
Gradual Ownership Types

Ilya Sergey and Dave Clarke

IBBT-DistriNet, Department of Computer Science,
Katholieke Universiteit Leuven, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract. Gradual Ownership Types are a framework allowing programs to be
partially annotated with ownership types, while providing the same encapsulation
guarantees. The formalism provides a static guarantee of the desired encapsula-
tion property for fully annotated programs, and dynamic guarantees for partially
annotated programs via dynamic checks inserted by the compiler. This enables a
smooth migration from ownership-unaware to ownership-typed code.
The paper provides a formal account of gradual ownership types. The theoretical
novelty of this work is in adapting the notion of gradual type system with re-
spect to program heap properties, which, unlike types in functional languages or
object calculi, impose restrictions not only on data, but also on the environment
the data is being processed in. From the practical side, we evaluate applicability
of Gradual Ownership Types for Java 1.4 in the context of the Java Collection
Framework and measure the necessary amount of annotations for ensuring the
owners-as-dominators invariant.

1 Introduction

Type systems for ownership in object-oriented languages provide a declarative way to
statically enforce a notion of object encapsulation in object-oriented programs. Object
ownership ensures that objects cannot escape from the scope of the object or collection
of objects that own them. Variants of ownership types allow a program to enjoy such
computational properties as data race-freedom [4], disjointness of effects [8], various
confinement properties [28] and effective memory management [5].

However, there are several obstacles to the adoption of ownership types. The first
is verbosity. One way to overcome this problem is to omit annotations and use type
inference instead. Unlike traditional type systems, ownership annotations are mostly
design-driven, thus full inference of ownership types is not particularly useful, since a
correct, trivial ownership typing always exists [12]. Therefore, inference is only practi-
cally applicable when some annotations are already provided to indicate the program-
mer’s intention. But even in the case of partially-annotated programs, ownership type
inference tends to produce an excessive amount of inferred annotations [21] or impre-
cise results due to the conservatism of the underlying analysis [20]. The second obstacle
is that ownership types are often too rigid to capture the dynamic evolution of an object
graph in real applications, and in some cases the imposed constraints need to be relaxed.

Adding ownership annotations into the code is similar to the migration from the
untyped to typed code, a topic of much research nowadays [15, 17, 26, 27]. Complete



2 Ilya Sergey and Dave Clarke

absence of types facilitates the fast prototyping and rapid evolution of the system, so
one might need to introduce types into the code only when the demands for reliability
and performance of the program are established. Ownership types provide more fine-
grained safety guarantees. In this respect refactoring a program to employ them can
be considered as a migration from typed to “even more typed” code. This observation
leads to the idea of applying a gradual approach for an incremental migration.

This work is based on the ownership type system of Clarke and Drossopoulou [8],
which ensures the owners-as-dominators invariant. It is expressive enough to investi-
gate the concepts of interest and is close enough to a real language to guide the im-
plementation. Nevertheless our approach is idiomatic and can be applied to many other
ownership type systems. Overall, this paper makes the following contributions:

– A type system for a Java-like object-oriented language providing gradual ownership
types, enabling the migration from ownership-unaware to ownership-annotated code.

– A type-directed program translation that ensures the dynamic preservation of the
ownership invariant when insufficient type annotations are provided; soundness
theorems and properties of the type-directed translation.

– An implementation of a translating compiler for full Java 1.4 that supports gradual
ownership types and provides hints for smooth program migration.

– A report on migrating classes from Java’s SDK to use gradual ownership types.
– A discussion on extending the described framework for different existing ownership

policies and an overview possible design choices of the implementation.

2 Intuition and overview

This section gives the essence of ownership types enforcing the owners-as-dominators
policy (OAD) and provides some intuition on the “gradualization” of the type system.

Ownership types are based on a nesting relation on objects (≺). At run-time, each
object o has an owner, i.e., another object o′, such that o≺ o′. Nesting is a tree-shaped
partial order on objects with greatest element world. The OAD invariant is as follows:
Given an object o and its owner o′, every path in the object graph of a program from
the program roots along object fields that ends in o, contains o′. I.e., there are no fields
referring to o that bypass o′. This means that one object cannot refer to a second object
directly as a field, unless the first object is inside the second object’s owner.

Figure 1 gives an example of the class List using ownership types. The class carries
two ownership parameters: owner and data. The first parameter, owner, refers to the
List instance’s immediate, or primary, owner. The second parameter, data, refers, by
conventions of the type system, to some object outside or equal to owner. As usual, this
refers to the current instance itself. The same reasoning is applicable to two auxiliary
classes, Link and Iterator. In the List’s method add(), the programmer indicates, by
creating an instance of the class Link with owners this and data respectively, that this
particular instance of Link is nested within its creator instance List and the content of
the link can be accessed only through the owner referred to as data in List. The same
is true for the instance of the class Iterator.

Ownership information for our list example can be provided by only five anno-
tations. Three class parametrizations name the owners of the class instances and two



Gradual Ownership Types 3

Fig. 1 A motivating example and the design intention: a list and its iterator code with
structural (underlined) and constraint (grayed) ownership annotations.
class List<owner, data> {

Link <this, data> head;

void add(Data <data> d) {

head = new Link<this, data>(head, d);
}

Iterator <this,data> makeIterator() {

return new Iterator<this, data>(head);
}

}
class Link<owner,data> {

Link <owner, data> next;

Data <data> data;

Link(Link <owner, data> next, Data <data> data) {

this.next = next; this.data = data;
}

}
class Iterator<owner, data> {

Link <owner, data> current;

Iterator(Link <owner, data> first) {

current = first;
}
void next() { current = current.next; }

Data <data> elem() { return current.data; }

boolean done() { return (current == null); }
}

owner
Data Data

data

List

Link Link

Iterator

World

Encapsulation Boundary
Illegal Reference
Reference
Owner

allocation sites provide concrete owners for created objects. These annotations, under-
lined in Figure 1, are structural: they declare the information about nesting of objects
involved (i.e., this≺ owner≺ data≺ world) and define the owners of new instances.
The remaining, constraint, annotations, grayed in the code, “propagate” ownership in-
formation through the program, since mutable variables and fields are traditionally an-
notated with types to keep information about objects they point to. We require the first
kind of annotations to be explicitly specified, because it (a) reflects the programmer’s
intentions with respect to the invariant and (b) enables a simpler implementation of run-
time dynamic checking—no ownership information needs to be inferred dynamically.

The runtime checking of conformance of an object’s ownership structure to the ex-
pectation is performed via dynamic type casts. This technique is typical for gradual
approaches: when an untyped value is coerced to a typed value, a dynamic check is per-
formed to ensure that the further interactions through this particular reference conform
to the target’s type contract, in this setting, its ownership type. However, the preserva-
tion of the OAD invariant requires not only conformance of actual and expected types,
but also checking that the nesting constraints are preserved—this information is lost
when ownership information is lost.

The only place where the owners-as-dominators invariant can actually be broken
is by a bad field assignment, which makes field assignments good candidates for extra
run-time checks. Consider the following assignment:

receiver.f = result;



4 Ilya Sergey and Dave Clarke

The correctness requirement for such an assignment demands that receiver≺ o, where
o is an owner of the object referred to by result. If the declaration of the field f lacks
ownership information, there is a chance that the OAD invariant will be violated since
the type of f may no longer impose any nesting between receiver and result. This is
a sort of contract that should be checked dynamically. We call these boundary checks.

One can notice that dynamic type casts operate with objets’ ownership structures,
whereas boundary checks traverse a part of the heap and, therefore, are significantly
more expensive. However, performing type casts before boundary checks might help
to avoid most of them, since after the check we gain some extra knowledge of an ob-
ject’s structure. This observation leads us to a two-staged, typed-directed transforma-
tion, where each stage uses the available type information to perform one sort of check:
type conformance and nesting. In the following sections we develop a staged algorithm
for the correct translation. The first pass will insert dynamic casts and the second will
handle possible OAD violations by inserting boundary checks.

Defined, unknown and dependent owners An important part of the ownership
type system is the static representation of owners. The example in Figure 1 demon-
strated one usage of ownership class parameters. The following example exhibits the
concept of dynamic aliasing [8], which employs local final variables as local owners:

final List<p, world> list = new List<p, world>();
Iterator<list, world> iter = list.makeIterator();

Variable list denotes the owner of the iterator in iter. When list goes out of scope, the
type Iterator<list, world> and other types containing owner list become illegal.

Following gradual types we introduce a notion of the special unknown owner “?”.
Types annotated with “?” in a gradually-typed language defer the checking of types to
run-time via checks inserted by the compiler. In our system, types with no annotations
are just syntactic sugar for types with all ownership annotations unknown, e.g., List ≡
List<?,?>. The following code gives the essence of unknown owners:

List list; // ≡ List<?,?>
list = new List<p, world>();
list = new List<this, world>();
List<p, world> newList = list; // inserted cast (List<p, world>)list

The first two assignments are valid since the type of list does not specify which objects
must own the instance referred by the variable. The last assignment is valid too; how-
ever, it requires a dynamic cast, due to the type refinement List<?, ?>⇒ List<p, world>
to make sure that the owners of list matches the specification of newList.

Information lost due to unknown owners can be partially regained by tracking of
dependencies between immutable references and owners of objects they refer to. For
this purpose we introduce dependent owners, which record the origin of some owner
arguments, allowing one to check them for equality without knowledge about the nest-
ing. Figure 2 provides and example with dependent owners. Class E declares a field of
type D. However, information about the owner of the object referred to by field myD is
lost due to the missing ownership annotation in the field declaration on line 1. As a con-
sequence, the owner of variable d in line 9 is unknown. Nevertheless, since d is final,
one can see that the owner of the object referred by d is the same as the one expected as



Gradual Ownership Types 5

Fig. 2 Dependent owners in action

1 class E<P> { D myD = ... }
2
3 class D<owner> {
4 E<owner> e;
5 void use(D<owner> arg) { ... }
6 void exploit(E<owner> arg) { this.e = arg; }
7 void test(E e) {
8 final D d = e.myD; // implicitly, d: D<dD.owner>
9 d.use(d); // type refinement, but no type cast required

10 d.exploit(e); // type refinement, dynamic type cast required
11 }
12 }

of a parameter of the instance method d.use(). This knowledge is preserved by assign-
ing the type D<dD.owner> to variable d. This should be read as “d has the type D and the
owner of the object referred to is locally denoted as dD.owner”. The superscript D.owner
refers to the particular ownership parameter of the statically known type D. Thus, by
equality of owners, no extra dynamic check is required in line 9. Still, the owner of e

remains unknown, so the method call d.exploit() on line 10 is potentially dangerous
due to type refinement, and therefore the cast E<?>⇒ E<dD.owner> is required.1

3 The language JO?

To investigate the meta-theory of gradual ownership types we define JO?, an impera-
tive Java-like language, extended with ownership types, and unknown and dependent
owners, based on the system JOE1 by Clarke and Drossopoulou [8].

3.1 Syntax

Figure 3 provides the full syntax of JO?. A program in JO? is a collection of classes.
A class definition describes a class named c, parametrized by the ownership param-
eters αi∈1..n with the superclass c′, whose ownership parameters are instantiated with
p j∈1..n′ .2 Methods have only one parameter for simplicity. Expressions in JO+

? are a-
normal form (ANF), i.e., all intermediate computations are named and assigned to the
immutable variables. Local variables can be used as owners, as long as they do not
escape the scope of a local stack frame.

Types and owners A type c〈pi∈1..n〉 consists of a class name c and a vector of
ownership arguments pi∈1..n. Owners are represented syntactically by owner and term
variables (α and x, respectively), dependent owners and run-time owners such as world
and heap locations (i.e, run-time object identifiers). xc.i denotes the dependent owner
corresponding to the i-th ownership parameter of the object referred to by the term

1 We have chosen the term “dependent owners” because of similarity of the idea to the notion of
path-dependent types [22]—the value of the owner depends on the value of an object.

2 More expressive possibilities exist in the literature, for example, by allowing the programmer
to declare the expected relationship between owner parameters to a class [10].



6 Ilya Sergey and Dave Clarke

Fig. 3 Syntax of JO? and syntactic helper functions

P ::= class j∈1..m programs
class ::= class c〈αi∈1..n〉 extends c′〈p j∈1..n′〉 {fdk∈1..m; methl∈1..u} class declarations
fd ::= t f field declarations
meth ::= t m(t x) {e} method declarations
e ::= x | let x = b in e expressions
b ::= x. f | x. f = x | x.m(x) | new c〈pi∈1..n〉 | null computations
v ::= ι | null values
E ::= /0 | E,x : t | E, ι : t | E, p≺ p′ typing environments
B ::= /0 | B,α = k | B,x = v bindings

k ::= world | ι run-time owners
p,q ::= x | this | k | ? | α owners
t,s ::= c〈pi∈1..n〉 types
o ::= 〈c〈ki∈1..n〉, f 7→ v〉 objects
H ::= ι 7→ o heaps

x,y,z,this variables
ι heap locations
α formal owners
xc.i dependent owners
? unknown owners

defined(p) , (p 6=?)∧ (p 6= xc.i)
undefined(p) , ¬defined(p)

actual(p) , (p = world)∧ (p = ι)
arity(c) , n, s.t. class c〈αi∈1..n〉 ∈ P

owner(c〈〉) , world

owner(c〈pi∈1..n〉) , p1, where n > 0
owner j(c〈pi∈1..n〉) , p j, where 0 < j ≤ n
owners(c〈pi∈1..n〉) , p1 . . . pn

variable x, whose statically known class type is c. Dependent owners are not supposed
to be specified by the programmer. Instead, they are inferred by the compiler. We often
use an alternative notation c〈σ〉 for a type c〈pi∈1..n〉, assuming σ to be a substitution
{αi 7→ pi | i ∈ 1..arity(c)}, and αi are formal ownership parameters of the class c.

To distinguish between different kinds of owners when checking the well-formedness
of types, we introduce several syntactic helper functions (Figure 3).

Objects and heaps In addition to having the class name and field values, an ob-
ject also has a binding for its owner parameters, either world or some non-null heap
locations. A heap H is a partially defined map from locations to objects.

3.2 Environments and owners

A typing environment E binds variables and heap locations with types and defines or-
dering assumptions on owners with respect to the nesting relation ≺. The bindings B
map formal owners to run-time owners and variables to values.

The dynamic semantics is defined in Section 5 in terms of an explicit binding of
free variables, rather than via substitution. The presence of binding environment in the
typing judgements of the form E;B ` F for some succedent F does not affect the static
semantics of JO?, but we will need it to establish equalities between typing environ-
ments and dynamic bindings in the proof of the type preservation theorem.

A typing environment E is well-formed if≺ is antisymmetric on {p | p ∈ dom(E)},
i.e, the environment does not introduce cycles in ownership. Well-formed environment-



Gradual Ownership Types 7

Fig. 4 Well-formed owners and owner nesting

E;B ` p

(OWN-WORLD)

E;B ` �
E;B ` world

(OWN-VAR)

E;B ` �
E;B ` x : t

E;B ` x

(OWN-VAL)

E;B ` �
E;B ` ι : t

E;B ` ι

(OWN-?)

E;B ` �
E;B ` ?

(OWN-DEPENDENT)

E;B ` x
i ∈ 1..arity(c)

E;B ` xc.i

(OWN-IN)

E;B ` �
p≺ p′ ∈ E

E;B ` p, p′

E;B ` p≺ p′ defined(p),defined(p′)

(IN-ENV)

p≺ p′ ∈ E
E;B ` p≺ p′

(IN-REFL)

E;B ` p
E;B ` p≺ p

(IN-TRANS)

E;B ` p≺ p′

E;B ` p′ ≺ p′′

E;B ` p≺ p′′

(IN-VAR)

E;B ` x : t
p = owner(t)
E;B ` x≺ p

E;B ` p. p′

(SUB-LEFT)

E;B ` p E;B ` q
undefined(q)
E;B ` p. q

(SUB-RIGHT)

E;B ` p E;B ` q
undefined(q)
E;B ` q. p

(SUB-INCL)

E;B ` p≺ p′

E;B ` p. p′

(SUB-WORLD)

E;B ` p
E;B ` p. world

binding pairs (E;B ` �) are omitted and can be found in the companion technical re-
port [25]. Informally, the pair E;B enables owners and types in E to be used modulo
equalities in the run-time binding environment B. To keep the presentation tractable,
we omit explicit mentioning of the rules dealing with such equalities. The well-formed
owner relation (E;B ` p) is shown in Figure 4. The rules (OWN-DEPENDENT) and
(OWN-?) are novel for the gradual type system. A dependent owner is well-formed if
the corresponding variable is in scope and if i does not exceed the ownership-arity of
the class c. The definition of the nesting relation on owners (Figure 4, E;B ` p≺ p′)
captures only defined owners. It is then embedded into a more general consistent-inside
relation (E;B ` p. p′), which deals also with dependent and unknown owners. Infor-
mally, no precise information about nesting can be retrieved from unknown or depen-
dent owners. Note that . is not transitive, so E;B ` q . ? and E;B ` ? . p do not
imply E;B ` q . p for any defined p and q.

To state the OAD invariant we need a definition of a heap flattening. The notation
Ĥ is used also to flatten a heap H into a typing environment Ĥ.

Definition 1 (Heap flattening).

Ĥ , {(ι ≺ o),(ι : c〈o,ki∈2..n〉) | (ι 7→ 〈c〈o,ki∈2..n〉, . . .〉) ∈ H}

Definition 2 (Owners-as-Dominators Invariant [10]). OAD(H) , for all locations
ι, ι′ and run-time owners k,

H(ι) =
〈
c〈ki∈1..n〉, f 7→ v

〉
fi 7→ ι′ and H(ι′) = 〈t ′, . . .〉

owner(t ′) = k

⇒ Ĥ; /0 ` ι≺ k



8 Ilya Sergey and Dave Clarke

Fig. 5 Owner and type consistency; gradual subtyping

E;B ` p ∼ p′ E;B ` t ∼ t ′

(CON-REFL)

E;B ` p
E;B ` p ∼ p

(CON-RIGHT)

E;B ` p E;B ` q
undefined(q)

E;B ` q ∼ p

(CON-LEFT)

E;B ` p E;B ` q
undefined(q)

E;B ` p ∼ q

(CON-TYPE)

E;B ` c〈pi∈1..n〉
E;B ` c〈qi∈1..n〉
pi ∼ qi ∀ i ∈ 1..n

E;B ` c〈pi∈1..n〉 ∼ c〈qi∈1..n〉

E;B ` t E;B ` t . t ′

(G-TYPE)

arity(c) = n
E;B ` p1 . pi ∀i ∈ 1..n

E;B ` c〈pi∈1..n〉

(GRAD-SUB)

E;B ` c〈σ〉 ≤ c′〈σ′〉
E;B ` c′〈σ′〉 ∼ c′〈σ′′〉
E;B ` c〈σ〉 . c′〈σ′′〉

In words, if object ι references object ι′ via a field, ι must be inside the owner of ι′.

3.3 Type consistency and subtyping

Types can be constructed from any class using any owner in scope (including an un-
known owner “?”), as long as the correct number of arguments are supplied and the
owner (the first parameter), if present, is provably consistently-inside all other parame-
ters. The corresponding relation E;B ` t is defined in Figure 5.

The type consistency relation answers the question: which pairs of static types could
possibly correspond to comparable run-time types? It allows the type checker to com-
pare types with dependent and unknown owners. We define the type consistency relation
∼ on types parametrized with partially known and dependent owners via the rules in
Figure 5 (the relation E;B ` t ∼ t ′). The definition of the subtyping E;B ` t ≤ t ′ is is
standard for parametrized object-oriented type systems, ownership parameters are in-
variant [8]. In order to eliminate non-determinacy from the type-checking algorithms
we need to construct a relation that combines two kinds of subsumption of types: type
consistency and subtyping. This relation is used then in type rules whenever an im-
plicit upcast is necessary [23]. Siek and Taha suggest a way to design such consistent-
subtyping relation (.) for the calculus Ob<: of Abadi and Cardelli [1]. If two types
t = c〈σ〉 and t ′ = c′〈σ′′〉 are related via the consistent-subtyping relation, i.e., t . t ′,
they can differ along both directions: the type consistency relation ∼ and the subtyping
relation ≤. This is illustrated by the diagram on the left:

c′〈σ′′〉

c〈σ〉

.
;;xxxxxxxx

c′〈σ′〉 ∼ // c′〈σ′′〉

c〈σ〉
.

;;wwwwwwwww
≤

OO

The “upper-left mediator” (the right part of the diagram) is a connecting link be-
tween two types. This intuition is formalized via the rule (GRAD-SUB) in Figure 5.



Gradual Ownership Types 9

Fig. 6 Selected typing rules of JO?. Grayed parts mark explicit consistent-subtyping
checks that may lead to the insertion of dynamic checks.

E;B ` b : t
(T-NEW)

E;B ` c〈pi∈1..n〉
defined(pi) ∀i ∈ 1..n

E;B ` new c〈pi∈1..n〉 : c〈pi∈1..n〉

(T-LKP)

E;B ` z : c〈σ〉
Fc( f ) = t

E;B ` z. f : σz(t)

(T-LET)

E;B ` b : t
E,x : fill(x, t);B ` e : s

E;B ` let x = b in e : s

E ` t ′ m(t y){e}
(T-UPD)

E;B ` z : c〈σ〉 Fc( f ) = t
E;B ` y : s

E;B ` s. σz(t)

E;B ` z. f = y : σz(t)

(T-CALL)

E;B ` y : s M T c(m) = (y′, t→ t ′)
E;B ` z : c〈σ〉 E;B ` s. σz(t)

σ′ ≡ σ]{y′ 7→ y}
E;B ` z.m(y) : σ′z(t

′)

(METHOD)

E,y : fill(y, t) ` e : s
E ` s. t ′

E ` t ′ m(t y){e}

3.4 Expression, method and class typing

Typing rules for expressions are described in Figure 6, following the standard ap-
proach [23]. Type rules for variables and values are standard. m]m′ denotes the disjoint
union of finite maps m and m′, requiring that their domains are disjoint. σz is the sub-
stitution σ]{this 7→ z} for any substitution σ. We use the mappings Fc and M T c for
retrieving types of fields and methods of a class c. In the rules (T-LET) and (METHOD),
the helper function fill converts declared types with unknown owners to types with de-
pendent owners to track owner dependencies.

fill(x,c〈pi∈1..n〉) , c〈qi∈1..n〉, where qi =
{

xc.i if pi = ?
pi otherwise.

The definition of well-formed classes ( ` c) and programs ( ` P;e) is standard.

4 Type-directed translation: the language JO+
?

This section describes the type-based translation of programs in JO? to an extended
language, JO+

? , with run-time checks.

4.1 Syntax of JO+
?

The syntax is extended for dynamic type casts and boundary checks.

b ∈ Comp ::= . . . | 〈t〉x | x. f ← y

The statement 〈t〉x ensures that the run-time type of an object referred to by x matches
the type t. The statement x. f ← y performs the check that a field reference from x to y via
the field f does not violate the ownership invariant and then performs the field update
atomically. Casts and checks are not supposed to be inserted by the programmer. They
are inserted instead by the compiler as described in Section 4.3.



10 Ilya Sergey and Dave Clarke

Fig. 7 Selected typing rules of `C and `C
B

E;B `C b : s

(T-CAST)

E;B ` y : s E;B ` t
E;B ` s . t

E;B `C 〈t〉y : t

(T-UPD’)

E;B ` z : c〈σ〉 Fc( f ) = t
E;B ` s C σz(t) E;B ` y : s

E;B `C z. f = y : σz(t)

E;B `C
B b : s

(T-CHECK)

E;B ` z : c〈σ〉 Fc( f ) = t
E;B ` y : s E;B ` s C σz(t)

E;B `C
B z. f ← y : σz(t)

(T-UPD”)

E;B ` z : c〈σ〉 Fc( f ) = t E;B ` y : s
E;B ` s C σz(t) specified(σz(t))

E;B `C
B z. f = y : σz(t)

4.2 Helper relations

If two types are related via ., there is a freedom to choose the run-time semantics
of type casts, moving along either ∼ or ≤ axis. Following the rule (GRAD-SUB), we
compute the type c′〈σ′〉 that is on the same class-level as the target type c′〈σ′′〉 for the
upcast. The following lemma justifies this computation:

Lemma 1 (Inversion lemma for .). If E;B ` t . t ′′, then there exists a type t ′ such
that E;B ` t ≤ t ′ and E;B ` t ′ ∼ t ′′.

To construct an “upper-left” mediator type we use an extra helper function t ↑ c that
computes a supertype of the type t at class c.

c〈σ〉 ↑ c , c〈σ〉
c′〈σ〉 ↑ c , d〈α j 7→ σ(p j) j∈1..m〉 ↑ c

where class c′〈αi∈1..n〉 extends d〈p j∈1..m〉 and class d〈α j∈1..m〉 ∈ P.
t ↑ c〈 〉 , t ↑ c.

In words, the partially defined function ↑ pulls up the information from the substitution
σ of the initial type c〈σ〉 until it reaches the desired superclass c. If the class hierarchy
Object is reached without making a match, the function is undefined.

Lemma 2 (Basic properties of ↑). For all E, B, t, t ′,

1. (t ↑ t) = t
2. (E;B ` t)∧ (E;B ` t ′)∧ (t ↑ t ′ 6=⊥)⇒ E;B ` t ≤ (t ↑ t ′)
3. E;B ` t . t ′⇒ E;B ` (t ↑ t ′)∼ t ′.

The relation E ` tC t ′states that t satisfies all constraints imposed by known owners
of t ′. It is used to detect where type casts should be inserted.

Definition 3 (t is more defined than t ′).

E ` tC t ′ , E ` t . t ′ and ∀i qi 6= ? ∨ pi 6= qi
where (t ↑ t ′) = c〈pi∈1..n〉 and t ′ = c〈qi∈1..n〉



Gradual Ownership Types 11

If the information about the first owner parameter of the type t of some class field is
not known statically, the OAD invariant cannot be guaranteed. In this case a boundary
check should be inserted. The predicate specified(t) is true iff a type t provides enough
static info about ist owners to ensure the OAD invariant preservation.

Definition 4 (t specifies its owner). specified(t), p1 6= ?, where t = c〈pi∈1..n〉
The type rules for type casts and boundary checks are present in Figure 7. For

JO+
? we use different typing relations, namely, `C and `C

B . These two relations are sim-
ilar to ` for JO?. The purpose of each of them is to ensure the specific safety conditions
after the corresponding stage of the translation (type cast and boundary check insertion,
respectively). One significant difference is that all the occurrences of . in the typing
of statements are now concentrated in the rule (T-CAST). In the rest of the .-rules are
replaced byC (grayed parts). The rule (T-CHECK) ensures the type conformance viaC,
but not the preservation of the OAD invariant: this is postponed until run-time. The rule
(T-UPD”) is targeted to ensure the OAD invariant.

4.3 Type-directed program translation

We adopt the idea of Siek and Taha [27] to define a type-directed type cast insertions
and extend it with the boundary check insertion relation (Figure 8, relations C

 and B
 ,

respectively). First, type casts are inserted into a program whenever additional infor-
mation about types needs to be regained. Then the boundary check insertion translation
works on the program with inserted casts, so each step of the translation eliminates an
aspect of uncertainty caused by incomplete type annotations.

Figure 8 provides the definition of selected rules for the cast insertion relation that
specifies the translation. It is written E ` e1

C
 e2 : t for expressions and holds if, under

the assumptions from E, expression e1 is translated into expression e2 and the type of e1
is `-determined as t. In the same way it is defined for methods. The rules for classes and
a whole program are straightforward and omitted. No cast is inserted if the predicate C
holds on types being compared. For conditional insertions we define the helper function
C , which uses non-recursive local decomposition of an expression e via the context G
and optionally inserts type-casts:

CE〈t1, t2〉(e) , if (E ` t1 C t2) then e else (let y′ = 〈t2〉y in G[y′])
where y′ is fresh, e = G[y]

G ::= [ ] | let x = z.m([ ]) in e | let x = (z. f = [ ]) in e

Boundary check insertion B
 is of the second stage of the whole translation (Fig-

ure 8). The translation B
 works on top of the `C -well-typed program. The only type

of the statement that can be affected by B
 is a field update since it is only one that

can possibly break the OAD invariant. The helper function B is defined to optionally
replace plain assignments with boundary-checked field assignments whenever insuffi-
cient type information about primary owners is provided. For the rest of the statements,
expressions and methods, B

 is applied recursively.

B〈t〉(b) , let (z. f = y) = b in (if specified(t) then b else z. f ← y)
F ::= [ ] | let z = b in F



12 Ilya Sergey and Dave Clarke

Fig. 8 Compilation of JO?: type-directed translation

E ` e C
 e′ : t

(C-UPD)

E ` z : c〈σ〉 Fc( f ) = t
E ` s. σz(t) E ` y : s

E,x : fill(x,σz(t)) ` e1
C
 e2 : s′

E ` let x = (z. f = y) in e1
C
 

CE〈s,σz(t)〉(let x = (z. f = y) in e2) : s′

(C-CALL)

E ` z : c〈σ〉 M T c(m) = (y′, t→ t ′) E ` y : s
E ` s. σz(t) σ′ ≡ σ]{y′ 7→ y}
E,x : fill(x,σ′z(t

′)) ` e1
C
 e2 : s′

E ` let x = z.m(y) in e1
C
 

CE〈s,σz(t)〉(let x = z.m(y) in e2) : s′

E ` t ′ m(t y){e} C
 t ′ m(t y){e′}

(C-METHOD)

E ` e1 : s E ` s. t ′ e2 = F [z]
E,y : fill(y, t) ` e1

C
 e2 : s

E ` t ′ m(t y){e1}
C
 

t ′ m(t y){F [CE〈s, t ′〉(z)]}

E ` e B
 e′ : t

(B-UPD)

E ` z : c〈σ〉 Fc( f ) = t E ` y : s
E ` s C σz(t)

E,x : fill(x,σz(t)) ` e1
B
 e2 : s′

E ` let x = (z. f = y) in e1
B
 

let x = B〈σz(t)〉(z. f = y) in e2 : s′

Definition 5. E ` e e′′ : t iff E ` e C
 e′ : t and E ` e′ B

 e′′ : t for some e′ ∈ JO+
? .

Theorem 1 (Program translation is `C
B-sound.). E ` e : t implies E ` e e′ : t for

some e′. Furthermore, E ` e e′ : t for some e implies E `C
B e′ : t.

The translation relation E ` e1 e2 : t can be extended to classes and programs in
a straightforward fashion. For instance, we denote ` P1;e1 P2;e2 if a program P2;e2
is obtained from P1;e1 by the compositional type-directed translation.

5 Operational semantics of JO+
?

This section provides the definition of dynamic semantics of JO?. The selected rules
of the small-step operational semantics of JO? is presented in Figure 9 (the rest of the
rules is standard and can be found in the companion technical report [25]). The seman-
tics is in the form of a small-step CEK-like abstract machine with a single-threaded
store H, binding environment B and explicit continuations K [14]. A continuation K is,
informally, a serialized next step of computation.

K ::= mt | call(x : (t,σ),e,B,K) | fail(K)

The empty continuation mt corresponds to the empty control stack which is a case
at the beginning and at the correct end of program execution. call(x : (t,σ),e,B,K)
describes the discipline of popping the stack when a method ends its execution and its
caller’s local environment B should be restored with a result assigned to a variable x.
Finally, fail(K) denotes the result of failing casts and boundary checks.

To implement dynamic type casts, we first need a bit of machinery to relate syntactic
types with dynamic types extracted from the object heap during the program execution.



Gradual Ownership Types 13

Fig. 9 Small-step operational semantics of JO+
? (selected rules)

〈H,B,e,K〉⇒〈H ′,B′,e′,K′〉

(CAST-CHECK)

H;B ` tnt ′ B(y)=ι

H(ι)=〈s,...〉 Ĥ ` s C t ′

H;B ` cast(t,y)

(E-CAST1)

B(y)=null ∨ H;B ` cast(t,y)

B′ = B[x 7→ B(y)]

〈H,B,let x=〈t〉y in e,K〉⇒〈H,B′,e,K〉

(E-CAST2)

B(y)6=null H;B 0 cast(t,y) K 6=fail( )

e=(let x=〈t〉y in e′)

〈H,B,e,K〉⇒〈H,B,e,fail(K)〉

(BOUNDARY-CHECK)

B(x)=ι B(y)=ι′

H(ι′)=〈c〈k,...〉,...〉 Ĥ; /0 ` ι ≺ k

H;B ` boundary(x,y)

(E-BOUNDARY1)

(B(y′)=null ∨ H;B ` boundary(y,y′))

B(y)=ι B(y′)=v H(ι)=o

H ′=H[ι 7→ o[ f 7→ v]] B′=B[x 7→ v]

〈H,B,let x=(y. f←y′) in e,K〉⇒〈H ′,B′,e,K〉

(E-BOUNDARY2)

B(y′)6=null H;B 0 boundary(y,y′)

K 6=fail( ) e=(let x=(y. f←y′) in e′)

〈H,B,e,K〉⇒〈H,B,e,fail(K)〉

We define a helper relation H; B ` t n t ′ to compute the dynamic type t ′ corresponding
to a static type t in dynamic environments H and B by instantiating owners as follows:

∀ i ∈ 1..n qi =


k if

 pi = xc. j

H(B(x)) = 〈t, . . .〉
k = owner j(t ↑ c)

dependent owner

pi if actual(pi) run-time owner
B(pi) if defined(pi) formal owner or variable
? otherwise unknown owner

H;B ` c〈pi∈1..n〉n c〈qi∈1..n〉

The test ι ≺ o in the rule (BOUNDARY-CHECK) can be performed at run-time by
checking whether o is ι or some transitive owner of ι—this information is retained via
the flattened heap Ĥ.

6 Type safety

In this section we sketch the type safety of JO? as a corollary of the correctness of the
type-guided program translation with respect to program typing and the type safety of
the extended language JO+

? with type casts and boundary checks. A complete formal
treatment with the definition of well-formed run-time states and proofs of theorems is
available in the accompanying technical report [25].

Proposition 1 (Compilation and gradual typing). E `P;e iff ∃P′,e′. E `P;e P′;e′.

The preservation of the OAD invariant relies on three facts: (1) an initial config-
uration of any program obeys the OAD invariant, (2) the subject reduction theorem
guarantees the type preservation for subsequent configurations, and (3) making a step
from any well-typed configuration obeying the OAD invariant, preserves the invariant.
In the remainder of this section we formalize these statements.



14 Ilya Sergey and Dave Clarke

The operational formalism we use is a stack-based abstract machine (continuations
form a stack-like structure) with a heap, so we need to separate environments ro provide
typing for heap objects and references in stack frames.

E ::= /0 | E , ι : c〈ki∈1..n〉 | E , ι≺ k heap environments
E ::= Nil | E •E stack environments

Below in this section we assume that static typing environments E defined in Section 3
contain only term and owner variables in their domain, but not heap locations. A stack
environment is well-formed if all its constituents are well-formed. The definition of a
well-formed run-time state (E ,E  〈H,B,e,K〉), which is omitted, assumes the expres-
sion e to be well-typed (E ,E0;B `C

B e : t) and environments E and E well-formed. The
last ensures, in particular, that the heap H has no ownership-cycles (E ` H).

Lemma 3 (Initial state typing). E ,E;B`C
B e : t iff E ,(E •Nil) 〈H,B,e,mt〉 for some

initial heap H such that E ` H.

Definition 6 (Heap environment extension). An environment E ′ is an extension of E
(written E ′� E) if and only if E ⊆ E ′.

Definition 7 (Stack environment evolution). We say that a stack environment E trans-
forms to a stack environment E ′ (written E E ′) if one of the following holds:

– E ′ = E ′ •E for some E ′ (method call);
– E ′ = (E0,x : t)• tail(E) for some t and x /∈ dom(E0) (variable assignment);
– E ′ = (E1,x : t)• tail(tail(E)) for some t and x /∈ dom(E1) (method return).

Theorem 2 (Subject reduction in JO+
? ). If e ∈ Expr in JO+

? , S = 〈H,B,e,K〉, E ,E 
S for some well-formed E ,E and S ⇒ S ′ then E ′,E ′  S ′ for some well-formed E ′,E ′

such that E ′� E and E E ′.

Theorem 3 ensures that for all well-formed states, if it is possible to make a next
step, then the OAD invariant is preserved for the heap component of the resulting state.

Theorem 3 (OAD preservation in JO+
? ). If e ∈ Expr in JO+

? , S = 〈H,B,e,K〉, E ;E 
S , OAD(H) and S ⇒ S ′ for some S ′ = 〈H ′, , , 〉 then OAD(H ′).

Definition 8 (Initial state). Assume P;e to be a program in JO+
? , H = {world 7→ •},

B = {this 7→ world} is an initial binding environment. Then the initial configuration
of P;e is init(e) = 〈H,B,e,mt〉.

Following [11], we introduce a class World with no owner parameters to represent
the object corresponding to the owner of world-annotated instances, and for the com-
pleteness we need to provide its type. Taking E = {world : World} and E = {this :
World}•Nil, we obtain /0 `C

B P;e⇒ E ,E  init(e) by Lemma 3. Theorem 4 ends our
chain of safety statements.

Theorem 4 (Static type safety of JO?). If ` P;e P′;e′ and init(e′)⇒∗ S , then one
of the following statements holds:



Gradual Ownership Types 15

(a) S = 〈H,B,v,mt〉 for some H,B and v (final state);
(b) NPE(S) (null-pointer error);
(c) ∃S ′ : S ⇒ S ′ (progress);
(d) S = 〈H,B,b, fail(K)〉, where b = 〈t〉y or b = z. f ← y for some H,B, t,y,z, f and K

(OAD violation attempt).

Combined Theorems 1, 3 and 4 state that the provided gradual type system ensures
that (a) during a compiled program execution no ownership invariant will be violated,
and (b) fully-annotated well-typed programs will be executed until the final or null-
pointer error state with no ownership invariant violation.

7 Implementation

A prototype compiler for Gradual Ownership Types has been implemented in the Jast-
Add framework as a small syntactic extension of the JastAddJ compiler for Java [13].
The extension is about 2,600 lines of code, not including tests, blank lines and com-
ments.3 Although generics were introduced in Java 5, we have chosen Java 1.4 as a host
language for the sake of simplicity. Parametric polymorphism is an orthogonal feature
to the ownership parametrization, but they can be unified [24].

The type analysis and type-directed translation are implemented as attributes in the
framework of reference attribute grammars [13]. The type analysis is built on top of
the standard Java type-checking algorithm, which is augmented to handle ownership-
parametrized types. The compiler uses several default conventions as well as manifest
ownership [10] to seamlessly embed the raw Java code into an ownership-aware en-
vironment. To be parametrized by some owners, a class or an interface requires all its
super classes and the interfaces it implements to carry ownership parameters. I.e., no
casts of ownership-parametrized types to raw types is allowed, since it could lead to
breakage of the OAD invariant [24]. The only one exception to this rule is handling of
Object class. We assume that two Object classes exist: one is ownership-parametrized
and the other is owned by world and considered as a special case of the first one.
Classes that inherit from parametrized classes or interfaces but do not declare own-
ership parameters are implicitly assumed to be owned by world, which is made the
owner of the supertypes. The type-directed translation is implemented as a source-to-
source transformation by erasing ownership types, augmenting classes with fields for
owner parameters and inserting run-time checks into the code of expressions. The com-
piler might also need to modify code that interacts with owner-parametrized classes, i.e,
some libraries might need to be recompiled.

Dependent owners and casts Instead of transforming Java programs into ANF, we
operate with dependent owners in terms of source code locations corresponding to the
expression that computes an owned object. Any expression in the program can hereby
give rise to dependent owners, which potentially can be used in further checks. To avoid
management of all possible source locations, the compiler runs a simple static analysis
to determine which dependent owners might be used in the current context.

3 A prototype is available from http://people.cs.kuleuven.be/ilya.sergey/gradual/



16 Ilya Sergey and Dave Clarke

Inner classes and manifest ownership In Java a non-static inner class is nested in
the body of another class and contains an implicit reference to its enclosing class (outer
instance). An instance of such a class can be leaked and referred to through a field by
another object outside of its outer instance, which, again, breaks the desired invariant.
There are multiple suggestions on the problem of interoperation of inner classes and
different ownership policies [2, 3]. We make outer instance’s ownership parameters le-
gal in the context of an inner class if the programmer passes them to the inner class as
owner arguments, i.e., by a sort of closure-conversion. However, most of the time one
does not intend an inner class to be parametrized, since it is something for the inter-
nal use, but it may be externally accessible. To solve this design problem, we employ
manifest ownership, a mechanism to allow owned classes without explicit owner type
parameters [10]. A manifest class does not have an explicit owner parameter, rather the
class’s owners are fixed, so all the objects of the class have the same owners.

8 Experience

We evaluated our approach by gradually porting several classes from the Java Collection
Framework (Java SDK version 1.4.2) into Gradual Ownership Types. Most traditional
collection classes that contain linked data structures implement internal logic to handle
their entries in the way it is described in the example in Figure 1. We assume that
internal entries should be dominated by their outer collection instances, so they are
not supposed to be exposed to the external objects. It makes them a good possible
candidate for ownership types and the owners-as-dominators policy. Our intention was
to ensure the OAD invariant holds for inner classes such as Entry of collection classes
such as LinkedList and TreeMap, without changing existing code, but only by adding
annotations. The questions we were trying to answer are:

– How many annotations (i.e., lines of code changed) are needed minimally?
– What is the execution time with minimal annotations?
– How many annotations are needed for full static checking?

The analysed code base consists of 46 source files, comprising about 8,200 lines of
code, not including blank lines and comments. The compiler provides hints for easily
migrating to ownership types by emitting static error messages and warnings. A static
error message is emitted whenever necessary annotations are omitted. A warning mes-
sage is displayed whenever dynamic casts or boundary checks are inserted.

LinkedList The minimal amount of annotations to ensure the OAD invariant for
instances of the inner class Entry of LinkedList is 17, comprising 7 annotations to
the LinkedList class itself and 10 in five other classes. Class Iterator was owner-
parametrized to preserve the OAD invariant, as the inner class ListItr has access to
entries of the list. The correctly annotated class ListItr is defined as follows; the iter-
ator is owned by the instance of LinkedList (employing the manifest ownership):

class ListItr implements ListIterator<LinkedList.this>

We implemented a series of simple benchmarks consisting of multiple list updates
and iterations. These reveal that the minimal annotations cause average execution time



Gradual Ownership Types 17

per update to double. However, the implementation of LinkedList allows full annota-
tion. By adding 17 extra annotations in the LinkedList class (i.e., 34 in total), one can
reach zero execution overhead and full static preservation of the OAD invariant.

TreeMap For the best result in terms of performance and the invariant preservation
the TreeMap class requires 28 annotations, consisting of 26 annotations in the class itself
and two extra annotations in the interfaces Iterator and Map respectively. Because of
the static method buildFromSorted, which also operates with entries, it is impossible
to provide full static ownership guarantee without modifying the original code. The
possible solutions would be making the method non-static, or providing an extra final
method parameter as an alias for the potential owner. Alternative solution is to use
owner-polymorphic methods [9], which are not supported in the current formalism.
According to the set of stress benchmarks involving multiple updates and iterations,
even in the presence of some non-avoidable casts, the annotated TreeMap class exhibits
only 30% average execution time overhead per update.

Detected object leaks Our compiler has helped to detect a place in the Collection
Framework with the possible “leak” of the inner Entry classes with respect to the OAD
invariant. The class ResourceBundleEnumeration declares a package-protected field of
type Iterator. Although this field is initialized with the iterator of the Set instance in
the constructor, it can be reassigned elsewhere in client code, which will lead to an OAD
invariant violation. Our compiler generates the code with necessary dynamic checks for
updates of this field to ensure the invariant dynamically. However, for the static OAD
guarantee a significant refactoring would be required.

9 Discussion

Several design choices were made in our approach to gradual ownership types. This
section discusses other alternatives.

Alternative ownership disciplines In our work we used the owner-as-dominator
discipline as a base for applying the gradual technique. However, most of existing para-
metric ownership disciplines, such as multiple ownership [7] or ownership domains [2],
can be “gradualized” using similar approach with no changes in the part related to type
cast insertion. The difference between most of existing disciplines lies in the defini-
tion of the heap invariant and relation between owners that should be preserved. In the
present work it is ensured by the boundary check, and for any other particular sys-
tem it might require specific tweaks in the definitions of the consistent-inside relation,
specified and the runtime semantics of boundary check.

Required annotations The present approach required that ownership parameters
be specified (explicitly or via default conventions) at all allocation sites, hence object
owners are all known at creation time. Two other possibilities were considered. The
first was to annotate field and method types, thereby annotating the interface of the ob-
ject. This approach unfortunately creates a significant overhead in the implementation,
which would require run-time tracking of object aliasing: whenever an object owner be-
comes known, for example, by assignment into a field whose owners are specified, all
other aliases to that object need to be checked for validity. Furthermore, the ownership
of objects with the same owner as the assigned object also need to be updated—objects



18 Ilya Sergey and Dave Clarke

can have the same owner, even if this owner is not known; consider for example, the
Entry objects in a linked list. The required run-time modifications are likely to intro-
duce too much run-time overhead. The second approach was to allow annotations to
occur anywhere in the code. This approach is clearly best suited for programmers, but
it clearly also suffers the same problems as annotating just the interface.

Treatment of libraries Our approach essentially assumes that any library code
that needs to be owner-aware must be rewritten, but rewriting the library is a significant
overhead, the kind which gradual typing aims to avoid. Three alternative approaches
are possible. One is to ignore leaks of an object into ownership-unaware code, and
assume a weaker ownership invariant that amounts to saying that an object is protected
only within code compiled by our compiler. With this more pragmatic approach, library
code can more gradually be converted to owner-aware code and trusted library code can
‘safely’ be ignored. A second alternative is to implement the byte-code instrumentation
procedure that inserts the run-time checks to monitor field assignments in the code. The
third approach is to perform a static analysis of library (byte)code along the lines of Ma
and Foster’s work [19] to infer possible ownership annotations.

Boundary checks Boundary checks occur whenever an object is stored in a field
of a type with an unknown primary owner of another object in order to preserve the
OAD invariant. An alternative interpretation of such a type is that it does not care what
the owners are. This would allow expensive boundary checks to be omitted, keeping
only dynamic casts, at the expense of a weaker invariant. Such a system may be worth
further investigation.

10 Related work

Our work is strongly based on the idea of gradual types by Siek and Taha [26, 27],
which has been recently applied to Java-like generics [17] and modular typestate [30].
The notion of blame control is known in the context of gradual types to provide bet-
ter debugging support [29]. Since dependent owners contain information about source
code locations, the information from labels makes it easy to track back the flow depen-
dencies and eliminate uncertainty by adding extra ownership annotations. This makes
dependent owners similar to blame labels. The idea of combining static and dynamic
type checking is also close to the work of Flanagan on hybrid types [15]. Hybrid types
may contain refinements in the form arbitrary predicates on underlying data. The type
checker attempts to satisfy the predicates statically using a theorem prover.

Gordon and Noble in the work on dynamic ownership introduce ConstraintedJava,
a scripting language that provides dynamic ownership checking [16]. The authors sug-
gest a dynamic ownership structure consisting of an owner pointer in every object. The
semantics of the language relies on a message-passing protocol with a specific kind of
monitoring, similar to our boundary checks.

Existential ownership types [18] offer variant subtyping of owners based on exis-
tential quantification [6]. This approach allows owner-polymorphic methods to be ele-
gantly implemented and it distinguishes objects with different and equal unknown own-
ers. Existential quantification also helps to implement effective run-time downcasts in
the presence of ownership types: a subtype’s inferred owners are treated as existentially



Gradual Ownership Types 19

quantified [32]. The key difference between these approaches and ours is that existential
ownership expresses don’t care whereas gradual types express don’t know concerning
the unknown owners.

Algorithms for ownership inference address a similar problem to ours: take a raw
program and produce reasonable ownership annotations. The pioneering work on dy-
namic ownership types’ inference is Wren’s master’s thesis [31]. The work provides a
graph-theoretical background for run-time inference. The author formulates the system
of equations to assign annotations to particular object allocation sites, based on an ob-
ject graph’s evolution history. However, no proof of correctness of these equations is
provided. Milanova and Vitek [20] present a static analysis to infer ownership annota-
tions for the OAD invariant. The analysis is based on the context-insensitive points-to
analysis. A more general points-to analysis-based algorithm to infer ownership and
uniqueness is presented by Ma and Foster [19] via constraint-based points-to analy-
sis. The collected information about encapsulation properties is not however mapped
to a type system. Dietl et al. [12] present a static analysis to infer Universe Types, a
light-weight version of ownership types, according to a set of generated constraints.
Constraints of the type system are encoded as a boolean satisfiability problem.

11 Conclusion

Introducing ownership types into real-life programs is a long-standing problem. The
main causes are the verbosity of the formalism and its rigidity for some applications.
In this work we applied the notion of gradual types to ownership type systems and
the owners-as-dominators invariant for a Java-like language to seamlessly combine
static and dynamic invariant checks. The developed framework has been formalized
and proved to be correct [25]. We implemented Gradual Ownership Types as an exten-
sion of an existing Java compiler and evaluated it on a well-studied codebase.

Acknowledgements

We wish to acknowledge the detailed comments of Dominique Devriese, Frank Piessens
and Jan Midtgaard. We are also grateful to Sophia Drossopoulou and José Proença for
proof-reading an early draft version of the paper. Finally, we thank the anonymous
reviewers of ESOP ’12 for their feedback, which helped to make the motivation clearer.

References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 1996.

2. J. Aldrich and C. Chambers. Ownership Domains: Separating Aliasing Policy from Mecha-
nism. In ECOOP 2004, volume 3086 of LNCS, pages 1–25. Springer-Verlag, 2004.

3. C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In
POPL ’03, pages 213–223. ACM, 2003.

4. C. Boyapati and M. Rinard. A parameterized type system for race-free Java programs. In
OOPSLA ’01, pages 56–69. ACM, 2001.



20 Ilya Sergey and Dave Clarke

5. C. Boyapati, A. Salcianu, W. Beebee, Jr., and M. Rinard. Ownership types for safe region-
based memory management in real-time Java. In PLDI ’03, pages 324–337. ACM, 2003.

6. N. Cameron and S. Drossopoulou. Existential quantification for variant ownership. In
ESOP 2009, volume 5653 of LNCS, pages 128–142. Springer-Verlag, 2009.

7. N. R. Cameron, S. Drossopoulou, J. Noble, and M. J. Smith. Multiple ownership. In OOP-
SLA ’07, pages 441–460. ACM, 2007.

8. D. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type and
effect. In OOPSLA ’02, pages 292–310. ACM, 2002.

9. D. Clarke and T. Wrigstad. External uniqueness is unique enough. In ECOOP 2003, volume
2743 of LNCS, pages 176–200. Springer-Verlag, 2003.

10. D. G. Clarke. Object ownership and containment. PhD thesis, University of New South
Wales, New South Wales, Australia, 2001.

11. D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In
OOPSLA ’98, pages 48–64. ACM, 1998.

12. W. Dietl, M. D. Ernst, and P. Müller. Tunable Static Inference for Generic Universe Types.
In ECOOP 2011, volume 4609 of LNCS, pages 333–357. Springer-Verlag, 2011.

13. T. Ekman and G. Hedin. The JastAdd extensible Java compiler. In OOPSLA ’07, pages
1–18. ACM, 2007.

14. M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex, 1st edition.
The MIT Press, August 2009.

15. C. Flanagan. Hybrid type checking. In POPL ’06, pages 245–256. ACM, 2006.
16. D. Gordon and J. Noble. Dynamic ownership in a dynamic language. In DLS ’07, pages

41–52. ACM, 2007.
17. L. Ina and A. Igarashi. Gradual typing for generics. In OOPSLA ’11, pages 609–624. ACM,

2011.
18. Y. Lu and J. Potter. On ownership and accessibility. In ECOOP 2006, volume 4067 of LNCS,

pages 99–123. Springer-Verlag, 2006.
19. K.-K. Ma and J. S. Foster. Inferring aliasing and encapsulation properties for Java. In

OOPSLA ’07, pages 321–336. ACM, 2007.
20. A. Milanova and J. Vitek. Static dominance inference. In TOOLS 2011, volume 6705 of

LNCS, pages 211–227. Springer-Verlag, 2011.
21. S. E. Moelius III and A. L. Souter. An object ownership inference algorithm and its applica-

tions. In MASPLAS ’04, 2004.
22. M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A Nominal Theory of Objects with De-

pendent Types. In ECOOP 2003, volume 2743 of LNCS, pages 201–224. Springer, 2003.
23. B. C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA, 2002.
24. A. Potanin, J. Noble, D. Clarke, and R. Biddle. Generic ownership for generic Java. In

OOPSLA ’06, pages 311–324. ACM, 2006.
25. I. Sergey and D. Clarke. Gradual Ownership Types. Technical Report Report CW 613,

Katholieke Universiteit Leuven, December 2011.
26. J. Siek and W. Taha. Gradual typing for functional languages. In Scheme ’06, 2006.
27. J. Siek and W. Taha. Gradual typing for objects. In ECOOP 2007, volume 4609 of LNCS,

pages 2–27. Springer-Verlag, 2007.
28. J. Vitek and B. Bokowski. Confined types. In OOPSLA ’99, pages 82–96. ACM, 1999.
29. P. Wadler and R. B. Findler. Well-Typed Programs Can’t Be Blamed. In ESOP 2009, volume

5653 of LNCS, pages 1–16. Springer-Verlag, 2009.
30. R. Wolff, R. Garcia, É. Tanter, and J. Aldrich. Gradual typestate. In ECOOP 2011, volume

4609 of LNCS, pages 459–483. Springer-Verlag, 2011.
31. A. Wren. Inferring ownership. Master’s thesis, Imperial College London, UK, June 2003.
32. T. Wrigstad and D. Clarke. Existential owners for ownership types. Journal of Object

Technology, 6(4), 2007.


