLA1), pp. 757–788, 2023.

URL https://doi.org//10.1145/3586053

Byzantine fault-tolerant algorithms promise agreement on a correct value, even if a subset of
processes can deviate from the algorithm arbitrarily. While these algorithms provide strong
guarantees in theory, protocol bugs and implementation mistakes may cause them to violate
fault tolerance in practice.

This talk discusses the challenges of testing Byzantine fault-tolerant systems and intro-
duces ByzzFuzz, a method for automatically finding errors in implementations of Byzantine
fault-tolerant algorithms through randomized testing. ByzzFuzz detects fault-tolerance bugs

23112

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/informalsystems/quint/
https://github.com/informalsystems/quint/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3586053
https://doi.org//10.1145/3586053
https://doi.org//10.1145/3586053
https://doi.org//10.1145/3586053

40 23112 – Unifying Formal Methods for Trustworthy Distributed Systems

by injecting randomly generated network and process faults into their executions. To navigate
the space of possible process faults, ByzzFuzz introduces small-scope message mutations
which mutate the contents of the protocol messages by applying small changes to the ori-
ginal message either in value (e.g., by incrementing the round number) or in time (e.g., by
repeating a proposal value from a previous message). The evaluation of ByzzFuzz on the
implementations of popular blockchains show that small-scope mutations, combined with
insights from the testing and fuzzing literature, are effective at uncovering protocol logic and
implementation bugs in real-world fault-tolerant systems.

3.9 Verified Causal Broadcast with Liquid Haskell
Lindsey Kuper (University of California – Santa Cruz, US)

License Creative Commons BY 4.0 International license
© Lindsey Kuper

Joint work of Patrick Redmond, Gan Shen, Niki Vazou, Lindsey Kuper

Protocols to ensure that messages are delivered in causal order are a ubiquitous building
block of distributed systems. For instance, distributed data storage systems can use causally
ordered message delivery to ensure causal consistency, and CRDTs can rely on the existence
of an underlying causally-ordered messaging layer to simplify their implementation. A
causal delivery protocol ensures that when a message is delivered to a process, any causally
preceding messages sent to the same process have already been delivered to it. While causal
delivery protocols are widely used, verification of their correctness is less common, much less
machine-checked proofs about executable implementations.

We implemented a standard causal broadcast protocol in Haskell and used the Liquid
Haskell solver-aided verification system to express and mechanically prove that messages will
never be delivered to a process in an order that violates causality. We express this property
using refinement types and prove that it holds of our implementation, taking advantage
of Liquid Haskell’s underlying SMT solver to automate parts of the proof and using its
manual theorem-proving features for the rest. We then put our verified causal broadcast
implementation to work as the foundation of a distributed key-value store.

3.10 Potential-based semantics for causally consistent shared memory
Ori Lahav (Tel Aviv University, IL)

License Creative Commons BY 4.0 International license
© Ori Lahav

Joint work of Ori Lahav, Udi Boker
Main reference Ori Lahav, Udi Boker: “What’s Decidable About Causally Consistent Shared Memory?”, ACM

Trans. Program. Lang. Syst., Vol. 44(2), pp. 8:1–8:55, 2022.
URL https://doi.org//10.1145/3505273

While causal consistency is one of the most fundamental consistency models weaker than
sequential consistency, the decidability of safety verification for (finite-state) concurrent
programs running under causally consistent shared memories is still unclear. In this paper,
we establish the decidability of this problem for two standard and well-studied variants of
causal consistency. To do so, for each variant, we develop an equivalent “lossy” operational
semantics, whose states track possible futures, rather than more standard semantics that

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3505273
https://doi.org//10.1145/3505273
https://doi.org//10.1145/3505273

Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey 41

record the history of the execution. We show that these semantics constitute well-structured
transition systems, thus enabling decidable verification. Based on a key observation, which
we call the “shared-memory causality principle”, the two novel semantics may also be of
independent use in the investigation of weakly consistent models and their verification.
Interestingly, our results are in contrast to the undecidability of this problem under the
Release/Acquire fragment of the C/C++11 memory model, which forms another variant
of causally consistent memory that, in terms of allowed outcomes, lies strictly between
the two models studied here. Nevertheless, we show that all these three variants coincide
for write/write-race-free programs, which implies the decidability of verification for such
programs under Release/Acquire.

References
1 Ori Lahav. Verification under causally consistent shared memory. ACM SIGLOG News 6:2,

April 2019, pages 43–56. https://doi.org/10.1145/3326938.3326942
2 Ori Lahav and Udi Boker. Decidable verification under a causally consistent shared memory.

In PLDI, ACM, 2020. https://doi.org/10.1145/3385412.3385966
3 Lahav, O., Boker, U.: What’s Decidable About Causally Consistent Shared Memory? ACM

Trans. Program. Lang. Syst. 44(2), 8:1–8:55 (2022), https://doi.org/10.1145/3505273

3.11 Parameterized Verification of Randomized Consensus Algorithms
Marijana Lazic (TU München, DE)

License Creative Commons BY 4.0 International license
© Marijana Lazic

Joint work of Nathalie Bertrand, Igor Konnov, Josef Widder

In this talk I showed the extension of threshold automata for modeling randomized consensus
algorithms that perform an unbounded number of asynchronous rounds. Moreover, I presented
techniques for parameterized verification of the three randomized consensus properties:
agreement, validity and almost sure termination.

For non-probabilistic properties, I showed that it is necessary and sufficient to verify
these properties under round-rigid schedules, that is, schedules where processes enter round
r only after all processes finished round r − 1.

For almost-sure termination, I proceed in 2 steps. First, I analyze these algorithms under
round-rigid adversaries, that is, fair adversaries that only generate round-rigid schedules.
This allows us to do compositional and inductive reasoning that reduces verification of the
asynchronous multi-round algorithms to model checking of a one-round threshold automaton.

We apply this framework and automatically verify the following classic algorithms: Ben-
Or’s and Bracha’s seminal consensus algorithms for crashes and Byzantine faults, 2-set
agreement for crash faults, and RS-Bosco for the Byzantine case.

Second, I focus on weak adversaries, that express the property that the adversary
(scheduler), which has to decide which messages to deliver to which process, has no means
of inferring the outcome of random choices, and the content of the messages. I introduced
a model for randomized distributed algorithms that allows us to formalize the notion of
weak adversaries. I show that for verification purposes, the class of weak adversaries can
be restricted to round-rigid adversaries. This new reduction theorem paves the way to the
parameterized verification of randomized distributed algorithms under the more realistic
weak adversaries.

23112

https://doi.org/10.1145/3326938.3326942
https://doi.org/10.1145/3385412.3385966
https://doi.org/10.1145/3505273
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

42 23112 – Unifying Formal Methods for Trustworthy Distributed Systems

References
1 Nathalie Bertrand, Marijana Lazic, Josef Widder. A Reduction Theorem for Randomized

Distributed Algorithms Under Weak Adversaries. VMCAI 2021: 219-239
2 Nathalie Bertrand, Igor Konnov, Marijana Lazic, Josef Widder. Verification of Randomized

Consensus Algorithms Under Round-Rigid Adversaries. CONCUR 2019: 33:1-33:15

3.12 A simple proof of the FLP impossibility result
Giuliano Losa (Stellar Development Foundation – San Francisco, US)

License Creative Commons BY 4.0 International license
© Giuliano Losa

Joint work of Giuliano Losa, Eli Gafni
Main reference Eli Gafni, Giuliano Losa: “Time is not a Healer, but it Sure Makes Hindsight 20:20”, CoRR,

Vol. abs/2305.02295, 2023.
URL https://doi.org//10.48550/arXiv.2305.02295

We present a remarkably simple proof of the famous FLP impossibility result. We first
observe that solving consensus in an asynchronous system where one process may fail implies
solving consensus in the synchronous model of Santoro and Widmayer. Then, we build on
insights from Volzer to obtain an almost trivial impossibility proof in the synchronous model.

3.13 Random Testing of Distributed Systems
Rupak Majumdar (MPI-SWS – Kaiserslautern, DE)

License Creative Commons BY 4.0 International license
© Rupak Majumdar

This talk was an overview of the main ideas behind the state-of-the-art techniques for
effective and efficient fuzz-testing of realistic distributed systems. I have outlined the basic
theory facts that explain why well-adopted “black-box” testing tools, such as Jepsen, are
surprisingly effective in discovering interesting bugs in distributed systems. I have also
described approaches that can be used to improve the algorithms that navigated through
the very large space of possible distributed interactions by exploiting the ideas of partial
synchrony and round-based formulation of distributed protocols. These algorithms define a
sample space based on the underlying partial orderings of events in the distributed system
and sample efficiently from that space.

The talk described work that appeared in the following papers and dissertation:

References
1 Rupak Majumdar and Filip Niksic. Why is random testing effective for partition tolerance

bugs? Proc. ACM Program. Lang. 2(POPL): 46:1-46:24 (2018)
2 Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip Niksic, Mitra Tabaei Befrouei, Georg

Weissenbacher. Randomized testing of distributed systems with probabilistic guarantees.
Proc. ACM Program. Lang. 2(OOPSLA): 160:1-160:28 (2018)

3 Filip Niksic. Combinatorial Constructions for Effective Testing. Kaiserslautern University
of Technology, Germany, 2019

4 Cezara Dragoi, Constantin Enea, Burcu Kulahcioglu Ozkan, Rupak Majumdar, Filip Niksic:
Testing consensus implementations using communication closure. Proc. ACM Program.
Lang. 4(OOPSLA): 210:1-210:29 (2020)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.48550/arXiv.2305.02295
https://doi.org//10.48550/arXiv.2305.02295
https://doi.org//10.48550/arXiv.2305.02295
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey 43

3.14 Verified Secure Routing
Peter Müller (ETH Zürich, CH)

License Creative Commons BY 4.0 International license
© Peter Müller

SCION is a new Internet architecture that addresses many of the security vulnerabilities of
today’s Internet. Its clean-slate design provides, among other properties, route control, failure
isolation, and multi-path communication. The verifiedSCION project is an effort to formally
verify the correctness and security of SCION. It aims to provide strong guarantees for the
entire architecture, from the protocol design to its concrete implementation. The project
uses stepwise refinement to prove that the protocol withstands increasingly strong attackers.
The refinement proofs assume that all network components such as routers satisfy their
specifications. This property is then verified separately using deductive program verification
in separation logic. This talk will give an overview of the verifiedSCION project and explain,
in particular, how we verify code-level properties such as memory safety, I/O behavior, and
information flow security.

3.15 Interactive Synthesis of Distributed Protocols
Kedar Namjoshi (Nokia Bell Labs – Murray Hill, US)

License Creative Commons BY 4.0 International license
© Kedar Namjoshi

Joint work of Kedar Namjoshi, Senthil Rajasekaran

It is difficult to verify distributed protocols: one must prove that all configurations satisfy
a global property, which is in general an undecidable question. Could one synthesize such
protocols instead? That is undecidable, too; but we suggest using a process of successive
refinement on specifications, with the goal of obtaining a specification that is localized to a
generic process and a generic neighborhood, which is simpler to synthesize. A protocol designer
suggests the sequence of specifications, with automated help in establishing refinements.

3.16 Reasoning about Byzantine Accountability
Ilya Sergey (National University of Singapore, SG) and George Pîrlea (National University
of Singapore, SG)

License Creative Commons BY 4.0 International license
© Ilya Sergey and George Pîrlea

Modern Byzantine distributed consensus protocols can achieve agreement in the presence of
a bounded number of faulty nodes trying to corrupt the network, yet they fail to identify or
disincentivise Byzantine behaviour by malicious nodes. Accountable Byzantine Consensus
(ABC) is a protocol transformation that, when combined with any Byzantine consensus
protocol, guarantees both consensus and accountability.

I this talk, I presented the key ideas of Byzantine accountability, its semantic model, as
well some preliminary results on formalising and verifying accountable consensus protocols.

23112

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

44 23112 – Unifying Formal Methods for Trustworthy Distributed Systems

3.17 Finding Infinite Counter Models in Deductive Verification
Sharon Shoham Buchbinder (Tel Aviv University, IL)

License Creative Commons BY 4.0 International license
© Sharon Shoham Buchbinder

Joint work of Sharon Shoham Buchbinder, Neta Elad, Oded Padon

First-order logic, and quantifiers in particular, are widely used in deductive verification of
programs and systems. Quantifiers are essential for describing systems with unbounded
domains, but prove difficult for automated solvers. Significant effort has been dedicated to
finding quantifier instantiations that establish unsatisfiability of quantified formulas, thus
ensuring validity of a system’s verification conditions. However, in many cases the formulas
are satisfiable—this is often the case in intermediate steps of the verification process, e.g.,
when an invariant is not yet inductive. For such cases, existing tools are limited to finding
finite models. Yet, some quantified formulas are satisfiable but only have infinite models,
which current solvers are unable to find. Such infinite counter-models are especially typical
when first-order logic is used to approximate the natural numbers, the integers, or other
inductive definitions, which is common in deductive verification.

In this work, we tackle the problem of finding such infinite models, specifically, finite
representations thereof that can be presented to the user of a deductive verification tool.
These models give insight into the verification failure, and allow the user to identify and fix
bugs in the modeling of the system and its properties. Our approach consists of three parts.
First, we introduce templates as a way to represent certain infinite models, and show that
formulas can be efficiently model checked against them. Second, we identify a new decidable
fragment of first-order logic that extends and subsumes EPR, where satisfiable formulas
always have a model representable by a template of a bounded size. Finally, we describe
an effective decision procedure to symbolically explore this (usually vast) search space of
templates.

We evaluate our approach on examples from a variety of domains: distributed consensus
protocols, linked lists, and axiomatic arithmetic. Our implementation quickly finds infinite
counter-models that demonstrate the source of verification failures in a simple way, even in
cases beyond the decidable fragment, while state-of-the-art SMT solvers and theorem provers
such as Z3, cvc5, and Vampire diverge or return “unknown”.

3.18 Deadlock-free asynchronous message reordering in Rust with
multiparty session types

Nobuko Yoshida (University of Oxford, GB)

License Creative Commons BY 4.0 International license
© Nobuko Yoshida

Joint work of Zak Cutner, Nobuko Yoshida, Martin Vassor
Main reference Zak Cutner, Nobuko Yoshida, Martin Vassor: “Deadlock-free asynchronous message reordering in

rust with multiparty session types”, in Proc. of the PPoPP ’22: 27th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, Seoul, Republic of Korea, April 2 – 6, 2022,
pp. 246–261, ACM, 2022.

URL https://doi.org//10.1145/3503221.3508404

Rust is a modern systems language focussed on performance and reliability. Complementing
Rust’s promise to provide “fearless concurrency,” developers frequently exploit asynchronous
message passing. Unfortunately, sending and receiving messages in an arbitrary order to

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org//10.1145/3503221.3508404
https://doi.org//10.1145/3503221.3508404
https://doi.org//10.1145/3503221.3508404
https://doi.org//10.1145/3503221.3508404
https://doi.org//10.1145/3503221.3508404

Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey 45

maximise computation-communication overlap (a popular optimisation in message-passing
applications) opens up a Pandora’s box of subtle concurrency bugs. To guarantee deadlock-
freedom by construction, we present Rumpsteak: a new Rust framework based on multiparty
session types. Previous session type implementations in Rust are either built upon synchron-
ous and blocking communication and/or are limited to two-party interactions. Crucially,
none support the arbitrary ordering of messages for efficiency. Rumpsteak instead targets
asynchronous async/await code. Its unique ability is allowing developers to arbitrarily order
send/receive messages whilst preserving deadlock-freedom. For this, Rumpsteak incorporates
two recent advanced session type theories: (1) k-multiparty compatibility, which globally
verifies the safety of a set of participants, and (2) asynchronous multiparty session subtyping,
which locally verifies optimisations in the context of a single participant. Specifically, we
propose a novel algorithm for asynchronous subtyping that is both sound and decidable. We
first talk about Rumpsteak and show the new algorithm. We then talk about our evaluation
against other Rust implementations and asynchronous verification tools. We conclude the
talk with a demonstration of Rumpsteak.

3.19 A (not very simple) Protocol whose Mechanized Proof is ????
Lenore D. Zuck (University of Illinois – Chicago, US)

License Creative Commons BY 4.0 International license
© Lenore D. Zuck

In JACM 41(6) Afek et al described a protocol [1], originally conceived by Wang and Zuck [2],
then simplified by Afek, whose goal is to transmit an infinite sequence of messages, from a
finite alphabet, over bi-directional channels that can reorder and delete messages. While the
impossibility of transmitting such a sequence over channels that can also duplicate messages
was well known at the time, it was conjectured that reordering and deleting channels suffice
to render the problem impossible. The protocol served to refute this conjecture. The
original description of the protocol was “flat,” and Afek’s suggestion to embed it into the
“probe” mechanism transformed it into a layer protocol. The top layer implements a FIFO
transmission over a lossy channel, for which the well-studied and verified Alternating Bit
Protocol suffices. The bottom layer implements a lossy channel over a bi-directional channel
that can loss and reorder messages. This protocol, as well as others using on the “probe”
mechanism, was never mechanically verified. The talk introduces the protocols and describes
the challenges in using existing tools to formally verify probe-based protocols.

References
1 Yehuda Afek, Hagit Attiya, Alan D. Fekete, Michael J. Fischer, Nancy A. Lynch, Yishay

Mansour, Da-Wei Wang, Lenore D. Zuck. Reliable Communication Over Unreliable Channels.
J. ACM 41(6): 1267-1297, 1994

2 Da-Wei Wang, Lenore D. Zuck. Tight Bounds for the Sequence Transmission Problem.
PODC 1989: 73-83

23112

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

46 23112 – Unifying Formal Methods for Trustworthy Distributed Systems

4 Panel discussions

4.1 A Competition for Distributed Systems Verification?
Swen Jacobs (CISPA – Saarbrücken, DE), Kenneth McMillan (University of Texas – Austin,
US), Roopsha Samanta (Purdue University – West Lafayette, US), and Ilya Sergey (National
University of Singapore, SG)

License Creative Commons BY 4.0 International license
© Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey

Competitions have a long-standing tradition in the fields of verification and automated
reasoning. They serve to unify, energize and provide guidance to the research community
by establishing a universal format in which verification problems are stated, collecting a
library of interesting and challenging benchmark problems, and providing an independent
and unbiased platform for the comparison of verification tools. Competitions for different
flavours of verification and automated reasoning have been very successful in achieving these
goals [4, 1, 2, 3, 5], and were able to draw positive attention to their respective fields in the
process.

While competitions have been successful in areas where verification tasks can be fully
automated, this seems to be an overly ambitious goal for distributed verification in general:
if we consider the verification of realistic distributed algorithms or systems, then the problem
is arguably more difficult than in any of the areas where competitions of push-button tools
exist. While a restricted scope of the competition would allow us to make it amenable to
fully automatic tools, this would make it uninteresting for a large part of the community.

Thus, we concluded that for distributed systems verification an interactive competition
would be more suitable, in the style of the VerifyThis competition [6], where a verification
team tries to solve verification problems interactively with their tool of choice. This could
either be a stand-alone solution, or be separated into multiple tracks, some of which are
limited in scope and only only allow fully automated tools. Finally, a third choice would be
to try to achieve the benefits of a competition without actually hosting one, i.e., trying to
establish a standard format for problems and collecting a library of challenging problems
that are offered to the research community, but without a dedicated comparison of tools at
specific fixed times.

References
1 Gianpiero Cabodi, Carmelo Loiacono, Marco Palena, Paolo Pasini, Denis Patti, Stefano

Quer, Danilo Vendraminetto, Armin Biere, Keijo Heljanko. Hardware Model Checking
Competition 2014: An Analysis and Comparison of Solvers and Benchmarks. J. Satisf.
Boolean Model. Comput. 9(1): 135-172 (2014)

2 Dirk Beyer. Competition on Software Verification – (SV-COMP). TACAS 2012: 504-524
3 Clark W. Barrett, Morgan Deters, Leonardo Mendonça de Moura, Albert Oliveras, Aaron

Stump. 6 Years of SMT-COMP. J. Autom. Reason. 50(3): 243-277 (2013)
4 Geoff Sutcliffe. The CADE ATP System Competition – CASC. AI Mag. 37(2): 99-101

(2016)
5 Swen Jacobs, Roderick Bloem, Romain Brenguier, Rüdiger Ehlers, Timotheus Hell, Robert

Könighofer, Guillermo A. Pérez, Jean-François Raskin, Leonid Ryzhyk, Ocan Sankur,
Martina Seidl, Leander Tentrup, Adam Walker. The first reactive synthesis competition
(SYNTCOMP 2014). Int. J. Softw. Tools Technol. Transf. 19(3): 367-390 (2017)

6 Gidon Ernst, Marieke Huisman, Wojciech Mostowski, Mattias Ulbrich. VerifyThis – Verific-
ation Competition with a Human Factor. TACAS (3) 2019: 176-195

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey 47

4.2 Grand Challenges for Distributed Systems Verification
Swen Jacobs (CISPA – Saarbrücken, DE), Kenneth McMillan (University of Texas – Austin,
US), Roopsha Samanta (Purdue University – West Lafayette, US), and Ilya Sergey (National
University of Singapore, SG)

License Creative Commons BY 4.0 International license
© Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey

Grand challenges in science are considered as beneficial in energizing the scientific community
and focusing its efforts on meaningful goals. According to their name, they should be
sufficiently challenging such that they cannot be completely solved by any research group in
a single project, but require a long-term effort and collaboration between different research
groups and communities. Solving them should have a major positive impact, not only on the
scientific community, but also on society as a whole.

For grand challenges in the area of distributed systems verification, we discussed several
ideas. However, we concluded that the effort it would take to design a project that is
sufficiently large-scale and challenging, while at the same time allowing a large part of the
distributed systems verification community to participate without major obstacles, would go
well beyond what could be discussed in this short time frame.

Instead, we found that a particularly promising idea is to take “Verified Secure Routing”
(as presented in the talk by Peter Müller) as a grand challenge. The reasons are that this
includes challenging aspects and sub-problems for many different research directions, ranging
from low-level protocol design over path exploration to information-flow properties. Moreover,
the verification tasks are sufficiently difficult to be suitable (at different levels of abstraction)
for different flavors of verification, from mechanized interactive proofs to partially or fully
automated proof techniques. Finally, a lot of the groundwork in defining the problem and
many of its sub-problems has already been done in the large-scale project “verified SCION” at
ETH. This project concentrates on mechanized proofs with tight interaction of the protocol
and system engineers, and leaves open many details, as well as aspects of automating the
verification. This results in a low entry bar for even small research groups to contribute to
this grand challenge.

23112

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

48 23112 – Unifying Formal Methods for Trustworthy Distributed Systems

Participants

Laura Bocchi
University of Kent –
Canterbury, GB

Ahmed Bouajjani
Université Paris Cité, FR

Andreea Costea
National University of
Singapore, SG

Mike Dodds
Galois – Portland, US

Constantin Enea
Ecole Polytechnique –
Palaiseau, FR

Javier Esparza
TU München, DE

Murdoch Jamie Gabbay
Heriot-Watt University –
Edinburgh, GB

Swen Jacobs
CISPA – Saarbrücken, DE

Gowtham Kaki
University of Colorado –
Boulder, US

Igor Konnov
Informal Systems – Wien, AT

Burcu Kulahcioglu Ozkan
TU Delft, NL

Lindsey Kuper
University of California –
Santa Cruz, US

Ori Lahav
Tel Aviv University, IL

Marijana Lazic
TU München, DE

Giuliano Losa
Stellar Development Foundation –
San Francisco, US

Rupak Majumdar
MPI-SWS – Kaiserslautern, DE

Kenneth McMillan
University of Texas – Austin, US

Peter Müller
ETH Zürich, CH

Kedar Namjoshi
Nokia Bell Labs –
Murray Hill, US

George Pîrlea
National University of
Singapore, SG

Roopsha Samanta
Purdue University – West
Lafayette, US

Ilya Sergey
National University of
Singapore, SG

Sharon Shoham Buchbinder
Tel Aviv University, IL

Nobuko Yoshida
University of Oxford, GB

Lenore D. Zuck
University of Illinois –
Chicago, US

	Executive Summary (Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey)
	Table of Contents
	Overview of Talks
	Session types, time, timeout (Laura Bocchi)
	Commutativity Quotients of Concurrent or Distributed Algorithms (Constantin Enea)
	Checking Qualitative Liveness Properties of Replicated Systems with Stochastic Scheduling (Javier Esparza)
	The semitopology of permissionless consensus (Murdoch Jamie Gabbay and Giuliano Losa)
	Parameterized Model Checking (and Synthesis) (Swen Jacobs)
	Verifying Indistinguishability of Privacy-Preserving Protocols (Gowtham Kaki)
	Improving usability of TLA+ tools for blockchain engineers (Igor Konnov)
	Random testing of Byzantine fault tolerant algorithms (Burcu Kulahcioglu Ozkan)
	Verified Causal Broadcast with Liquid Haskell (Lindsey Kuper)
	Potential-based semantics for causally consistent shared memory (Ori Lahav)
	Parameterized Verification of Randomized Consensus Algorithms (Marijana Lazic)
	A simple proof of the FLP impossibility result (Giuliano Losa)
	Random Testing of Distributed Systems (Rupak Majumdar)
	Verified Secure Routing (Peter Müller)
	Interactive Synthesis of Distributed Protocols (Kedar Namjoshi)
	Reasoning about Byzantine Accountability (Ilya Sergey and George Pîrlea)
	Finding Infinite Counter Models in Deductive Verification (Sharon Shoham Buchbinder)
	Deadlock-free asynchronous message reordering in Rust with multiparty session types (Nobuko Yoshida)
	A (not very simple) Protocol whose Mechanized Proof is ???? (Lenore D. Zuck)

	Panel discussions
	A Competition for Distributed Systems Verification? (Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey)
	Grand Challenges for Distributed Systems Verification (Swen Jacobs, Kenneth McMillan, Roopsha Samanta, and Ilya Sergey)

	Participants

