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Abstract

Data-oriented programming (DOP) is a methodology for em-
bedding malicious programs into fixed executable vulnerable
binaries. DOP is effective for implementing code reuse at-
tacks that exploit memory corruptions without violating many
defence techniques, such as non-execute, address space layer
randomisation, control flow and code point integrity. Existing
approaches for automated exploit generation for DOP follow
the program synthesis approach: given a description of an at-
tack phrased as a program, they perform extensive constraint-
based search to identify the required payload for the corrupted
memory. The program synthesis-inspired approaches come
with three major shortcomings regarding (a) efficiency: attack
generation often takes prohibitively large amount of time,
(b) soundness: they provide no formal guarantees whatso-
ever that a particular user-described attack is feasible in a
particular vulnerable program with suitable payloads, and
(c) capability visibility: they do not make clear to users what
attack capabilities are admitted by the vulnerable program.

In this work, we propose a novel approach to synthesise
code reuse attacks via DOP by casting this task as an in-
stance of the previously unexplored programming language
synthesis idea. Given a vulnerable program and an exploit
(e.g., buffer overflow), our approach derives a grammar of a
programming language for describing the available attacks.
Our approach addresses the issue (a) by shifting the cost of
synthesising individual attacks to synthesising the entire at-
tack language: once the grammar is generated, the compilation
of each attack takes negligible time. The issues (b) and (c) are
addressed by establishing correctness of our grammar synthe-
sis algorithm: any attack expressible in terms of a generated
grammar is realisable. We implement our approach in a tool
called DOPPLER—an end-to-end compiler for DOP-based at-
tacks. We evaluate DOPPLER against available state-of-the art
techniques on a set of 17 case studies, including three recent
CVEs, demonstrating its improved effectiveness (it generates
more attacks) and efficiency (it does so much faster).

1 Introduction

Data-Oriented Programming (DOP) [29, 30] is an approach
to generate code reuse attacks by exploiting memory corrup-
tions such as buffer overflows. A security expert can construct
a DOP-based attack by calculating the data payload for the
corrupted memory segment in a way that would predictably
impact the control-flow of the vulnerable program, thus, mak-
ing it execute a desired functionality (e.g., writing a particular
value to a desired memory location or printing out a message),
thereby realising the attack. For vulnerable programs with rel-
atively complex control-flow patterns, DOP has been shown
to be Turing-complete in expressivity. That is, it allows for
embedding arbitrarily complex attacks via suitable payloads,
while circumventing common control-flow hijacking de-
fences [30,32], such as Data Execution Prevention (DEP) [20],
Control Flow Integrity (CFI) [1,9,13], Address Space Layout
Randomisation (ASLR) [55, 56], Stack Canaries [19], and
dynamically loaded libraries (Libsafe) [60, 61].

DOP attacks were extensively studied recently [4, 16, 32,
45, 53] from the perspective of automatic exploit generation
(AEG) [5] by applying ideas from automated program synthe-
sis [25]. The state-of-the-art approaches for DOP-based attack
synthesis either supply a fixed relatively high-level domain-
specific language, in which users can define their attack as
a program [32, 45] or the desired memory state they would
like to achieve [33, 53], as well as a “compiler” that gener-
ates the attack by calculating the required data payload for
the vulnerable program. Given a vulnerable program, a high-
level description of the attack, and additional tool-specific
inputs, such as the entry point and the collection of gadgets,
all those tools perform a search for the payload by employing
a combination of concolic execution and constraint solving.

Because of their search-based nature (hence the quotes
around the “compiler” above), all these tools share the fol-
lowing practical and conceptual shortcomings. First, the at-
tack compilation by means of payload generation takes large
amount of time, ranging from seconds to days [53], depending
on the size of the attack description and the nature of the vul-
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nerable program. Due to the opportunistic nature of the search
tools, no estimates can be given about the synthesis time. The
efficiency problem is exacerbated by the fact that every attack
synthesis tasks with such tools starts “from scratch”, and there
is no way to reuse the results from the previous searches to
amortise the time it takes to compile multiple different attacks
on top the same exploited program.

Second, none of the existing approaches provide any sound-
ness guarantees wrt. realisability of the attacks. In other
words, there is no way to predict, without running the tool
(and possibly waiting for days), whether, for a particular at-
tack, the required payload can even be found for a vulnerable
program in question. The lack of methodology to reliably
tell whether a certain attack can be synthesised with a given
approach hinders utility of such tools for security experts.

Our approach and key ideas. To address the shortcomings
of state-of-the-art approaches to DOP-based attack generation,
we adopt a different mindset. Instead of considering attack
generation as a program synthesis task, we view it as an
instance of the novel idea we call Programming Language
Synthesis (PLS): given a low-level runtime L and the desired
syntax of a high-level language H with (perhaps, informally)
specified semantics, produce a correct and efficient compiler
from (a subset of) H to L. We say that the implementation
of PLS is sound if the compiler it generates can compile all
programs written in the synthesised subset of H (described as
a grammar) to semantically equivalent representations in L.

Coming back to AEG challenge for DOP, we can consider
the vulnerable program with the set of all possible payloads
one can deploy in its corrupted state as the language L. Our
goal is to discover the human-readable language H and derive
a compiler that can compile from it to L by finding, for each
program in H, the required concrete payloads in L. By shift-
ing the synthesis task from individual attacks (i.e., programs
in H) to generating the language and the compiler for it, our
methodology addresses the fundamental shortcomings of the
existing approaches outlined above. Specifically, it greatly
improves the efficiency of the attack generation by providing
the compiler that does not perform, for each attack, the search
in the space of possible symbolic execution traces, as this task
has been done once and for all during the compiler synthesis
phase. Furthermore, correctness of our language synthesis
algorithms guarantees soundness of the compilation in the
following sense: any attack expressible in the derived gram-
mar can be compiled to the equivalent payload, resulting in
the desired outcome of the vulnerable program’s execution.1

Importantly, by learning the attack grammar, users gain
knowledge of the attack capability of a vulnerability. In real-

1The reader might also think of a different notion of soundness in appli-
cation to attack synthesis, namely, that any high-level attack program and its
compiled counterpart always behave the same. Stating this notion of sound-
ness requires precise semantics for both our high- and low-level languages
and is largely outside of the scope of this work. Our extensive evaluation
allows us to claim that our approach is sound in this sense in practice.

world scenarios, such a sound attack grammar is helpful for
security engineers to understand the severity of a reported
vulnerability; it is also useful for white-hats who want to
build and report multiple proof-of-concept attacks in terms of
different attack goals, such as arbitrary memory write, remote
code execution, etc. Finally, the ability to compose attacks via
the synthesised language allows for more complex exploits,
e.g., using an arbitrary memory read to steal the name of a
secret file, subsequently accessing it through a reverse shell.

Contributions. We make the following contributions:
• Our main conceptual contribution is the novel idea of Pro-

gramming Language Synthesis (PLS), an approach to amor-
tise the cost of synthesising individual programs by synthe-
sising a language for encoding computations that can be
encoded and executed given the specifics of the back-end
runtime, and a compiler for this language.

• Our first technical contribution is the instantiation of the
PLS idea for DOP attacks by identifying a family of tech-
niques based on symbolic execution and algorithms for
automata learning to synthesise, from a given vulnerable
program and an entry point in it, a language grammar for
supported attacks as well as a compiler for payload genera-
tion to realise any program written in this language.

• Our second technical contribution is DOPPLER, a frame-
work for automatic exploit generation of DOP attack by
PLS via symbolic execution and automata learning. Given a
vulnerable program, DOPPLER generates a domain-specific
language for describing the space of realisable attacks.

• Our final contribution is a extensive evaluation of DOPPLER
against BOPC [32], the only available state-of-the-art tool
for generating arbitrary DOP exploits, on 17 vulnerable
programs (6 characteristic examples and 11 real-world pro-
grams) under 5 different attack goals. In particular, our case
studies include 3 recent CVEs reported in 2024. The results
demonstrate tangible benefits of PLS for AEG: a greatly
reduced time for exploit generation and the increased effec-
tiveness compared to a program-synthesis based approach.

2 Overview

We present an overview of DOPPLER by means of an illus-
trative example: generating a program-specific language for
performing DOP attacks against a vulnerable target in the
presence of strong code-reuse defences, such as CFI and DEP.
The generated language, expressed as a grammar, is regu-
lar, and is synthesised by DOPPLER through a combination
of symbolic execution and automata learning. Attackers can
quickly construct attacks for the vulnerable target by writing
programs in this language, and DOPPLER will compile these
programs to payloads that execute the desired computation.

In the rest of this narrative, we will assume the target pro-
gram is open-sourced and contains a known memory corrup-
tion vulnerability and a set of manually identified vulnerable
variables. The execution environment is protected by general
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1 int m, n; // control variables
2 int p, q, *a, *b, *c; // data variables
3 char buf[1024];
4 int secret;
5 ...
6 while(m--){
7 gets(buf); // stack buffer overflow
8 if(n == 0)
9 printf("%d",*a); // syscall

10 else if(n>10)
11 *b = p; // assignment
12 else if(n>5)
13 *c += q; // arithmetic operation
14 }

Fig. 1: A program with a buffer overflow

code-reuse defences, including CFI, DEP, and ASLR, against
control flow hijacking attacks, such as ROP, JOP, and ret2lib.

2.1 DOP and Attack Grammar in a Nutshell
Fig. 1 presents our running example: a simulated web server
with a memory corruption that is vulnerable to DOP attacks.

This program implements a fairly simple server loop. It re-
peatedly reads data from the user into a buffer buf (line 7) and
then performs one of a number of operations, including print-
ing (line 9), memory writes (line 11) and limited arithmetic
operations (line 13). Since the call at line 7 does not imple-
ment bounds checks, large inputs will overflow the buffer and
overwrite the stack variables at lines 1 and 2, allowing for a
data-oriented programming attack.

Given a memory corruption error, like the buffer overflow
at line 7, data-oriented programming (DOP) manipulates the
program memory to perform bespoke computations. For ex-
ample, corrupting the value of variables p, q, a, b, c will allow
an attacker to exploit the unaltered commands of the program
to perform arbitrary memory reads and writes (lines 9 and 11),
or restricted computations such as addition (line 13). Further-
more, by corrupting the value of variables m,n, attackers can
modify the control flow of the program and can chain these
operations in arbitrary sequences. As DOP attacks of this kind
do not require modifying control data such as function return
addresses, they can easily bypass control-flow protection de-
fences such as CFI, making them a potent attack vector.

The main challenge with constructing DOP attacks in prac-
tice is that they are progam-specific and must be tailored for
each program and vulnerability. For example, in our running
example, a careful inspection of the source code is required
to identify both (a) which computations can be encoded by
modifying vulnerable variables, and (b) which variables can
be modified to chain these computations together. Tradition-
ally this analysis has been done manually, and while there has
been some work on automating DOP attacks, no prior work
has tried to describe the landscape of possible attacks for
a target program. In particular, following our analysis from
before, one can see that the space of computations allowed
by our example is captured by the following grammar:

VS ::= ∗b = p
| ∗c = ∗c+q
| print(”%d”,∗a)

P ::= VS∗

In this work, we propose an approach to constructing DOP
attacks by incorporating the program-specific nature of the
task and generating bespoke attack grammars that describe
the space of allowed computations that can then be consis-
tently compiled into viable DOP attacks. A program-specific
attack grammar is a high-level language that expresses po-
tential DOP attacks in the target program. It indicates the
variables and statements available to the attacker and the rules
dictating how they can be composed. Unlike existing works
that can only check whether specific attacks are possible on
a case-by-case basis [32, 53], grammars synthesised by our
tool DOPPLER summarise many possible attack behaviours
for a given program/vulnerability, thus, giving the user an
understanding of the space of possible attacks.

The remainder of the section will walk through the process
through which DOPPLER, when applied to our running exam-
ple (Fig. 1), generates an attack grammar and then compiles
programs in this grammar into an executable attack.

2.2 Preliminary Analysis
Given the code and the location of the vulnerability, the first
step in our analysis is to extract the set of variables and state-
ments that will be accessible to the user in the final grammar.

The final variables exposed in the attack grammar will be
a subset of those that can be corrupted through the memory
vulnerability, in this case m, n, p, q, a, b, c. As the set of cor-
ruptible variables may rely on domain-specific details of the
memory vulnerability to ascertain, our analysis assumes that
an initial set of such variables is supplied by the user. How-
ever, not all of these variables are suitable to be presented to
the user; for example, in our running example, the variables
m,n are used to control the number of iterations, and so al-
lowing the user to mutate or use them would interfere with
the control flow of the program. As such, DOPPLER first clas-
sifies these variables into two types: control variables, which
influence branch conditions and data variables, which are
any remaining variables. In constructing an attack program,
control variables are used to chain a sequence of target in-
structions, while data variables are used to construct specific
operations. In our example, m and n would be control vari-
ables while p, q, a, b, c are data variables. These variables are
identified through a standard backwards data-flow analysis
which will be detailed in Sec. 3.

Having identified the appropriate data variables, DOPPLER
then traverses all the instructions in the target program and
identifies a set of valid statements—-operations in the source
code that involve data variables and no control variables.
The role of these valid statements is largely similar to con-

3



Fig. 2: DFA from Automaton Learning

cept of data-oriented gadgets as introduced in prior work on
DOP [30]: each valid statement is a potential atomic operation
in attack grammar. For our running example, there are three
valid statements: {printf (”%d”,∗a),∗b = p,∗c += q}.

2.3 Extracting an Automaton
With a set of valid statements in hand, the next step in our
analysis is determining how they can be sequenced within the
control-flow graph (CFG) of the program by manipulating the
control variables that have been identified earlier.

In particular, the sequencing of valid statements within the
program will depend on three key factors: (1) their positions in
the CFG, (2) the program variables they depend on, and finally
(3) the satisfiability of the path constraint along an execution
path. To convert these constraints into simple compositional
rules that can be presented in our attack grammars, we first
construct a deterministic finite automaton (DFA) to represent
the sequences of valid statements allowed by the program.

DFAs are a mathematical formalism of finite state machines
and serve as concise representations of regular languages. A
DFA is typically represented using a 5-tuple (Q,Σ,σ,q0,F),
where Q represents the set of states of the machine, Σ the
alphabet over which it runs, σ : Q×Σ→ Q the transition re-
lation, q0 the initial state, and F ⊆ Q the set of accepting
states. To use this formalism to encode traces of the program,
DOPPLER regards the states of the target program as the finite
set of states Q, valid statements as symbols Σ, the accept states
F being the states reached by any valid execution traces (se-
quences of valid statements). The initial state q0 represents the
program entry point, and transition function σ, to be learned,
is the transition incurred by executing a valid statement.

To construct a DFA that will represent the valid traces of
our program, DOPPLER adapts Angluin’s L* Algorithm [3]
to learn it from observations of concrete traces. In particular,
in Angluin’s algorithm, a DFA can be learned through a num-
ber of membership and equivalence queries to an oracle.2 In
our implementation, DOPPLER uses a symbolic execution en-
gine, more specifically, KLEE [14], as such an oracle. When
prompted, the symbolic execution engine can then provide
DOPPLER with a number execution traces that could be fea-
sible. If this trace contains the previously identified valid
statements, then DOPPLER can learn that these sequences of

2 The reader might notice that using L* can result in unsoundness of PLS,
since the resulting automaton can also accept traces that do not correspond
to program executions. For our experiments (cf. Sec. 4), we use passive
learning [40], which guarantees soundness. DOPPLER allows for using L* as
well, which results in more expressive yet possibly unsound grammars.

Value Val integers
Valid Variables Var a,b,c,p,q
Initialisers init ::= Var = Val
Valid Statements vs1 ::= ∗b = p

vs2 ::= ∗c = ∗c+q
vs3 ::= print(”%d”,∗a)

Attack attack ::= init;(vs1+ vs2+ vs3)∗

Fig. 3: Attack grammar for the example from Fig. 1

statements are feasible and should be matched by the DFA. So
far, this only produces positive examples, so, in order to con-
strain the DFA to reduce the number of incorrectly accepted
traces, DOPPLER also synthesises negative counterexamples,
mutating existing traces, using KLEE to validate them, and
passing them to Angluin’s algorithm.

The DFA for Fig. 1 is shown in Fig. 2, where init is the
initial statement to setup variables, and {vs1,vs2,vs3} corre-
spond to the three valid statements outlined above.

2.4 From Automata to Grammars

Once a DFA has been constructed, the last step is to map
it to an attack grammar. To do this, DOPPLER applies the
state elimination method [12] to convert the DFA to a regu-
lar expression, representing the compositional rules of valid
statements in the attack grammar. It then uses a number of
basic rewrite rules to normalise and simplify the resultant
expression and map it to a grammar. For our running example,
applying this process produces the grammar shown in Fig. 3.

In this grammar, there are five available variables that can
be assigned to arbitrary variables by init statement, three valid
statements with an init statement appended in the front. Intu-
itively, before the execution of valid statements, all the valid
variables can be initialised by attackers through buffer over-
flow. DOPPLER finds that (vs1 + vs2 + vs3) can be repeated
an arbitrary number of times, thus, introducing the regular ex-
pression remains (vs1 + vs2 + vs3)∗ to the resulting grammar.

2.5 Compiling High-Level Programs

Given a computation written as a program a synthesised attack
grammar, DOPPLER also provides a pipeline to compile it to
concrete exploit payloads that will use DOP execute the in-
tended computation. This is fairly straightforward: DOPPLER
maps the user program to an execution trace in the DFA and
then to a path in the original CFG, and then constructs the
path condition for this input, which can be solved by an SMT
solver to learn the required values for the exploit payload.

To illustrate the utility of our grammars for attack construc-
tion, in the rest of this section we will explore two examples of
performing non-trivial computations in our running example
from Fig. 1: the first one executes an arbitrary memory read,
while the other implements an attack program with complex
logic, calculating an arbitrary Fibonacci number.
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Fig. 4: An overview of DOPPLER: a programming language synthesis framework and an attack compiler.

Example 1: Executing arbitrary memory read. Tab. 1
shows the attack program and semantically equivalent pseu-
docode that reads a variable secret from memory. By chang-
ing the pointer value of valid variable a in the init statement,
an arbitrary memory read attack is constructed.

DOPPLER Program Equivalent Pseudocode

vs3 (init a to addr of secret variable) int* i = & secret;
print(*i);

Tab. 1: A program written in attack grammar reading variable
secret from memory and an equivalent pseudocode.

Example 2: Calculating a Fibonacci number. Tab. 2
shows the attack program and pseudocode that implements
a function to calculate the Fibonacci sequence for a given
number of n. The program is contains three pointer variables
(a,b,c), one assignment operation (vs1), one addition opera-
tion (vs2), and one print call (vs3). To fully realise this exploit
requires a degree of interactivity since some variables need to
be re-assigned at runtime (further discussed in Sec. 5).

DOPPLER Program Equivalent Pseudocode

fibonacci(n){
vs1;vs1 (init b to addr of i, j) i = 1; j = 1;

(init p to 1)
( for(k=2; k ≤ n; k++){
vs3 (init a to addr of j, get value of j)
vs1 (init b to addr of t, p to value of j) t=j;
vs3 (get value of i)
vs2 (init c to addr of j, q to value of i) j=j+i;
vs3 (get value of t)
vs1 (init b to addr of i, p to value of t) i=t;

}
)*n−2 (repeat in n−2 times)
vs3 (init a to addr of j) print(j);

}

Tab. 2: A program written in attack grammar calculating
Fibonacci sequence and an equivalent pseudocode.

Our approach guarantees that attack programs written us-
ing the synthesised grammar are realisable. That is, for any
program written in attack grammar, there must be a valid ex-
ploit payload to produce an equivalent execution trace in the
target program (see details in Sec. 4).

2.6 Putting It All Together

Fig. 4 illustrates a high-level overview of our framework,
DOPPLER. It takes the source code and entry point as inputs,
where the entry point specifies the location of the memory
corruption and a set of sensitive variables. The programming
language synthesiser conducts a static program analysis and
symbolic execution to identify a set of valid variables, valid
statements, and execution traces, called preliminary elements.
Based on this, PLS constructs a DFA through automaton learn-
ing. By converting DFA to regular grammar and restricting it
with composition rules, DOPPLER synthesises the exploit pro-
gramming language. Users write attack programs in this lan-
guage, while our exploit program compiler calculates actual
exploit payloads. Finally, it sends the payload to the original
vulnerable program, realising the encoded attack.

3 Algorithms and Framework Design

The core problem solved by DOPPLER is an instance of Pro-
gramming Language Synthesis: given a language of low-level
commands L, the syntax of a desired high-level language H,
and the semantics of both, produce a correct compiler from
(a subset of) H to L. Intuitively, we reuse the low-level back-
end, that is the source code of the vulnerable program, for
the execution of attack programs in H by compiling H to L.
The key step in PLS is to abstract the logic of a restricted
subset of the language L and summarise it in terms of H. In
this work, we focus on performing sound program language
synthesis in the sense that all the programs written in the
resulting high-level language H should always be possible to
be compiled to equivalent programs in L.
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Algorithm 1 Identifying Valid Variables

Input: P : target program, S : source variables
Output: C : control variables, D : data variables

1: I← instructions of P
2: C,D← /0

3: V ← /0 ▷ valid variables
4: for i ∈ I do
5: if depends(S, i) then
6: V.add(i)
7: if i is a conditional branch then
8: C.add(v)
9: while i′ = i.pre() do

10: if depends(i′, i) ∧ depends(S, i′) then
11: C.add(i′) ▷ backwards analysis
12: C = unique(C)
13: D =V \C
14: return C,D

Note that this is an important difference between the lan-
guages produced by DOPPLER and related works, such as
SPloit Language (SPL) in BOPC [32], MinDOP in DOP [29],
and SLANG in Steroids [45]. DOPPLER gives a unique attack
grammar for each target program/vulnerability, and programs
written in that grammar are always realisable. In contrast,
other tools cannot provide this guarantee; instead, they check
the existence of a payload for a specific attack goal written in
the given language, one at a time.

3.1 Preliminaries

Valid Variables. Given a target program P, valid variables
VVar are those whose value directly or indirectly derives from
one or more of the variables that are controlled by attackers
at the starting memory vulnerability. Intuitively, a variable
is valid if its value changes under different assignments of
sensitive variables set in the entry point. We classify valid
variables into two categories based on their positions and
related variables. We say that a variable is a control variable
if it is used in a branch condition or depends on any valid
variables used in a branch condition. A valid variable is said
to be a data variable if it is not a control variable.

Algorithm 1 shows the procedure of identifying control and
data variables using static program analysis. We compile the
source code of the target program to LLVM’s intermediate rep-
resentation (IR) language and perform the labelling of valid
variable at the LLVM IR level. We assume the user provides a
set of source variables that attackers can manipulate directly
through the memory vulnerability. For example, in the pro-
gram shown in Fig.1, source variables are {m,n,p,q,a,b,c}.
The key idea to construct the set of valid variables is to iterate
over instructions in the control flow of P and annotate all
the variables whose value depends on source variables. The
function depends() at lines 6 and 10 implements a standard

Algorithm 2 Identifying Valid Statement

Input: P : program, D : data vars, C : control vars
Output: M : valid statements

1: M← /0

2: I← instructions of P ▷ in DFS order
3: for i ∈ I do
4: Vi← variable symbols in i
5: if Vi∩D ̸= /0 ∧ Vi∩C = /0 then
6: M.add(i)

return M

dependence analysis [24]. Whenever a valid variable is found
in a conditional branch, it is marked as a control variable and
a backwards search is invoked to retroactively mark any valid
variables that it depends on as control. Finally, all remaining
valid variables that are not labelled as control variables are
marked as data variables. In the final attack grammar, only
data variables are exposed to users, while control variables
are used for chaining statements.

Valid Statements. Similarly to the notion of data-oriented
gadgets in prior works [30], we introduce a notion of valid
statements—instructions from P that may be used to con-
struct DOP attacks. Given a set of data variables D, the set
of valid statements are instructions from the target program
that involve at least one data variable and no control variables.
In particular, we exclude instructions using control variables
from the set of valid statements to avoid potential conflicts
between user programs and the control flow.

Algorithm 2 shows the relatively straightforward procedure
for identifying the set of valid statements using static program
analysis. We traverse the control flow graph and iterate over
instructions in P, labelling instructions with at least one data
variable and no control variables as valid statements.

Execution Traces. We perform symbolic execution during
the analysis to extract execution traces from the target pro-
gram. Each execution trace consists of a sequence of valid
statements indicating a potential attack trace. Execution traces
provide information about how valid statements can be se-
quenced together under certain exploit payloads.

3.2 Automata Learning
To extract underlying sequential composition rules of valid
statements from execution traces and compile them into a
human-readable grammar, a finite automaton serves as an ef-
fective intermediate representation both due to its operational
effectiveness and the existence of a minimal form. This brings
the problem to a well-known regular language learning chal-
lenge equivalent to automata learning [27]. Specifically, our
goal is to synthesise a regular grammar where the set of valid
statements can be regarded as alphabets, and execution traces
are a finite set of strings of our alphabet.
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Algorithm 3 Adapted L∗ Algorithm

1: Input: Σ : alphabet; S : seed strings; N : a threshold
2: Output: M : DFA
3: S← {λ} ▷ prefixes
4: E ← {λ} ▷ suffixes
5: T ← /0 ▷ observation table
6: while True do
7: T ← checkMembership(S, E, T)
8: while True do
9: if isClosed(T ) ∧ isConsistent(T ) then

10: break
11: T ← updateObservationTable(T)
12: M′← makeDFA(S, E, T)
13: ce← checkEquivalence(M′, N) ▷ pass N
14: if ce is None then ▷ ce: counterexample
15: return M′

16: addPrefixes(ce, S)

Why a regular language? Our automata learning step aims
to build a deterministic finite state automaton from prelimi-
nary elements through automata learning.

In practice, it is possible to formulate programs whose
exploit grammars cannot be expressed by regular expressions
(such as vs1

n;vs2
n) nor even context-free grammars (such as

vs1
n;vs2

m;vs3
n;vs4

m). However, symbolic execution provides
us with a finite number of execution traces, which serve as
positive samples for automata learning. Unless the symbolic
execution provides a complete set of execution traces (which
would be finite), it is impossible to tell if a trace outside the set
of positive samples is reachable or not. It is thus not possible
to soundly (in the sense of realisability) infer a grammar that
is irregular from the execution traces alone.

Therefore, in this work, we explore generation of regular
languages leaving synthesis of other language classes, such
as context-free ones, for in future. To do so, we use two
learning algorithms: passive [40] and Angluin-style L* [3].
The two algorithms implement different trade-offs in terms of
soundness and expressivity (cf. Sec. 3.2.3), and can be used
in DOPPLER interchangeably depending on the user’s goals.

3.2.1 Passive Learning

Given an alphabet set Σ and a finite set of strings S =
{x1;x2; ...;xn}, xi ∈ Σ∗, passive learning [40] is one of the
most straightforward methods to construct a DFA M that ac-
cepts exactly string set S. We do this by first constructing
an non-deterministic finite automaton (NFA) that represents
the regular expression x1 + x2 + ...+ xn. Next, we convert the
NFA to a DFA by subset construction algorithm [27]. By fur-
ther minimising the DFA through state partitioning strategy,
we get a more compact DFA with fewer states. The average
time complexity for DFA minimisation is O(n logn).

3.2.2 L* Algorithm

Active learning is an effective approach to construct a DFA
M compatible with the string set S by interactively querying
an oracle under an assumption that the oracle “knows” the
final result and can provide an infinite number of counter-
examples.3 We apply Angluin’s L* algorithm and regard re-
sults from symbolic execution as the (incomplete) oracle or
the teacher as shown in Algorithm 3. Specifically, we con-
struct membership and equivalence queries as follows:
• Membership queries: Whether a string is in the language is

equivalent to checking whether the path that it corresponds
to, is reachable by some program execution.

• Equivalence queries: Whether the hypothesis automaton
M′ equal to the target M is difficult to answer with the
positive samples from symbolic execution alone. We apply
a negative counterexample generation strategy to achieve an
approximate equivalence checking. Specifically, we build a
counterexample set C of predetermined size N, by finding
strings of increasing length that are not in S. By ensuring
that all strings in S are accepted and those in C are not, we
obtain an approximate equivalence between M′ and M.

3.2.3 Soundness and Completeness Trade-Off

DOPPLER constructs a DFA that accepts the set of strings
arising from the traces obtained through symbolic execution.
The passive learning approach produces a DFA that accepts
exactly this set of strings. Since the set of traces is finite,
the DFA is acyclic. The soundness of the regular grammar
corresponding to this DFA follows from the soundness of
the symbolic execution. However, the string set generated
from execution traces is possibly incomplete and is limited
by the symbolic execution engine. Thus, the completeness of
the grammar through passive learning depends on the repre-
sentativeness of the traces. The L* active learning approach
might produce a more complete but unsound DFA that will
accept all strings in the set and possibly some other strings. In
particular, active learning could produce cyclic DFAs, which
cannot be ascertained with a finite symbolic execution.

These approaches present a trade-off between realisability
and completeness of the grammar. If we aim to capture more
possible attacks through active learning, the soundness of the
grammar cannot be guaranteed. Conversely, if we prioritise
soundness by passive learning, it will affect completeness
(i.e., expressivity). DOPPLER accommodates both options and
gives users the ability to choose the learning algorithm. Our
experiments (Sec. 4) are conducted using passive learning.

3.3 Grammar Synthesis
The target exploit language is a regular language, defined as a
tuple, L= (Σ,N,q0,P), where Σ is the terminal or alphabet set,
N is non-terminal symbols, q0 is the initial state, and P is the

3In practice, such an oracle is under-approximated with testing [38].

7



set of transition rules. It is straightforward to convert a DFA to
a left or right linear regular grammar [27]. DOPPLER supports
the conversion from regular language to regular expression
through state elimination method [12], which is an equivalent
but more compact format to present the grammar.

3.4 Payload Compilation
Given a regular language describing the target program/vul-
nerability capability wrt. DOP attacks, users can read and
understand the regular grammar and write their attack pro-
grams in it. Each attack program corresponds to a specific
execution path within the target program. By retrieving the
execution path from the attack program, the symbolic exe-
cution engine solves the path constraint and returns a set of
assignments for the vulnerable variables, which is crucial in
constructing the final payload.

3.5 Implementation
DOPPLER is implemented in C++ in a total of about 6,600
lines of code. It integrates KLEE [14] to conduct symbolic ex-
ecution and is built on top of LLVM 13, targeting vulnerable
C programs. DOPPLER takes four inputs: (1) the vulnerable
program compiled to LLVM IR; (2) the source code of the
vulnerable program with annotations for the corruptable vari-
ables (e.g., those affected by a particular buffer overflow) for
KLEE to treat them symbolically; (3) a JSON file that lists
corruptable variables and their positions in the source; (4) an
entry function where function inlining and symbolic execu-
tion starts. The entry function is optional for DOPPLER inputs
and defaults to main if not specified.

The initial outputs are (a) a grammar in the format dis-
cussed in Sec. 3.3 and (b) a compiler—a binary file with the
suffix .doppler. The user is then expected to write an attack
program using the synthesised grammar; the accompanying
generated compiler will check it for syntax errors and output
a sequence of tuples describing how corruptable variables
should be set to construct a payload. We leave it to the user to
set those variables accordingly by, e.g., providing the required
input to the function. We will show several end-to-end exam-
ples of using DOPPLER for executing exploits in Sec. 4.1.

4 Evaluation

In this section, we evaluate (1) how effectively and (2) how
efficiently DOPPLER can generate exploit grammars using
our programming language synthesis approach, and (3) how
good are the grammars it is capable of synthesising. As a
baseline for the comparison wrt. the aspects (2) and (3), we
use BOPC by Ispoglou et al. [32]. In summary, we seek to
answer the following research questions:
• RQ1: How effective is DOPPLER? To answer this ques-

tion, we deploy DOPPLER on 17 programs with memory
corruption vulnerability, evaluate whether attack goals are

Attack Goal Description

memrd Read from arbitrary memory
memwr Write to arbitrary memory
print Print a message from memory
nloop Perform a loop in n iterations
summation Calculate the sum of first n natural numbers
linkedlst Create a linked list in the memory

Tab. 3: Attack goals and their textual descriptions

realisable and whether attack grammar correctly describes
the DOP attack capability, and compare it with BOPC.4

• RQ2: How efficient is DOPPLER? To evaluate DOPPLER,
we have run it and BOPC on the same benchmarks and
compared their execution times.

• RQ3: How expressive are the grammars generated by
DOPPLER? We analysed the diversity of statement types,
grammar size, and the power of the regular expression for
statement concatenation provided by the grammar.

Benchmarks. We first design 6 demonstration programs
with relatively legible control flow to illuminate DOPPLER
features. Then, we select 11 real-world programs, where 8
of them are selected from related works [29, 30, 32, 33, 53]
and 3 are recent CVEs reported in 2024. Benchmark pro-
grams include user utility (sudo), server applications (proftpd,
nginx, etc) and database systems (redis and sqlite), which are
common targets in real-world attack scenarios.

To better adapt LLVM 13 and KLEE, we have the following
simplifications to all 11 real-world programs: (1) adjusting
configuration files to make them compilable in LLVM 13.
(2) semantics preserved rewrite in code and structures that
KLEE cannot analyse; (3) pruning some program branches
irrelevant to attackable variables. That is, all experiments in
Sec. 4 are conducted using versions of the programs with
these simplifications applied. Importantly, these simplifica-
tions would not compromise the effectiveness of DOPPLER’s
results, ensuring that payloads describing a sequence of vari-
able assignments from the simplified versions remain appli-
cable to the original programs. We will illustrate these with
case studies presented towards the end of Sec. 4.1.

Experimental Setup. All our experiments are conducted on
a commodity laptop running Ubuntu 22.04, with Intel Core i7
processor, 16GB of RAM, and 512GB of disk space.

4Two other closely related tools are Steroids [45] and Limbo [53]. Un-
fortunately, we could not obtain either of these tools for our experiments,
even by emailing their authors: in one case the implementation of the tool
has been lost forever due to server cleansing, in another case the tool could
not be shared with us by its authors because of licensing issues.
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Program memrd memwr print nloop summation linkedlst
DOPPLER BOPC DOPPLER BOPC DOPPLER BOPC DOPPLER BOPC DOPPLER BOPC DOPPLER BOPC

1 demo-1 ! ✗0.38 ! ✗0.35 ! ✗0.36 – – – – – –
2 demo-2 ! ✗0.36 ! ✗0.38 ! ✗0.35 ! ✗0.36 – – – –
3 demo-3 ! ✗0.41 ! ✗0.41 ! ✗0.40 – – ! ✗ – –
4 demo-4 ! ✗0.40 ! ✗0.41 ! ✗0.40 – – – – ! ✗

5 demo-5 ! ✗0.36 ! ✗0.38 ! ✗0.37 ! ✗0.35 ! ✗ – –

6 min-dop ! ✗1.63 ! ✗1.52 ! ✗1.50 ! ✗1.51 – – – –

7 proftpd ! ✗2.87 ! ✗2.97 ✗ ✗3.14 ! ✗2.87 – – – –
8 ghttpd ! ✗3.24 ! ✗3.39 ✗ ✗3.31 ! ✗3.31 – – – –
9 nullhttpd ! ✗8.84 ! ✗8.34 ✗ ✗8.06 ! ✗8.12 – – – –

10 sudo ! ✗39.3 ! ✗26.6 ✗ ✗24.6 ✗ ✗24.3 – – – –
11 httpd ✗ ✗3.53 ! ✗3.29 ✗ ✗3.38 ✗ ✗3.30 – – – –
12 nginx ! !1817 ! ∞ ✗ ✗512 ✗ ✗321 – – – –
13 sqlite ✗ ∞ ! ∞ ! ✗187 ! ✗185 ! ✗ ! ✗

14 redis ! ✗14.1 ! ✗14.7 ! ✗14.8 ! ✗16.1 – – – –

15 cherry ! ✗3.42 ! ✗3.47 ! !3.66 ✗ ✗3.29 – – – –
16 pico ! ✗2.08 ! ✗2.11 ! ✗2.08 ✗ ✗2.21 – – – –
17 hcode ! ✗5.71 ! ✗5.65 ! ✗5.64 ✗ ✗5.57 – – – –

Tab. 4: Performance of DOPPLER and BOPC on vulnerable programs for a number of attack goals. !for DOPPLER means
variable assignments that achieve the attack goal were generated given an initial set of source variables and entry point, while ✗

for DOPPLER means variable assignments were not found.!for BOPC means a payload (GDB script) was generated for the SPL
program while ✗ indicates failure. ∞ means it took longer than 2 hours. BOPC results include subscripts for execution time (or
time until it reports failure) in seconds if the attack goal can be expressed in the SPL language. – means the attack doesn’t exist.

4.1 RQ1: Effectiveness of DOPPLER

Attack Goals. We first define six attack goals as shown in
Tab. 3. The first three, memrd, memwr, and print are com-
mon attacks in exploiting memory corruption errors, allowing
attackers to access and manipulate arbitrary memory space:
memrd is reads from an arbitrary memory address, memwr
writes an arbitrary value to an arbitrary memory address, and
print prints a value to stdout from an arbitrary memory ad-
dress. These goals are crucial to implementing serious attacks
such as privilege escalation and sensitive information leakage.
Additionally, we design three non-standard non-trivial attack
goals: nloop constructs a loop with instructions sufficient to
ensure iteration of an arbitrary n times; summation calculates
∑

n
k=1 k for an arbitrary natural number n; linkedlst creates

a singly-linked list in the memory and provides the initial
node. While these attacks do not pose serious security issues,
they involve more complex program logic, thus, testing the
expressive power of an AEG tool in question.

To adapt BOPC to these attack goals, one should provide
their descriptions in BOPC’s SPLoit script language. One of
the authors of this work manually wrote SPLoit scripts, and
another author validated them. Any obligation invoked a dis-
cussion till an agreement has been reached. Due to the lack of
arithmetic operations among registers in SPLoit syntax, such
as add ra rb, SPLoit code for summation and linkedlst
can only be generated by unrolling the loop. Consequently,
BOPC cannot support general summation functionality with-

out a predefined, fixed number of iterations, as specified in
our attack goal. As discussed above, all real-world programs
in Tab. 4 have been simplified by authors to mitigate the short-
comings of the symbolic execution engine. In the interest of
a fair comparison, we have evaluate BOPC using the same
simplified versions as DOPPLER.

Tab. 4 shows the results of the experiments. We compare
the performance of DOPPLER with BOPC in achieving the
attack goals discussed above.!represents the existence of
valid assignments to specific memory space for the payload
construction of the target attack goal without violating ASLR
and CFI; – represents the unrealisability of the exploit in the
context of the attack and program; ∞ represents the timeout of
two hours; ✗ represents the non-existence of such payloads.
The number next to the mark indicates the execution time in
seconds. In DOPPLER, the grammar synthesis process is a
one-shot execution. Users write specific attack scripts based
on the generated grammar, from which generating the pay-
load is immediate through regular expression-based syntax
validation and path constraint retrieval, which is essentially a
constant-time hashmap-based get operation. Hence, we omit
the specific attack payload generation time in Tab. 4. The time
for generating attack grammar is provided in Tab. 5.

In the first five demonstration programs (demo-N), each
program is designed to contain sufficient valid statements,
and the composition of these statements is flexible enough to
achieve different attack goals. From Tab. 4, all of the attack
goals that are designed to be realisable and can be imple-
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1 int a, b, c, d, e; int* f=&d; // valid variables
2 // stack buffer overflow...
3 if (a >0)
4 while (a < 10){
5 a++;
6 e += 1;} // arithmetic
7 if (b > 0){
8 d = e; // assignment
9 e *= e;} // arithmetic

10 if (c > 0)
11 e += d; // arithmetic
12 else
13 *f = e; // store
14 if (c <10)
15 e /= 2; // arithmetic
16 if (b < 10)
17 printf("%d",*f); // call
18 else
19 printf("%d",e); // call

Fig. 5: Code snippet from demo-3.

mented by the regular language synthesised DOPPLER for
each demonstration program. This shows the capability of
DOPPLER to identify valid variables and statements and con-
solidate reachable traces into a regular grammar correctly.

In comparison, BOPC failed to produce most of the at-
tacks for memrd and memwr, even in our demonstration pro-
grams with no more than 60 lines of code each. This result
is consistent with the evaluation reported by the authors of
Limbo [53]. We investigated the reason behind the failures.
One of the most common outputs from BOPC is “no solution”.
BOPC conducts a restricted search when traversing the basic
blocks for specific instructions, excluding all instructions we
designed in demo programs. In addition, demonstration pro-
grams are relatively small. BOPC cannot find sufficient basic
blocks with target instructions and then reports “no solution”.

For the real-world programs, DOPPLER succeeds in all
of the memrd and memwr, except for sqlite and httpd
that failed in memrd, due to the lack of a statement reading
from the pointer that users can overwrite. Curiously, sqlite
achieves nloop, summation, and linkedlst because its
valid statements contain the library function system(zCMD)
where zCMD is labelled as a valid data variable in the attack
grammar. Intuitively, users can make it achieve any attack
goals, such as summation, by constructing the shell code in
zCMD. Although these attacks are not implemented by directly
composing valid statements from DOPPLER grammar, we still
count them achievable in Tab. 4. The failures of DOPPLER
in print in six real-world programs are caused by the lack
of printing-related functions, such as printf and fprtinf,
in identified reachable paths. Meanwhile, BOPC produces
payload for cherry in print, nginx in memrd, gets timeout
in three tasks, and explicitly fails in the rest.

In nginx, both DOPPLER and BOPC fail in nloop. How-
ever, there exists a DOP attack trace to produce loops [32]
in nginx. BOPC can only find an infinite loop exploit by
chaining a sequence of function blocks starting at function

Value Val integers
Valid Variables Var a, b, c, d, e, f
Initialisers Init ::= Var = Val
Valid Stmts vs0 ::= e *= e

vs1 ::= d = e
vs2 ::= e /= 2
vs3 ::= e += d
vs4 ::= print(”%d”,∗f )
vs5 ::= ∗f = e
vs6 ::= print(”%d”,e)
vs7 ::= e += 1

Attack attack ::= Init;((vs1 +(vs7 ∗n;vs1))vs0
((vs5vs4vs6)+(vs3((vs4vs6)+
(vs2vs4vs6)))))+(vs5vs4)+(vs3
(vs4 +(vs2vs4))+(vs7 ∗n;((vs5
vs4)+(vs3(vs4 +(vs2vs4)))))

Fig. 6: The grammar of demo-3 from DOPPLER with a sim-
plified regular expression on valid statements

ngx_signal_handler, which is invoked through a func-
tion pointer sig->handler and setting a branch condition
ngx_time_lock to a non-zero value. In DOPPLER, how-
ever, the control flow across the usage of function point-
ers defined in ngx_signal_t is missed by the symbolic ex-
ecution engine. Thus, those potential valid statements for
constructing loops are excluded by DOPPLER. In nginx’s
attack grammar, valid statements are mainly various store
and arithmetic operations from the vulnerable function
ngx_http_parse_chunked.

We conclude the discussion on effectiveness of DOPPLER
by elaborating on three specific case studies, focusing on par-
ticular vulnerable programs targeting one of three non-trivial
attack goals from Tab. 4: summation, print, and nloop.

4.1.1 Case Study 1: demo-3

As shown in Fig. 5, demo-3 is supposed to have one store,
one assignment, two calls, and four arithmetic valid
statements, realising the attacks memrd, memwr, print, and
summation. According to the grammar of demo-3 (cf. Fig. 6),
DOPPLER correctly identifies the required elements. Since
a, b, and c are control variables (i.e. they are used in branch
conditions), the statement with control variables (line 5) is
not included in the valid statement set. For the sake of the pre-
sentation, we have simplified the regular expression derived
from the demo-3. With such a regular grammar, users can
write the following program for calculating the summation
of arbitrary integer values, e.g., 10, as follows:

{init : e = 10};vs1;vs0;vs3;vs2;vs6

As the first statement of the program, the initialiser init
allows users to assign initial values to data variables, corre-
sponding to the process of corrupting vulnerable variables in

10



1 void putSDN(Printwc, fpout, outCode)
2 unsigned long int Printwc;
3 FILE *fpout; int outCode;{ // valid variables
4 static int cp=0;
5 unsigned char ibuf[1024],obuf[1024],tbuf[1024];
6 unsigned char *iptr, *tptr;
7 ...
8 if ( (Printwc>>16) == 0x8ffb ) {
9 ibuf[cp++] = (Printwc>>8)&0xff;

10 ibuf[cp++] = Printwc&0xff;
11 // buffer overflow
12 }
13 ...
14 while(*ibuf){
15 fprintf(fpout,"=?B?EUC-KR?%s?=",obuf);
16 // valid statement: call
17 }
18 }

Fig. 7: Code snippet from hcode where a stack buffer overflow
of ibuf is possible if cp is larger than buffer size.

the memory space through buffer overflow at the beginning
of an exploit. These variables can be arbitrary values of their
types. The generated compiler will synthesise values of the
remaining control variables a, b, c, generating a feasible pay-
load {a =−1;b = 11;c = 5;d = 0;e = 10; f = 2686748}.

4.1.2 Case Study 2: Hcode

Hcode is a code convention library for Hangul.5 A stack-
based buffer overflow occurs in PutSDN() when the variable
cp used as the index of a fixed-sized buffer ibuf is larger
than 1024, as shown in Fig. 7. In this case, Printwc, fpout,
and outCode are labeled as valid variables in DOPPLER. In
the generated attack grammar, the function call fprintf at
line 15 is a valid statement and can be used in the print
attack while users gain control over the file pointer fpout.

4.1.3 Case Study 3: NullHttpd

Fig. 8 shows the code from nullhttpd where a heap buffer
overflow occurs at line 4 if the value of CoLength is neg-
ative. Based on the structure of CONNECTION, we anno-
tate eight structure members of conn[sid] in function
ReadPOSTData as vulnerable variables, one of the required in-
puts for DOPPLER (cf. Sec. 3.5). To facilitate symbolic execu-
tion, we manually pruned some irrelevant program branches,
such as lines 10 and 11 of printing error messages, in function
ReadPOSTData. These simplifications would not affect the
data flow of valid variables and the validity of the grammar
in the original nullhttpd. Fig. 9 shows the attack grammar
from DOPPLER. To make the grammar easier for users to
understand, we replace complex variable names originally
from the source code with shorter ones. Five valid statements
consisting of pointer dereferencing operators are available to

5https://en.wikipedia.org/wiki/Hangul

1 CONNECTION *conn;
2 void ReadPOSTData(int sid) {
3 conn[sid].PostData =
4 calloc(conn[sid].dat->ConLength+1024, ...);
5 // allocate an incorrect size
6 char* pPostData = conn[sid].PostData;
7 recv(conn[sid].socket, pPostData, 1024, 0);
8 // buffer overflow
9 ...

10 if (strlen(line)==0)
11 printerror("Bad Request.", ...);
12 // pruned for simplification
13 }

Fig. 8: Code snippet from nullhttpd where a heap buffer
overflow of pPostData is possible if CoLength < 0

the user, allowing them to achieve memrd and memwr. Further-
more, vs1vs0 can be used in constructing a nloop.

4.2 RQ2: Efficiency of DOPPLER

DOPPLER exploit generation proceeds in two stages: (1) esti-
mation of an attack surface by means of symbolic execution
and static analysis, resulting in a synthesised attack grammar,
and (2) generation of attack payload from the user’s attack
program written in the grammar. The first stage needs to be
performed only once. By front loading the expensive analysis,
DOPPLER amortises the cost of payload generation for all
subsequent attack programs, which is now instantaneous.

Unlike DOPPLER, in BOPC [32] and Limbo [53], the en-
tire analysis needs to be re-run for every new attack defined.
BOPC provides limited caching functionality for analysis that
is common across all attack programs, but requires signifi-
cant program-specific analysis that cannot be shared. In this
respect, DOPPLER has a clear advantage over BOPC once the
former’s grammar generation stage is completed.

Tab. 5 shows the execution times for stage (1) of
DOPPLER’s analysis. Subscripts in BOPC’s results in Tab. 4
show the execution times of BOPC runs. Across almost all
examples except pico and min-dop, DOPPLER takes longer
to generate the attack grammar than any individual BOPC
run. On average across all examples, stage (1) of DOPPLER

Value Val integers
Valid Variables Var a,data
Constant x,b,rc,sid
Initialisers Init ::= Var =Val
Valid Statements vs0 ::= ∗x = a

vs1 ::= ∗∗data = ∗a
vs2 ::= ∗rc = 0
vs3 ::= ∗x = 0
vs4 ::= ∗sid = b

Attack attack ::= Init;vs4;vs2;vs3;(vs1;vs0)∗n

Fig. 9: The grammar fopr nullhttpd exploit by DOPPLER, with
a simplified regular expression on valid statements
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Program Vulnerability LOC No. of valid statements in each type Passive Learning L* Algorithm
assign load store call arith Σ N P Time Σ N P Time

demo 1 buffer overflow 37 0 1 1 3 0 5 7 35 2 5 2 10 2
demo 2 buffer overflow 40 1 1 1 2 0 5 77 385 3 5 4 20 3
demo 3 buffer overflow 60 0 1 0 1 5 7 9 63 3 8 7 56 2
demo 4 buffer overflow 58 3 1 1 1 3 9 232 2088 10 9 8 72 10
demo 5 buffer overflow 54 0 2 0 1 4 7 189 1323 2 7 28 196 2

min-dop heap overflow [4] 374 9 4 1 38 2 14 1048 14672 2 ∞ ∞ ∞ ∞

proftpd CVE-2006-5815 [47] 1318 21 2 5 4 3 8 12 96 212 ∞ ∞ ∞ ∞

ghttpd CVE-2001-0820 [23] 881 8 2 4 13 1 11 200 2200 546 ∞ ∞ ∞ ∞

sudo CVE-2012-0809 [58] 35456 173 16 53 190 22 26 143 3718 20 26 141 22842 7184
nullhttpd CVE-2002-1496 [43] 1715 3 2 6 28 0 5 285 1425 25 5 5 25 27
httpd CVE-2006-3747 [28] 60796 6 0 1 3 9 6 8 48 41 19 7 133 39
nginx CVE-2013-2028 [42] 93765 4 2 22 1 9 29 598 17342 12 44 127 5588 563
sqlite CVE-2017-6983 [57] 195665 8 1 4 5 1 10 12 120 2 19 10 190 4
redis CVE-2023-36824 [49] 23461 26 8 7 42 34 21 2699 56679 325 ∞ ∞ ∞ ∞

cherry CVE-2024-22086 [17] 830 13 2 8 16 3 12 47 564 13 57 46 2565 43
pico CVE-2024-22086 [46] 373 21 2 8 24 12 7 9 63 2 99 8 693 2
hcode CVE-2024-34020 [26] 3679 0 0 29 12 0 21 32 672 5 38 20 760 12

Tab. 5: Statistics for the programming language artefacts synthesised by DOPPLER for the selected case studies. Σ is the size of
the alphabet of a grammar’s terminal symbols, N is the number non-terminals, and P is the number of productions, Time is the
execution time in seconds; ∞ denotes a timeout exceeding 2 hours.

takes about 20 times as long as a single BOPC run. How-
ever, it should be noted that most of these BOPC runs did
not successfully generate a payload, while DOPPLER’s attack
grammar had significantly more success with the selected
benchmark attacks. The times for stage (2) are omitted as they
are consistently less than one second (cf. Sec. 4.1).

The execution times for grammar generation using the L*
algorithm is longer than passive learning in all benchmark
programs. But the automata and grammar learned are more
compact in L* algorithm. With the same size of terminal
symbols, the grammar from the L* algorithm has fewer non-
terminals and transition rules than passive learning. Note that
L* gets a timeout of 2 hours in four programs because these
programs contain large traces from symbolic execution and
the algorithm is polynomial in the length of the traces.

4.3 RQ3: Language Expressivity

The expressiveness of the grammar directly affects the land-
scape of attacks that can be defined in the respective language.
For example, in BOPC, the lack of assignment operations
from register to register in SPLoit syntax makes the writing
of scripts in constructing summation and linkedlst attacks
very difficult (in our experience). In this section, we evaluate
the expressiveness of the grammar from the perspective of
valid statement types and the size of each grammar component
with 17 programs. Tab. 5 shows the experiment results.

Valid Statements. A valid statement is the atomic instruc-
tion in DOPPLER grammar. In demonstration programs,
DOPPLER can correctly identify valid variables and distin-

guish the data and control variable from the data flow prop-
agation. For example, as mentioned in Sec. 4.1, DOPPLER
correctly excludes statements a--; that contain a control
variable a from the valid statement set for demo-3. In real-
world examples, it is hard to build an exhaustive set of valid
statements. Nevertheless, the results show that the grammar
from DOPPLER contains valid statements of each type which
allows for relatively expressive grammars.

Grammar Properties. We analysed the grammar size from
three aspects: alphabet or terminal symbols Σ, non-terminals
N, and production rules P. Tab. 5 presents the number of el-
ements in each components. The non-terminal symbols and
transaction rules describe how valid statements can be se-
quentially composed when constructing an attack. The size
of Σ indicates the number of individual valid statement se-
quences users can use. More states in the grammar gives the
user greater flexibility to compose valid statements together.
However, larger N and P space increase the time for users to
learn and understand the grammar.

Usability and Readability. As shown in Fig. 3 and Fig. 6,
the generated grammars consist of mostly basic operations.
It might not be immediately apparent to the user, which of
those might be helpful to realise an attack. There are two
potential solutions to enhance the usability and readability of
the grammar: (1) augmenting valid statements with their posi-
tion information would help users quickly identify the valid
statements in the source code and will be easy to implement;
(2) ranking valid statements in terms of their significance in
constructing an attack, e.g., with execve() in front. We leave
these enhancements to the future work.

12



5 Limitations and Discussion

DOPPLER has been developed as a proof-of-concept proto-
type implementing the PLS idea for DOP attacks. As such, it
comes with a number of technical limitations, most of which
could be addressed with more engineering effort, which, we
believe, spreads beyond the scope of this work. In this sec-
tion, we outline the current limitations of DOPPLER and offer
a discussion on possible improvements that could be made
towards making it more scalable and user-friendly.

Interactivity. DOPPLER currently only supports one-shot
exploit generation in that once source variables are assigned,
they cannot be re-assigned at runtime by a user. Interactiv-
ity allows for source variables, or data pointed to by source
variables to be modified by a user during the execution of the
exploit at particular points in the execution. Although this fea-
ture has not yet been implemented in DOPPLER, it is relatively
straightforward to extend our tool to provide valid exploits in
an interactive setting. By keeping track of the current state in
DOPPLER’s internal DFA for a target program at the point of
user interaction, and regarding this state as the new start state
of the DFA, we can obtain all possible valid statements that
can be correctly composed from the point of user interaction
in the program. Additionally, by setting states in the DFA
corresponding to subsequent interaction points as end states
in the DFA, users can find sequences of valid statements that
allow the user subsequent interaction opportunities.

Expressivity of synthesised grammars. As described in
Sec. 3.2, a choice was made to restrict the generated gram-
mar to regular grammars due to limitations of finite symbolic
execution traces. However, there exist programs for which
the correct and complete attack grammar is not regular like
the one in Fig. 1 whose grammar is (vs1 ∗n);(vs2 ∗n) which
requires the expressivity of context-free grammars and push-
down automata to represent. It is also possible in a similar way
to come up with a programs whose attack grammar requires
more expressivity than context-free grammars.

We leave exploration of contex-free grammar synthesis
techniques [6] for DOP generation for future work.

Simplifications in benchmarks. As mentioned in Sec. 3,
to address the limitations of KLEE symbolic execution
engine, we applied the following simplifications to the
real-world programs: (1) configuration file adjustments,
(2) semantics-preserved rewrites, and (3) pruning of CFG
irrelevant branches. During the simplification process, we
manually validated that all those the changes would not affect
the vulnerable data flow, vulnerable function’s memory lay-
out, or its heap space. As the result, execution traces extracted
by DOPPLER and the respective payload remained valid for
the original program. Automating these simplifications and
formally proving the validity of the payload in the original
programs are promising directions for future work.

1 int n, count0, count1; // control variables
2 int a, b // data variables
3 char buf[1024];
4 ...
5 gets(buf); // stack buffer overflow
6

7 while(count0++ < n) {
8 printf("%d", a); // vs1
9 }

10

11 while(count1++ < n) {
12 printf("%d", b); // vs2
13 }

Fig. 10: A program whose attack grammar is not regular

End-to-end exploit generation. In the exploit generation
pipeline, DOPPLER requires user input in identifying mem-
ory vulnerabilities, labeling vulnerable source variables and
providing annotations in the source code required by KLEE.
These steps can be completed relatively mechanically follow-
ing the vulnerability description in the CVE. DOPPLER is
then able to automatically generate an attack grammar. Here,
user input and ingenuity is required to construct a program
that achieves particular attack goals, before compilation to
a payload. It is possible to treat the generation of a program
that respects the attack grammar and satisfies certain attack
specifications as a classical program synthesis problem [25].
Using such techniques to further automate attack generation
is a logical next steps following this work.

DOP mitigation techniques. Compartmentalisation [36],
memory isolation schemes [52,62], and data space randomisa-
tion [7, 48] are recent defence techniques against data-orient
exploits. These defence techniques would affect the precision
of DOPPLER when identifying valid variables and statements
via detection Algorithm 1 and Algorithm 2. But they would
not affect DOPPLER’s ability to generate the payload soundly
given a correct set of valid variables and statements. The al-
gorithms of DOPPLER are indifferent to the mechanisms to
bypass isolation during general data flow analysis for gram-
mar elements and can be adapted to these defence techniques
by adding stricter constraints to our learning algorithms.

What about Large Language Models? With the increas-
ing effectiveness of Large Language Models (LLMs) at natu-
ral language text synthesis and structured reasoning tasks, it
would be interesting to investigate their effectiveness at the
problem of programming language synthesis. Based on some
preliminary experiments, we found publicly available LLMs
like GPT 3.5 to struggle with tasks like valid statement extrac-
tion and automaton learning, we believe, mostly, due to their
inherent inability to soundly validate the generated results.
Work in this area will have to tackle the problem of providing
a more structured environment in the LLM prompt for the
LLM to generate candidates, followed by their validation.
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6 Related Work

Automatic synthesis of DOP-based attacks. Automatic
exploit generation (AEG) [5] for memory corruptions refers
to the task of hijacking control flow or manipulating data that
achieves the execution of desired instructions.

Previous works on AEG of DOP attacks mainly work on
data-oriented gadget identification and gadget chaining by
symbolic execution or enumerated searching, including Flow-
Stitch [29], Steroid [45], BOPC [32], and Limbo [53]. Ex-
cept for BOPC, none of those tools are publicly available
(cf. Sec. 4). While they generate DOP attack payloads under
specified targets automatically, they are not always successful
in finding the payload for independent attack targets [16]. In
this case, the capability of the DOP attack in vulnerable soft-
ware is unknown without making attempts to generate exploits
for each attack target. For example, BOPC defines a Turing-
complete, high-level language: SPloit Language (SPL), which
allows attackers to write attack targets using SPL, executes
the compiler to find an execution path, and solves real attack
payloads with an SMT solver [32]. However, getting a valid
gadget chain suffers from the complexity of finding a reach-
able path in big programs. Moreover, the BOPC compiler
does not always return a result, which does not necessarily
mean the absence of a satisfactory payload.

Similarly to BOPC, Limbo proposes a generic framework
for finding code reuse attacks through concolic execution [53].
The basic idea of Limbo is to find the target memory state that
satisfies the constraints for each attack goal. Two more recent
works on Viper [64] and Einstein [33] automatically iden-
tify syscall-guard variables that are critical to the invocation
of sys-calls for DOP attacks. However, the exploitability of
syscall-guard variables is not guaranteed by the framework.

Language learning and program synthesis. DOPPLER
relies on relatively standard automata learning algorithms to
help extract potential composition rules of valid statements
from accepted execution traces that are obtained from sym-
bolic execution. Automata learning, which is equivalent to
language learning, has been well developed as a sub-area of
automata theory since the 1950s [3, 12, 19, 35]. Various learn-
ing algorithms are described in the literature for both regular
and context-free language through the learning of DFA [59]
and Pushdown Automata [39].

Defences against DOP-based attacks. Many defence tech-
niques [7, 9, 22, 36, 48, 51, 63] have been proposed since
DOP attack was first introduced [29]. Existing defence tech-
niques like Data-Flow Integrity [15], Data-Space Randomi-
sation (DSR) [8, 48, 63], compartmentalisation [36], data
bound checking [54], and data and pointer prioritisation [2],
have shown to be effective in the defence against DOP at-
tacks. However, there is a trade off between accuracy and
the efficiency. For example, pointer-based boundary check-
ing [21, 41] suffers from high memory overhead in the analy-

sis. Recently, Ahmed et al. [2] proposed a new defence tech-
nique that improves the effectiveness of the protection against
DOP through the prioritisation of sensitive data. DOPPLER is
not intended to help bypassing new defence schemes; instead,
it automates the process of constructing a DOP exploit within
the same attack as generic DOP.

Weird Machines. First posed by Bratus et al. [11], Weird
Machines define the phenomenon of letting a program exe-
cute a sequence of instructions that could never be executed
in the original program. Weird Machines provide a compu-
tational model for the behaviours of security vulnerability
exploits, such as some code reuse attacks, including ROP [50],
JOP [10], and DOP [29]. Recently, Paykin et al. [44] widened
the scope of Weird Machines from exploit behaviours to in-
secure compilation. The exploit is the process of such a
compilation from source language to the target language that
introduces new behaviours to the program semantics, which
are not feasible in the source language. While Paykin et al.
provide a theoretical framework to formally describe action-
able exploits, DOPPLER presents its working implementation.

7 Conclusion and Future Work
In this work, we have studied the challenge of generating
code reuse attacks. Our key new insight was to consider it
from the perspective of the novel programming language syn-
thesis idea, deriving grammars of languages for expressing
(possibly infinite) sets of feasible attacks, rather than synthe-
sising the attacks on a case-by-case basis. Our approach is
first to provide formal soundness guarantees wrt. realisability
of attack synthesis tasks: any attack expressible in terms of
the synthesised grammar can be realised with a suitable pay-
load, which our tool DOPPLER is able to find automatically.
A promising extension of our results would be to improve
the quality of the generated attack grammars by synthesising
high-level programming constructs with the help of formal
techniques for reasoning about unrealisability [31, 34].

An important direction for the future work is to address the
complementary completeness guarantees, stating that every
possible attack is captured by the synthesised language. The
completeness of an attack language synthesis is critical to as-
sess to which extent a given vulnerable program is exploitable,
thus characterising the set of code reuse attacks that cannot
be implemented on top of it. At the moment, our approach
cannot guarantee completeness due to the inherent unsound-
ness of the underlying symbolic execution engine [14], which
cannot provably identify the set of all reachable states. In the
future, we will consider a combination of symbolic execu-
tion with sound abstract interpretation [18] as an approach
to prove completeness of attack language synthesis (i.e., that
the synthesised grammar covers all possible attacks), while
possibly sacrificing its soundness, i.e., making some attacks
expressible in the synthesised language unrealisable.
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