
1

C H A P T E R 1

The Next 700 Smart
Contract Languages

Smart contracts is a category of special-purpose programs that implement computa-
tions, whose executions are replicated by means of a distributed consensus protocol.
The parties participating in the consensus protocol can, thus, de�ne custom logic for
transactions by deploying smart contracts that implement arbitrary applications to
be executed in a decentralised way. Smart contracts have proven to be the most use-
ful in the �nance domain and have been extensively used for implementing various
forms of digital accounting, voting, and schemas for distribution of rewards.

Smart contracts have attracted a lot of interest from the research community,
due to their correctness-critical nature, and also because of a number of costly ac-
cidents that involved deployed faulty contract implementations. In the retrospect,
many of those issues could have been avoided with a more careful choice of linguis-
tic abstractions, that is, with a programming language design tailored for the domain.

In this chapter, we provide a high-level overview of the design choices in pro-
gramming languages for smart contracts that are dictated by their essential aspects:
(i) atomicity, (ii) communication, (iii)management of digital assets, and (iv) resource
accounting.We argue that �nding a balancing act for expressing those concepts poses
a fundamental challenge in the programming language design for blockchain-based
decentralised applications.

1.1 INTRODUCTION

Smart contracts are a mechanism for expressing replicated computations powered
by a decentralised consensus protocol [85]. They are most commonly used to de-
�ne custom logic for transactions operating over a blockchain, i.e., a decentralised
Byzantine-fault-tolerant distributed ledger [14, 73]. In addition to typical state of
computations, a blockchain stores a mapping from accounts (public keys or ad-
dresses) to quantities of tokens owned by said accounts. Execution of an arbitrary
program (aka a smart contract) is done by miners, who run the computations and
maintain the distributed ledger in exchange for a combination of gas (transaction fees
based on the execution length, denominated in the intrinsic tokens and paid by the

2 1. THE NEXT 700 SMART CONTRACT LANGUAGES

account calling the smart contract) and block rewards (in�ationary issuance of fresh
tokens by the underlying protocol). One distinguishing property of smart contracts,
not found in standard computational settings is the management of token transfers
between accounts. While simple forms of smart contracts were already available for
regulating exchange of virtual coins in earlier cryptocurrencies such as Bitcoin [66],
smart contracts owe their wide adoption to the Ethereum framework [19, 94]. Since
their �rst public implementations in mid-2010s, protocols supporting smart con-
tract deployment have foundmany applications in digital �nance, accounting, voting,
gaming and many other areas that naturally require decentralisation.

One of the challenging design aspects of smart contracts is the fact that the
outcomes their executions is determined by their interactions with a decentralised
adversarial environment. That is, once deployed, smart contracts might exchange
data with other contracts, possibly designed to exploit vulnerabilities in their logic,
with the aim to provoke an unforeseen token transfer or execute a denial-of-service
attack [58]. Such vulnerabilities are typically caused by rather subtle contract be-
haviour that diverges from the “intuitive understanding” of the language in the minds
of the contract developers. Some of the most prominent attacks on smart contracts
deployed on Ethereum blockchain, e.g., the attack on the DAO1 [30] and Parity wal-
let [8] contracts, have been exploited some undocumented or poorly understood be-
haviour of certain language features. These and many others reported attacks on the
Ethereum-deployed contracts [13, 51, 55, 56, 67, 76] havemade execution safety and
formal correctness guarantees to be the primary concerns for smart contract-based
programming.

The fact that third-party smart contracts cannot be trusted has another im-
portant implication on the design of the implementation language semantics. The
decentralised nature of contract execution means that the majority of the involved
miners will have to agree on the outcome of a transaction involving a contract’s in-
vocation. Therefore, by providing the runtime support for contract executions, the
miners become open to a wide class of denial-of-service attacks. Such attacks may
be e�ectively implemented by contracts that never terminate under certain con-
ditions or use an extensive amount of memory. As a remedy to this challenge, in
Ethereum’s pioneering approach to smart contracts every transaction costs a certain
amount of gas [19, 94], a monetary value Ethereum’s currency, paid by a transaction-
proposing party. Computations (performed by invoking smart contracts) that require
more computational or storage resources, costmore gas than those that require fewer
resources. Gas cost is deduced dynamically: each execution step is being charged
from the gas supply paid for; if a transaction “runs out of gas” in the midst of its exe-
cution, it is interrupted, with all the corresponding changes discarded. Therefore, an

1Decentralised Autonomous Organisation [32].

1.1. INTRODUCTION 3

adequate model for principled gas accounting is crucial for the de�nition of a smart
contract language semantics and reasoning about the safety and the dynamic costs of
its executions. As the recent research shows,miscalculated gas costs, both at the level
of the language and of the individual contracts are quite common [5, 22, 38, 61, 70],
and they might lead to even more severe vulnerabilities to exploit.

At the beginning of the smart contract adoption, it was hard to predict what
kinds of applications the clients will most likely be willing to develop and de-
ploy. While the encodings of �nancial routines form the majority of smart contracts
to date, Ethereum’s design provided a very expressive run-time environment for
smart contracts—the Ethereum Virtual Machine (EVM) [94]. EVM o�ered a Turing-
complete low-level language, whose features, amongst others, included arbitrary in-
teraction between contracts (with any contract’s code accessible to any other con-
tract), dynamic contract creation, and ability to introspect on the entire state of the
Ethereum blockchain. Such versatility made EVM a very popular platform for de-
veloping high-level languages to compile to, which in turn resulted in an explosion
of Ethereum applications ranging from fully decentralised auctions and fundraisers,
crowdfunding to multiplayer games, protocols for veri�ed computations, and even
fraud schemes [31, 62, 63]. The expressivity and a low-level language design are a
double-edged sword.While o�ering a great �exibility in implementing custom trans-
action logic, it is frequently at odds with the safety aspect outlined below. For in-
stance, Ethereum contracts, deployed in a low-level language render independent
audit and formal veri�cation of deployed code infeasible in practice. Narrowing the
scope of the minimal necessary functionality that smart contracts need to possess is,
thus, an active ongoing research.

The history of programming language (PL) design and implementation is also a
history of making programs run faster, by exploiting the corresponding problem do-
mains aswell as underlying hardware architectures. In this regard, smart contracts are
seemingly no di�erent from other programs, and optimising their runtime will also
bene�t the entire protocol. However, the above mentioned safety and expressivity
aspects, optimisations of smart contracts pose a number of unusual challenges for the
language and runtime designers. For instance, it is not clear how the optimisations
will interact with the gas costs de�ned for a particular executionmode. Furthermore,
the smart contract runtimes to date to the large extent treat the underlying consen-
sus protocols as a black box, without taking any advantage of its architecture, which
might allow for parallel execution of transactions [4, 54, 59]

1.1.1 WHATWEWILL DISCUSS
The three dimensions of the smart contract language design can, be, thus, sum-
marised by a diagram shown in Figure 1.1. As a reference point, we illustrate

4 1. THE NEXT 700 SMART CONTRACT LANGUAGES

Expressivity

Safety

Execution Speed

Figure 1.1: Language Design Trade-o�. The dashed line shows EVM’s design choices.

Ethereum’s EVM design choices by a dashed line, emphasising its focus on the ex-
pressivity and optimisation-friendliness, but not so much on formal guarantees of
execution safety.

In this chapter we aim to provide tentative answers to the following questions:

1. What are the essential concepts of smart contracts that by all means need to be
represented in the language used to implement them?

2. Which of thewell-established PL techniques can be useful for this task andwhat
are the challenges in adapting them?

3. What are the unsolved problems in smart contract language design that one
should consider tackling in the future?

In the rest of this chapter, we will elaborate on these three dimensions, dis-
cussing various components speci�c to smart contract programming, and outlining
multiple possibility of programming language abstractions targeting greater expres-
sivity, safety, or providing a more suitable ground for program optimisations.

1.1.2 WHATWEWILL NOT DISCUSS
At the time of this writing, the smart contract programming landscape is growing at a
breakneck speed, with new language proposals emerging nearly everyweek. To date,
most of those languages are available in a form of a sparsely documented repository,
a position paper, or a blog post [2, 7, 23, 44, 48, 74, 75]. Therefore, we do not aim
to provide a detailed survey of the currently available smart contract programming
technology, but rather focus on the conceptual components that either have been or

1.2. BACKGROUND 5

might have been encompassed in some of those proposals (in which case appropriate
examples will be provided).

In the past few years, the e�orts on discovery, analysis, modeling, and �xing
speci�c classes of vulnerabilities in Ethereum smart contracts have turned into an
active research �eld [9, 10, 15, 16, 21, 38, 39, 40, 51, 55, 56, 58, 61, 67, 87, 89].
While some of those techniques are informative for PL design for smart contracts,
their formulation is, in most of the cases, very speci�c to the Ethereum platform
and EVM. The survey of those approaches and tools is, thus, beyond the scope of
this chapter as well. The readers interested in contemporary state of the art in those
directions are encouraged to check the corresponding survey papers [11, 79].

1.2 BACKGROUND
To set up the stage for the discussion on smart contract language design, let us
�rst consider a simple smart contract and understand its behaviour and proper-
ties. Figure 1.2 shows one of the most common applications of smart contracts—
a crowdfunding campaign—implemented in Ethereum’s Solidity programming lan-
guage [34].2 Solidity is a high-level language with the syntax similar to JavaScript,
and it compiles directly to EVM. As of early 2020, this is a de-facto programming
language for smart contracts that has received wide adoption due to the popularity
of Ethereum protocol.

The contract in Figure 1.2 is very similar to a stateful object in a language such as
Java or C#. It features four mutable �elds. The �eld owner of type address de�nes the
identity of the account that deploys the contract. The �elds goal and deadline set the
main parameters of the crowdfunding campaign: the amount of currency it is aimed
to raise and the deadline (i.e., the �nal block) upon reaching which the donations are
no longer accepted. Finally, the �eld backers of type mapping (address => uint256)
is amutable hash-map that stores the amounts donated by di�erent backers identi�ed
by their account addresses.

The constructor Crowdfunding of the contract sets the �elds owner, deadline and
goal for the values provide upon the contract deployment. The value of the owner is
retrieved from the �eld sender of the implicit constructor argument msg that denotes
the message initiating the interaction with the contract (in this case, its deployment)
in the corresponding transaction. Thus, msg.sender refers to the account that has ini-
tiated the transaction. Upon the successful execution of the constructor the resulted
state and the code of the contract are replicated amongst the miner nodes.

All the subsequent interactions with the contract by the third parties are done
by means of invoking its functions (methods), of which it has three. The �rst one,

2This contract is adopted from https://programtheblockchain.com/posts/2018/01/19/writing-a-crowdfun
ding-contract-a-la-kickstarter/.

https://programtheblockchain.com/posts/2018/01/19/writing-a-crowdfunding-contract-a-la-kickstarter/
https://programtheblockchain.com/posts/2018/01/19/writing-a-crowdfunding-contract-a-la-kickstarter/

6 1. THE NEXT 700 SMART CONTRACT LANGUAGES

contract Crowdfunding {
address owner;
uint256 deadline;
uint256 goal;
mapping(address => uint256) backers;

function Crowdfunding(uint256 numberOfDays, uint256 _goal) public {
owner = msg.sender;
deadline = now + (numberOfDays * 1 days);
goal = _goal;

}

function donate() public payable {
require(now < deadline); // before the fundraising deadline

backers[msg.sender] += msg.value;
}

function claimFunds() public {
require(address(this).balance >= goal); // funding goal met
require(now >= deadline); // after the withdrawal period
require(msg.sender == owner);

msg.sender.call.value(address(this).balance)();
}

function getRefund() public {
require(address(this).balance < goal); // campaign failed: goal not met
require(now >= deadline); // in the withdrawal period

uint256 donation = backers[msg.sender];
backers[msg.sender] = 0;
msg.sender.call.value(donation)();

}
}

Figure 1.2: A Crowdfunding contract in Solidity.

donate allows to transfer the donation to the contract. The �rst line of the method
checks, via the require construct, that the current block (referred to as now) is strictly
smaller than the deadline. If this test fails, the whole transaction is reverted. The
amount of currency transferred to the contract from the party initiating the inter-
action is implicitly stored in the attribute value of the incoming message. As the
function is marked payable, this amount will be implicitly added to the contract’s
balance—the code does not contain and instructions to do so. For the purpose of

1.2. BACKGROUND 7

correct accounting, the method records the donated value attributed to the message
sender to the map backers.

The purpose of the method claimFunds is to allow the owner of the contract to
transfer all the funds from the contract to its own account. Themethod �rst performs
a number of checks, ensuring that the collected balance of the contract is larger or
equal than the set goal, and that the deadline has passed, as well as the sender of the
message is indeed the initial owner, the contract performs the transfer of funds to the
sender of the message, i.e., the owner via a somewhat unusual Solidity’s construct
call.value(...)(). The �nal method getRefund allows the backers to retrieve their
donations, transferring the correct amounts of currencies back to their own accounts,
after the deadline has passed and if the goal has not been reached (those conditions
are checked in the �rst place). If this is indeed the case, the donation amount is re-
trieved from the backers map, and then transferred to the backer in the last line of
the method. Altogether the three methods of Crowdfunding contract form its inter-
face, de�ning all modes of interaction with it. It is important to notice that, by its
nature, all smart contracts are passive, i.e., then do not engage into any interactions
pro-actively. Instead, the code in their methods is executed as a reactions to themes-
sages sent by the external accounts, which might belong to users or other contracts
serving as interaction “proxies”.

1.2.1 THE SUBTLETIES OF THE CROWDFUNDING CONTRACT
While seemingly very simple, the Crowdfunding contract has a number of intricacies,
and misunderstanding of any of those might lead to the deployment of a �awed im-
plementation, which will result in a potential loss of funds.

Consider, for instance, the very �rst donatemethod. Its only purpose is to check
that the current block has a number smaller than the set deadline, and, if it is the
case, accept the incoming funds from the backer. The subtle point in this logic is
that the map backers might already store the previous donation, and, hence, the
new donation needs to be added to it. This logic is implemented correctly in line
16 via the += operator. That said, by a very trivial oversight, one could write in-
stead backers[msg.sender] = donation. This logical mistake would not be caught by
the compiler, yet, it would result in the backer losing its previous donation, which
she would not be able to retrieve. How so? Consider the logic of getRefundmethod.
The donation amount transferred back to the backer is taken from the backersmap,
which, given the described above mistake, would only store the latest donation by
the backer! That is, the amount donated previously would be no longer accounted
for andwould not be returned to the backer. Quite ironically, the described program-
ming mistake would not prevent the owner from cashing out the funding collected
in the case of a successful campaign. This is due to the fact that the code in line 24

8 1. THE NEXT 700 SMART CONTRACT LANGUAGES

of Figure 1.2 operates with the contract’s balance rather than the contents of the
backers map, thus depleting the entire balance accumulated by the contract as the
result of it previously accepting donations.

Another possible bug thatwould render the Crowdfunding contact uselesswould
be if the programmer forgot to put the instruction backers[msg.sender] = 0 in the
line 32. In this case, the backer would be able to get the refund several times, possibly
until the contract’s balance is depleted.

Swapping lines 32 and 33 would lead to even more interesting behaviour. Ac-
cording to Solidity’s semantics, the execution of the command msg.sender.call.
value(donation)() would transfer not only the funds, but also the control over exe-
cution to the account msg.sender, thus allowing it to perform some additional opera-
tions, before returning the control to the Crowdfunding contract. Speci�cally, the ac-
count of msg.sender could belong to another contract, which could invoke getRefund
again, thus withdrawing more funds, similarly to the previous scenario in which we
forgot to set the backer’s donation to 0. This behaviour is known as reentrancy vul-
nerability [41]. It has been a source of the most famous bug in a contract deployed in
Ethereum [30], sparking a line of research targeting to prevent these mistakes in the
future [40, 51, 89].3

1.2.2 REASONING ABOUT CONTRACT PROPERTIES
Smart contracts are safety-critical applications. While existing static analysis tools
help to signi�cantly reduce the risk of deploying a faulty contract [1, 51, 71], when
designed for a language as complex as Solidity/EVM they will inevitably be unsound
(i.e., might miss some bugs). By designing a language that avoids certain mistakes in
programs by construction, one can achieve stronger correctness guarantees.

As demonstrated by the Crowdfunding example, despite their simple logic of
state manipulation, smart contracts are not always easy to get right. Not only the
programmer must keep in mind all the properties relevant to the normal contract
behaviour prior to its deployment, she also needs to be aware of the precise semantics
of certain language constructs in order to avoid the unexpected outcomes. These
complexity is exacerbated by the fact that, once deployed (i.e., replicated via the
blockchain), smart contracts cannot be patched or amended.

One way to ensure that the contract obeys some “common sense” before it is
deployed is state its properties and ensure that the code preserves them. Those prop-
erties are commonly phrased as contract invariants, i.e., the assertions that holds at
any point of the contract’s life time. For instance, the following set of formal proper-
ties makes for a reasonably complete speci�cation of the Crowdfunding contract:

3As the result of this bug, Solidity has been augmented with a number of restrictive primitives for transferring
funds, namely send and transfer, which are preferable in most of the similar scenarios.

1.2. BACKGROUND 9

P1 (No leaking funds). The contract’s accounted funds do not decrease unless the
campaign has been funded or the deadline has expired.

P2 (Donation record preservation). The contract preserves cumulative records of
individual donations by backers, unless they interact with it.

P3 (The backer can get refunded). If the campaign fails, the backers can eventually
get their refund for the whole amount they have donated. They can get this
refund exactly once.

The recent works have shown how to formally prove these properties using
machine-assisted tools [25] for a small smart contract language [81, 82]. However
those ironclad correctness guarantees are only available if the entire language’s se-
mantics is well-de�ned and formalised. This semantics should describe, among other
execution artefacts, contract deployment and interaction with other entities in the
blockchain. As of now, no fully formal semantics of Solidity exists, and this is why
existing veri�cation tools [71] for Ethereumhave to rely on the ad-hoc understanding
of the language’s runtime.

1.2.3 CONTRACT EXECUTIONMODELS
Even though contracts are to the large extent just stateful replicated objects, the
choice of the language paradigm for implementing them should not be solely based
on this fact. While JavaScript-like syntax and semantics have been chosen for So-
lidity to simplify its adoption, the same choice makes formal reasoning and e�cient
compilation far from straightforward. For instance, it has been observed that most
of the contracts’ functionality in fact falls into the pure functional fragment of data
manipulation, with state manipulation comprising only a small part of the contract
implementations. This informed the design of several contract languages, such as
Michelson [86], Liquidity [68], and Scilla [83].

Another factor determining the choice of programming abstractions is the state
model that is supported by the underlying blockchain consensus protocol. For in-
stance, Ethereum follows an Account/Balance model, wherein all state of the user
and the contracts (including funds attributed to them) is stored in a data base-
like fashion, with account addresses serving as unique keys. An alternative model,
adopted by Bitcoin [66] and Cardano [53] blockchains, is based on unspent transac-
tion outputs (UTxO) model [84], wherein transactions form a directed acyclic graphs,
threading the state of individual accounts from the initial until the terminal nodes.
The UTxOmodel has been shown a better �t for functional programmingmodel [20].

10 1. THE NEXT 700 SMART CONTRACT LANGUAGES

1.2.4 GAS ACCOUNTING
In the Crowdfunding example fromFigure 1.2, all methods of the contract are straight-
line code, with no loops or recursion. However, those features are frequently neces-
sary for implementing common machinery. For instance, executing an iteration over
a list of backers’ account addresses would allow to reimburse all of them in a single
call instead of calling getRefund for each backer individually.

Unfortunately, statically unbounded iteration, as well as general loops and re-
cursion would be a source of denial-of-service attacks on the entire blockchain pro-
tocol, as all miners would have to run the code that potentially cannot terminate.
As of now, the community has reached a consensus that precisely de�ned execution
cost semantics, aka gas, is an inherent part of any smart contract language that is
planned to be used in an open system, where arbitrary parties can join. That said,
allocating adequate gas costs is far from straightforward and to date this aspect of
contract language design has received little attention from the research community.
In § 1.6, we will discuss some non-obvious challenges when assigning gas costs to
smart contract executions as well as programming language-enabled techniques for
analysing gas usage patterns.

1.2.5 ON THE ROLE OF TYPES
Types in programming languages are going to be a paramount motive of our
overview [72]. Modern type systems provide a compositional syntactic approach for
ensuring strong syntactic guarantees for a variety of execution properties.Wewill see
how type-based approaches help to ensure stronger atomicity guarantees (§ 1.3), re-
strict communication patterns (§ 1.4), enforce the correct handling of digital assets
(§ 1.5), and reason about resource consumption (§ 1.6).

1.3 ENFORCING CONTRACT INVARIANTS
The reentrancy vulnerability is the DAO contract [30, 41] is a great example of vio-
lating one of the foremost principles in designing software that might interact with
other untrusted components — preservation of invariants [80]. Invariants are logica
assertions that postulate certain relations between the components of the contract.
For instance, the property P2 of the Crowdfunding contract is an invariant that can be
expressed as the following mathematical assertion:

now ≥ deadline. ∨
∑

b∈dom(backers)

backers(b) = balance (1.1)

Invariants are a common way to reason about validity of a state of an evolving
object at any point of its lifetime, and the invariant-based reasoning is customarily

1.3. ENFORCING CONTRACT INVARIANTS 11

c.atomicMethod()

Environment

c.atomicMethod() c.atomicMethod()

Environment

Inv Inv Inv Inv Inv Inv

DAO:
withdrawRewardFor()

Re-entering withdrawRewardFor()_recipient.call.value(…):

Inv donations[msg.sender] = 0Inv

Figure 1.3: Invariant-preserving interactions with an atomic object (top). Invariant-
violating re-entrant behaviour in the DAO contract (bottom).

used to argue for the correctness of mutable concurrent data structures [43]. In such
objects, each modi�cation in the object’s state by a single process should be per-
formed atomically, i.e., it cannot be interrupted by other processes in the midst of
its execution. A concurrent object’s methods are implemented in such away that they
may only violate the object’s invariants during their execution, but must restore it at
the end of the call. Consider Figure 1.3. Its top part shows an interaction between
a concurrent object c and its environment. Whenever the method c.atomicMethod()
is executed, it assumes a certain invariant, and, upon termination, it restores it. This
way, next time the same method is called, it may still rely on the invariant being pre-
served. Taking another look at the Crowdfunding contract in Figure 1.2, we can see
that the invariant (1.1) indeed holds after the contract is initialised by its constructor,
and all methods preserve it. One way to look at the contract, thus, is as to a valid
concurrent object, which maintains its own state invariants.

This principle is, however, violated by the DAO contract, whose reen-
trant execution is schematically shown in the bottom of Figure 1.3. In the mid-
dle of the call to withdrawRewardFor() method, a method of another contract is
called via _recipient.call.value(...), and, upon returning the execution back to
withdrawRewardFor() the invariant is not restored. This lack of atomicitymade it pos-
sible for the adversaries to exploit the “dirty” state of the contract and deplete it of
its funds by calling the withdrawRewardFor()method again, in a re-entrant way [80].

12 1. THE NEXT 700 SMART CONTRACT LANGUAGES

Issues of this nature could be avoided should the language design would be
more restrictive than what’s allowed in Solidity. For instance, in Scilla language for
smart contracts [83] any non-atomic interactions between contracts are forbidden by
design. That is, the only way for a contract to call another contract is to �rst �nish its
own execution and only then pass the control to the others. While this design does
not guarantee that the invariants will be preserved (as those tend to be complex and
depend on the domain), it eliminates the DAO-like reentrancy scenario whatsoever.

The downside of by-construction atomicity. The language-enforced atomicity
comes with a cost, as it requires the developer to design a contract in a way that
makes all its modi�cations self-contained and not depending on the intermediate in-
teraction with other contracts. This shortcoming does not exclude the possibility to
implement most of the typical contract applications, but makes some of them quite
cumbersome. A particular class of such applications are oracles—services that pro-
vide o�-chain data to the contracts by means of invoking callback methods [80].
Furthermore, the need to make contracts self-contained prevents an e�cient code
reuse across multiple applications deployed on a blockchain.

Code reusewithpure functions. While state-manipulating code of external con-
tracts cannot be called when one’s goal is to enforce atomicity, this restriction can
be lifted for pure functions. The results of pure computations do not involve mutable
state and are obtained as mathematical functions of their inputs. This makes them
safe to use in an atomic environment, as their outcomes will not be a�ected by the
e�ects of other contracts’ executions. This insight has been implemented by a num-
ber of contemporary smart contract languages [49, 69, 83], which have chosen the
design heavily inspired by general-purpose functional programming languages, such
as StandardML and Haskell, in which the pure and state-manipulating computations
can be distinguished syntactically or by means of an expressive type system.

Type systems for invariant preservation. Sometimes the contract invariants can
be so generic that they might be captured in a form of types. For instance, the post-
deadline con�guration of the Crowdfunding contract can be described as a form of
typestate [6]—an approach allowing to include state information in types of the vari-
ables that can be modi�ed (or not) while the object is in this state. For instance, one
can de�ne a typestate PostDeadline, which is the only one, in which it is allowed for
the contract o send money to the third parties. Typestate-based approach has been
implemented in languages Flint [77, 78] and Obsidian [24] to provide stronger guar-
antees for contracts implemented in the Solidity style object-based model.

1.4. STRUCTURING COMMUNICATION 13

m2

m5

m6
Contract C

Contract D
Contract E

Account YAccount Z

m1

m3

m4

Account X

C.trAcc X

Acc Y

E.tr

D.tr

C.tr′

Acc Z
m1 m2

m3

m4

m5

m6

Figure 1.4: An interaction between accounts and contracts within a transaction (top),
and its sequentialisation when executed by the protocol (bottom).

1.4 STRUCTURING COMMUNICATION

The need to enforce atomicity of contracts also hints a solution for arranging inter-
actions between them.

Solidity has leaned to the object-based model, familiar to seasonal Java and
C# developers, in which all contract interactions are simply method calls. As we’ve
seen above, this model makes it non-trivial to enforce by-construction atomicity and
requires additional mental e�orts to structure the contract in a way that it would
always preserve its invariants.

Amore suitable approach for this purpose is to implement interaction protocols
between contracts as communication via passing messages. The message-passing
paradigm for building application of multiple interacting entities is well-studied both
from the theoretical and practical perspectives. The most notable theoretical frame-
works that describe message-passing programs are π-calculus [64], actors [3] and In-
put/Output Automata [60]. Practical implementation of those concepts can be found
in general-purpose programming languages, such as Erlang [12] and Scala [42]. The

14 1. THE NEXT 700 SMART CONTRACT LANGUAGES

idea of implementing smart contracts as communicating state-transition systems has
been �rst explored in Scilla [81] language developed for Zilliqa blockchain [95]. A
contract in Scilla is a de�nition of mutable and immutable state components (with
the former de�ne upon deployment), as well as number of “transition”, each serving
as a handler reacting to a certain kind of messages. Transitions are atomic, and may
result in sending more messages to other contracts, which will be processed later.

A transition invocation may trigger a chain of contract calls as shown in Fig-
ure 1.4 (top). In case of a multi-contract transaction (i.e., when a contract inter-
acts with other contracts), the emitted messages are sequentialised by following a
breadth-�rst traversal of the transaction communication graph (�gure bottom). The
messages are then executed in sequence.4 The combined output of the set of mes-
sages resulting from a transaction is committed to the blockchain atomically, in the
sense that nothing is committed unless all messages succeed. If one message com-
pletes and the next one runs out of gas, the entire transaction is rolled back.

Type systems for message-passing. The idea of implementing contract interac-
tions via explicit message passing and atomic transitions have been implemented in
other languages for smart contracts: Rholang [74] and Nomos [28]. Both languages
feature an expressive type system that statically enforces certain user-provided inter-
actions between contracts. For instance, Nomos’ type system, inspired my resource-
aware binary session types [29] ensures that communication between two contracts
spanning multiple messages and transitions will follow a particular protocol while
also consuming a speci�ed �xed amount of computational resources (cf. § 1.6.1).

1.5 IT’S ALL ABOUTMONEY

After all, the main purpose of smart contracts to date is to manage digital assets.
Solidity’s take on considering money as simply an unsigned integer datatype is prone
to make programmers commit errors that would lead to loss of signi�cant amounts of
funds. A signi�cant amount of research e�ort has been dedicated to remedying this
design choice with a help of tools for automated analyses for Ethereum contracts.
Such tools can check that, for instance, a contract does not transfer its own funds
to any third party unconditionally (so-called prodigal scenario) [67]. In this section
we survey the programming language techniques that allow to ensure the correct
handling of digital money by a contract.

Cash-�ow analysis. The Scilla smart contract language has introduced a static
analysis whose purpose is to ensure that the value representing money are never
mixed with other values in an inconsistent way [50]. Speci�cally, the cash-�ow anal-

4Breadth-�rst was chosen over depth-�rst as it provides better fairness guarantees for message processing.

1.5. IT’S ALL ABOUTMONEY 15

ysis attempts to determine which parts of the contract’s state (i.e., its �elds) repre-
sent an amount of money, in order to ensure that money is being accounted for in
a consistent way. To do so the analysis employs standard techniques of abstract in-
terpretation [26], so each �eld, parameter, local variable, and subexpression in the
contract is given a tag indicating if and how it is used wrt. representing money.

Running the analysis on the Crowdfunding contract (Figure 1.2) results in the
�elds goal and backers of the contract being tagged as money-containing. The goal
�eld represents the amount of money the owner of the contract is trying to raise,
rather than an amount of money owned by the contract. However, the �eld is still
tagged as “money”, since its value is regularly compared to the value of balance. As
the backers �eld is a map, the analysis determines that its values represent money.

In the case if money-related �elds are handled inconsistently (e.g., the value of
goal is added to deadline), the analysis will report an error. This treatment of asset-
related �elds via the static analysis is similar to the idea of inferring units of measure
as an auxiliary information for types in a program [52].

Type systems for managing digital assets. Static safety of asset management is
an excellent application for type-based techniques. A particularly prominent idea is
to use linear types [37, 91]—a form of a type system that ensures that values that a
program operates with are always “consumed” exactly once. Linear types have been
previously used to control resource usage in functional programs [90]. As such, lin-
ear types are also a good �t to describe the data type of assets. This way, the crucial
property of “no double spending” of digital assets will be enforced by the type dis-
cipline, as a double spending would be similar to “double usage”, which is precisely
what linear types prevent from happening.

Linear types were �rst used in the Typecoin system [27] to ensure the absence
of double spends Bitcoin scripts [17]. A similar idea has been used in the Nomos lan-
guage [28], in which linear typeswere integratedwith session types, andwere used to
de�ne the consistent money transfer as a part of statically-enforced communication
protocols. Both Flint [77] and Obsidian [24] languages de�ne a form of Asset type
whose values obey the linearity property. Flint’s notion of assets as prevents the val-
ues of that type from being duplicated or destroyed accidentally. This choice leads
to certain limitations of how assets are handles in Flint: for example they cannot be
returned from functions. Obsidian addresses these issues by instrumenting its types
with access permissions, controlling the ways certain values are used. This way, it
permits any non-primitive type to be an asset and treated as a �rst-class value.

Move [18] is a statically typed stack-based bytecode language with a syntac-
tic layer providing an intermediate representation which is su�ciently high-level
to write human-readable code, yet directly translates to Move bytecode. The key
feature of Move’s type system is the ability to de�ne custom resource types with

16 1. THE NEXT 700 SMART CONTRACT LANGUAGES

semantics inspired by linear logic [37]: a resource can never be copied or implic-
itly discarded, only moved between program storage locations. Move’s programming
model assumes having a global mapping of addresses representing the blockchain
entities to assets (resources). Therefore, anyone, can change their account by pub-
lishing new resources representing “currencies” of di�erent kinds. Linearity of re-
sources ensures that users cannot lose or duplicate their assets when transforming
them from one kind to another. Compared to Move, Scilla does not have a notion
of a global mutable mapping from addresses to assets. This implies that contract au-
thors commonly have to maintain their own local mappings of addresses to assets
tailored to the purpose of the contract at hand. Handling those local mappings can
often be simpli�ed by using a generic escrow-like contract published alongside with
the speci�c contract the programmer wants to deploy [88].

1.6 EXECUTION COSTS ANDGAS ACCOUNTING
The rationale behind the resource-aware smart contract semantics, instrumented
with gas consumption, is three-fold. First, paying for gas at the moment of propos-
ing the transaction does not allow the emitter to waste other parties’ computational
power by requiring them to perform a lot of worthless intensive work. Second, gas
fees disincentivise users to consume too much of replicated storage, which is a valu-
able resource in a blockchain-based consensus system. Finally, such a semantics puts
a cap on the number of computations that a transaction can execute, hence prevents
denial-of-service attacks based on non-terminating executions (which could other-
wise, e.g., make all miners loop forever).

The speci�cation of EVM provides a detailed speci�cation of gas cost alloca-
tions for all its primitive commands [94], with a lot of focus on costs for interacting
with the storage. For instance, EVM’smemorymodel de�nes three areaswhere it can
store items: the storage is where all contract state variables reside, every contract has
its own storage and it is persistent between external function calls (transactions) and
quite expensive to use; the memory is used to hold temporary values, and it is erased
between transactions and is cheaper to use; the stack is used to carry out operations
and it is free to use, but can only hold a limited amount of values.

The gas-aware operational semantics of EVM has introduced novel challenges
wrt. sound static reasoning about resource consumption, correctness, and security
of replicated computations:

1. It is discouraged in the Ethereum safety recommendations that the gas con-
sumption of smart contracts depends on the size of the data it stores (i.e., the
contract state), aswell as on the size of its functions inputs, or of the current state
of the blockchain [35]. However, according to the recent study, almost 10% of
the functions of Ethereum contracts feature such a dependency [5]. The inabil-

1.6. EXECUTION COSTS ANDGAS ACCOUNTING 17

ity to estimate those dependencies, and the lack of analysis tools, leads to design
mistakes, whichmake a contract unsafe to run or prone to exploits. For instance,
a contract whose state size exceeds a certain limit, can be made forever stuck,
not being able to perform any operation within a reasonable gas bound. Those
vulnerabilities have been recognized before, but only discovered by means of
unsound, pattern-based analysis [38].

2. While the EVM speci�cation provides the precise gas consumption of the low-
level operations, most of the smart contracts are written in high-level languages,
such as Solidity [34] or Vyper [33]. The translation of the high-level language
constructs to the low-level ones makes static estimation of runtime gas bounds
challenging, and is implemented in an ad-hocway by state-of-the art compilers,
which are only able to give constant gas bounds, or return∞ otherwise.

1.6.1 CONTROLLING GAS CONSUMPTIONWITH PL TECHNIQUES
The programming language research to date has addressed the �rst challenge by ap-
plying a number of techniques to support more accurate gas consumption analysis.
One of the best studies approaches for enforcing non-functional properties such as
resource consumptions is by means of employing sub-structural type systems, allow-
ing to the programmers to declare the desired boundaries on resources consumed
by the program and letting the type checker (as a part of compilation pipeline) to
ensure statically that these boundaries are respected at run-time [46, 93]. As writing
explicit resource boundaries might impose large annotation overhead, thus, slowing
down the contract development, type-based techniques are usually combined with
a static analysis that facilitates the inference of resource boundaries [45]. The recent
approaches combined session types [47] with automated type-based resource infer-
ence [28], making the resource consumption to be a part of an interaction protocol
between di�erent contracts and their users.

Gas Analysis in Account/Balancemodel. The primary goal of estimating the ex-
ecution cost (in terms of gas) for a transaction involving a smart contract is to pre-
dict the amount of digital currency one needs to pay to miners for the transaction
processing. However, as the recent study shows, in an account/balance blockchain
model such costs are typically parametric in the values of the transaction parameters
as well as in the values of certain blockchain components, whichmight not be known
at the moment when the transaction is broadcast [83]. As a simple example, imagine
a contract, whose execution depends on the value of a block number, in which the
transaction is going to be adopted, or on the value of a state component of another
contract, which will have changed between the moment the transaction is proposed
and the moment it is processed.

18 1. THE NEXT 700 SMART CONTRACT LANGUAGES

Therefore, contrary to the common perception that the main virtue of a sound
and complete gas analyser for smart contracts is to predict the exact dynamic gas
consumption [61, 92], we believe themain bene�t of such an analysis is the possibility
to detect gas ine�ciency patterns prior to contract deployment [22]. For instance,
the gas analyser shipped along with Scilla programming language may return the >
result when it fails to infer a polynomial boundary [83]. Assuming the soundness of
the analysis, the> result of our analysis is still informative, as it indicates worse-than-
linear gas consumption, which is usually a design �aw.

Gas Analysis in UTxO model. In comparison with the account/balance model,
gas analysis in the UTxO model is relatively straightforward, and is much more pre-
cise, as it is able to provide the exact execution cost. This is due to the fact that in
UTxO each transaction, when proposed, should specify its “predecessor” transac-
tions in the adopted history so far, thus, �xing its input values at that moment. The
obvious downside of such an execution model is the execution bottleneck it poses:
if several transactions that depend on the same output are proposed concurrently, at
most one of them will be adopted. At the same time, the non-determinism of the ac-
count/balance model allows all concurrently-proposed non-con�icting transactions
to be committed within the same block.

1.6.2 GAS CONSUMPTION AND COMPILATION
Gas costs need to be stated in terms of a certain operational model and �xed for
each execution unit. In this regard, EVM’s design is the most uncontroversial, as it
puts gas costs on the most primitive commands. However, this complicates the gas
analysis for any of the high-level languages that are compiled to EVM. Not only they
are imprecise, and modi�cation and optimisation in a compiler pipeline might break
those the analysis logic, that will have to be adapted accordingly.

What if the high-level contract language is what’s being deployed on the
blockchain? Such a design decision, adopted, for instance, by Scilla, has made it pos-
sible to state the gas boundaries in terms of the operational semantics describing
the evaluation of contracts in terms of the high-level language [83]. This choice can
potentially face a dual threat: the high-level gas boundaries can be invalidated if an
e�cient optimising compiler is implemented that signi�cantly reduces the projected
execution costs of certain commands.

That said, even though EVM is a low-level language, it is prone to the similar
potential issue, as it is no longer directly interpreted, but is compiled just-in-time
as a contract is being executed [36], hence the gas costs de�ned by its speci�cation
might be rendered inadequate. As another recent case study shows, this conjecture
is proven in practice, and the current ill-de�ned gas costs in Ethereum open it to
certain kinds of denial-of-service attacks [70].

1.7. STANDING RESEARCH PROBLEMS 19

One of the most promising approaches to balance the discrepancy between the
high-level and the low-level gas consumption is to employ the idea of Typed Assem-
bly Language [65] and type-preserving compilation.Wang’s PhDThesis [92] explores
this direction and achieves very promising results showing that one can have high-
level resource boundaries to be accurate translated to the boundaries for the low-
level code. The main disadvantages of the TAL-based resource analysis and compi-
lation are (a) the requirement to have an expressive enough (and usually very hard-
to-design) type system for the target language and (b) the need to preserve the typing
information across compiler optimisations.

1.7 STANDING RESEARCH PROBLEMS
Before concluding, we provide a list of what we believe are important (and yet un-
solved) problems in the programming language design for smart contracts.

Equivalence of account/balance and UTxO models. The choice of language
abstractions and static reasoning mechanisms to the large extent is determined by
the state model of the underlying consensus protocol: UTxO or account/balance.
While the former provides better opportunities for parallel execution and encour-
ages functional programming style, it makes it di�cult to implement arbitrary state
and, speci�cally, encode custom currencies in addition to the native one. That said,
to date it is unclear whether the choice of the underlying execution model impacts
the expressivity of the application layer. In other words, the conjecture of whether
the same set of contract-enabled applications can be encoded on top of both UTxO
and account/balance model.

Equivalenceofbank-centric andaccount-centricmodels. Move’s approach to
managing assets is di�erent from those of Solidity, Scilla, Obsidian and Flint’s in the
sence that it allocates the resources (i.e., the amounts of custom currencies) with the
accounts they belong to and piggy-backs on the runtime’s mechanism to ensure the
absence of duplication. In contrast, other languages’ approach forces each contract
that introduces a custom notion of a token to provide the functionality that controls
the distribution of the tokens between the users of the contract. Two models, there-
fore, appear to be complementary: while in account-centric model, the currency
de�nition is provided the rules only for splitting and joining the funds, while the
virtual machine takes care of enforcing the linearity, in the contract-centric model
all the accounting logic is implemented by the contracts themselves, which play the
roles of independent “banks”. A theoretical question to be answered is whether these
two models are equivalent in terms of expressivity, and also with regard to their de-
sired security properties, and, if so, can one automatically translate digital contracts
implemented in one of those paradigms into another one.

20 1. THE NEXT 700 SMART CONTRACT LANGUAGES

Adequate accounting of gas costs. We believe that the gas-aware nature of smart
contract programming poses some of the most interesting unsolved challenges in the
PL design and implementation.

The �rst problem that needs to be solved is addressing the discrepancies be-
tween the high-level and low-level languages in terms of the projected gas consump-
tion and the de�nitions of the gas costs. While we mention some ways to achieve
that in § 1.6.2, they are by no means a �nal solution. To wit, they cannot account
for the specialised hardware that might be employed by certain miners to decrease
the intrinsic cost of transaction processing, thus, giving then some unfair advantage.
Therefore, the ideal gas costs need to be amortised with regard to multiple ways of
executing the same contract commands.

The other challenge is to extend the gas allocation to other aspects of contract-
related transaction processing. For instance, EVM only charges gas for dynamic con-
tract execution, while Scilla also mandates the miners to type-check the contracts
upon deployment, as well as validate all the messages for the type information. This
imposes additional intrinsic transaction processing costs, which do not �t the gas
model of the smart contract language, yet need to be accounted for the same reasons
the gas price is put on contract executions. In the future, we foresee more validation
checks will need to be added to the mining routine. This is why a principled (non-
ad-hoc) solution for converting intrinsic execution costs of mining to the extrinsic
gas prices is very much desired.

1.8 CONCLUSION
Peter Landin’s seminal paper The Next 700 Programming Languages [57] stated
the following seminal thesis: “[...] we must systematise [language] design so that a
new language is a point chosen from a well-mapped space, rather than a labori-
ously devised construction”. This thesis is indeed applicable to the speci�c family of
programming languages used for implementing digital contracts.

We have surveyed what the essential concepts of smart contract intrinsics:
atomicity, communication, asset management, and resource accounting. We believe
that any language for smart contracts coming in the future will have to provide suit-
able abstractions for expressing and manipulating those concepts, which serve as a
set of basic blocks for building reliable and trustworthy blockchain applications.

21

Bibliography
[1] Securify. https://securify.chainsecurity.com/, accessed on Jan 2, 2019.

[2] æternity Blockchain. Sophia, 2019. https://github.com/aeternity/protocol/
blob/master/contracts/sophia.md.

[3] G. A. Agha. ACTORS - a model of concurrent computation in distributed sys-
tems. MIT Press series in arti�cial intelligence. MIT Press, 1990.

[4] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis. Chainspace:
A sharded smart contracts platform. In NDSS. The Internet Society, 2018.

[5] E. Albert, P. Gordillo, A. Rubio, and I. Sergey. Running on Fumes - Preventing
Out-of-Gas Vulnerabilities in Ethereum Smart Contracts Using Static Resource
Analysis. In VECoS, volume 11847 of LNCS, pages 63–78. Springer, 2019.

[6] J. Aldrich, J. Sunshine, D. Saini, and Z. Sparks. Typestate-oriented program-
ming. In OOPSLA (Companion), pages 1015–1022. ACM, 2009.

[7] G. Alfour. Introducing LIGO: a new smart contract language for Tezos,
2019. https://medium.com/tezos/introducing-ligo-a-new-smart-contract-
language-for-tezos-233fa17f21c7.

[8] J. Alois. Ethereum Parity Hack May Impact ETH 500,000 or $146 Million,
2017. https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-
hack-may-impact-eth-500000-146-million/.

[9] L. Alt and C. Reitwießner. SMT-Based Veri�cation of Solidity Smart Contracts.
In ISoLA, volume 11247 of LNCS, pages 376–388. Springer, 2018.

[10] S. Amani, M. Bégel, M. Bortin, and M. Staples. Towards verifying Ethereum
smart contract bytecode in Isabelle/HOL. In CPP, pages 66–77. ACM, 2018.

[11] M. D. Angelo and G. Salzer. A Survey of Tools for Analyzing Ethereum Smart
Contracts. In IEEE International Conference onDecentralizedApplications and
Infrastructures, DAPPCON, pages 69–78. IEEE, 2019.

[12] J. Armstrong. A history of Erlang. In Proceedings of the Third ACM SIGPLAN
History of Programming Languages Conference (HOPL-III), pages 1–26. ACM,
2007.

https://securify.chainsecurity.com/
https://github.com/aeternity/protocol/blob/master/contracts/sophia.md
https://github.com/aeternity/protocol/blob/master/contracts/sophia.md
https://medium.com/tezos/introducing-ligo-a-new-smart-contract-language-for-tezos-233fa17f21c7
https://medium.com/tezos/introducing-ligo-a-new-smart-contract-language-for-tezos-233fa17f21c7
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/
https://www.crowdfundinsider.com/2017/11/124200-ethereum-parity-hack-may-impact-eth-500000-146-million/

22 1. THE NEXT 700 SMART CONTRACT LANGUAGES

[13] N. Atzei, M. Bartoletti, and T. Cimoli. A Survey of Attacks on Ethereum Smart
Contracts (SoK). In POST, volume 10204 of LNCS, pages 164–186. Springer,
2017.

[14] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meiklejohn, and
G. Danezis. SoK: Consensus in the Age of Blockchains. pages 183–198, 2019.

[15] K. Bansal, E. Koskinen, and O. Tripp. Automatic Generation of Precise and
Useful Commutativity Conditions. In TACAS, volume 10805 of LNCS, pages
115–132. Springer, 2018.

[16] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Gollamudi, G. Gonthier,
N. Kobeissi, N. Kulatova, A. Rastogi, T. Sibut-Pinote, N. Swamy, and S. Zanella-
Béguelin. Formal Veri�cation of Smart Contracts: Short Paper. In PLAS, pages
91–96. ACM, 2016.

[17] Bitcoin Wiki. Bitcoin Script, 2017. https://en.bitcoin.it/wiki/Script, ac-
cessed on Apr 5, 2019.

[18] S. Blackshear, E. Cheng, D. L. Dill, V. Gao, B. Maurer, T. Nowacki, A. Pott,
S. Qadeer, Rain, D. Russi, S. Sezer, T. Zakian, and R. Zhou. Move: A language
with programmable resources, 2019. https://developers.libra.org/docs/as
sets/papers/libra-move-a-language-with-programmable-resources.pdf.

[19] V. Buterin. A Next Generation Smart Contract & Decentralized Application
Platform, 2013. https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf/.

[20] M. M. T. Chakravarty, J. Chapman, K. MacKenzie, O. Melkonian, M. P. Jones,
and P. Wadler. The extended UTXO model. volume 12063 of LNCS. Springer,
2020.

[21] J. Chang, B. Gao, H. Xiao, J. Sun, and Z. Yang. scompile: Critical path identi�-
cation and analysis for smart contracts. CoRR, abs/1808.00624, 2018.

[22] T. Chen, X. Li, X. Luo, and X. Zhang. Under-optimized smart contracts de-
vour your money. In IEEE 24th International Conference on Software Anal-
ysis, Evolution and Reengineering, SANER, pages 442–446. IEEE Computer
Society, 2017.

[23] M. Coblenz. Obsidian: A Safer Blockchain Programming Language. In ICSE
(Companion), pages 97–99. IEEE Press, 2017.

[24] M. J. Coblenz, R. Oei, T. Etzel, P. Koronkevich, M. Baker, Y. Bloem, B. A.
Myers, J. Sunshine, and J. Aldrich. Obsidian: Typestate and assets for safer
blockchain programming. CoRR, abs/1909.03523, 2019.

https://en.bitcoin.it/wiki/Script
https://developers.libra.org/docs/assets/papers/libra-move-a-language-with-programmable-resources.pdf
https://developers.libra.org/docs/assets/papers/libra-move-a-language-with-programmable-resources.pdf
https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf/

1.8. CONCLUSION 23

[25] Coq Development Team. The Coq Proof Assistant Reference Manual - Version
8.10, 2019. http://coq.inria.fr.

[26] P. Cousot and R. Cousot. Abstract Interpretation: A Uni�ed Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL, pages 238–252. ACM, 1977.

[27] K. Crary and M. J. Sullivan. Peer-to-peer a�ne commitment using Bitcoin. In
PLDI, pages 479–488. ACM, 2015.

[28] A. Das, S. Balzer, J. Ho�mann, and F. Pfenning. Resource-aware session types
for digital contracts. CoRR, abs/1902.06056, 2019.

[29] A. Das, J. Ho�mann, and F. Pfenning. Work analysis with resource-aware ses-
sion types. In LICS, pages 305–314. ACM, 2018.

[30] M. del Castillo. The DAO Attacked: Code Issue Leads to $60 Million Ether
Theft, 2016. https://www.coindesk.com/dao-attacked-code-issue-leads-60-
million-ether-theft/, accessed on Dec 2, 2017.

[31] C. Dong, Y.Wang, A. Aldweesh, P.McCorry, and A. vanMoorsel. Betrayal, Dis-
trust, and Rationality: Smart Counter-Collusion Contracts for Veri�able Cloud
Computing. In CCS, pages 211–227. ACM, 2017.

[32] Ethereum Foundation. Decentralized Autonomous Organization, 2018. https:
//www.ethereum.org/dao.

[33] Ethereum Foundation. Vyper, 2018. https://vyper.readthedocs.io.

[34] Ethereum Foundation. Solidity documentation, 2019. http://solidity.readt
hedocs.io.

[35] E. Foundation. Safety – EthereumWiki, 2018. https://github.com/ethereum/
wiki/wiki/Safety.

[36] E. Foundation. The Ethereum EVM JIT, 2019. https://github.com/ethereum/
evmjit.

[37] J. Girard. Linear logic. Theor. Comput. Sci., 50:1–102, 1987.

[38] N. Grech, M. Kong, A. Jurisevic, L. Brent, B. Scholz, and Y. Smaragdakis. Mad-
Max: surviving out-of-gas conditions in Ethereum smart contracts. PACMPL,
2(OOPSLA):116:1–116:27, 2018.

http://coq.inria.fr
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/
https://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/
https://www.ethereum.org/dao
https://www.ethereum.org/dao
https://vyper.readthedocs.io
http://solidity.readthedocs.io
http://solidity.readthedocs.io
https://github.com/ethereum/wiki/wiki/Safety
https://github.com/ethereum/wiki/wiki/Safety
https://github.com/ethereum/evmjit
https://github.com/ethereum/evmjit

24 1. THE NEXT 700 SMART CONTRACT LANGUAGES

[39] I. Grishchenko, M. Ma�ei, and C. Schneidewind. A Semantic Framework for
the Security Analysis of Ethereum Smart Contracts. In POST, volume 10804 of
LNCS, pages 243–269. Springer, 2018.

[40] S. Grossman, I. Abraham, G. Golan-Gueta, Y. Michalevsky, N. Rinetzky, M. Sa-
giv, and Y. Zohar. Online detection of e�ectively callback free objects with
applications to smart contracts. PACMPL, 2(POPL), 2018.

[41] E. Gün Sirer. Reentrancy Woes in Smart Contracts, 2016.

[42] P. Haller and F. Sommers. Actors in Scala - concurrent programming for the
multi-core era. Artima, 2011.

[43] M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan
Kaufmann, 2008.

[44] Y. Hirai. Bamboo, 2018. https://github.com/pirapira/bamboo.

[45] J. Ho�mann, A. Das, and S. Weng. Towards automatic resource bound analysis
for OCaml. In POPL, pages 359–373. ACM, 2017.

[46] J. Ho�mann and Z. Shao. Type-based amortized resource analysis with integers
and arrays. In FLOPS, volume 8475 of LNCS, pages 152–168. Springer, 2014.

[47] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type dis-
cipline for structured communication-based programming. In ESOP, volume
1381 of LNCS, pages 122–138. Springer, 1998.

[48] IOHK Foundation. Marlowe: A Contract Language For The Financial World,
2019. https://testnet.iohkdev.io/marlowe/.

[49] IOHK Foundation. Plutus: A Functional Contract Platform, 2019. https://te
stnet.iohkdev.io/plutus/.

[50] J. Johannsen and A. Kumar. Introducing the ZIL Cash�ow Smart Contract Anal-
yser, 2019. Blog post available at https://blog.zilliqa.com/introducing-the-
zil-cashflow-smart-contract-analyser-ded8b4d84362.

[51] S. Kalra, S. Goel, M. Dhawan, and S. Sharma. Zeus: Analyzing safety of smart
contracts. In NDSS, 2018.

[52] A. Kennedy. Relational parametricity and units of measure. In POPL, pages
442–455. ACM Press, 1997.

https://github.com/pirapira/bamboo
https://testnet.iohkdev.io/marlowe/
https://testnet.iohkdev.io/plutus/
https://testnet.iohkdev.io/plutus/
https://blog.zilliqa.com/introducing-the-zil-cashflow-smart-contract-analyser-ded8b4d84362
https://blog.zilliqa.com/introducing-the-zil-cashflow-smart-contract-analyser-ded8b4d84362

1.8. CONCLUSION 25

[53] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably se-
cure proof-of-stake blockchain protocol. In CRYPTO, Part I, volume 10401 of
LNCS, pages 357–388. Springer, 2017.

[54] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford. Om-
niledger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE
Symposium on Security and Privacy, SP, pages 583–598. IEEE Computer So-
ciety, 2018.

[55] A. Kolluri, I. Nikolic, I. Sergey, A. Hobor, and P. Saxena. Exploiting the laws of
order in smart contracts. In ISSTA, pages 363–373. ACM, 2019.

[56] J. Krupp and C. Rossow. teether: Gnawing at ethereum to automatically exploit
smart contracts. In USENIX Security Symposium, pages 1317–1333. USENIX
Association, 2018.

[57] P. J. Landin. The next 700 programming languages. Commun. ACM, 9(3):157–
166, 1966.

[58] L. Luu, D. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart contracts
smarter. In CCS, pages 254–269. ACM, 2016.

[59] L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena. A secure
sharding protocol for open blockchains. In CCS, pages 17–30. ACM, 2016.

[60] N. A. Lynch and M. R. Tuttle. An Introduction to Input/Output Automata. CWI
Quarterly, 2:219–246, 1989.

[61] M. Marescotti, M. Blicha, A. E. J. Hyvärinen, S. Asadi, and N. Sharygina. Com-
puting Exact Worst-Case Gas Consumption for Smart Contracts. In ISoLA, vol-
ume 11247 of LNCS, pages 450–465. Springer, 2018.

[62] P.McCorry, A.Hicks, and S.Meiklejohn. Smart Contracts for BribingMiners. In
Financial Cryptography and Data Security - FC 2018 International Workshops,
volume 10958 of LNCS, pages 3–18. Springer, 2019.

[63] P. McCorry, S. F. Shahandashti, and F. Hao. A smart contract for boardroom
voting withmaximum voter privacy. In FC, volume 10322 of LNCS, pages 357–
375. Springer, 2017.

[64] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer, 1980.

[65] J. G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F to Typed
Assembly Language. In POPL, pages 85–97. ACM, 1998.

26 1. THE NEXT 700 SMART CONTRACT LANGUAGES

[66] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008. Abailable
at http://bitcoin.org/bitcoin.pdf.

[67] I. Nikolić, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor. Finding The Greedy,
Prodigal, and Suicidal Contracts at Scale. In ACSAC, pages 653–663. ACM,
2018.

[68] OCaml PRO. Liquidity, 2019. https://www.liquidity-lang.org/.

[69] R. O’Connor. Simplicity: A New Language for Blockchains, 2017. https://bl
ockstream.com/simplicity.pdf.

[70] D. Pérez and B. Livshits. Broken metre: Attacking resource metering in EVM.
CoRR, abs/1909.07220, 2019.

[71] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M. Vechev.
VerX: Safety Veri�cation of Smart Contracts. In IEEE Symposium on Security
and Privacy SP, 2020.

[72] B. C. Pierce. Types and programming languages. MIT Press, 2002.

[73] G. Pîrlea and I. Sergey. Mechanising Blockchain Consensus. In CPP, pages
78–90. ACM, 2018.

[74] RChain Cooperative. Rholang, 2019. https://rholang.rchain.coop.

[75] C. Reitwiessner. Babbage—amechanical smart contract language, 2017. Online
blog post.

[76] M. Rodler,W. Li, G. O. Karame, and L. Davi. Sereum: Protecting Existing Smart
Contracts Against Re-Entrancy Attacks. In NDSS, 2019.

[77] F. Schrans. Writing safe smart contracts in �int. Master’s thesis, Imperial College
London, Department of Computing, 2018.

[78] F. Schrans, S. Eisenbach, and S. Drossopoulou. Writing safe smart contracts in
Flint. In <Programming> (Companion), pages 218–219. ACM, 2018.

[79] P. L. Seijas, S. J. Thompson, and D. McAdams. Scripting smart contracts for
distributed ledger technology. IACR Cryptology ePrint Archive, 2016.

[80] I. Sergey and A. Hobor. A Concurrent Perspective on Smart Contracts. In
WTSC, volume 10323 of LNCS, pages 478–493. Springer, 2017.

[81] I. Sergey, A. Kumar, and A. Hobor. Scilla: a Smart Contract Intermediate-Level
LAnguage. CoRR, abs/1801.00687, 2018.

http://bitcoin.org/bitcoin.pdf
https://www.liquidity-lang.org/
https://blockstream.com/simplicity.pdf
https://blockstream.com/simplicity.pdf
https://rholang.rchain.coop

1.8. CONCLUSION 27

[82] I. Sergey, A. Kumar, and A. Hobor. Temporal Properties of Smart Contracts. In
ISoLA, volume 11247 of LNCS, pages 323–338. Springer, 2018.

[83] I. Sergey, V. Nagaraj, J. Johannsen, A. Kumar, A. Trunov, andK. C. G. Hao. Safer
smart contract programming with Scilla. PACMPL, 3(OOPSLA):185:1–185:30,
2019.

[84] F. Sun. UTXO vs Account/Balance Model, 2018. Online blog post, available
at https://medium.com/@sunflora98/utxo-vs-account-balance-model-5e6470f
4e0cf.

[85] N. Szabo. Smart Contracts, 1994. Online manuscript.

[86] Tezos Foundation. Michelson: the language of Smart Contracts in Tezos, 2018.
http://tezos.gitlab.io/mainnet/whitedoc/michelson.html.

[87] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko,
and Y. Alexandrov. SmartCheck: Static Analysis of Ethereum Smart Contracts.
InWETSEB@ICSE, pages 9–16. ACM, 2018.

[88] A. Trunov. A scilla vs move case study, 2019. Blog post available at https:
//medium.com/@anton_trunov/a-scilla-vs-move-case-study-afa9b8df5146.

[89] P. Tsankov, A. M. Dan, D. Drachsler-Cohen, A. Gervais, F. Bünzli, and M. T.
Vechev. Securify: Practical security analysis of smart contracts. In CCS, pages
67–82. ACM, 2018.

[90] D. N. Turner, P. Wadler, and C. Mossin. Once upon a type. In FPCS, pages
1–11. ACM, 1995.

[91] P. Wadler. A taste of linear logic. In Mathematical Foundations of Computer
Science 1993, 18th International Symposium, MFCS’93, volume 711 of LNCS,
pages 185–210. Springer, 1993.

[92] P. Wang. Type System for Resource Bounds with Type-Preserving Compilation.
PhD thesis, Massachusetts Institute of Technology, 2019.

[93] P. Wang, D. Wang, and A. Chlipala. TiML: a functional language for practical
complexity analysis with invariants. PACMPL, 1(OOPSLA):79:1–79:26, 2017.

[94] G. Wood. Ethereum: A Secure Decentralized Generalised Transaction Ledger,
2014.

[95] Zilliqa Team. The Zilliqa Technical Whitepaper, 2017. Version 0.1.

https://medium.com/@sunflora98/utxo-vs-account-balance-model-5e6470f4e0cf
https://medium.com/@sunflora98/utxo-vs-account-balance-model-5e6470f4e0cf
http://tezos.gitlab.io/mainnet/whitedoc/michelson.html
https://medium.com/@anton_trunov/a-scilla-vs-move-case-study-afa9b8df5146
https://medium.com/@anton_trunov/a-scilla-vs-move-case-study-afa9b8df5146

	The Next 700 Smart Contract Languages
	Introduction
	What we will discuss
	What we will not discuss

	Background
	The Subtleties of the Crowdfunding Contract
	Reasoning about Contract Properties
	Contract Execution Models
	Gas Accounting
	On the Role of Types

	Enforcing Contract Invariants
	Structuring Communication
	It's All about Money
	Execution Costs and Gas Accounting
	Controlling Gas Consumption with PL Techniques
	Gas Consumption and Compilation

	Standing Research Problems
	Conclusion

