
Fixing Idioms
A recursion primitive for applicative DSLs

Dominique Devriese Ilya Sergey Dave Clarke Frank Piessens
iMinds-DistriNet, KU Leuven

{firstname.lastname}@cs.kuleuven.be

Abstract
In a lazy functional language, the standard encoding of recursion in
DSLs uses the host language’s recursion, so that DSL algorithms
automatically use the host language’s least fixpoints, even though
many domains require algorithms to produce different fixpoints. In
particular, this is the case for DSLs implemented as Applicative
functors (structures with a notion of pure computations and func-
tion application). We propose a recursion primitive afix that models
a recursive binder in a finally tagless HOAS encoding, but with a
novel rank-2 type that allows us to specify and exploit the effects-
values separation that characterises Applicative DSLs. Unlike re-
lated approaches for Monads and Arrows, we model effectful re-
cursion, not value recursion.

Using generic programming techniques, we define an arity-
generic version of the operator to model mutually recursive def-
initions. We recover intuitive user syntax with a form of shallow
syntactic sugar: an alet construct that syntactically resembles the
let construct, which we have implemented in the GHC Haskell
compiler. We describe a proposed axiom for the afix operator. We
demonstrate usefulness with examples from Applicative parser
combinators and functional reactive programming. We show how
higher-order recursive operators like many can be encoded without
special library support, unlike previous approaches, and we demon-
strate an implementation of the left recursion removal transform.

Categories and Subject Descriptors D.3.3 [Language Constructs
and Features]: Recursion

Keywords Applicative functors, observable recursion, HOAS

1. Introduction

Let us start with an embedded domain-specific language (EDSL) of
parser rules, modelled as the GADT (see e.g. [29]) Rule . The data
type is parameterised by the type a of parse results:

data Rule a where
Pure :: a → Rule a
Seq :: Rule (a → b)→ Rule a → Rule b
Disj :: Rule a → Rule a → Rule a

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PEPM’13, January 21–22, 2013, Rome, Italy.
Copyright c© 2013 ACM 978-1-4503-1842-6/13/01. . . $15.00

Fail :: Rule a
Token :: Char → Rule Char

Rule provides DSL primitives Pure (match the empty string, re-
turn a fixed result), Seq (sequence two rules, apply the result of the
first to that of the second), Disj (choose between two rules), Fail
and Token (parse and return a specified character).

Rule uses the Applicative parser combinator style introduced and
popularised by Swierstra et al. [31]. Readers may recognise Seq
and Pure as pure and~ operators of an Applicative functor. With
Haskell’s a ‘f ‘ b for f a b, the following bs and bs ′ :: Rule String
model a language of arbitrary-length sequences of bs:

bs = (Pure (:) ‘Seq ‘ Token ’b’ ‘Seq ‘ bs) ‘Disj ‘ Pure ""

bs ′ = (Pure snoc ‘Seq ‘ bs ′ ‘Seq ‘ Token ’b’) ‘Disj ‘ Pure ""

According to rule bs , matches either start with token ’b’, followed
by another match of bs or they are empty. The rule Pure (:) has
no parse behaviour of bs , but produces the list cons operator (:)
as a result, so that the parsed token ’b’ is consed with the result
of the recursive match. For an empty match, the empty string ""
is returned. Parser rule bs ′ defines the same language and parse
results but expects the recursive match first, and the token ’b’
second. bs ′ is left-recursive: it refers to itself in a left-most position.

The algorithm nullable :: Rule a → Bool checks if a rule accepts
the empty string:

nullable (Pure) = True
nullable (Seq a b) = nullable a ∧ nullable b
nullable (Disj a b) = nullable a ∨ nullable b
nullable Fail = False
nullable (Token) = False

This definition is satisfactory for finite rules, but a problem arises
for infinite, recursive production rules like bs and bs ′ above.

A known problem of parser DSLs like Rule is that left-recursive
rules are not treated well. Unlike nullable bs (which is True),
nullable bs ′ is ⊥: computation loops forever. Computationally,
nullable bs ′ loops when considering the left-most part of its first
alternative. Denotationally, nullable bs ′ corresponds to the fix-
point of a certain function, and the least fixpoint ⊥ we get from
Haskell is not the one we would like.

This example shows that for DSLs like our grammar model, algo-
rithms need more control of how fixpoints are calculated. As such,
it is inappropriate to rely on Haskell’s least fixpoints. Otherwise,
parsing libraries are restricted to top-down parsing algorithms, left-
recursion is difficult (although some algorithms deal with it any-
way, e.g. [16]) and some algorithms are impossible (e.g. print a
representation of a rule’s parsing structure). Also for DSLs with re-

97

cursion in other domains, useful analyses and transformations are
rendered impossible by the implicit or unobservable recursion.

1.1 Overview and Contributions

Like Oliveira and Cook [25], we propose to represent recursive
definitions using a recursive binder µ, e.g.:

bs = µ s.(Pure (:) ‘Seq ‘ Token ’b’ ‘Seq ‘ s) ‘Disj ‘ Pure ""

After some more background in section 2, we encode such a prim-
itive in HOAS style in section 3. We don’t use standard HOAS as
it allows certain illegal terms, but use Carette et al.’s finally tagless
style instead. We adapt the technique from lambda terms to applica-
tive DSLs (no Lambda binder but a pure primitive instead) with a
new representation of the recursive binder: the afix primitive.

class Applicative p ⇒ ApplicativeFix p where
afix :: (∀ q.Applicative q ⇒ p (q a)→ p (q a))→ p a

The primitive differs from Carette et al.’s Lambda because of
its rank-2 type. We show how it models a separation between
values and effects of the DSL. This reflects the separation that
distinguishes applicative DSLs from monadic ones and makes them
suited for analysis and optimisation. In section 4, we discuss an
axiom that governs the intended semantics (recursion) of afix .

A downside of an explicit fixpoint primitive like afix is that we lose
some of the elegance of Haskell’s standard recursive equations. In
section 5, we define a shallow form of syntactic sugar to recover
Haskell’s standard elegance in the form of the alet1 construct, e.g.:

alet bs = (:) #$ token ’b’~ bs � pure ""

We define scoping and typing rules for alet and a desugaring into
standard Haskell, all implemented in our branch of the Glasgow
Haskell Compiler (GHC). Using generic programming techniques,
we implement a mutual recursion primitive that reduces mutually
recursive bindings to a series of recursive bindings.

Finally, in section 6, we demonstrate the usefulness of our tech-
niques with two larger examples. One example concerns a simple
functional reactive programming (FRP) model of electronic hard-
ware and the second example shows a non-trivial parser transfor-
mation that removes left-recursion from a parser.

2. Background, examples and machinery

2.1 More fixpoints

Consider how cbe ′ = nullable bs ′ produces ⊥ as the wrong
solution of a recursive equation. Denotationally (see e.g. [36]),
cbe ′ = ⊥ is the least fixpoint of cbef ′ under the standard complete
partial order on values.2

cbef ′ s = (s ∧ False) ∨ True

The fact that this least fixpoint is ⊥ is especially unfortunate be-
cause cbef ′ does have a non-⊥ fixpoint: cbef ′ True ≡ True .

Based on nullable , we can also calculate the first set of a rule: the
set of characters that can start a successful parse.

firstSet :: Rule a → Set Char
firstSet (Pure) = Set .empty

1The word “applet” was already taken...
2Note: this is not the standard meaning of cbe′ but it can be shown

because of the structure of nullable and bs′.

firstSet (Seq a b) =
if nullable a then firstSet a ∪ firstSet b else firstSet a

firstSet (Disj a b) = firstSet a ∪ firstSet b
firstSet Fail = Set .empty
firstSet (Token t) = singleton t

If nullable bs ′ were True instead of ⊥, then fs ′ = firstSet bs ′

also gives us the least fixpoint of a function fsf ′:

fsf ′ s = (s ∪ singleton ’b’) ∪ Set .empty

fsf ′ has several fixpoints: singleton ’b’, but also ⊥ (chosen by
Haskell) and Set .fromList "abc". Only one corresponds to intu-
ition and language theory: singleton ’b’. To conclude, algorithm
authors should use domain knowledge to choose appropriate fix-
points and the representation of recursion should support this.

2.2 Applicative Functors

Rule’s constructors fit the pattern of an Applicative functor [23], a
type class modelling structures with a notion of pure computations
(pure) and application (~):3

class Functor p ⇒ Applicative p where
pure :: a → p a
(~) :: p (a → b)→ p a → p b

instance Applicative Rule where
pure = Pure
(~) = Seq

Rule also instantiates Alternative: a class of Applicative functors
with a notion of disjunction (�) and failure (empty).

class Applicative p ⇒ Alternative p where
(�) :: p a → p a → p a
empty :: p a

instance Alternative Rule where · · ·

2.3 Applicative functors vs. Monads

The reason we work with Applicative DSLs and not for example
the better known Monads is that for an analysis to handle recursive
equations (our main goal), it must be able to observe the structure
of the recursive equation. Monadic DSLs use a monadic bind >>=
typed m a → (a → m b)→ m b that allows the effects structure
of a term to depend on the result value of a previous term, rendering
the computation impossible to analyse. Consider the term

evilMonadic = do n ← evilMonadic
if n ≡ 100 then evilMonadic
else return (100− n)

It is unclear if this recursive equation has a non-⊥ solution, but
even if it has, it is hopeless to find it. The do-notation translates
to evilMonadic >>= (λn → if n ≡ 100 · · ·) and this second
argument is a function that may return entirely different rules for
different n . The monadic bind can not inspect all cases, so that
finding non-least fixpoints is hopeless in all but the simplest cases.

Unlike >>=, the Applicative apply operator ~’s type (p (a →
b) → p a → p b) prevents computations’ values from influ-
encing the structure of subsequent computations. This separates
a computation’s effects from its values, corresponding for parsers
to context-free-ness (roughly, see [21]). This makes Applicative
parser libraries well-suited for analysis and optimisation [1, 31] and
makes the goal of finding non-least fixpoints feasible.

3We consistently omit Functor instances because its fmap or #$
method should satisfy f #$ p = pure f ~ p.

98

2.4 Composing Applicative functors

An important tool for us is the composition of two Applicative
functors p and q [23]. The composed functor (p ◦ q) is again
Applicative .

newtype (p ◦ q) a = Comp {comp :: p (q a)}
instance (Applicative p,Applicative q)⇒

Applicative (p ◦ q) where
pure = Comp · pure · pure
f ~ v = Comp $ (~) #$ comp f ~ comp v

For a composed functor (p◦q), we call p and q the outer resp. inner
functor. Terms in either functor can be lifted to (p ◦ q). Also useful
is a function withInner , lifting operations on the inner functor q :

liftOuter :: (Functor p,Applicative q)⇒ p a → (p ◦ q) a
liftInner :: Applicative p ⇒ q a → (p ◦ q) a
withInner :: Functor p ⇒ (q a → h a)→

(p ◦ q) a → (p ◦ h) a

2.5 Effectful recursion, not value recursion

We study DSL terms defined as the solution of recursive equations,
like the examples bs and bs ′. This is a different kind of recursion
than the value recursion studied by Erkök and Launchbury [14].
They study monads that support recursive values in the param-
eters and results of effectful computations. For example, GHC’s
Data.IORef (a mutable references interface in the IO Monad)
supports the cells’ values to be defined lazily. Using the recursive
do syntax of GHC’s DoRec extension (evolved from the original
proposal), a function can create mutually recursive reference cells:

data Node = Node Int (IORef Node)
mk2nodes = do rec p ← newIORef (Node 0 r)

r ← newIORef (Node 1 p)
return p

Value recursion is only interesting in the context of monadic com-
putations. For Applicative functors, the separation of values and
effects limits the value recursion entirely to the value level. The
same effect can then be achieved by using the standard fix at the
value level (see section 4.2). It is the monadic interplay of effects
and values that makes value recursion interesting. In this paper, we
study effectful recursion, a different form of recursion that is more
naturally associated with applicative functors. Effectful recursion
is used to define effectful recursive DSL terms, like bs and bs ′.

3. A recursion primitive

Let us define our recursion primitive afix . We start from more naive
definitions and iteratively adapt it to satisfy our requirements.

In our Applicative Rule DSL, we might represent a recursive
binder in a naive HOAS style with a new Rule primitive Fix0 :

Fix0 :: (Rule a → Rule a)→ Rule a

bs = Fix0 $ λbs0 → (:) #$ Token ’b’~ bs0 � pure ""

bs ′ = Fix0 $ λbs ′
0 → snoc #$ bs ′

0 ~ Token ’b’� pure ""

Unfortunately, this representation allows meaningless definitions:

badBind = Fix0 $ λself → case self of Pure → self
→ Pure 0

badBind treats its recursive parameter non-parametrically and does
not model a usage of the recursive binder µ. Such definitions are

not excluded by Fix0 ’s type. Chlipala explains how this compli-
cates DSL algorithms like nullable , requiring an inverse algorithm
mapping result values (here: booleans) back to DSL terms [6].

We use Carette et al.’s finally tagless style [5] to solve this. Chli-
pala’s alternative Parametric HOAS [6] is discussed in section 7.

3.1 Finally tagless style (second attempt)

In Carette et al.’s finally tagless style, a parser rule with result type
a is not a value of data type Rule a , but of type FinalRule0 a:

class Applicative p ⇒ CharParser p where
token :: Char → p Char

type FinalRule0 a =
∀ p.(Alternative p,CharParser p)⇒ p a

Under this definition, a rule is something that can be interpreted in
any functor that supports the required primitives, e.g. bs and bs ′:

bs, bs ′ :: FinalRule0 String
bs = (:) #$ token ’b’~ bs � pure ""

bs ′ = snoc #$ bs ′ ~ token ’b’� pure ""

The quantification over p in FinalRule0 rules out definitions like
badBind . Since a term in the DSL has to support any functor p, it
has no way of inspecting recursive references of type p a .

Writing algorithms in this final style is reminiscent of program-
ming with Church encodings of data types. The polymorphism of
FinalRule0 is used by instantiating p with a special-purpose in-
terpretation functor carrying intermediate analysis results. In the
instances of Alternative and CharParser for this functor, pars-
ing primitives like pure , � and token are handled. The analysis
function nullableF just unwraps the result from the functor:

newtype NullableInterp a = NullI Bool

instance Applicative NullableInterp where
pure = NullI True
(NullI a)~ (NullI b) = NullI (a ∧ b)

instance Alternative NullableInterp where · · ·
instance CharParser NullableInterp where · · ·
nullableF :: FinalRule0 a → Bool
nullableF (NullI r) = r

3.2 Finally Recursive (third attempt)

So how can we add a recursive binder to such a final DSL? The
obvious solution mimics Carette et al.’s lambda construct:

class ApplicativeFix0 p where afix0 :: (p a → p a)→ p a
bs = afix0 $ λbs0 → (:) #$ token ’b’~ bs0 � pure ""

bs ′ = afix0 $ λbs ′
0 → snoc #$ bs ′

0 ~ token ’b’� pure ""

We can extend our nullableF analysis to support afix0:

instance ApplicativeFix0 NullableInterp where
afix0 pf = pf (NullI False)

This instance passes NullI False to pf , specifying that recursive
occurrences are assumed not to accept the empty string.

3.3 Applicative problems

Unfortunately, a problem with afix0 remains in complex transfor-
mations like the left-recursion removal transform to be described in
section 6.2. It will transform for example the left-recursive rule bs ′

into an equivalent, non-left-recursive rule:

99

transformPaull bs ′ ≡ foldr ($) #$ bsHead ′ ~many bsTail ′

where bsHead ′ = pure ""

bsTail ′ = (:) #$ token ’b’

More details follow, but essentially bs ′ is split in two parts:
bsHead ′ is what remains of the rule with leading self-references
removed and bsTail ′ contains the parts of the rule that follow lead-
ing self-references. The transformed rule parses bsHead ′ first and
then iteratively parses bsTail ′ using many :: p a → p [a]. The
initial result of bsHead ′ has type String , and the parse results of
bsTail ′, typed String → String , are iteratively applied to it using
foldr ($), to obtain the same parse results as before.

Actually performing this translation presents several challenges.
For a rule like bs ′ of the form afix0 bsf ′, we have to derive rules
bsHead ′ and bsTail ′ from bsf ′. Distinguishing leading from non-
leading recursive references is a first problem, but let us assume for
now they are all leading (like in bs ′). It is then easy enough to find
bsHead ′ as bsf ′ empty . Deriving bsTail ′ from bsf ′ is harder.

To derive bsTail ′ (of type p (String → String)) from bsf ′ (of
type p String → p String), we can try to somehow turn bsf ′ into
a value of type p (String → String) → p (String → String),
i.e. make all rules produce a value that can depend on the String
result of a previous match. The rules in bsf ′′ ignore this value, but
we can now apply bsf ′′ to pure id , i.e. instantiate leading self-
references to a pure parser returning the previous parse result.

Generalising slightly, what we crucially need is a coapplicative
operator coapp0 (note the symmetry with the type of ~):

coapp0 :: (p a → p b)→ p (a → b)

coapp0 should satisfy pf (pure v) ≡ ($v) #$ coapp0 pf for
pf :: p a → p b and v :: a . However, it cannot be implemented4.

We might say that the polymorphism of FinalRule0 has to be
instantiated too early. If we could instantiate p to (p ◦ ((→) a))5

then we could lift the Applicative and related instances to this
composed functor, lift pure id to type (p ◦ ((→) a)) a and call
pf with this value to obtain a value of (p ◦ ((→) a)) b which is
essentially p (a → b). However, even though we can instantiate a
FinalRule0 ’s p parameter as we like, (p ◦ ((→) a)) is not suited
as the type a becomes known only during the analysis of a term.

We note that coapp0 ’s type is precisely that of Carette et al.’s
Lambda constructor. So why can’t we simply add a lambda con-
structor to our applicative DSL to solve our problem? Unfortu-
nately, such a constructor is a bad idea for many DSLs, includ-
ing our parsing example. Even for a simple recursive descent (RD)
parse algorithm, this lambda operator cannot be handled:

lambdaRD :: ((String → [(String , a)])→
String → [(String , a)])→ String → [(String , a → b)]

lambdaRD pf s = ?

3.4 Rank-2 types to the rescue (our final proposal)

The solution we propose is to change the type signature of afix0:

class Applicative p ⇒ ApplicativeFix p where
afix :: (∀ q.Applicative q ⇒

(p ◦ q) a → (p ◦ q) a)→ p a

afix ’s type requires that the value of the recursive variable of afix ’s
argument can be wrapped in an arbitrary Applicative functor q

4We ignore unsafe techniques like dynamic typing and partiality.
5(→) is Haskell’s curried arrow type constructor: (→) a b = a → b.

with the recursive definition’s result value coming out in the same
functor at the end.

This restriction is strong enough for the definition of coapp. We
can instantiate the type constructor argument q to the environment
functor ((→) a), and exploit its standard Applicative instance:

coapp :: Applicative p ⇒ (∀ q .Applicative q ⇒
(p ◦ q) a → (p ◦ q) b)→ p (a → b)

coapp p = comp $ p $ liftInner id

Our experience shows that afix ’s type is not too restrictive though:
Applicative-style primitives on a functor p can be lifted to (p◦q) a
for any Applicative q , e.g. Alternative and CharParser :6

instance (Alternative p,Applicative q)⇒
Alternative (p ◦ q) where

empty = Comp empty
va � vb = Comp (comp va � comp vb)

instance (CharParser p,Applicative q)⇒
CharParser (p ◦ q) where

token = liftOuter · token

We can adapt the previous examples bs and bs ′ as follows.

type FinalRule a = ∀ p.
(Alternative p,ApplicativeFix p,CharParser p)⇒ p a

bs, bs ′ :: FinalRule String
bs = afix $ λs → (:) #$ token ’b’~ s � pure ""

bs ′ = afix $ λs → snoc #$ s ~ token ’b’� pure ""

The additional power of afix over afix0 is not always needed.
In such cases (like our nullable), the quantified functor q can be
instantiated to Identity :

runIdComp :: Functor p ⇒ (p ◦ Identity) a → p a
runIdComp p = runIdentity #$ comp p

wrapIdComp :: Applicative p ⇒ (∀ q .Applicative q ⇒
(p ◦ q) a → (p ◦ q) a)→ p a → p a

wrapIdComp f s = runIdComp $ f $ liftOuter s
instance ApplicativeFix NullableInterp where

afix pf = wrapIdComp pf (NullI False)

With firstSet similarly adapted, the results for bs are unchanged:
nullableF bs ≡ True , firstSetF bs ≡ singleton ’b’, but
left-recursion is now supported: nullableF bs ′ ≡ True and
firstSetF bs ′ ≡ singleton ’b’.

3.5 The meaning of afix ’s type

Let us try and gain more insight into the meaning of afix ’s type:

afix :: ∀ p.ApplicativeFix p ⇒
(∀ q.Applicative q ⇒ p (q a)→ p (q a))→ p a

A useful tool is Reynolds’ notion of parametricity [32, 34]. Because
we just want to gain insight, we freely use imprecise formulations
and ignore intricacies like strictness [8], although we do believe the
results could be made more exact if necessary.

Let us consider the type of afix ’s arguments:

∀ q.Applicative q ⇒ (p ◦ q) a → (p ◦ q) a

We conjecture that the following free theorem holds for values pf
of this type:

6This instance of Alternative (p◦q) arbitrarily lifts p’s Alternative
instance and not q’s, but in our case, q’s special role warrants this.

100

Theorem 3.1. For all q1, q2 Applicative , for k : q1 a → q2 a
respecting the Applicative operations and u :: (p ◦ q1) a ,

withInner k (pf u) ≡ pf (withInner k u).

This theorem states that for any k , applying withInner k before or
after pf has the same effect. Consider the constant functor K :

data K a = K
instance Applicative K where {pure = K ; ~ = K }

With k = λ → K , withInner k maps values of (p ◦ q) a
to (p ◦ K) a , effectively erasing the value of the computation in
p. Theorem 3.1 then implies that applying pf to an argument u
and erasing the value of the result is equivalent to first erasing u’s
value and then applying pf to it. This means that the above theorem
states a familiar property, namely that afix ’s arguments pf respect
the separation between values and effects of applicative functors.

4. An ApplicativeFix Axiom

With the key points of our approach established, let us consider the
properties a reasonable implementation of ApplicativeFix should
satisfy. Many Haskell type classes are associated with such axioms
that can sometimes even be linked to category theory or mathemat-
ics in general. We have not identified such a relation, but we do
propose an axiom that should hold for afix .

4.1 Fixpoint law

The ApplicativeFix fixpoint law states that an implementation of
afix should always deliver a fixpoint:

afix pf ≡ wrapIdComp pf $ afix pf

Remember that denotationally, Haskell recursive definitions pro-
duce the least fixpoint of a function pf [36]. This law states that
afix must also return a fixpoint, but not necessarily the least. Note
by the way that it also implies a behaviour on constant functions:

Corollary 4.1 (Constant preservation). If x is not free in g ,
afix (λx → liftOuter g) ≡ g .

4.2 Interesting non-axioms

There are two axioms that we want to explicitly not propose. We
discuss them, nevertheless, as they shed more light on the meaning
of our afix primitive.

Left shrinking considered harmful The first such property is
an analogon of Erkök and Launchbury’s Left Shrinking law for
MonadFix [14] or the equivalent for Paterson’s ArrowLoop [27].
For ApplicativeFix , one might expect the following left shrinking:

(not an axiom)
afix (λx → liftOuter a ~ f x) = a ~ afix f

with x not free in a and a :: p (v → v) for some p and v .

Let us consider what this proposed axiom would mean for an
example parser for an infinite number of as, defined as follows:

as = afix $ λs → (:) #$ token ’a’~ s

Under the left-shrinking assumption, the above is equivalent to a
single token parser followed by an infinite effect-free parser:

as = afix $ λas ′ → (:) #$ token ’a’~ as ′

= (:) #$ token ’a’~ afix $ λas ′ → as ′

However, this new expression is not at all equivalent to the original.
The left shrinking property states that computations not depending
on recursive occurrences can be lifted out of the recursive equation,
their effects no longer taking part in the recursion. As such, the ax-
iom is defining for the value recursion that Erkök and Launchbury
model and rules out the effectful recursion we aim for.

Fixing what is pure? A second property that not all reasonable
instances of ApplicativeFix satisfy, prescribes a form of fixpoints
for recursive definitions that do not add effects:

(not an axiom)
afix (fmap h) ≡ pure (fix h)

for any h typed a → a . The right hand side is a fixpoint of fmap h ,
but not necessarily the one we want. In an Alternative functor
p, empty is also a fixpoint and it is in fact the natural one for
most examples in this text. For instance, in a parser DSL, the left-
hand side models a non-terminal X with a single production rule
X → X , equivalent in language theory to an empty rule.

5. Making afix practical

We turn our attention to some tools that make it practical to imple-
ment and work with DSLs using afix .

5.1 Some Tools

First, unlike alternative solutions [2, 11], afix supports higher-
order combinators without primitive support. These are observably
recursive analogues of the standard many and some combinators:

manyAF , someAF :: (Alternative p,ApplicativeFix p)⇒
p a → p [a]

someAF f = (:) #$ f ~manyAF f
manyAF f = afix $ λs → (:) #$ liftOuter f ~ s � pure []

Note that manyAF and someAF ’s types only differ from their
standard analogues in the ApplicativeFix constraint.

A standard function afixInf implements afix by going back to
Haskell’s unobservable recursion. This sometimes makes sense, for
example when interfacing with existing libraries that are designed
to work with Haskell’s implicit recursion. We show an instance for
uu-parsinglib’s parser representation. Also useful is afixKill ,
which replaces recursive occurrences with a failing empty rule.

afixInf :: Applicative p ⇒ (∀ q .Applicative q ⇒
(p ◦ q) a → (p ◦ q) a)→ p a

afixInf f = fix $ wrapIdComp f

instance ApplicativeFix (P st) where afix = afixInf

afixKill :: Alternative p ⇒ (∀ q .Applicative q ⇒
(p ◦ q) a → (p ◦ q) a)→ p a

afixKill f = runIdComp $ f empty

5.2 Arity-Genericity

With afix modelling effectful recursion on one variable, the next
question is what to do about mutual recursion. Instantiating afix
at type (∀ b . ApplicativeFix b ⇒ (f ◦ b) (a1 , a2) → (f ◦
b) (a1 , a2)) → f (a1 , a2) is not a solution because the type
f (a1 , a2) does not allow both recurrands to produce different
effects. What we would like is a primitive of the following type:

101

assocComp1 :: Applicative p ⇒
((p ◦ q1) ◦ q2) a → (p ◦ (q1 ◦ q2)) a

assocComp2 :: Applicative p ⇒
(p ◦ (q1 ◦ q2)) a → ((p ◦ q1) ◦ q2) a

liftComposed :: (Applicative p,Applicative q2)⇒
(p ◦ q1) a → (p ◦ (q2 ◦ q1)) a

Figure 1. Utility functions for working with functors (p ◦ q) (im-
plementations omitted).

afix2 :: ApplicativeFix p ⇒ (∀ q .Applicative q ⇒
((p ◦ q) a1 → (p ◦ q) a2 → (p ◦ q) a1,
(p ◦ q) a1 → (p ◦ q) a2 → (p ◦ q) a2))→ (p a1, p a2)

This is not an instance of afix ’s type, but we can construct such
a primitive from it, taking inspiration from Bekić’s theorem [36].
This theorem relates mutually recursive bindings to repeated appli-
cations of the fix operator. We imitate the form for afix , exploiting
the polymorphism of afix2’s argument and juggling the (· ◦ ·) type
constructor in the types (using utility functions from Figure 1).

afix2 pf = (fp1, fp2) where
fp1 = afix $ λfp′

1 →
let fp′

2 = Comp $ afix $ λfp′′
2 → comp $

assocComp2 $ snd pf (liftComposed fp′
1)

(assocComp1 $ Comp fp′′
2)

in fst pf fp′
1 fp′

2

fp2 = ... (analogous)

This definition is obscured by technicalities. In the first call to afix ,
the recursive argument fp′

1 is of type (p◦q1) a1 for an arbitrary q1 .
However, in the second call to afix , fp′′

2 is of type (p ◦q2) (q1 a2)
for an arbitrary q2 . The trick is then to apply pf with its type
parameter q instantiated to (q2 ◦ q1) and exploit associativity of
the (· ◦ ·) type constructor to fit everything together.

Now, we can do this for any arity, but this is not very effective: we
can only hope to implement a finite number of afix is and addition-
ally, the size of the definition of afix i increases exponentially with
i . Luckily, GHC’s type system allows us to do better.

Omitting details for space reasons, we have used techniques de-
scribed by McBride [22]7 to develop an arity-generic or polyvari-
adic version of afix . With encoding artefacts removed and using
ellipses in a not fully formal notation for type lists, this is its type:

nafix :: ∀ (p :: ∗ → ∗) ([t1 · · · tn] :: [∗]).ApplicativeFix p ⇒
((∀q : ∗ → ∗.Applicative q ⇒

(p ◦ q) t1 → · · · → (p ◦ q) tn → (p ◦ q) t1) , · · · ,
(∀q : ∗ → ∗.Applicative q ⇒

(p ◦ q) t1 → · · · → (p ◦ q) tn → (p ◦ q) tn))→
(p t1, . . . , p tn)

This arity-generic version of afix gives us effectful mutual recur-
sion at any arity without primitives beyond afix . The implementa-
tion of nafix can be found in our GHC branch (see Section 5.4).

5.3 Syntactic sugar

By writing recursive definitions in terms of this new fixpoint prim-
itive, we lose some of the elegance of Haskell’s standard let bind-
ings. But because our ApplicativeFix and afix are a general tool

7We use type families instead of multi-parameter type classes though.

Q; Γ ` p : ∗ → ∗ Q ApplicativeFix p q fresh
∀i = 1..n, Q ∧Applicative q;

Γ, q : ∗ → ∗, {xj : (p ◦ q) tj}j=1..n ` ei : (p ◦ q) ti
Q ; Γ, {xi : p ti}i=1..n ` e : T

Q ; Γ,` alet {xi = ei}i=1..n in e : T
(T-ALET)

Figure 2. Typing alet bindings

for Applicative functors requiring observable effectful recursion, a
shorthand notation to recover this elegance makes sense. Since we
work in an applicative style, a syntax that resembles standard let
bindings is natural: we propose the alet-notation:

alet bs = pure ""� (:) #$ token ’b’~ bs

Note the use of a top-level alet. We allow mutual recursion, like in
the following simple expression parser8

alet expr = (+) #$ expr ⊂∗ token ’+’~ factor
� factor

factor = (∗) #$ factor ⊂∗ token ’*’~ term
� term

term = token ’(’ ∗⊃ expr ⊂∗ token ’)’

� decimal
in expr

Syntactic and scoping rules for alet are analogous to normal let
bindings. Its typing rule is presented in Figure 2, using notation
from Vytiniotis et al. [33]. Specifically, their typing judgement
Q ; Γ ` e : τ , where Q is a set of constraints, Γ is a typing
environment, e an expression and τ a type. We write some kind
annotations, typing context entries for type variables and explicit
type applications of polymorphic values for clarity. The typing rule
for alet is not standard, but it reflects the requirements of our afix
and nafix primitives: the definitions of bound variables xi are type-
checked against type (p ◦ b) ti where b is a fresh Applicative
functor, and all xj are bound at type (p ◦ b) tj . The body of the
alet construct is type-checked with all xi bound at type p ti.

With this typing rule, Figure 3 defines a type- and syntax-directed
desugaring A, transforming alet to regular Haskell. Essentially,
all recursively bound variables xi are converted into open recursive
functions x]i . We generate a call to the n-ary nafix primitive and
project out x̂i from the resulting n-ary tuple. Finally, we replace
occurrences of xi in the body with x̂i. Type soundness of the
translation follows easily from type checking the right-hand side
of the translation B against the type of the original alet construct.

Theorem 5.1 (A is type-preserving).

Q ; Γ ` e : T ⇒ Q ; Γ ` A〈Γ〉 (e) : T.

We don’t formalise top-level alets, a declaration form of alets.

5.4 Implementation

We have extended GHC to parse, type-check and desugar alet ex-
pressions. We perform the translation in Fig. 3 during the desugar-
ing phase, which translates scope- and type-checked Haskell code
into GHC’s explicitly typed core language (a variant of System Fω

extended with features like equality coercions [30]). We currently
support alet expressions as defined in this text. Still missing is
support for top-level alets and type signatures for alet bindings

8Note: we use shorthands ⊂∗ and ∗⊃ that behave like ~ but ignore the
result of their second resp. first argument, e.g. v ⊂∗ w = const #$ v ~ w .

102

A〈Q; Γ〉
(
alet {xi = ei}i=1..n in e

)
= B〈{ti}i=1..n〉

(
alet {xi = ei}i=1..n in e

)
with

{
Q; Γ ` p : ∗ → ∗, Q ApplicativeFix p
∀i Q ∧Applicative b; Γ, b : ∗ → ∗, {xj : (p ◦ b) tj}j=1..n ` ei : (p ◦ b) ti

A〈Q; Γ〉 (e) = · · · (compositionally apply A〈Q; Γ〉 on components of e)

B〈{ti}i=1..n〉
(
alet {xi = ei}i=1..n in e

)
= let

{
x]i = λx′1 · · ·x′n → [x′j/xj]j=1..nei

}
i=1..n

f = nafix @[t1..tn]
(
x]1, · · · , x]n

)
{x̂i = πi@[(p t1) · · · (p tn)] f}i=1..n

in [x̂i/xi]i=1..n e

Figure 3. The type-directed translation of alet bindings. We write some explicit type applications for clarity.

Q

Q

R

S

Figure 4. An SR-latch, using a pair of cross-coupled NOR gates.

(but type annotations in the bodies can be used instead). The exam-
ples in this text without top-level alets are supported. The code is
available on GitHub with instructions for building9 and pointers for
trying out examples and navigating the code.

6. Examples

6.1 Functional Reactive Programming

A domain where our techniques are useful is functional reactive
programming (FRP), a declarative programming model that de-
scribes a system in terms of time-varying functions instead of mu-
table state with applications in robotics [28], animation [13] and
graphical user interfaces [19].

A simple FRP model may consider behaviours as functions of time,
making them an instance of the environment functor [23]:

type Behaviour = (→) Time

instance Applicative ((→) a) where
pure = const
f ~ g = λt → f t (g t)

FRP provides a form of state through the delaying of behaviours.
For discrete time models, the behaviour delay v bhv produces
value v first and the delayed values of bhv next. We assume func-
tions prevT :: Time → Time and initT :: Time .

class Applicative f ⇒ Delayable f where
delay :: a → f a → f a

instance Delayable Behaviour where
delay v b = λt → if t ≡ initT then v else b $ prevT t

6.1.1 Modelling electronic circuits with flip-flops

Let us use FRP to model event networks and, in particular, elec-
tronic circuits. Figure 4 shows an SR-latch, a simple flip-flop cir-

9http://github.com/ilyasergey/GHC-XAppFix/wiki

nor x y = ¬ (x ∨ y)

srLatch :: Delayable f ⇒ f (Bool ,Bool)→ f (Bool ,Bool)
srLatch inputs = let qi = nor #$ r ~ delay False qi ′

qi ′ = nor #$ s ~ delay False qi
in (,) #$ qi ~ qi ′

where r = fst #$ inputs
s = snd #$ inputs

Figure 5. An FRP implementation of an SR latch’s without alet.

cuit with two stable states, sometimes used to store information.
The circuit has two input wires: R and S, and two output wires:
Q and Q (opposite in correct states). If S and R are high, they set
resp. reset the state of the circuit (the value of Q).

Figure 5 shows an FRP model of the SR-latch over an arbitrary
Applicative functor with a Delayable instance, reacting to events
of type (Bool ,Bool) (the values applied to the input wires). The
latch’s recursion is modelled in the standard way, and there is no
problem to simulate the circuit:

sampleInput = delay (True,False) $ const (False,False)

The simulation shows that our sample input correctly initialised
the circuit: map (srLatch sampleInput) [initT . .] gives us
[(False,True), (False,True), ...].

6.1.2 Delayable applicative functors

In Figure 5, the recursive calls to qi and qi ′ are guarded by delays,
essential for the proper functioning of the example. If we remove
the delays, our example no longer terminates. For more complex
examples, such errors can be less obvious and lead to bugs.

Our approach can already do better. If we model the recursion
using ApplicativeFix , we can scan for erroneous loops upfront
and report errors early on. We just need to lift the Delayable class
to composed functors (omitted) and change srLatch to use alet.
We use liftOuter to lift a and b into the composed functor:

srLatch2 :: (ApplicativeFix f ,Delayable f)⇒
f (Bool ,Bool)→ f (Bool ,Bool)

srLatch2 inputs =
alet qi = nor #$ liftOuter r ~ delay False qi ′

qi ′ = nor #$ liftOuter s ~ delay False qi
in (,) #$ qi ~ qi ′

where . . . -- see Figure 5

In a final style, we can analyse this definition with a custom functor:
TestValid a ignores its parameter a , but keeps track of the valid-

103

http://github.com/ilyasergey/GHC-XAppFix/wiki

ity of a circuit and its current minimum delay. The Applicative and
Delayable instances initialise and combine the validity and mini-
mum delay values in the obvious way.

data ValidInterp a = VI {isValid :: Bool , viDelay :: Int }
instance Applicative ValidInterp where

pure = VI True 0
VI va da ~VI vb db = VI (va ∧ vb) (min da db)

instance Delayable ValidInterp where
delay (VI s d) = VI s (d + 1)

In the ApplicativeFix instance, we test if the recursive function
properly introduces a delay: we pass it a recursive occurrence with
a delay of−1. If what comes back doesn’t have an increased delay,
the circuit is invalid:

instance ApplicativeFix ValidInterp where
afix f = case wrapIdComp f $ VI True (−1) of

VI t d | d < 0 → VI False d
VI t d | otherwise → VI t d

Reassuringly, isValid (srLatch2 (VI True 0)) is True .

6.2 Left-recursion removal

The largest example in this paper is the previously mentioned algo-
rithm that transforms left-recursive parsers into an equivalent non-
left-recursive form. It is inspired by a previous implementation of
a uniform version of the Paull transformation [17, p. 304] in the
grammar-combinators library [11]. This is a complex transfor-
mation and we think it shows other transformations like the ones
needed for parsing with derivatives [24] are possible as well.

In section 3.3, we discussed how transformPaull transforms the
example left-recursive rule bs ′ into a non-left-recursive equivalent:

transformPaull bs ′ ≡
foldr ($) #$ bsHead ′ ~many bsTail ′ where

bsHead ′ = pure ""

bsTail ′ = (:) #$ token ’b’

The core of the transformation is in the implementation of afix ,
where we transform a parser like bs ′ = afix bsf ′ to the above. The
difficult part is deriving bsHead ′ and bsTail ′ from pf and we have
already discussed some of the techniques for doing this in section 3.
To derive the first, we pass pf a recursive occurrence that behaves
differently in different positions: it always fails in a head position
and behaves as an actual recursive occurrence in tail positions. In
a similar but more complicated way, we construct bsTail ′, but not
without the coapp function from section 3.4.

We model different positions for a parsing rule as three contexts:
PurePos (a position where a parser must not consume any input),
HeadPos (the left-most position of a non-terminal definition where
a parser must consume input) and TailPos (a position where input
has already been consumed). The HeadPos context can addition-
ally specify that primitive parsers in this position are to be either
killed (replaced with empty) or left unmodified:

data RuleCtx = PurePos
| HeadPos HeadMod
| TailPos deriving Eq

data HeadMod = KillHeads | DontTouch deriving Eq

modHead :: Alternative p ⇒ HeadMod → p a → p a
modHead KillHeads = empty
modHead DontTouch p = p

For an underlying parser functor p, we define a type of trans-
formable parsers that support these three contexts. This type of
transformable rules plays the role of the interpretation functor
that we instantiate the polymorphism of the rules with. We define
the algorithm by providing instances for the relevant type classes
Applicative , Alternative , CharParser and ApplicativeFix .

data PaullT p a = PaullT {paullT :: RuleCtx → p a }
The Alternative instance just lifts p’s operations in all contexts:

instance Alternative p ⇒ Alternative (PaullT p) where
empty = PaullT $ const empty
a � b = PaullT $ λctx → paullT a ctx � paullT b ctx

In the Applicative instance, we define the behaviour of the parsers
in the three contexts. The rule for sequencing is the most complex,
because care has to be taken to correctly define how the two se-
quenced parts can each be in the left-most position of a rule:

instance (Alternative p,Applicative p)⇒
Applicative (PaullT p) where
pure v = PaullT r where r PurePos = pure v

r (HeadPos) = empty
r TailPos = pure v

rf ~ rv = PaullT r
where r ctx@(HeadPos) =

paullT rf PurePos ~ paullT rv ctx
� paullT rf ctx ~ paullT rv TailPos

r ctx = paullT rf ctx ~ paullT rv ctx

The CharParser instance is self-explanatory:

instance (Alternative p,CharParser p)⇒
CharParser (PaullT p) where

token c = PaullT r
where r PurePos = empty

r (HeadPos kh) = modHead kh $ token c
r TailPos = token c

Finally, the ApplicativeFix instance handles recursive references:

instance (Alternative p,ApplicativeFix p)⇒
ApplicativeFix (PaullT p) where
afix (pf :: ∀ q .Applicative q ⇒

(PaullT p ◦ q) a → (PaullT p ◦ q) a) = PaullT r
where ...

In a pure context, we just kill recursive occurrences:

r PurePos = paullT (afixKill pf) PurePos

In other contexts, we implement the transformation rule described
above (taking into account the head modification in a head context).
We use an omitted function manyComp: a version of manyAF
from Section 5.1, lifted to composed functor (p ◦ q):

r (HeadPos hm) = rNP hm
r TailPos = rNP DontTouch

rNP :: HeadMod → p a
rNP hm = afix $ λself →

foldr ($) #$ rStart hm self ~manyComp (rDeriv self)

rStart and rDeriv play the role of bsHead ′ and bsTail ′ in our
earlier explanation. We define rStart by calling the function pf
with a recursive occurrence that behaves as empty in pure and head
contexts, and as an actual recursive reference elsewhere:

rStart :: Applicative q ⇒ HeadMod → (p ◦ q) a → (p ◦ q) a
rStart hm self =

104

Comp $ flip paullT (HeadPos hm) $ comp $ pf $
Comp $ PaullT $ λctx →
if ctx ≡ TailPos then comp self else empty

Finally, as discussed in Section 3.4, rDeriv is a prime example for
the need of the coapp function described. It produces a parser with
result type a → a to be used in the definition of rNP above. In ad-
dition to the recursive occurrence self from the call to afix , coapp
gives us a placeholder prev to substitute for left-recursive occur-
rences. Using our RuleCtx s, we call f with a recursive reference
behaving as prev in head positions and as self elsewhere:

rDeriv :: Applicative q ⇒ (p ◦ q) a → (p ◦ q) (a → a)
rDeriv self = coapp $ rDeriv ′ self

rDeriv ′ :: ∀ q q2 . (Applicative q ,Applicative q2)⇒
(p ◦ q) a → ((p ◦ q) ◦ q2) a → ((p ◦ q) ◦ q2) a

rDeriv ′ self prev =
assocComp2 $ Comp $
flip paullT (HeadPos KillHeads) $ comp $
pf $ Comp $ PaullT rself where

rself :: RuleCtx → p (q ◦ q2) a
rself PurePos = empty
rself HeadPos { } = comp $ assocComp1 prev
rself TailPos = liftOuter #$ comp self

With this machinery, the function transformPaull applies the left-
recursion removal transformation to a parser:

transformPaull :: Alternative q ⇒ PaullT q a → q a
transformPaull p = paullT p PurePos

� paullT p (HeadPos DontTouch)

Omitting some uninteresting glue code to the standard Applicative
parsing library uu-parsinglib, we can now apply its standard
error-correcting parsing algorithm to our transformed and no longer
left-recursive parser expr from Section 5.3:

exprParse :: String → Int
exprParse = parseUU $ transformPaull expr

testParse = exprParse "1+7*3+(8*1+2*6)"

7. Related Work

Applicative functors For background on applicative functors, we
refer to McBride and Paterson [23]. Note that their bracket notation
(translating J f u1 ...un K to pure f #$ u1~ ...~un) is orthogonal
to our alet syntax and would fit well in alet right-hand sides.
Lindley et al. clarify the relation between Applicative functors,
Arrows and Monads [20]. Applicative parser combinators were
popularised by Swierstra and colleagues [1, 31], who have shown
them better suited for analysis and optimisation. A better handling
of recursion is still a missing piece of the puzzle, and has been a
motivation for work on observable recursion (see below).

HOAS representations There is a wide variety of research on
HOAS representations and how to prevent the problem discussed
in section 3. We have already discussed Carette et al. [5]’s finally
tagless style, built on the work by Washburn and Weirich [35]. Chli-
pala has proposed Parametric HOAS, also exploiting parametricity
in a better HOAS encoding [6]. Contrary to Carette et al., this re-
sults in an initial encoding instead of a final one. PHOAS has been
used by Oliveira and Cook to obtain observable monomorphic re-
cursion [25] in graph structures. In follow-up work developed in

parallel with ours, Oliveira and Löh extend this to typed DSLs
with mutually recursive bindings, leading to a solution with many
similarities to ours [26]. In addition to observable recursion, they
also provide observable sharing, which we have not considered.
Their model of mutually recursive binders uses techniques similar
to those in section 5.2, but they keep mutual bindings as primitive
instead of reducing them to sequences of simple binders like us. For
achieving a usable end-user syntax, they demonstrate the use of the
impure data-reify library, while we propose the alet syntax.

We have experimented with using an initial encoding based on
PHOAS instead of our finally tagless encoding. This involves a
version of our Rule data type parameterised by a type constructor v
that represents variables of a certain type. We also add an additional
Var constructor and a different recursion primitive Fix :

data PRule v a where
Var :: v a → PRule v a
Fix :: (v a → PRule v a)→ PRule v a
Seq :: PRule v (a → b)→ PRule v a → PRule v b
...

type Rule a = ∀ v · PRule v a

Parametricity of bindings is enforced by requiring the terms to sup-
port any variable type constructor v . However, this representation
also suffers from the problem discussed in section 3.2 and does not
permit the definition of an analogon of coapp. As in section 3.4,
this can be solved by changing Fix ’s type to the rank-2 type

Fix :: (∀ w.Applicative w ⇒
v :<: w → w a → PRule w a)→ PRule v a

v :<: w is a synonym for ∀ a · v a → w a , i.e. an embedding of
variables v a into a wider set w a . We have not found reasons to
prefer this encoding over ours, although some people may prefer an
initial encoding over a final one. This encoding may translate better
to predicative languages like Agda.

Observable recursion through fixpoint primitives We have al-
ready seen Erkök and Launchbury’s MonadFix type class and fix-
point primitive mfix , typed MonadFix m ⇒ (a → m a) →
m a [14, 15]. They focus on value recursion; mfix ’s type and
its axioms (see Section 4.2) are not suited for effectful recursion.
Erkök and Launchbury extend Haskell’s do-notation with recursive
value bindings that are desugared into applications of mfix .

Hughes proposed the use of Arrows in functional languages [18]
as a generalisation of monads, similar to applicative functors. In a
paper proposing a do-notation for arrows, Paterson also proposed
ArrowLoop: a type class modelling value recursion in arrows [27].
Similar to MonadFix , the ArrowLoop axioms prescribe a value-
recursion semantics and do not allow effectful recursion.

Observable recursion through typed references Both Baars and
Swierstra [2, 3] and Devriese and Piessens [10, 11, 12] each define
observably recursive encodings of grammars based on a well-typed
representation of references. Baars and Swierstra employ a form of
de Bruijn-indices into a type-level encoding of a type environment
and Devriese and Piessens require the user to define an encoding
of the grammar’s non-terminals at both type and value level. Baars
and Swierstra implement a fixpoint primitive and propose a general
form of syntax macros for Haskell to recover a nice syntax for their
grammar definitions. Brink et al. [4] demonstrate a deeper encoding
of parsers than ours, representing grammars as a set of production
rules parameterised by a set of non-terminals in the dependently-
typed language Agda. Compared to these approaches, our fixpoint
primitive is more powerful. For example, we support higher order

105

recursive operators like manyAF from Section 5.1 without hard-
coded support in the parsing library.

Dependently typed recursion In an unpublished draft, Danielsson
and Norell [9] show how left-recursive parsers can be excluded in a
dependently typed parser combinator DSL. They restrict the recur-
sion in the DSL while we support other interpretations of the recur-
sion that is there. Danielsson [7] uses mixed induction-coinduction
to define parser combinators that support left-recursion, but (im-
pressively) remain provably total and correct. Danielsson’s tech-
nique does not seem to allow the choice of non-standard fixpoints
in the same way as we do. For the following parser test

test : CoN→ P false

test zero = sat (
?
= ’a’)

test (suc n) =] test2 ([n) ·] ? (sat (
?
= ’b’))

we suspect test ∞ is indistinguishable from finite test n making
first set calculation and other algorithms hopeless.

8. Conclusion

We have shown that effectful recursion is an important prob-
lem in several domains. We propose the class ApplicativeFix of
Applicative functors with a recursion primitive afix . It uses a fi-
nally tagless HOAS encoding of a recursive binder µ, adapted to
Applicative functors with a rank-2 type that allows to exploit the
Applicative values-effects separation. We use generic program-
ming techniques to derive mutual recursion primitives and propose
the alet construct as a shallow form of syntactic sugar for afix
with an implementation in GHC. We show that our approach is
useful for (at least) two domains: parsing and functional reactive
programming. Our approach supports higher-order operators like
manyAF without ad hoc support in the DSL encoding.

Acknowledgements

This research is partially funded by the Research Foundation - Flan-
ders (FWO), and by the Research Fund KU Leuven. Dominique
Devriese holds a Ph.D. fellowship of the Research Foundation -
Flanders (FWO). The authors thank Bruno Oliveira and Andres
Löh for an interesting discussion about their related work.

References
[1] A. I. Baars, A. Löh, and S. D. Swierstra. Parsing permutation phrases.

J. Funct. Program., 14(6):635–646, 2004.
[2] A. I. Baars and S. D. Swierstra. Type-safe, self inspecting code. In

Haskell, pages 69–79, 2004.
[3] A. I. Baars, S. D. Swierstra, and M. Viera. Typed transformations

of typed abstract syntax: The left corner transform. In LDTA, pages
18–33, 2009.

[4] K. Brink, S. Holdermans, and A. Löh. Dependently typed grammars.
In MPC, 2010.

[5] J. Carette, O. Kiselyov, and C.-c. Shan. Finally tagless, partially
evaluated: Tagless staged interpreters for simpler typed languages.
J. Funct. Program., 19(05):509–543, 2009.

[6] A. Chlipala. Parametric higher-order abstract syntax for mechanized
semantics. In ICFP, pages 143–156, 2008.

[7] N. A. Danielsson. Total parser combinators. In ICFP, pages 285–296,
2010.

[8] N. A. Danielsson, J. Hughes, P. Jansson, and J. Gibbons. Fast and
loose reasoning is morally correct. In POPL, pages 206–217, 2006.

[9] N. A. Danielsson and U. Norell. Structurally recursive descent pars-
ing. Draft, 2008.

[10] D. Devriese and F. Piessens. Explicitly recursive grammar combina-
tors - Implemention of some grammar algorithms. Technical Report
CW594, KULeuven CS, 2010.

[11] D. Devriese and F. Piessens. Explicitly recursive grammar combina-
tors. In PADL, pages 84–98. Springer, 2011.

[12] D. Devriese and F. Piessens. Finally tagless observable recursion for
an abstract grammar model. Journal of Functional Programming,
22(06):757–796, 2012.

[13] C. Elliott and P. Hudak. Functional reactive animation. In ICFP, pages
263–273, 1997.

[14] L. Erkök and J. Launchbury. Recursive Monadic Bindings. In ICFP,
pages 174–185, 2000.

[15] L. Erkök and J. Launchbury. A recursive do for Haskell. In Haskell,
pages 29–37, 2002.

[16] R. Frost, R. Hafiz, and P. Callaghan. Parser combinators for ambigu-
ous left-recursive grammars. In PADL, 2008.

[17] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to au-
tomata theory, languages, and computation. Addison-Wesley, 2003.

[18] J. Hughes. Generalising monads to arrows. Sci. Comput. Program.,
37(1-3):67–111, 2000.

[19] N. R. Krishnaswami and N. Benton. A semantic model for graphical
user interfaces. In ICFP, pages 45–57, 2011.

[20] S. Lindley, P. Wadler, and J. Yallop. Idioms are oblivious, arrows are
meticulous, monads are promiscuous. In MSFP, pages 97–117, 2008.

[21] P. Ljunglöf. Pure functional parsing - an advanced tutorial. Master’s
thesis, Chalmers, 2002.

[22] C. McBride. Faking it: Simulating dependent types in Haskell.
J. Funct. Program., 12(4–5):375–392, 2002.

[23] C. McBride and R. Paterson. Applicative programming with effects.
J. Funct. Program., 18:1–13, January 2008.

[24] M. Might, D. Darais, and D. Spiewak. Parsing with derivatives: a
functional pearl. In ICFP, pages 189–195, 2011.

[25] B. C. Oliveira and W. R. Cook. Functional programming with struc-
tured graphs. In ICFP, pages 77–88, 2012.

[26] B. C. Oliveira and A. Löh. Abstract syntax graphs for domain specific
languages. In PEPM, 2013.

[27] R. Paterson. A new notation for arrows. In ICFP, pages 229–240,
2001.

[28] J. Peterson, P. Hudak, and C. Elliott. Lambda in Motion: Controlling
Robots with Haskell. In PADL, pages 91–105, 1999.

[29] S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In ICFP, pages 50–61,
2006.

[30] M. Sulzmann, M. M. T. Chakravarty, S. P. Jones, and K. Donnelly.
System F with type equality coercions. In TLDI, pages 53–66, 2007.

[31] S. D. Swierstra and L. Duponcheel. Deterministic, error-correcting
combinator parsing. In AFP, pages 184–207, 1996.

[32] J. Voigtländer. Free theorems involving type constructor classes:
functional pearl. In ICFP, pages 173–184, 2009.

[33] D. Vytiniotis, S. Peyton Jones, T. Schrijvers, and M. Sulzmann. Out-
sideIn (X) Modular type inference with local assumptions. J. Funct.
Program., 1(1):1–80, 2011.

[34] P. Wadler. Theorems for free! In FPLCA, pages 347–359, 1989.
[35] G. Washburn and S. Weirich. Boxes go bananas: Encoding higher-

order abstract syntax with parametric polymorphism. In ICFP, pages
249–262, 2003.

[36] G. Winskel. The formal semantics of programming languages: an
introduction. MIT Press, 1993.

106

	Introduction
	Overview and Contributions

	Background, examples and machinery
	More fixpoints
	Applicative Functors
	Applicative functors vs. Monads
	Composing Applicative functors
	Effectful recursion, not value recursion

	A recursion primitive
	Finally tagless style (second attempt)
	Finally Recursive (third attempt)
	Applicative problems
	Rank-2 types to the rescue (our final proposal)
	The meaning of afix's type

	An ApplicativeFix Axiom
	Fixpoint law
	Interesting non-axioms

	Making afix practical
	Some Tools
	Arity-Genericity
	Syntactic sugar
	Implementation

	Examples
	Functional Reactive Programming
	Modelling electronic circuits with flip-flops
	Delayable applicative functors

	Left-recursion removal

	Related Work
	Conclusion

