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ABSTRACT

Grey-box fuzzing is the lightweight approach of choice for finding
bugs in sequential programs. It provides a balance between effi-
ciency and effectiveness by conducting a biased random search over
the domain of program inputs using a feedback function from ob-
served test executions. For distributed system testing, however, the
state-of-practice is represented today by only black-box tools that
do not attempt to infer and exploit any knowledge of the system’s
past behaviours to guide the search for bugs.

In this work, we present MALLORY: the first framework for grey-
box fuzz-testing of distributed systems. Unlike popular black-box
distributed system fuzzers, such as JEPSEN, that search for bugs by
randomly injecting network partitions and node faults or by fol-
lowing human-defined schedules, MALLORY is adaptive. It exercises
a novel metric to learn how to maximize the number of observed
system behaviors by choosing different sequences of faults, thus
increasing the likelihood of finding new bugs. The key enablers
for our approach are the new ideas of timeline-driven testing and
timeline abstraction that provide the feedback function guiding a
biased random search for failures. MALLORY dynamically constructs
Lamport timelines of the system behaviour, abstracts these time-
lines into happens-before summaries, and introduces faults guided
by its real-time observation of the summaries.

We have evaluated MALLORY on a diverse set of widely-used
industrial distributed systems. Compared to the start-of-the-art
black-box fuzzer JEPSEN, MALLORY explores 54.27% more distinct
states within 24 hours while achieving a speed-up of 2.24x. At the
same time, MALLORY finds bugs 1.87X faster, thereby finding more
bugs within the given time budget. MALLORY discovered 22 zero-
day bugs (of which 18 were confirmed by developers), including 10
new vulnerabilities, in rigorously-tested distributed systems such
as Braft, Dqlite and Redis. 6 new CVEs have been assigned.

1 INTRODUCTION

Fuzz testing or fuzzing is a popular technique for finding security
vulnerabilities in software systems [7]. At a high level, it involves
feeding generated inputs into an application with the goal of finding
crashes. Fuzzing can involve a blackbox approach, where inputs
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are generated in a purely random fashion, or it can be guided by
knowledge of the program’s internal structure (white-box). The
most popular fuzzers are grey-box, where the search is guided by
run-time observations of program behaviour, collected, as tests
execute, for artefacts instrumented at compile time. Thanks to the
ease of its deployment and use, grey-box fuzzing is the state-of-the-
practice for automatically discovering bugs in sequential programs.

A common approach to finding bugs in distributed systems
in practice is stress-testing, in which the system is subjected to
faults (e.g., network partitions, node crashes) and its behaviour is
checked against a property-based specification. This approach is
implemented by tools like JEPSEN [25], a testing framework that is
well-known for its effectiveness in finding consistency violations
in distributed databases [33]. An alternative to stress-testing is
systematic testing, commonly known as software model checking.
In this approach, the system under test is placed in a determinis-
tic event simulator and its possible schedules are systematically
explored [10, 13, 29, 31, 60]. The simulator exercises different in-
terleavings of system events by reordering messages and injecting
node and network failures. Systematic testing is well suited to
finding “deep” bugs, which require complex event interleavings to
manifest, but is relatively heavyweight, as it requires integration
with the system under test either in the form of a manually-written
pervasive test harness or a system-level interposition layer. While
not as effective at finding deep bugs, stress-testing is widely used
due to its low cost of adoption and good effort-payout ratio.

Problem statement. We make the following observation: in terms
of the ease-of-use/effectiveness trade-off, black-box fuzzing of se-
quential programs is similar to stress-testing of distributed systems,
while white-box fuzzing corresponds to software model checking.
However, unlike in the sequential case, there is no grey-box fuzzing
approach for distributed systems. Our goal is to explore this oppor-
tunity by extending JEPSEN with the ability to perform observations
at runtime about the behaviour of the system and to adapt its test-
ing strategy based on feedback derived from those observations. In
doing so, we are not aiming to match the thoroughness of system-
atic testing, but to provide a more effective and principled way to
conduct stress-testing while maintaining its ease of use.

Challenges. In the last decade, developing a grey-box fuzzer for
sequential programs has become more streamlined, due to fuzzers
like AFL [59]. In short, AFL works by generating and mutating
inputs to a program being tested, aiming to trigger crashes or other
unexpected behavior. It uses a feedback-driven approach, keeping
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track of inputs that cause the program to take new code paths and
prioritizing mutations that are likely to explore these paths fur-
ther. Attempting to adapt the greybox approach to JEPSEN-style
distributed system testing leads us to three questions:

Q1 What is the space of inputs to a distributed system that could
be explored adaptively?

Q2 What observations are relevant for a distributed system and
how should they be represented?

Q3 How can one obtain feedback from the observations?

Question Q1 is already answered by JEPSEN: the role of “inputs” for
distributed systems is played by schedules, that can be manipulated
by injecting faults. Even though JEPSEN can control the fault in-
jection, in the absence of a good feedback function, it (a) requires
human-written generators to explore the domain of schedules if
something more than random fault injection is required [2] and (b)
repeatedly explores equivalent schedules.

To answer Q2 we recall perhaps the most popular graphical
formalism to represent interactions between nodes in distributed
systems: so-called Lamport diagrams (aka timelines), i.e., graphs
showing relative positions of system events as well as causality
relations between them [15, 26, 35]. Such diagrams have been used
in the past for visualizing executions in distributed systems [6]. Our
discovery is that they also can be used as distributed analogues of
“new code paths” from sequential grey-box fuzzing. In other words,
being able to observe and record new shapes of Lamport diagrams
is an insight that brings AFL-style fuzzing to a distributed world.

To make our approach practical, we also need to address Q3.
The problem with using observed Lamport diagrams to construct
a feedback function is that in practice no two different runs of a
distributed system will produce the same timeline. That is, such
new observations will always produce new feedback, even though
in practice many runs are going to be equivalent for the sake of
testing purposes—something we need to take into account.! As a
solution, we present a methodology for extracting feedback from
dynamically observed timelines by abstracting them into concise
happens-before summaries, which provide the desired trade-off be-
tween the feedback function’s precision and effectiveness.

Contributions. The solutions to Q1-Q3 provide a versatile concep-
tual framework for grey-box fuzzing of distributed systems. Build-
ing on these insights, we present our main practical innovation:
MALLORY, the first grey-box fuzzer for distributed systems. Unlike
the black-box testing approach of JEPSEN that requires human-
written schedule generators, MALLORY reactively learns them by
(a) observing the behaviour of the system under test as it executes
and (b) rewarding actions that uncover new behaviour. Below, we
detail the design, implementation, and evaluation of MALLORY.

o Timeline-driven testing, a novel fuzzing architecture suited for
distributed systems: It is based on dynamically constructing Lam-
port diagrams (timelines) of the system under test as it runs, and
use them as observations to guide the introduction of faults into
the execution.

o Timeline abstraction, an extensible and intuitive method, inspired
by vector clocks, for concisely representing and reasoning about

! A sequential analogue of concrete distributed timelines would be a trace of all memory
operations—too precise to recognise equivalent executions.
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145 int membershipRollback(struct raft *r){

146 e

158 // Fetch the last committed configuration entry
159 entry = logGet(&r->log, r->config_index);

160 assert(entry != NULL);

176 }

986 static int deleteConflictingEntries(){

987 e

1007 // Possibly discard uncommitted config changes
1008 if (uncommitted_config_index >= entry_index){
1009 rv = membershipRollback(r);

1010 X

1042 }

Figure 1: Simplified Dqlite code for membership rollback.

timelines: It is used to define the feedback function of grey-box
fuzzing based on Lamport timelines.

o End-to-end implementation of MALLORY, a fuzzing framework for
distributed systems: MALLORY extends the widely used JEPSEN
framework—MALLORY can be seen as an adaptive generator of
schedules for JEPSEN tests.

o Comprehensive evaluation of MALLORY on several widely-used in-
dustrial distributed system implementations. In our experiments,
MALLORY covers 54.27% more distinct states within 24 hours and
achieves the same state coverage about 2.24x faster than JEPSEN.
In terms of reproducing existing bugs, MALLORY speeds up the
bug finding by 1.87X and finds 5 more bugs compared to JEPSEN.
Moreover, in rigorously-tested distributed systems, MALLORY
found 22 previously unknown bugs, including 10 new security
vulnerabilities and 6 newly assigned CVEs. Out of these 22 bugs,
18 bugs have been confirmed by their respective developers. In
our experiments, JEPSEN could only detect 4 of these bugs.

2 OVERVIEW

In this section, we illustrate the workflow of our technique for
adaptively detecting anomalies in distributed systems.

2.1 Bugs in Distributed Systems

As a motivating example, let us consider a known bug in the
implementation of the Raft consensus protocol [38] used by Dqlite, a
widely-used distributed version of SQLite developed by Canonical.?

The purpose of using a consensus protocol in a distributed system
is to ensure the system maintains a consistent and reliable state
even in the presence of faults. In Raft, one of the most widely used
consensus protocols, a single leader accepts client requests and
replicates them to all nodes that persist them as log entries. Con-
flicting entries in a Raft cluster can appear when different nodes
receive different log entries during a network partition. Over time,
the number of replicated entries might grow very large, which, in
turn, might cause issues if certain nodes need to be brought up-to-
date after having experienced a temporary downtime. To address
this issue, Raft periodically takes a snapshot of the current system
state, discarding old log entries whose outcome is reflected in the
snapshot. Additionally, nodes can be removed from the cluster or
join it, thus changing the configuration of the system as it runs.

2 Available at https://dqlite.io; 3.4k stars on GitHub at the time of writing.


https://dqlite.io

Greybox Fuzzing of Distributed Systems

S, S, S, S, S:  Schedule
@ Configuration - Fault,:
Remove S,
] Fault,:
; ; Network Partition
@ Configuration
Change PRUCTEL LS
I Fault,:
@ Snapshot Crash S;
Fault,:

Partition Stop

« -
@Conflicting ®Entry
Entry Deletion ®Entry Replica

@Membership Replica

Rollback

Figure 2: A timeline of the Dqlite membership rollback bug,.
Gray vertical rectangles correspond to node downtimes.

When a configuration change is initiated, the current leader repli-
cates a configuration change entry to all the nodes in the cluster.
A new configuration becomes permanent once it has been agreed
upon and committed by a majority of the nodes, yet a server starts
using it as soon as the configuration entry is added to its log, even
before it is committed [38, §6]—a fact that is important for our ex-
ample. If there is a failure during the process of agreeing on a new
configuration, such as a network partition, the new configuration
may not be fully replicated to the majority, in which case the leader
node will attempt to perform a membership rollback by adopting
the last committed configuration entry from its log.

The bug in question occurs during a membership rollback hap-
pening immediately after performing a snapshot operation, lead-
ing to a failure to restore the last committed configuration [21].
Fig. 1 shows the affected fragment of the actual implementation
in Dqlite, which deals with removing conflicting entries during
node recovery. In case there is an uncommitted configuration en-
try among the conflicting entries to remove, a Dqlite server has
to first roll back to the previously committed membership config-
uration via membershipRollback (line 1009). When this happens
after a snapshot operation, which has removed the last committed
configuration entry, the assertion on line 160 gets violated.

To show how this rather subtle bug can be triggered in a real-
world environment, consider a run of a Dglite cluster depicted
in Fig. 2. The initial cluster comprises five servers S;—Ss, with Sy
assumed to be a leader. Server S4 requests (to the leader S7) to
be removed from the cluster. Upon receiving this request, leader
S; appends the configuration change entry into its log (@) and
attempts to replicate it to all other members, but only succeeds
to do so for Sy (@), failing to reach Ss, S4, and Ss due to a sudden
partition in the network. At the same time, the number of log entries
at the server Sy reaches a threshold value, prompting it to take a
snapshot (@), while already using the latest configuration (which
has not been agreed upon by the majority), thus, discarding the old
configuration entry from the snapshot. To make things worse, S;
crashes at the same time. Although the network of S3, S4, and S5
recovers soon after, the cluster has already lost its leader. At some
point, a new leader election is initiated (details omitted), with S3
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Algorithm 1: Fuzzing with JEPSEN and MALLORY

Input: Py: system under test (SUT)

Input: Nem, Faults: a nemesis and the faults it can enact
Input: Oracles: a set of test oracles for bug detection
Input: S: number of steps in each schedule

Input: T: total time budget for testing

Output: Bugs: a set of bugs detected

-

Py « instrumentSystem (Po)

2 Policy « { initState , Faults}

3 repeat

4 curState < initState

5 repeat

6 fault « Policy.getNextFault ( curState )

7 Nem.enactFault(fault)

8 events < observeSystemUnderTest (Py)

9 timeline < constructTimeline (events)

10 nextState « abstractTimeline (timeline)

11 rwd « calculateReward (curState, fault, nextState)
12 Policy « learn (Policy, curState, fault, rwd)
13 curState «— nextState
14 until maximum steps S reached
15 resetSystemUnderTest (Py)

16 until time budget T exhausts

-

7 Bugs « Oracles.identifyBugs (events)

eventually becoming the leader and attempting to synchronise logs
across the nodes (®). Prompted to do so, Sz detects a conflicting
entry in its log (i.e., the uncommitted configuration change (®))
and deletes it (®). It then attempts to retrieve the last committed
configuration entry to roll back the membership (®), which is long
gone due to the prior snapshotting (@), triggering the assertion
violation at line 160 of Fig. 1.

2.2 Fuzzing Distributed Systems via JEPSEN

As demonstrated by the example, identifying a bug in a distributed
system in some cases boils down to constructing the right sequence
of faults, such as network partitions and node removals, resulting in
an execution that leads to an inconsistent state and, subsequently, to
the violation of a code-level assertion or of an externally observable
notion of consistency (e.g., linearisability [20]). The state-of-the-
art fuzzing tool JEPSEN provides a means to randomly generate
sequences of faults with the goal of discovering such bugs.

Algorithm 1 provides a high-level overview of the workings
of JEPSEN (let us ignore the grayed fragments for now). JEPSEN
requires a lightweight harness for the system under test to define
how to start and stop it, to enact faults, introduce client requests,
and collect logs (line 1). For brevity, Algorithm 1 does not show the
set-up of the SUT at the beginning of each test or the introduction of
client requests, which the SUT is constantly subjected to by client
processes. Importantly, JEPSEN allows the user to define testing
policies (aka “generators”) responsible for introducing specific types
of external inputs or faults (line 2). The main fuzzing loop of JEPSEN
is shown in lines 3-16 of the algorithm.



Conference’17, July 2017, Washington, DC, USA

During each run of the outer loop, the framework generates a
system-specific external input or fault (line 6) via a policy, and enacts
it using a nemesis—a special process, not bound to any particular
node, capable of introducing faults. Such inputs may, for example,
be the decision to remove a node from the system, as, e.g., is done
by node Sy in our running example. As the system is executing, the
framework records its observations (line 8) for future analysis to
detect the presence of bugs or specification violations (line 17). This
process continues until the time budget T is exhausted (line 16). The
test run is segmented into schedules of S steps each, after which
the system is reset (line 15).

Getting back to our example, we can see that the membership
rollback bug can be exposed by the scheduled sequence of inputs/-
faults that first initiates the removal of S4 from the cluster and then
creates a network partition (#{S1, Sz}, #{S3, S4, S5}), followed by
node a crash of S;. Randomly generating this particular sequence of
faults via JEPSEN, while possible, is somewhat unlikely. The reason
is: before coming across this schedule, JEPSEN may try many oth-
ers, each making very little difference to the system’s observable
behaviour, e.g., by randomly crashing a number of nodes. In our
experiments, JEPSEN failed to detect this membership rollback bug
(i.e, Dqlite-323 in Sec. 4.3) within 24 hours.

However, with just a little insight into the system, one can con-
jecture that enacting a partition right after a configuration change
leads to novel system states more often than, e.g., performing an-
other configuration change, thus, increasing the likelihood of wit-
nessing a new, potentially bug-exposing, behaviour. Our goal is
to retrofit JEPSEN so it could derive these insights at run time and
adapt the policies accordingly.

2.3 Learning Fault Schedules from Observations

The high-level idea behind MALLORY, our fuzzing framework, is to
enhance JEpPSEN with the ability to learn what kinds of faults and
fault sequences are most likely going to result in previously unseen
system behaviours. To achieve that, we augment the baseline logic
of Algorithm 1 by incorporating the grayed components that keep
track of the observations made during the system runs. The first
change is to add instrumentation to the system under test (line 1)
to record significant events (e.g., taking snapshots or performing
membership rollbacks in Fig. 2) during the execution, additional
to those JEPSEN already records, i.e., client requests, and responses.
More interestingly, the fault injection policy is now determined not
just by the kinds of faults and inputs that can be enacted, but by the
latest abstract state of the system, whose nature will be explained
in a bit and that is taken to be some default initState at the start of
the fuzzing campaign (line 2).

The main addition consists of lines 9-13 of the algorithm. Now,
while running the system, the fuzzer collects sequences of events
recorded by the instrumented nodes, as well as message-passing
interactions between them; the exact nature of events and how
they are collected will be described in Sec. 3.1. The information
about the recorded events and their relative ordering is then used to
construct a (Lamport-style) timeline and subsequently summarised
to obtain the new abstract state nextState (lines 9-10)—the design
of these two procedures, detailed in Sec. 3.2, is the central technical
contribution of our work. The newly summarised abstract state is
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used to calculate the reward rwd by estimating how dissimilar it is
compared to abstract states observed in the past (line 11). Finally,
the reward is used to dynamically update the policy, after which the
loop iteration repeats with the updated abstract state (lines 12-13).

Postponing until Sec. 3 the technicalities of computing abstract
states, calculating rewards, and updating the policy, let us discuss
how the introduced changes might increase the likelihood of dis-
covering the bug-inducing system behaviour from Fig. 2. We now
pay attention to the six kinds of events (D-®) that can be recorded
in the system, as well as their relative happens-before ordering is
computed across multiple nodes. Consider a fault injection policy
that introduces a sequence of node removals (such as Fault;). After
triggering several configuration changes (i.e., event @), such a pol-
icy will not introduce many new behaviours in a long run, which
will prompt our adaptive fuzzer to prefer other faults, e.g., network
partitions. By iterating this process, observing new behaviours (i.e.,
different event sequences) in the form of novel abstract states and
de-prioritising policies that have not generated new behaviours,
the fuzzer will eventually discover a sequence of faults leading to
the membership rollback bug.

It is important to note that the fact that a particular policy has
not produced a new abstract state (i.e., a new observable behaviour)
in a particular run does not necessarily mean that it needs to be
discarded for good. Due to the nature of the applications under test,
MALLORY, similarly to JEPSEN, does not provide a fully deterministic
way to inject faults, hence some behaviours might depend on the
absolute timing of faults. This is taken into account by MALLORY’s
learning (cf. Sec. 3.3), which leaves a possibility for such a policy to
be picked again in the future, albeit, with a lower probability.

In our experiments, due to MALLORY’s adaptive learning, the
membership rollback bug was discovered in 8.68 hours (JEPSEN
failed to discover it in 24 hours). In the following, we give a detailed
description of MALLORY’s design (Sec. 3) and provide thorough
empirical evidence of its effectiveness and efficiency for discovering
non-trivial bugs in distributed systems (Sec. 4).

3 THE MALLORY FRAMEWORK

At its core, MALLORY implements an adaptive observe-orient-decide-
act (OODA) loop:

e Observe—observe each node’s internal behaviour and intercept
all network communication between nodes;

o Orient—construct a global Lamport timeline of the system’s be-
haviour to obtain a bird’s eye view of the execution, and abstract
the timeline into a manageable representation, called a happens-
before summary, used to understand the current state of the
system and to determine the effectiveness of previous actions;

e Decide—choose a fault to inject based on the current observed
summary and the past execution history;

e Act—inject the fault and repeat the loop.

Unlike white-box fuzzers, which rely on encapsulating the sys-
tem under test in an event simulator [13, 40], MALLORY operates
on the actual system in its normal distributed environment—a firm
requirement to minimise the friction (i.e., adoption effort). In partic-
ular, MALLORY does not have the luxury of being able to “pause” the
system and observe its state before deciding what actions to take, as
it operates in real-time, in a reactive manner. This means MALLORY
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Figure 3: The central observe-orient-decide-act loop in MALLORY. A centralised mediator collects events from observers
distributed at the nodes in the SUT, and drives the test execution. Faults decided by MALLORY are enacted by JEPSEN.

itself is a distributed system, which complicates its implementation
slightly. Nonetheless, its architecture is designed to hide this as
much as possible from users, as will become apparent.

To explain MALLORY’s design, we will walk through an entire
observe-orient-decide-act loop, step by step, gradually introducing
its architectural components.

3.1 Observing the System Under Test

MALLORY’s first task is to observe the system under test (SUT).
Broadly, there are three types of observations that we can make:
(1) network observations, which capture communication between
nodes in the SUT (e.g., a packet was sent from node A to node B and
received by node B), (2) external observations, which capture the
input-output behaviour of the system (e.g., requests and responses
for a database), and (3) internal observations, which capture a node’s
internal behaviour (e.g., a function was executed, a conditional
branch was taken, an error message was logged). In the following,
we use “observation” and “event” interchangeably.

Events happen on a particular node at a particular time. How-
ever, as is well known, in a distributed system there is no globally
shared notion of time. We postpone the explanation of how MAL-
LORY constructs a global timeline without assuming precise clock
synchronisation and without tagging messages with vector clocks.
For now, it suffices to say that each event carries a node identifier
and a monotonic timestamp returned by the node’s system clock.

Below, we outline how MALLORY observes the defined above
types of events capturing the patterns of communication (Sec. 3.1.1),
externally observable input/output (Sec. 3.1.2), and internal be-
haviour of the nodes (Sec. 3.1.3).

3.1.1 Packet Interception. To keep our framework lightweight
and require as little modification of the system under test as pos-
sible, we capture TCP and UDP packets at the IP network layer
using Linux’s firewall infrastructure, rather than require users to
instrument the application layer to identify protocol-level messages.

By necessity, MALLORY’s architecture is distributed, matching
the structure of the SUT. As shown in Fig. 3, MALLORY consists of a
number of observer processes, one at each node, that observe local
events (bottom half of the figure), and a central mediator process

that collates information from all observers and coordinates the
execution of the test (large blue rectangle in the top half). At every
node, the observer, which the JEPSEN test harness starts before
the system under test, installs a NETFILTER firewall queue that
intercepts all IP packets sent to or from the node. During the test,
the kernel copies packets to the observer process in user space,
where each packet is assigned a monotonic timestamp, recorded,
and then emitted unchanged.
Mediator interception. Observers collect packet events in batches
and forward those to the mediator periodically, by default every
100ms. Rather than include the entire packet in the batch, which
would entail trebling network traffic, observers only record and
send to the mediator a 64-bit packet identifier obtained from the
source and destination IP addresses and ports and from the IP
and UDP or TCP headers’ identifiers, respectively. Yet we do want
the mediator to have access to the packet contents: for instance,
the content of messages might determine what is the best fault to
introduce. To achieve this, we set up the test environment that the
SUT executes in such that all packets pass through the node running
the mediator. Concretely, we place each node on its own separate
(virtual) Ethernet LAN, with the mediator acting as the gateway for
all the LANs. The MALLORY mediator acts as a man-in-the-middle
for all packets in the SUT. It can then reconstruct the identifier
for each packet, and cross-reference it with the batches received
from the sending and receiving nodes’ observers to determine the
respective timestamps. The mediator, unlike the observer, which is
passive, is active and implements a full user-space firewall using
NETFILTER. It can delay and drop packets when instructed to do so
by the decide step of the OODA loop.

Using this infrastructure, the mediator builds up a complete
picture of the system under test’s communication.

3.1.2 Requests and Responses. The observations about input/out-
put of nodes are made at the application layer.

We built MALLORY on top of JEPSEN, and reuse JEPSEN’s infras-
tructure to define the test harness that: (a) sets up and starts the SUT,
(b) defines and executes a workload (a sequence of client requests
to the SUT), (c) enacts faults (e.g., crashing a node), and (d) checks
the validity of the SUT’s response to the workload. JEPSEN already
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captures requests and responses for validity checking (e.g., for lin-
earisability), and we hook into this existing code, attach monotonic
timestamps to events, and relay them to the mediator reactively.

3.1.3 Code Instrumentation. The final kind of observation we
make is at the code level. We want MALLORY to be able to peek
into the internal workings of the SUT, beyond what is observable
to clients of the system or to eavesdroppers on the network. For
this, we reuse the compile-time instrumentation infrastructure used
by greybox fuzzers (e.g., AFL) for sequential programs. Like those
fuzzers, MALLORY adds instrumentation code to the SUT to capture
and expose runtime information about the program’s execution.
The key question is: what about the execution should we capture?

In our early experiments, we used the notion of edge coverage,
the type of instrumentation that has become standard for fuzzing
sequential programs due to its empirically-observed effectiveness.
It maintains a global bitmap of code edges, and increments an
approximate counter for each edge that is traversed during program
execution. At the end of the execution, the bitmap serves as a
summary of “what the program did,” and is used by the fuzzer to
assign energy and mutate its input during subsequent runs. This
is a great metric for certain kinds of programs, e.g., command-line
utilities and file-parsing libraries, but—as we quickly discovered—
not particularly meaningful for distributed systems. The goal in
fuzzing sequential programs is to generate inputs that go “deep”
into a program and explore all “cases” (i.e., conditional branches).
For such programs, the thoroughness of exploration is naturally
defined in terms of code coverage. But this is not the case at all for
distributed systems. Distributed systems tend to be implemented as
reactive event loops and run almost the same code for every request,
with minor variations. Code coverage metrics tend to saturate very
quickly when testing such systems.

A natural behavioural metric for distributed systems, which we
came to adopt, is that of the event trace. Executions in a distributed
system are distinguished not so much by which events happen,
but by the order in which they happen. Moreover, as has been
empirically observed, what tends to uncover bugs are specific sub-
sequences of events, e.g., A before B before C, with potentially many
events between them [57]. The disadvantage of event traces com-
pared to code coverage is that the former can become very large and
expensive to store and operate on, especially if every basic block is
instrumented. To alleviate this issue, for now we require from the
user a small amount of manual annotation of the SUT’s code, in the
form of //INSTRUMENT FUNC and //INSTRUMENT BLOCK comments,
to indicate which basic blocks and functions are “interesting” and
should be tracked by MALLORY.

Our instrumentation creates a POSIX shared memory object
accessible by the observer process, and stores in it a fixed-size
global array of events along with an atomic index. We implement a
LLVM pass that assigns a unique ID to every annotated basic block
and function in the SUT, and inserts the hooking code at the start
of the block or function. During program execution, this code gets
a monotonic timestamp and records the event in the global array at
a fresh position. The observer process periodically reads the shared
memory object, copies the trace, and resets the counter; it also
includes the trace in the periodic batch it sends to the mediator.
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3.2 Making Sense of Observations

For the second phase of the loop, MALLORY needs to make sense
of the events it received from observers. The goal of this phase is
to transform the “raw” event data into a form more amenable to
analysis and decision-making.

It is at this stage that our key conceptual contributions of timeline-
driven testing and timeline abstraction come into play. At the core
of MaLLorY’s OODA loop lie its view of the world, a dynamically
constructed Lamport timeline of events in the SUT, and its model
of the world, a user-defined abstraction of the timeline. MALLORY
first builds a birds-eye view of the SUT’s execution by constructing
a global timeline, then makes sense of the timeline by abstracting
it into a summary consisting of its “essential” parts, which is used
to judge the effectiveness of previous actions and to decide which
faults to introduce next.

3.2.1 Building the Timeline. As the system is executing, the MAL-
LoRY mediator receives batches of events from all the observers and
adds them into a single global timeline. Every event is associated
with a particular node in the SUT and has an attached monotonic
timestamp from that node’s system clock. However, events do not
have causal timestamps (e.g., vector clocks) that encode the causal
relationship between events at different nodes. In other words, the
mediator at this stage has a timeline with events, but no causal
arrows between events on different nodes. It must use its complete
knowledge of the system’s communication to reconstruct the causal
ordering of observed events.

Importantly, the timeline that is passed on to the next stage to
be abstracted must be prefix-closed, in the sense that if an event e is
included, all its causal predecessors must also be included. Due to
the distributed nature of the system, there are some complications
in creating prefix-closed timelines: (a) batches of events from a
single observer might arrive out of order and (b) receipt events may
arrive before their respective send events (in other words, the target
of a causal arrow may arrive before the source). The first issue is
straightforward to solve: give a sequence number to each batch,
and have the mediator ensure batches are added to the timeline in
sequential order. This is sufficient to guarantee that each node’s
local timeline is prefix-closed. The second issue is more challenging
due to the recursive nature of prefix-closedness across nodes. Recall
that the mediator now has a timeline with events, but no causal
arrows. The question is: how can we know that we have received all
the causal predecessors of a given event, i.e., that an event belongs
to the prefix-closed portion of the timeline?

There are multiple ways to solve this problem. The approach we
choose exploits a well-known property of causality: real-time order
is an over-approximation of causal order, i.e., if event B happens in
real-time after event A, then B cannot causally influence A. In other
words, all events A that causally influence an event B must be before
B in real-time order. This means that we only need to look for an
event’s causal predecessors in the timeline up to the point where
the event’s real-time timestamp is first exceeded. The issue is that
(c) events are tagged with monotonic, not real-time timestamps,
and (d) nodes in any case do not have synchronised real-time clocks.
We address (c) by requiring each observer to submit upon start-up
both a monotonic timestamp and a real-time timestamp obtained at
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Algorithm 2: Build prefix-closed Lamport timeline

Input: Map from node IDs to ordered sets of events
Output: Prefix-closed causal timeline as a graph
(prefixRanges, extensionRanges) « readyRanges()

-

2 links « trackLinkSources(extensionRanges)

3 rw « map(first, prefixRanges) /* resumeWith */
4 In « map(last, prefixRanges) /* lastNeeded */
5 while 3n. rw[n] # In[n] do
6 for n € nodes do
7
8

while rw[n] # In[n] do
range « rw(n] .. In[n]
9 for ev € range do
10 if ev is the target of src € links then
1 attachLinkTarget(ev, links)
12 In[node(src) | «—max(src, In[node(src)])
13 rw[n] « ev

14 Add all events and links up to In[n] to the graph.

roughly the same time. This lets us approximately convert mono-
tonic timestamps at a single node into real-time timestamps for that
node. The issue (d) of clocks not being synchronised across nodes
still remains, however. The solution: we introduce a bound on the
maximum clock skew between nodes (we set it to a conservative
100ms), and use this to limit “how far in the future” we look for
causal predecessors of an event e on other nodes’ timelines, relative
to e’s real-time timestamp.

Algorithm 2 shows our timeline construction procedure. It takes
as input a map from node IDs to the ordered set of events at that
node, and constructs a prefix-closed causal timeline (aka a consistent
cut [35]) in the form of a graph—events are nodes and causal arrows
are edges. The algorithm proceeds in four stages. First, on line 1, we
identify for each node the range of events that have not yet been
processed and whose causal predecessors must all exist in the input
(prefixRanges). This is obtained by subtracting the maximum
clock skew (cs) from the last real-time timestamp (¢s) up to which
all nodes have submitted events. We are guaranteed to have all the
causal predecessors of events in this range—these will be found in
the range up to ts+cs on other nodes (extensionRanges). Second,
on line 2, we traverse the extension ranges, identify all events
that are the source of inter-node causal arrows (i.e., packet sends,
which, recall, have 64-bit identifiers), and keep track of these causal
arrows, identified by the source’s unique ID (Links). The third stage
(lines 5-13) is a fixpoint computation that keeps track of where
the prefix-closed portion of the timeline ends (lastNeeded) for
each node and “fills up” the timeline by traversing it (lines 8-9) and
“requiring” that causal predecessors of encountered events also be
in the timeline (lines 11-12). The fixpoint computation terminates
(line 5) when there are no gaps for any nodes, i.e., the timeline is
prefix-closed up to In[n] for all nodes n. The fourth and final stage
(line 14) is to construct a graph from the prefix-closed portion of the
timeline and pass it to the abstraction phase. (The graph is prefix-
closed, i.e., all receive have a matching send, but not necessarily
suffix-closed, i.e., there may be sends with no matching receive. The
causal arrows for these point to a special node at infinity, and will
point to the correct receive when it is encountered later.)
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3.2.2 Timeline Abstraction. We now have a Lamport timeline
describing the system’s behaviour, obtained in almost real-time,
and want to use it to drive our testing campaign. More concretely,
we want our decisions to adapt the system’s behaviour and drive
the execution towards new behaviours. But what counts as novel
behaviours? A naive approach is to use the timeline itself as feed-
back for our decision: we want to see timelines different from what
we have seen before. This does not work because the timeline is
a low-level representation of the system’s behaviour; all observed
timelines are unique, even discounting event timestamps and packet
contents. Clearly, to be able to operate effectively with timelines,
we need in some fashion to abstract them into “what really matters”.
Eliminating timestamps and packets is a form of abstraction, but it
is not enough: we need something a bit more clever.

Importantly, we do not want to bake into the tool any particular
notion of “what really matters”. (We do provide sensible defaults.)
Instead, we want to allow users of MALLORY to specify what is
important for their particular systems and testing needs. More-
over, we want an intuitive interface for specifying this, one that
any distributed system engineer can understand and use. To this
end, we introduce our novel notion of timeline abstraction, inspired
by vector clocks. Our insight is that the principle used to define
causal timestamps, namely that of accumulating causal informa-
tion via update (aka event or copy) and merge (aka join) opera-
tions [15, 35], can be generalised to arbitrary abstractions of causal
diagrams. The interface for defining such abstractions is shown in
Fig. 4. Intuitively, a timeline abstraction is attached to an event and
represents or abstracts the whole causal history up to (and includ-
ing) that event. For example, a vector clock attached to an event
represents the event’s causal “position” in the timeline, allowing
for causal comparisons between different events. In a sense, the
vector clock—maintained by iterating over the timeline’s structure
(update for same-node events) and (merge for inter-node causal
dependencies)—compresses the whole timeline up to that event
into a single value that captures “what is essential” for the purpose
of determining causal relations between events. But what if our
goal is different, e.g., to summarise what happened in a timeline in
order to inform our testing? Fig. 5 shows a simplified version of
the default abstraction used by MALLORY. Instead of accumulating
a causal timestamp like vector clocks do, an EventHistory accu-
mulates for every node in the timeline a set of happens-before pairs
of event types that occurred locally at that node. To get an intu-
ition for this, Fig. 3 shows in its centre portion a timeline with its
associated EventHistory.? The abstraction is obtained by travers-
ing the timeline’s events in causal order (starting from an empty
EventHistory), and calling update for events on the same node
and merge for inter-node causal dependencies. The result is a sum-
mary of the timeline’s events that captures some of the history’s
essential aspects and which we use in the next stage to decide which
faults to introduce.

3More precisely, the shown EventHistory is associated with an artificial event that
is causally after every node’s last event.
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1 pub trait TimelineAbstraction {

2 fn update(&mut self, ev: &Event);

3 fn merge(&mut self, this_ev: &Event,

4 other: &Self, other_ev: &Event);
5}

Figure 4: Rust interface for defining timeline abstractions.
Abstractions are built incrementally by iterating over the
causal structure, storing “what matters” along the way.

1 pub struct EventHistory {

2 events: Map<Nodeld, Set<EvKind>>,

3 pairs: Map<Nodeld, Set<(EvKind, EvKind)>>,

+ }

5 impl TimelineAbstraction for EventHistory {
6 fn update(&mut self, ev: &Event) {

7 self.events[ev.node] .insert(ev.kind);

8 for ev_a in self.events {

9 let pair = (ev_a, ev.kind);

10 self.pairs[ev.node] .insert(pair);

11 ¥

12 }

13 fn merge(&mut self, other: &Self, ..) {
14 /* For every NodeID, take set union. */
15 }

16 }

Figure 5: A timeline abstraction that tracks happens-before
pairs of event types on a per-node basis, e.g., a Comnit hap-
pened before a Rollback at the same node.

3.3 Making Decisions and Capturing States

Equipped with a way to understand the behaviour of the SUT, in the
form of timeline abstractions, MALLORY must decide which actions
to take in response to what it observes.

For fuzzing sequential programs, mutation-based power sched-
uling has become the standard approach to generate novel inputs
for the program under test based on observations: test inputs that
exercise new behaviours are stored and mutated many times to
obtain new inputs. However, this technique is ill-suited for testing
distributed or reactive systems. The issue is that in the mutation-
based paradigm, behavioural feedback is given for the whole input
to the system under test after execution ends. This is reasonable for
sequential programs, but not for reactive programs—the (temporal
and causal) connection between fault introduced and behaviour
induced is lost. Indeed, we want our fuzzer itself to be reactive and
give behavioural feedback after every action taken rather than only
at the end of a long schedule. This complements JEPSEN’s genera-
tive fuzzing approach by giving behavioural feedback after every
generated fault and makes MALLORY adapt in real-time to the SUT.

Our concept of timeline-driven testing is key to how MALLORY
adapts to the SUT. By default, MALLORY uses Q-learning [49, 50], a
standard reinforcement learning approach, to decide which faults
to introduce. Q-learning is an algorithm for an agent to learn a state-
action policy, i.e., a pairing between the observed state of the “world”
(in our case, the SUT) and the “best” action to take (maximising
expected reward over the agent’s lifetime; in our case, the action that
results, directly or indirectly, in observing new states). Concretely,
MALLORY segments its interactions with the SUT into schedules (by
default, 30 seconds long, followed by a 5-second period in which
the system is returned to a stable state) divided into windows (of 2.5
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seconds each). The Q-learning agent takes a hash of the previous
window’s timeline abstraction as its current state, decides which
action to take based on the policy, and updates the policy based on
the observed timeline abstraction for the current window. Since
our goal is to maximise the number of distinct states observed, we
set our reward function to give a constant negative reward to states
that have been observed in the past, thus incentivising MALLORY to
drive the SUT towards novel behaviours.

One challenge in applying Q-learning to our setting is the sen-
sitivity and precision of our timeline abstractions, which (after
hashing) we want to serve as abstract states in the learning process.
To improve the speed at which MALLORY learns state-action policies,
we want states that only differ in negligible ways to be considered
the same. Hashing with a regular hash function is not effective,
as it is too sensitive to small differences in the timeline abstrac-
tion. These variations exist even as the system is running without
any injected faults and constant load, due to the non-deterministic
nature of distributed systems. To address this issue, we decided
to adopt MinHash, a locality-sensitive hash function that maps
similar input values to similar hash values. Specifically in our case,
to decide whether an observed timeline abstraction maps to a new
distinct state, we hash it into a signature and compare this to the
signatures of previously-seen states. We consider a state distinct
when the similarity is below a similarity threshold ¢. To choose
&, we conduct a calibration stage before fuzzing by running the
SUT without any faults and under constant load and observing the
timeline abstractions thus obtained. The convention in previous
fuzzing works, which we also adopt, is to choose an ¢ value that
makes 90% of such “steady” states coincide [34, 37].

4 EVALUATION

We implement MALLORY on top of JEPSEN-0.2.7, to test distributed
system implementations written in C, C++, and Rust. To enable
code-level instrumentation, we created a LLVM compiler pass (sim-
ilar to that used by AFL [59]) to add into the compiled binary our
event instrumentation, as described in Sec. 3.1.3. The code imple-
menting this pass measures roughly 1,000 lines of C/C++ code. The
observers at each node that collect events and the mediator which
collates events from all observers, intercepts packets, constructs
and abstracts timelines, and learns the policy required to guide fault
injection, are implemented in Rust. The code for these components
measures roughly 9,000 lines of Rust code. To enact faults, we im-
plemented a linker in JEPSEN that asks MALLORY for the next fault
to execute. This linker consists of 140 lines of Clojure code.

4.1 Evaluation Setup

To evaluate the effectiveness and efficiency of MALLORY in explor-
ing distinct program behaviours and finding bugs in industrial dis-
tributed system implementations, we have designed experiments
to address the following questions:

RQ1 Coverage achieved by MALLORY. Can MALLORY cover more
distinct system states than JEPSEN?

RQ2 Efficiency of bug finding. Can MAaLLORY find bugs more
efficiently than JEPSEN?

RQ3 Discovering new bugs. Can MALLORY discover new bugs in
rigorously-tested distributed system implementations?
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4.1.1 Baseline tool. We selected JEPSEN as our baseline tool due to
its popularity in stress-testing distributed system implementations.
To our knowledge, JEPSEN is the only widely-used black-box fuzzer
in this domain. It has gained recognition for its user-friendliness
and has helped to uncover numerous bugs in real-world implemen-
tations of distributed systems. By building on top of JEPSEN, we have
developed MALLORY to enhance the effectiveness of fuzzing while
preserving JEPSEN’s ease of use. Another black-box fuzzer, called
Namazu [1], is less popular and can only test Go/Java programs.

As described in the introduction, white-box fuzzers such as
MoDisT [54] and FLYMC [31] require an extensive manually-written
test harness or heavy deterministic control at the system level, and
are used for systematic testing as opposed to stress-testing. Due to
their heavy-weight nature, they target a different use case compared
to MALLORY and are less practical to adopt in industry.

4.1.2 Subject programs. Tab. 1 presents the subject programs
included in our evaluation. It consists of six open-source distributed
system implementations written in C, C++, and Rust. We selected
these subjects because: (1) they are widely used in the industry,
(2) they can be instrumented by our LLVM pass, and (3) they have
undergone rigorous testing using JEPSEN either by contracting
JePSEN’s author* or by rolling their own JEPSEN test harness. Find-
ing new bugs in these systems would be a strong indication that
MALLORY performs better than JEPSEN.

4.1.3 Configuration parameters. To instrument code events, we
annotate “interesting” code locations based on the Raft and Paxos
TLA+ specifications.” We use keywords to match the events in
the specifications and implementations. This results in 103 to 157
events being instrumented for each subject. We adopt this heuristic
to instrument events in our evaluation. In principle, users of MAL-
LORY can instrument their own custom event types. To distinguish
between distinct states, we set the similarity threshold ¢ to 0.70.
To detect bugs, we adopt several test oracles: (1) AddressSanitizer
(i.e., ASan) for exposing memory issues, (2) log checker to detect
issues in application logs by scanning for keywords such as “fatal”,
“error” and “bug”, and (3) consistency checker ELLE [24] to check
consistency violations. We set up the same number of nodes as the
existing JEPSEN tests: 9 nodes for MongoDB and 5 nodes for the
other subjects under test. To ensure a fair comparison, we enabled
the same faults in MALLORY as those used in the original JEPSEN
tests (i.e., our tool does not have access to more fault types).

All experiments were conducted on Amazon Web Services using
the mé6a.4xlarge instance type. This instance type has 64 GB RAM
and 16 vCPUs running a 64-bit Ubuntu TLS 20.04 operating system.
Following community suggestions, we ran each tool for 24 hours
and repeated each experiment 10 times. To reduce statistical errors,
we report as results the average values obtained over the 10 runs.

4.2 Coverage Achieved by MaLLORY (RQ1)

For the first experiment, we monitor the number of distinct states
(see Sec. 3.3 for the definition of states) exercised by MALLORY and
JEPSEN over time, and compare their state coverage capabilities.
To observe states exercised by JEPSEN, we ran JEPSEN in the same
setup as MALLORY, but without controlling the fault injection. We

“Test reports are public at https://jepsen.io/analyses
SThe specifications are taken from https://github.com/tlaplus/Examples.
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Table 1: Detailed information about our subject programs.

Subject [Description Protocol [Lang. #LOC #Stars

Braft Baidu Raft implementation  Raft C++  31.6k 3.5k
Dqlite Distributed SQL DBMS Raft C 54.2k 3.4k
MongoDB|Distributed NoSQL DBMS Raft C++ 1121.6k 23.6k
Redis Distributed in-memory DBMS Raft C 211.4k 59.6k
ScyllaDB [Distributed NoSQL DBMS Raft/Paxos|C++ 1224k 9.8k

TiKV Distributed key-value DBMS Raft Rust  404.5k 13.0k

Table 2: Statistics of distinct state numbers achieved by MaL-
LORY compared to that achieved by JEPSEN.

Subject l State-impr Speed-up l Ay U

Braft 59.34% 228 | 1.00 <0.01
Dglite 76.14% 256X | 1.00 <0.01
MongoDB |  36.48% 157 | 1.00 <0.01
Redis 58.92% 206X | 1.00 <0.01
ScyllaDB 48.82% 1.88x | 1.00 <0.01
TiKV 45.93% 307 | 1.00 <0.01
AVG | 5427% 2.24% - -

collected the average number of distinct states achieved by MaL-
LORY and JEPSEN within 24 hours across 10 runs, and we present the
comparison in Fig. 6. As shown in this figure, MALLORY outperforms
JEPSEN by covering more distinct states in the same time budget,
thus exercising the SUT under more diverse scenarios. Initially, at
the start of each experiment, the number of distinct states achieved
by MALLORY is similar to that achieved by JEpsEN. This happens
because MALLORY does not have any knowledge about how to avoid
exploring redundant states. However, as MALLORY learns over time,
it performs considerably better than JEPSEN. We do not observe the
number of distinct states saturating with either tool, but MALLORY's
exploration rate of distinct states is higher than that of JEPSEN.
The state coverage statistics of MALLORY over JEPSEN are listed
in Tab. 2. The “State-impr” column shows the average improvement
of MALLORY in the number of distinct states at the end of 24 hours,
over 10 runs. Our results show that MALLORY covers an average of
54.27% more distinct states than JEPSEN on our test subjects, with
an improvement ranging from 36.48% to 76.14%. The “Speed-up”
column indicates the average speed-up of MALLORY compared to
JEPSEN in achieving the same number of observed states. On average,
MALLORY archives a 2.24x speed-up over JEPSEN. To mitigate the
effect of randomness, we measured the Vargha-Delaney (4;5) and
Wilcoxon rank-sum test (U) of MALLORY against JEPSEN. A1, is anon-
parametric measure of effect size that provides the probability that
random testing of MALLORY is better than random testing of JEPSEN.
U is a non-parametric statistical hypothesis test that determines
whether the number of distinct states differs across MALLORY and
JEPSEN. We reject the null hypothesis if U < 0.05, indicating that
MaLLoRY outperforms JEPSEN with statistical significance. For all
subjects, Alg =1and U < 0.01 for MALLORY against JEPSEN. This
demonstrates that MALLORY significantly outperforms JEPSEN.
Furthermore, we measured the memory consumption required
to maintain the data structure of the Lamport-style timeline. The
average memory consumption was 3.21 GB, which we consider
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Figure 6: The trends in the average number of distinct states
within 24 hours across 10 runs.

acceptable. Memory consumption remains stable over time, as we
only retain the portion of the timeline needed for abstraction and
remove already-abstracted portions. Additionally, our fuzzer is de-
signed to learn and react to observations in real time (see Sec. 3.3).
We measured the time taken from the point of fault injection to
receiving the behaviour feedback and found that in 92.20% of cases,
this process took less than one window time, i.e., MALLORY receives
feedback and adapts its policy before it has to decide the next action.

In terms of state exploration, MALLORY covers 54.27% more
distinct states than JEPSEN with a 2.24X speed-up.

4.3 Efficiency of Bug Finding (RQ2)

To evaluate the efficiency of MALLORY at finding bugs, we compared
MALLORY and JEPSEN with regards to the time required to reproduce
existing bugs. To this end, we created a dataset of bugs by selecting
10 recent issues from each subject’s GitHub issue list (from early
2019 to April 2023) that contained instructions for reproduction.
We attempted to reproduce the bugs manually and included any
successfully reproduced bugs in our dataset. We finally collected a
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Table 3: Statistics of reproduced known bugs and the perfor-
mance of both MALLORY and JEPSEN in exposing these bugs.

Bug ID Type of bug Time to exposureA
MALLORY JEPSEN Ajy
Dqlite-416 | Null pointer deference 0.76h 1.44h  1.00
Dqlite-356 | Snapshot installing failure T/O T/0  0.50
Dqlite-338 | Election fatal with split votes 0.16h 0.16h  0.50
Dqlite-327 | Member removal failure 0.06h 0.05h  0.49
Dqlite-324 | Log truncation failure 5.94h T/O  1.00
Dqlite-323 | Membership rollback failure 8.68h T/0  1.00
Dqlite-314 | Crashing on disk failure T/0 T/O  0.50
Redis-54 | Snapshot panic 3.33h 5.00h  0.95
Redis-53 | Committed entry conflicting 0.87h 1.17h  0.89
Redis-51 | Not handling unknown node 1.66h 6.40h  1.00
Redis-44 | Loss of committed write logs 0.34h 0.58h  0.60
Redis-43 | Snapshot index mismatch 0.16h 0.16h  0.50
Redis-42 | Snapshot rollback failure 0.2%h 0.26h  0.50
Redis-28 | Split brain after node removal | 9.56h T/0  1.00
Redis-23 | Aborted read with no leader 7.29h T/0  1.00
Redis-17 | Split brain and update loss 11.06h T/O  1.00
Bugs exposed in total 14 9 -
Average time usage 6.13h 11.45h -
Speed-up on time usage - 1.87x -

! T/O means that the tool cannot expose bugs within 24 hours for 10 experimental
runs. We replace T/O with 24 hours when calculating average usage time.

2 Statistically significant values of Alz are shown in bold.

total of 16 bugs across all subjects. The bug IDs and types of bugs
are presented in the first two columns of Tab. 3.

We ran both tools, MALLORY and JEPSEN, on buggy versions of
the subjects for 24 hours, repeated 10 times. The last main column
shows the time used for each tool to expose the bug. We marked
“T/O” if one tool failed to find the bug within the given time budget.
Overall, in these 16 bugs, MALLORY successfully exposed 14 bugs,
while JEPSEN only found 9 bugs. In terms of time usage, MALLORY
takes much less time (i.e., 6.13 hours on average), while JEPSEN needs
11.45 hours. Hence, compared with JEPSEN, MALLORY achieves a
speed-up of 1.87x in bug finding.

For shallow bugs whose states are easy to reach, such as Dqlite-
338 and Dqlite-327, MALLORY and JEPSEN perform well and perform
similarly. However, for deep bugs that are harder to expose, MAL-
LORY performs much better than JEPSEN. For example, to expose
Redis-51, JEPSEN took 6.40 hours, while MALLORY only took 1.66
hours. This is attributed to a faster state-exploration speed of MAL-
LORY. In addition, since MALLORY explored more distinct states than
JEPSEN, MALLORY was also able to expose more bugs. Specifically,
Matrory successfully exposed Dqlite-324, Dqlite-323, Redis-28,
Redis-23, and Redis-17, while JEpsEN had difficulty in exposing
them. We further investigated the two bugs (i.e., Dglite-356 and
Dglite-314) missed by MALLORY, and found exposing these bugs
needs to inject specific environment faults (e.g., disk faults), which
were not included in our evaluation.

To mitigate randomness, we adopt the Vargha-Delaney (A;3) to
measure the statistical significance of performance gain. The last
subcolumn of Tab. 3 shows these results. We mark Alz values in bold
if they are statistically significant (taking 0.6 as a significant level,



Greybox Fuzzing of Distributed Systems

Conference’17, July 2017, Washington, DC, USA

Table 4: Statistics of the zero-day bugs discovered by MALLORY in rigorously tested systems.

ID | Subject Bug description Bug checker Bug status ‘ JEPSEN?
1 | Braft Read stale data after a newly written update is visible to others ELLE Investigating v
2 | Braft Leak memory of the server when killed before its status becomes running ASan CVE-Granted, fixed X
3 | Dqlite Two leaders are elected at the same term due to split votes Log checker  Confirmed X
4 | Dqlite No leader is elected in a healthy cluster with an even number of nodes Log checker  Confirmed, fixed X
5 | Dglite A node reads dirty data that is modified but not committed by another node ELLE Confirmed X
6 | Dqlite Lose write updates due to split brain ELLE Confirmed X
7 | Dqlite A null pointer is dereferenced due to missing the pending configuration ASan CVE-Requested v
8 | Dqlite Leak allocated memory when failing to extend entries ASan CVE-Requested, fixed X
9 | Dqlite Buffer overflow happens while restoring a snapshot ASan CVE-Requested X

10 | Dqlite A node has an extra online spare Log checker ~ Confirmed X

11 | Dqlite Violate invariant as a segment cannot open while truncating inconsistent logs Log checker = CVE-Requested X
12 | MongoDB | Not repeatable read due to missing the local write update ELLE Confirmed X
13 | MongoDB | Not read committed due to missing the newly written update ELLE Confirmed X
14 | Redis Read stale data after new data is written to the same key ELLE Confirmed X
15 | Redis Buffer overflow due to writing data to a wrong data structure ASan CVE-Granted, fixed X
16 | Redis Runtime panic on initializing a cluster due to database version mismatch Log checker =~ CVE-Granted v
17 | TiKV No leader is elected for a long time in a healthy cluster Log checker  Investigating X
18 | TiKV Lose write updates due to split brain ELLE Investigating X
19 | TiKV Runtime fatal error when one server cannot get context before the deadline Log checker ~ CVE-Granted X

20 | TiKV Runtime fatal error in a server when the placement driver is killed Log checker ~ CVE-Granted X

21 | TiKV Runtime fatal error when failing to update max timestamp for the region Log checker =~ CVE-Granted X

22 | TiKV Monotonic time jumps back at runtime Log checker  Investigating v

or threshold). We can see that, in most cases, MALLORY significantly
outperformed JEPSEN.

In terms of bug finding, MALLORY finds 5 more bugs and finds
bugs 1.87x faster than JEPSEN.

4.4 Capability of Exposing New Bugs (RQ3)

To evaluate MALLORY’s capability of exposing new bugs, we utilised
MaLLoRY on the latest versions of our subjects. In the course of the
experiment, MALLORY produced promising results, as demonstrated
in Tab. 4. Although all of these subjects have been rigorously tested
by JEPSEN and other tests, MALLORY was still able to find a total of
22 previously unknown bugs, and 18 bugs of them were confirmed
by their developers. Out of these 22 bugs, 10 bugs were associated
with vulnerabilities, and we have requested CVE IDs for them. As
of the paper submission, we have already obtained 6 CVE IDs and
the remaining requests are still being processed.

We conducted a thorough analysis of the nature of these new
bugs found by MALLORY, shown in Tab. 4. The table also includes
the bug checkers used to uncover these bugs. Among these 22 bugs,
7 bugs were determined to be consistency violations exposed by
the ELLE consistency checker. Three bugs (#3, #4, and #17) violated
the Raft protocol due to missing leaders or the existence of two
leaders in the same term, and they were detected by the log checker.
AddressSantizer (i.e, ASan) exposed 5 memory issues. Furthermore,
the log checker detected 7 runtime failures or invariant violations.
These results indicate that MALLORY is beneficial to expose diverse
types of previously unknown bugs.
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In addition, we applied JEPSEN to detect these 22 new bugs; how-
ever, under the allotted time limit, JEPSEN was only able to detect
four of them (i.e., the bugs #1, #7, #16, and #22), as shown in the last
column of Tab. 4. This result is expected because these subject sys-
tems routinely undergo JEPSEN testing by their developers, making
it challenging for JEPSEN to discover new bugs.

In the following, we provide two case studies to illustrate bugs
that were exposed by MALLORY.

Case study: Bug #2 in Braft. Braft is a robust Raft implementation
designed for industrial applications, which is widely used within
Baidu to construct highly available distributed systems. However,
a critical vulnerability, known as Bug #2, remained undetected in
all Braft release versions from 2019 until its recent patch. This bug
occurs when a server cannot release its allocated memory before
failure, resulting in a memory leak issue.

To trigger this issue, a minimum of three environmental faults
must be introduced sequentially. Initially, the server dynamically
allocates enough memory for its operation, which is explicitly man-
aged by itself. However, before releasing the allocated memory, the
server is paused, and its memory remains in use. Subsequently, the
server is resumed, only to become coincidentally isolated from the
cluster due to a network partition, resulting in a failed start. Hence,
the server crashes without the chance to release the memory allo-
cated. This bug happens due to a flawed logic design: the allocated
memory can only be released when the process is in the running
status, and the memory cannot be released before running. This
logic design is reasonable in stable environments without faults, as
only the running server may have allocated memory. However, in
this extreme environment, the shortcoming in the logic is exposed.
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Bug #8 of Dqlite is another memory leak issue, similar to Bug #2
in Braft. It remained hidden in Dqlite for approximately four years
and affected all its release versions before we found it. Bug #2 in
Braft and Bug #8 in Dqlite both evaded the rigorous testing efforts
by their developers, demonstrating how our tool MALLORY can
significantly reduce the exposure of systems to vulnerabilities.

Case study: Bug #11 in Dqlite. Although JEPSEN is already part of
Dqlite’s Continuous Integration process, MALLORY has managed to
expose several new bugs in Dqlite. The developers have expressed a
keen interest in MALLORY and are awaiting its open-source release
so that they can incorporate it into their testing.

Bug #11 in Dqlite is caused by the snapshotting of uncommitted
logs, and it is reminiscent of the membership rollback bug shown
in Fig. 2. The schedules required to trigger these bugs are quite
similar, but Bug #11 is not triggered by the configuration change.
Specifically, the event @ involves one plain read/write log entry
instead of the configuration change. After this event, the cluster
undergoes the same sequence of environment faults, including a
network partition (#{S1, S2}, #{S3, S4, S5}), leader S; crashing, and
network healing. As a result of these faults, server Sy ends up
with conflicting entries with the leader S3, which must be removed.
However, the conflicting entries are in a snapshot, which makes the
removal fail. This failure leads to the server becoming unavailable.
Although the schedule to trigger Bug #11 is slightly shorter than that
of the membership rollback bug in Fig. 2, JEPSEN has not exposed it
in our experiments within the time allotted before the timeout.

Marrory found 22 zero-day bugs in rigorously tested imple-
mentations, and 18 bugs out of them have been confirmed by
their developers. 10 of these 22 bugs correspond to security
vulnerabilities, and out of these 6 CVEs have been assigned.

5 RELATED WORK

Greybox fuzzing. The vast majority of existing grey-box fuzzers
aim at testing sequential software systems, with most of the recent
research efforts dedicated to generating more diverse inputs [14, 46],
defining better feedback functions [3, 44] and test oracles [36]. With
this mindset, fuzzing distributed systems poses unique challenges
since (i) the inputs include not just plain data but also schedules
consisting of environmental faults and (ii) code coverage is not as
efficient, since distributed systems typically do not have complex
control flow and their behavioural complexity comes from the
asynchrony of operations across multiple nodes.

The recent Muzz [9] framework for fuzzing of (single-node)
multi-threaded programs, addresses (i)-(ii) by extending the edge
coverage metric with possible thread interleavings, while also iden-
tifying equivalent schedules. Muzz’ approach does not extend to
distributed systems as it is tailored to tracking the ordering of
specific threading functions, while MALLORY works with arbitrary
events and communication patterns. Furthermore, Muzz relies on
instrumenting the system scheduler, which is difficult to implement
for a distributed system without virtualising the networking layer.
Moreover, our timeline-based approach offers a more general way
to observe program behaviours for any non-sequential program,
including stand-alone multithreaded as well as distributed systems.
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Testing and model checking. The majority of state-of-the-art
testing frameworks that explore behaviours of a distributed sys-
tem assume full control over the inherent non-determinism of run-
time executions, with JEPSEN being a notable exception [25]. They
achieve this by either (a) replacing the networking layer [54], (b) ex-
plicitly modifying SUT to include a test harness [12, 29, 39, 60], or
(c) implementing the system in a testing-friendly language [11, 23,
53, 58]. Controlling the asynchrony makes it possible to employ
techniques from software model checking such as partial order
reduction [22] to avoid redundancy when exhaustively exploring
the space of bounded runtime executions [13, 31, 39, 40]. While
these approaches allow for more effective behaviour exploration
than JEPSEN/MALLORY, they are far more difficult to apply, requir-
ing, correspondingly, (a) specific OS setup, (b) protocol-aware SUT
modifications, or (c) using a domain-specific language.

Of the existing model-checking frameworks, MoDI1sT [54] is the
most similar to our approach, as it requires no modification in SUT
code; instead, it manipulates the system’s execution by intercept-
ing calls to the Windows APIL The main conceptual distinction of
MoDisT from our work is its interposition layer: unlike our ob-
servers, which are passive, MoDisT intercepts network, timing, and
disk-related system calls and pauses the SUT. This provides more
control—in our terminology, it allows the mediator to act as a sched-
uler—but comes at the expense of requiring a complex interposition
framework that replicates and replaces most of the API of a specific
OS. The design innovations of MALLORY that enable summarising
observations about SUT (Sec. 3.2) are orthogonal to the use of an
interposition layer, and, therefore, such an interposition layer could
be integrated within our architecture—rather than choosing only
which faults to introduce, our nemesis would choose every action.

In this work, we focused on finding bugs in non-Byzantine fault-
tolerant distributed systems [28] thus, side-stepping the challenge
of modelling the behaviour of possibly malicious nodes. We believe
that MAaLLORY’s workflow can be combined with existing state-
of-the-art techniques for Byzantine system testing that emulate
attacks by running several copies of the same node, but, for now,
only allow for execution in a network emulator [4].

Formal verification. Complementary to testing of distributed sys-
tems are approaches based on formal verification, i.e., proving that
all behaviours of a system satisfy an ascribed specification (which
might be quite elaborated and protocol-specific), by employing
a mix of algorithmic and deductive logical reasoning. These ap-
proaches broadly fall into one of the following two lines of work.

The first line of work is concerned with sound verification of ab-
stract models of distributed protocols [5, 27] for safety and liveness
properties and focuses on methods for automated reasoning, such as
checking and inferring protocol invariants [18, 32, 41, 55, 56]. Even
though some of those approaches allow one to generate executable
code from verified protocol models [17, 47], the implementations
tend to evolve over time, losing their correspondence to the formally
verified models and, hence, relying on testing for correctness.

The second line of work concerns verification of executable code
and typically requires the system to be implemented in a domain-
specific language that allows for machine-assisted formal reason-
ing [16, 19, 30, 42, 43, 45, 48, 51]. Such verified implementations
incur very high maintenance costs [52] and still remain prone to
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bugs due to occasional inadequate assumptions about the underly-
ing networking infrastructure or third-party libraries [16].

6 CONCLUDING REMARKS

In this work we proposed MaLLORY—the first adaptive greybox
fuzzer for distributed systems. The key insight behind MALLORY’s
design is to summarise the runtime behaviour of the distributed
system under test in the form of Lamport-style timelines that cap-
ture causality of events, and use the timelines to define a feedback
function for guiding the search for bugs.

Our conceptual contribution of timeline-driven testing opens
new avenues for automated testing of distributed systems, sim-
ilar to what was achieved for sequential programs by tools like
AFLFAsT [8]. AFLFAsT achieves high behavioural diversity by mak-
ing smart online decisions about covered program paths, during the
fuzz campaign. Similarly, MALLORY achieves behavioural diversity
by making online decisions to detect and prioritise novel event
sequences that have not been observed before.

We evaluated MALLORY on six widely-used and rigorously-tested
industrial distributed system implementations such as Dqlite and
Redis. The experimental results show the effectiveness and effi-
ciency of Mallory in achieving significantly higher state coverage
and faster bug-finding speed than the state-of-the-art tool JEPSEN.
Finally, MALLORY discovered 22 previously unknown bugs (10 new
vulnerabilities amongs them) which have contributed to new CVEs.
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