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Abstract
Domain-Specific Languages (DSLs) are a popular way to sim-
plify and streamline programmatic solutions of commonly
occurring yet specialized tasks. While the design of frame-
works for implementing DSLs has been a popular topic of
study in the research community, significantly less atten-
tion has been given to studying how those frameworks end
up being used by practitioners and assessing utility of their
features for building DSLs “in the wild”.

In this paper, we conduct such a study focusing on a partic-
ular framework for DSL construction: the Racket program-
ming language. We provide (a) a novel taxonomy of lan-
guage design intents enabled by Racket-embedded DSLs, and
(b) a classification of ways to utilize Racket’s mechanisms
that make the implementation of those intents possible. We
substantiate our taxonomy with an analysis of 30 popular
Racket-based DSLs, discussing how they make use of the
available mechanisms and accordingly achieve their design
intents. The taxonomy serves as a reusable measure that can
help language designers to systematically develop, compare,
and analyze DSLs in Racket as well as other frameworks.

CCS Concepts: • Software and its engineering → Do-
main specific languages.
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1 Introduction
When developing software, programmers oftenwant domain-
specific languages (DSLs) that are tailored for the problem
at hand: such as using “regex” languages to express regular
expressions, make-like DSLs for expressing build dependen-
cies, or SQL languages for relational queries. Unfortunately,
constructing such DSLs from scratch can be a challenge,
because it requires the developer to write a front-end with
a parser, lexer, etc., as well as suitable libraries and defini-
tions for use within the language itself. These challenges
can dissuade a developer from creating and using a DSL.
The Racket programming language [12] addresses this chal-
lenge and aims to popularize and streamline the development
of DSLs. Racket encourages its users to embed their DSLs
within the language itself, and it supports a litany of fea-
tures to simplify this process. Most prominently, it supports
customizable parsers and macro-based metaprogramming
support to define a DSL’s syntax, and it provides a module
system for reusing libraries between different embedded lan-
guages. Together, these facilities provide a framework for
language-oriented programming.
The past decade has seen both the Racket language and

ecosystemmature and flourish, with contributions both from
researchers extending the language and from developers
using these features to build new DSLs. The research side
includes work that extends Racket with new techniques and
facilities to support DSL construction: support for debugging
macros [9], tooling for writing macros with robust error
handling [10] or ensuring hygienic treatment of scope and
variables [15], and recently a framework for constructing
macro-based DSLs that are also extensible by end users [3].
At the same time, the Racket ecosystem has seen a steady
flow of new users and developers adopting the language-
oriented paradigm and building their own DSLs in Racket.
For example, at the time of writing, the Racket Package Index
lists a substantial number of 2106 packages [32], providing
libraries and DSLs for others to use.

Given the state of the ecosystem, it is possible to now pose
interesting questions about its use. Most importantly, are the
various macro-programming facilities that Racket provides
for language design actually used “in the wild”? And if so,
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what specific intents of the language designers themselves
are effectively supported by Racket facilities? The answers
to these questions have previously been unknown; to the
best of our knowledge, no prior work has conducted any
study of the real-world use of Racket mechanisms across its
ecosystem or how they are employed in practice by language
designers to implement their DSLs.

In this paper, we answer these questions by performing a
study of the real-world uses of Racket for designing DSLs,
presenting our findings from the perspective of a language
designer and investigating how the various features of Racket
are employed in practice to facilitate the goals of language
design. The main contributions of this work are as follows:

• We identify a family of language design intents—implicit
goals that a language designer has in mind with regard
to how their language will look and feel—and present
a systematic taxonomy based on a study of the Racket
ecosystem (Sec. 3).

• For each of these design intents, we investigate and clas-
sify how the various features of Racket can be and are
employed to achieve them (Sec. 4). We provide example im-
plementations of DSLs using those mechanisms to achieve
each design intent.

• Finally, using this classification system, we provide an
extensive analysis of the 30 popular DSLs from the Racket
ecosystem in terms of design intents and mechanisms. We
also present a number of suggestions for future work for
the Racket developers, its users, and the programming
language research community (Sec. 5).

2 A Racket DSL: the User’s Perspective
Self-styled as a programming-language programming lan-
guage [12], the Racket ecosystem seeks to provide a meta-
programming framework for creating DSLs. In the context
of designing DSLs, what differentiates Racket from other
languages is in its ability to empower its users—i.e., DSL
authors—to easily change and customize the look and feel of
their DSLs. In particular, Racket allows DSL authors to both
adopt an arbitrary syntax for their DSL and to piggy-back on
top of Racket, allowing them to use Racket’s metaprogram-
ming facilities to define custom semantics for their programs.
This approach of embedding DSLs into Racket, rather than
writing them from scratch, enables language authors to take
advantage of Racket’s own rich ecosystem while also being
able to fully customize the way the DSL code is processed
and run, all without implementing a full-fledged language
from scratch. In this section, to illustrate the main compo-
nents of Racket’s approach to DSL design, we will provide a
step-by-step walk-through of Racket’s meta-programming
capabilities from the perspective of an end user, program-
ming a simple game as a running example.

2.1 A Racket Primer

Fig. 1. Clickomania screen

Consider the task of develop-
ing a “Clickomania” game in
Racket. Clickomania is a one-
player, logical game where
a board is populated with
blocks of different colors or
images, as shown in Fig. 1.
At each turn, the player is al-
lowed to remove all adjacent
blocks of the same color or
image around a given block.
In this game, the player’s

goal is to clear as many blocks as possible from the board. To
implement the game, the developer will need to develop func-
tions that encode its various logical and graphical aspects.
These include operations such as choosing random images,
resizing images based on the frame or the block size, setting
background images, removing blocks when they are adjacent
and are of the same image or color, calculating scores upon
removal, populating images in the empty blocks, running
the game itself, and many more. Due to the number and
complexity of these adjustments, it would be inconvenient
and tedious to package these routines into a small number of
functions with multiple parameters. Instead, a customizable
Clickomania would be far more suited as a candidate for a
dedicated DSL.

To begin, consider two particular functions from the Click-
omania implementation. The first one encodes the internal
behavior of the game itself, while the second one customizes
images for rendering the user interface. Fig. 2 shows these
functions implemented in vanilla Racket. We first specify a
record type wstate to represent the game state, containing
fields for an (𝑥,𝑦) coordinate of a mouse click, a counter
to add up the number of mouse clicks, an image that rep-
resents a group of live blocks, a remaining number of live
blocks, and an accumulated score (line 3). We also create
a global variable curr-idxs, which is a mutable matrix—a
list of lists—of indexes to keep track of states of blocks. The
matrix is populated with randomly chosen indexes based
on the number of colors and the total number of blocks
(lines 5-7). To encode the behavior of removing same images
which are represented with their respective index numbers,
the negate-same-indexes-around function first collects
indexes of images that are adjacent in lst (lines 10-13), re-
cursively traverses the adjacent blocks and collect all the
column and row indexes of the blocks to negate (lines 15-
16), and negates all the indexes of the collected blocks (lines
19-20). Subsequently, this function is used to update the cur-
rent game state of type wstate upon each mouse click input,
thereby populating the new game screen.

To customize images for background as well as the blocks,
the function adjust-image-with-path resizes images by
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1 #lang racket

2 (require 2htdp/image)

3 (define-struct wstate [position counter image remaining score])

4

5 (define curr-idxs ; (Listof (Listof Number))

6 (let ([idxs (choose-rand-idxs num-colors num-blocks)])

7 (lst- >lstlst idxs edge-size)))

8

9 (define (negate-same-indexes-around col-row curr-idx)

10 (let* ([lst (if (= -2 curr-idx)

11 (list) ; If empty (-2), return empty list

12 (list (col-row- >u col-row) (col-row- >d col-row)

13 (col-row- >l col-row) (col-row- >r col-row)))]

14 ; Traverse adjacent blocks and collect col-row 's to negate

15 [col-rows-to-negate (collect-col-rows-to-negate

16 lst curr-idx (list col-row))]

17 [num-negate-blocks (length col-rows-to-negate)])

18 ; Negate indexes in curr-idxs based on col-rows-to-negate

19 (for ([ col-row col-rows-to-negate ])

20 (set-at col-row -1))

21 (* num-negate-blocks block-score)))

22

23 (define (adjust-image-with-path target-size img-path)

24 (let* ([img (bitmap/file img-path)]

25 [img-width (image-width img)]

26 [img-height (image-height img)])

27 ; Return an image whose width and height are equal to targe-size

28 (scale/xy (/ target-size img-width)

29 (/ target-size img-height) img)))

Fig. 2. Selected parts of the Clickomania game in vanilla Racket

adjusting the width and height of an image, provided with its
path (img-path), based on a target length (target-size). It
returns a resized image, as shown at lines 23-29 in Fig. 2. No-
tice that the functions negate-same-indexes-around and
adjust-image-with-path are needed in any Clickomania
game, in addition to other functions for encoding the above-
mentioned logics (e.g., choosing random images, populating
images in the empty blocks, etc). This does not mean, how-
ever, that anyone who wants to create the game needs to
implement all of them from scratch. Instead, one can build
games by accessing negate-same-indexes-around directly
or via a function run that incorporates all of the logic needed
for running a game’s instance.

2.2 Removing Boilerplate with a DSL
Let us see how creating the same game would differ using
a dedicated clickomania DSL. The entire code is shown
in Fig. 3. A function called set-background-image sets the
background image, and run performs all the internal be-
haviors mentioned above, starting the game. Given these
two functions and adjust-image-with-path from Sec. 2.1,
they can be packaged together as the DSL bindings (i.e., user-
accessible identifiers) that one can use to create a game with
a selected image resized and set as a background. Adjusting

an image based on the frame size and setting it as the back-
ground can be simply done using adjust-image-with-path
and set-background-image, as shown at lines 3-4 of Fig. 3.
While the design of the Clickomania DSL is arguably con-
cerned with a relatively simple problem domain, the benefits
of abstraction are more visible for more complex domains
and their operations. For example, Verilog [36] is a DSL de-
signed for digial systems, enabling its users to easily describe
complex electronic circuits for verification and testing.

2.3 Adding Custom Syntax
Not every developer is comfortable with Racket’s syntax
based on S-expressions. For instance, those familiar with
C/Java-like languages might prefer grouping of statements
using curly braces, which are understood as normal paren-
theses in vanilla Racket (though typically recommended for
a specific use [17]). In Racket, this particular syntax can be
accommodated easily, as shown in Fig. 4 (lines 4-9), which
creates a new image by rotating an image and overlaying it
on top of another, following with setting it up and running
a game instance.
Customizing the DSL syntax in Racket is made possible

by its meta-programming capabilities, including language
front-end tools that are part of the Racket’s standard libraries.
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1 #lang clickomania

2

3 (define sunset (adjust-image-with-path 500 "./ sunset.png"))

4 (set-background-image sunset)

5 (run 500 5 #:theme "candy" #:num-colors 4 #:num-clicks 10)

Fig. 3. Clickomania game instance implemented in the clickomania DSL

1 #lang clickomania

2

3 (define (create-background-image bsize bg-img-path img-path)

4 (if (<= 400 bsize) {

5 (define back-img (adjust-image-with-path bsize bg-img-path))

6 (define img (adjust-image-with-path (* bsize 0.8) img-path))

7 (define rotated-img (rotate -5 bimage))

8 (underlay back-img rotated-img)

9 }

10 (adjust-image-with-path bsize bg-img-path)))

11

12 (define sunset-cloud (create-background-image 500 "./ sunset.png" "./ cloud.png"))

13 (set-background-image sunset-cloud)

14 (run 500 5 #:theme "candy" #:num-colors 4 #:num-clicks 10)

Fig. 4. A clickomania program using curly braces for a block of statements.

DSL Source Code Syntax Object Fully Expanded 
Syntax Object

Reader Expander
read-syntax

readtable
bindings

interposition points

Fig. 5. From DSL source code to Racket; components beneath the arrows are explained in Sec. 4.

We discuss the details of how to enable the syntax of Fig. 4
(and more) in Sec. 4. For now, let us take a brief look at the
underlying pipeline of converting a program in DSL into
forms that can be processed by Racket’s compiler to produce
executable code, as shown in Fig. 5.
Racket builds on the traditional Lisp split of syntax han-

dling into two layers: the reader and the expander [21]. DSL
authors can extend or replace the reader, and they customize
the expander’s behavior by binding names in the expander’s
environment. A reader is a DSL-specific parser that converts
its code into the Racket notation based on S-expressions,
known as a syntax objects—data components containing the
source code fragment itself, along with its metadata such as
source location. In Racket, the reader is imported with the
rest of the DSL implementation from the respective module
using the #lang line. The rest of the file following #lang
is parsed following its rules. Once the reader generates a
syntax object, it gets passed to the expander, responsible for
rewriting its syntax object into the Scheme-like core forms
that are understood by the compiler. The expansion process
relies on bindings in the lexical environment of a term as
defined and implemented by a DSL designer.

Going back to the earlier clickomania code in Fig. 4, sup-
port for curly braces is achieved using the reader customiza-
tion. At the same time, customizing the expander environ-
ment is a matter of defining macros, i.e., compile-time func-
tions that transform one syntax object to another. In the light
of this explanation, we now look at what other language-
specific behaviors that we can achieve via DSL embedding.

2.4 Tailoring Language-Specific Behavior
Using the meta-programming features of Racket, we can cus-
tomize the behavior of DSL programs through imported and
exported bindings, allowing an interaction between vanilla
Racket code and DSL constructs. As a first example of this
feature, we can make any clickomania program export a
definition of game-info, shown in Fig. 6, for using in client
applications. A failure to provide a binding for game-info
when defining a game instance will cause the compilation
of the clickomania program to break, triggering an error
message that game-info is missing. This exporting con-
straint is achieved via clickomania’s expander environment
(cf. Sec. 4.3) by defining a macro that controls how an overall
module body is used. In particular, the macro accommodates
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1 #lang clickomania

2 (provide run

3 create-background-image)

4

5 (define (game-info)

6 (game-title "Tame Same Game")

7 (game-author "Racketeer")

8 (values (game-title) (game-author)))

config.rkt

Fig. 6. clickomania program with a binding for game-info

the module body’s expansion to provide (i.e., export) the
game-info definition. Accordingly, when the module from
Fig. 6 is imported by another program (line 2, Fig. 8), the
game-info binding becomes automatically available in the
importing program, as illustrated by the usage of game-info
binding at line 4 in Fig. 8.
Second, we can write macros in the DSL to extend the

set of language constructs, perform static checking, or both.
As an example of simple static checking, Fig. 7 includes
a macro named adjust-image-with-path-macro, which
matches the input syntax stx against an AST pattern involv-
ing two arguments size and path that should respectively
belong to the number and string syntax classes. Those syn-
tax classes constrain the syntax to immediate number and
string literals. Here, we use macro-generating terms such
as syntax-parse [10] without having to import additional
libraries that contain the terms, as shown at line 6 in Fig. 7.
When the pattern matching succeeds, the macro rewrites, or
expands to, the pattern with a template that calls the function
adjust-image-with-path such as the one defined in Fig. 2
at lines 23-29. The constraint in this example is simple, but
macros can be provided as DSL bindings to allow for the
compile-time checking of various statically enforced poli-
cies, ranging from syntactic well-formedness of inputs to
full-blown type systems [6].
Another behavior we can enforce via DSL is the ability

to write Racket code in the DSL as in vanilla Racket. In
Clickomania, any code that does not involve curly brackets
{} is treated the same as vanilla Racket code. The interplay
is more complex in some languages, as we will see in DSLs
like rash in Sec. 3. We could similarly design clickomania
in a way that disallows its users from being able to read or
write Racket code whatsoever.

Separate from whether DSL syntax and Racket syntax
can be mixed statically, DSL and Racket can cooperate to
different degrees dynamically. In case of clickomania, we
want the DSL to be interoperable with Racket. That means
we can create a Racket program that uses clickomania code
at runtime, e.g., by creating an interactive GUI for some
application in Fig. 8, where a button widget is used to trigger
a Clickomania game from Fig. 6. Specifically, this interaction

1 #lang clickomania

2 (provide adjust-image-with-path-macro)

3 ; 'game-info ' defined somewhere here

4 (define-syntax (adjust-image-with-path-macro

stx)

5 (syntax-parse stx

6 [(_ size:number path:string)

7 #'( adjust-image-with-path size path)]))

mac.rkt

Fig. 7. clickomania code featuring a Racket macro

1 #lang racket

2 (require racket/gui/base

3 "config.rkt")

4 (provide author)

5 (define-values (title author) (game-info))

6 (define bg-frame

7 (new frame%

8 [label (format "~a's Window" author)]))

9

10 ; Generate a game upon clicking a button

11 (define (on-button-click b e)

12 (set-background-image

13 (create-background-image 1000

14 "./ dirt.png" "./ tree.png"))

15 (run 1000 10 #:theme "gem"

16 #:num-colors 5 #:num-clicks 20))

17

18 (new button% [parent bg-frame]

19 [label (format "Play ~a!" title)]

20 [callback

21 (lambda (b e) (on-button-click b e))])

22 (send bg-frame show #t)

client.rkt

Fig. 8. Racket program creating a window where a button
click produces a Clickomania game

demonstrates using the results of calling run and game-info
to define the runtime behavior of the code from Fig. 8.

2.5 Putting it All Together
We wrap up this tour by showing how all the user-facing
aspects of Racket-embedded DSLs from Sec. 2.2–2.4 work to-
gether in a clickomania program in Fig. 9. First, we use
clickomania functions such as set-game-end-image or
run. Second, we use a modified syntax involving curly braces
to arrange a group of code at lines 12-22. Third, exportation
of game-info is enforced by the DSL. Although this enforce-
ment is not apparent through the code snippet alone, we ex-
plain how this is enabled in Sec. 4.3. Fourth, we use a macro
from Fig. 7 at line 11, as the DSL lets us write and work with
macros. Fifth, when using the macro, Racket’s macro facility
is used to statically check the validity of input arguments to
the adjust-image-with-path function at lines 5-8 in Fig. 7.
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1 #lang clickomania

2 (require "client.rkt" "mac.rkt" )

3

4 (define (game-info)

5 (game-title "Same Game Name")

6 (game-author author) ; 'author ' imported from client.rkt

7 (values (game-title) (game-author)))

8

9 (define (my-end-image size img-path txt)

10 (define bg ; Use a macro from mac.rkt

11 (adjust-image-with-path-macro size img-path))

12 (if (<= 200 size) { ; Return an image where a lambda is drawn

13 (define over-text (text/font txt (* 0.5 size) "white" #f

14 'modern 'italic 'normal #f))

15 (define-values (end mid) (values (- size 20) (/ size 2)))

16 (define line-drawn-bg (add-curve bg 20 20 0 1/3 end end 0 1/3 "white"))

17 (underlay (add-curve line-drawn-bg mid mid 0 0 20 end 0 0 "white")

18 (text/font txt (* 0.1 size) "white" #f

19 'modern 'italic 'normal #f))

20 } bg))

21 (set-game-end-image (my-end-image 200 "./ neon-grid.png" "Try again"))

22 (run 400 4 #:num-colors 3 #:num-refills 3)

Fig. 9. clickomania program generating a Clickomania game with a personalized ending image

Sixth, as we implicity use Racket language constructs (e.g.,
define, require, etc.) on top of Racket’s standard image li-
brary functions (e.g., text/font, add-curve, underlay), we
are able to read and write plain Racket code throughout the
program in Fig. 9. Lastly, we can let the DSL program inter-
act with Racket program by importing and using a binding
author from Fig. 8 at line 7.
In this section, we have seen what it’s like to use a DSL

embedded in Racket. Let us now dissect its design into a
series of intents (Sec. 3) and show how each of the intents
can be implemented in Racket (Sec. 4).

3 Language Design Intents
In this section, we present the first main contribution of
this paper: a general taxonomy of the main design intents
observed in use across real-world code found in the Racket
ecosystem. As seen through the Clickomania example in the
previous section, a language designer may have any number
of different implicit goals and objectives in mind when de-
signing their language. From a pragmatic perspective, it will
be useful to precisely categorize these. To this end, we have
identified seven design intents that capture the main goals
and objectives that we have seen in use by developers in the
Racket ecosystem (cf. Tab. 1). We gathered the list of intents
through manual inspection of popular DSLs in Racket.

In the rest of this section, we will describe each of these in-
tents in detail, contextualizing each by reference to how they
apply in one of the three selected real-world DSLs: (1) the
frog/config language for writing configuration files for a
static blog generator [26], (2) typed/racket, an extension

1 #lang frog/config

2

3 (define/contract (init) (-> any)

4 (current-title "My Blog"))

5 (define/contract (enhance-body xs)

6 (-> (listof xexpr/c) (listof xexpr/c))

7 (~> xs (syntax-highlight #:line-numbers? #t))

8 (define/contract (clean) (-> any) (void))

Fig. 10. frog/config code for a blog generator

to Racket language with types [39], and (3) rash, a shell-like
DSL for Racket [25]. While we cannot expect to capture all
possible intentions that motivate language design, we ex-
pect that this taxonomy will encompass the most common
objectives DSL authors have in mind when designing and
developing their languages—a conjecture we quantitatively
evaluate on a large corpus of case studies in Sec. 5.

3.1 Custom Syntax
The most obvious motivation for constructing a DSL is,
of course, to have a custom syntax. Racket’s default syn-
tax is inherited from its Lisp roots and based on heavily-
parenthesized S-expressions, providing a suite of expression
and definition forms for functions, datatypes, etc., which
can be quite verbose and might drive some users to seek
alternatives. As we shall see, the three selected languages all
embody the main different choices in this design space.
To begin with, the frog/config language (cf. Fig. 10) is

an example of a DSL that opts not to change the default
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Table 1. Description of language design intents

Design Intent Description

Custom Syntax (§3.1) Custom-built syntax that differs from Racket’s default syntax

Custom Semantics (§3.2) DSL-specific meanings assigned to the language constructs

Import/Export Control (§3.3) Management of import- and/or export-related behaviors

Macro Support (§3.4) Language facility to write and work with macros

Syntactic Embeddability (§3.5) Ability to syntactically embed Racket into the DSL

Interoperability (§3.6) Ability to work with Racket code at runtime

Static Checking (§3.7) Analysis of certain properties at compile time

syntax at all by fully retaining the host language’s character-
istic Lisp-based S-expression syntax. In particular, the syntax
for definitions, expressions and other forms are entirely un-
changed in this language and can be used verbatim as in
normal Racket code, fitting the purpose of frog/config
designed for writing configuration files.
The typed/racket (cf. Fig. 11) language, on the other

hand, presents a DSL with a slight deviation from the de-
fault Racket syntax, because it allows programs to include
a type-annotation form using the “:” symbol. In particular,
line 5 in the example snippet contains a type annotation
of the form (: <function-id> <function-type>) placed
before declaring the function. This annotation form is han-
dled and interpreted as a type for the corresponding func-
tion my-print-lst at the time of parsing, while the rest of
the program is parsed the same as in untyped racket. This
way, typed/racket retains similarity with its host language,
while, at the same time, extending the host language with
new forms needed for typing.

Finally, DSL authors may choose to diverge from Racket’s
default syntax altogether and incorporate non-S-expression-
based forms in their DSL, as illustrated by rash (cf. Fig. 12).
In fact, rash happens to be a nuanced point in this design
space, as its code is actually a mix of S-expressions, e.g. the
argument to ls at line 5, and non-S-expressions combining
both default Racket syntax as well as a custom one. This mir-
rors rash’s purpose as a shell language that can integrate
with Racket code, using the non-S-expression syntax for shell
commands and Racket syntax for Racket code. Of course,
the inclusion of Racket syntax in rash is a deliberate design
decision, not a requirement. Moreover, in practice, DSL au-
thors have developed languages with even more divergent
and esoteric syntax [19, 33, 41].

3.2 Custom Semantics
Beyond providing nicer front-ends for the user, the next
obvious design goal is in having a bespoke semantics for

programs written in the DSL. While most DSLs have cus-
tomized semantics, there is still some nuance to be found, as
shall be shown in the running examples.

Consider the frog/config code presented in Fig. 10.What
would happen if we were to write the same program in
vanilla Racket, i.e., change the line 1 to #lang racket? Al-
though programs written in frog/config mostly follow the
semantics of Racket, the DSL introduces some small and
subtle changes to Racket, in particular providing access to
additional identifiers that are not available in racket, such
as the functions current-title and syntax-highlight. In
this way, programs in the frog/config DSL can leverage
domain-specific functions where it makes sense, and other-
wise fall back to Racket’s semantics.

The typed/racket program in Fig. 11 again presents a
larger deviation on this front, introducing an entirely new
static semantics that is used to type-check the program. In
particular, the listing includes terms that are not bound to any
value or function in racket itself but only available for the
purposes of type-checking, such as define-type, Pairof,
String, Number, etc. Once type-checking is completed, then
similarly to the previous example, typed/racket leverages
the host language’s semantics to actually run the program.
Finally, the rash DSL exhibits a different choice in the

space of customized program semantics, and diverges further
and attempts to replicate the behaviors expected of a shell
scripting language. The language exposes commands such as
the pipe operator |, or the ls command as shown in Fig. 12
to the user, which are defined to behave like their shell coun-
terparts rather than as Racket functions, such as propagating
error codes in a pipeline, consuming from standard input, or
producing to standard output. Finally, as with the previous
examples, the rash language again reuses the vanilla Racket
semantics to give meaning to the vanilla Racket forms that
it allows users to integrate into the DSL.
These three examples demonstrate how DSLs in Racket

are able to provide a range of custom semantics by exposing
bindings tailored to be specific to their domains, but also can

90



SLE ’24, October 20–21, 2024, Pasadena, CA, USA Yunjeong Lee, Kiran Gopinathan, Ziyi Yang, Matthew Flatt, and Ilya Sergey

1 #lang typed/racket

2

3 (define-type StrNum (Pairof String Number))

4

5 (: my-print-lst (-> (Listof StrNum) Void))

6 (define (my-print-lst lst)

7 (for ([elem lst])

8 (printf (car elem) (cdr elem))))

typed-fun.rkt

Fig. 11. Defining a typed function in typed/racket.

leverage the bindings provided by Racket itself to reuse parts
of its semantics as needed.1

3.3 Import/Export Control
Shifting away from syntax and semantics, we now move to
somemore nuanced aspects of language design, starting with
the control of imports and exports of a DSL. In particular, in
order to effectively shape the look and feel of their languages,
designers often need mechanisms to constrain and refine the
ways their users are allowed to import or export the DSL
code. This is especially the case as we have seen that the set
of exposed bindings, as imported and exported by libraries,
can heavily impact the semantics of the DSL itself, and so
users may be required to import or export certain bindings
or other DSL code in a specific manner. This kind of behavior
is demonstrated by DSLs with an import/export control as
part of their design objectives, as shown in DSLs such as
frog/config or typed-racket.
Returning back to our frog/config code in Fig. 10, in

order to ensure that the user has defined all the necessary
configuration variables to build the blog, the language itself
enforces this constraint as an export requirement. Omitting
any one of the three definitions, init, enhance-body, and
clean, will actually cause the program to fail to compile with
an error message that the user must provide a function for
the missing identifier. Moreover, the frog/config language
also prevents users from exporting any other bindings—these
would be irrelevant for website configuration—by prevent-
ing users from accessing Racket’s provide operator. Con-
sequently, the only accessible identifiers available from any
program written in frog/config will be the three that are
automatically exported by the configuration language.

The typed/racket DSL also introduces constraints on its
imports and exports, although in a different way. At first
glance, it may seem that users can simply import or ex-
port other typed/racket code just as in racket by using
require or provide. However, the underlying behaviors of
require and provide in typed/racket have been altered
to also incorporate type information when importing/export-
ing other code. For example, when importing from a vanilla
Racket library, the user must provide type ascriptions for
1The host language refers to racket or racket/base in #lang pragma.

1 #lang rash

2

3 echo "Hello rash"

4 echo Show hidden files or a long listing:

5 ls (if (even? (random 2)) '-a '-l) | tac

Fig. 12. Combining Racket and bash scripting in rash.

any bindings they introduce, while importing from another
typed/racket library places no constraints.

Finally, rash is an example of a DSL without any import/-
export control. As a shell scripting language, rash is de-
signed so that its users can write Racket code alongside
other shell scripts, and as such allows users to import or
export other code without constraints.

3.4 Macro Support
DSLs can allow their users to write and use their ownmacros
within DSL programs. There are two different flavors in
which this intent is manifested in DSLs: (1) letting the DSL
users to write macros just as in Racket and (2) making a
DSL-specific macro system available so that the users write
macros in the corresponding DSL. We can easily identify
the first case by noting if a DSL designed to be a language
on top of or used in combination with Racket. For instance,
consider the DSLs discussed in earlier sections. Since rash
can be understood as a shell language where users can also
read and write normal Racket code, the DSL clearly intends
its users to be able to enjoy Racket’s macro system. As a
typed language on top of Racket, typed/racket, is a DSL
that also belongs to this category, as it allows its users to
write Racket-like macros in typed/racket. On the other
hand, frog/config is intended for writing configuration
files for a blog generator, and is not meant to provide macro
support to its users. The second case of DSL-specific macro
system is identifiable by a language that provides macro-
generating terms that are custom-built in the DSL. This turns
out to be challenging to support, and is mostly found in DSLs
constructed for research [19, 27, 28].

3.5 Syntactic Embeddability
In addition to providing macro support, a DSL can be de-
signed to let its users read and write its host language code
as is in the host language within the DSL program. When
a DSL is flexible enough to allow its host language, Racket,
to be embedded syntactically, the DSL is claimed to have
syntactic embeddability. Intuitively, a DSL has this design
intent if racket code can be copy-pasted in a DSL program
and successfully compiles.

When it comes to frog/config, racket code can be read
andwritten as is in racket and successfully compiles most of
the time, except when the code has to export bindings other
than init, enhance-body, and clean (see Fig. 10). As long

91



DSLs in Racket: You Want It How, Now? SLE ’24, October 20–21, 2024, Pasadena, CA, USA

1 #lang typed/racket

2 (require "typed-fun.rkt")

3 (require/typed racket

4 [string-append (-> String String String)]

5 [for-each (-> (-> StrNum Void) (Listof StrNum) Void)])

6

7 (: my-println-lst (-> (Listof StrNum) Void))

8 (define (my-println-lst lst)

9 (for-each (lambda ([elem : StrNum ])

10 (let ([ new-str (string-append (car elem) " ~a\n")]

11 [num (cdr elem)])

12 (printf new-str num)))

13 lst))

Fig. 13. typed/racket code importing racket code

as provide is not used in a program, however, racket code
which exists in the frog/config program is effectively em-
bedded, making frog/config an example of DSLs with syn-
tactic embeddability. Another example DSL with this intent
is rash, as the language allows its users to switch between
Racket and bash language (see Fig. 12). In this case, most
racket code can be embedded successfully as is in racket
except when rash has to read or write code as shell com-
mands. On the other hand, when you look at typed/racket
code in Fig. 11, normal Racket code cannot be written (or
read) as if it is in racket since the DSL requires its users to
annotate bindings with type information. When valid types
are specified for the corresponding Racket code, as shown in
lines 3-5 in Fig. 13, the typed code can compile with Racket
bindings (e.g., for-each on line 9, string-append on line
10). Hence, typed/racket is an example of DSLs syntacti-
cally embeddable under certain condition. Additionally, some
of the #lang DSLs, such as rash or typed/racket, can be
provided as a library in the form of (require <dsl-name>).
And when a DSL is used as a library in Racket programs, we
automatically know that the DSL is capable of syntactically
embed Racket language.

3.6 Interoperability
Language designers can develop a DSL to make it work
with with its host language. That is, if running the DSL
code results in values that can work with Racket code, then
we say that the DSL is interoperable with Racket. All of
frog/config, rash, and typed/racket are interoperable
with Racket, because executing programs written in these
DSLs results in values that can work with Racket programs at
runtime. Interoperability is almost always a feature and goal
for Racket-embedded DSLs, as illustrated by the examples.
DSLs, though rarely, may not be interoperable with Racket,
as we will see in the survey results in Sec. 5.

3.7 Static Checking
Another useful language design goal is to equip a DSL with
an ability to statically check certain properties. A common
form of static checking is a type system to catch type er-
rors at compile time. For example, typed/racket is a DSL
where a type system is added to normal Racket, as illustrated
in Fig. 11 and Fig. 13. On the other hand, since rash is meant
to work as normal Racket as well as a shell language, it does
not statically type check or perform any other static check-
ing. Similarly, frog/config, a configuration language that
works like Racket except for import/export control, is not
intended to provide static checking. Static checking does not
necessarily have to be in the form of type system, and Racket
itself has static checks such as disallowing free variables. An
infix-notation-based language built on Racket, rhombus [19],
for example, lets its users add static information on expres-
sions or bindings to control the way that they are used within
other expression, including rejecting an expression that’s
used in a way incompatible with its static information (but
with no soundness guarantee overall).

4 Enabling Mechanisms of Design Intents
This section describes the different ways of employing the
various language design mechanisms that Racket provides in
order to implement each one of the language design intents
discussed in Sec. 3. Throughout this section, we refer back
to the examples from Sec. 2 and clarify how the previously
discussed design objectives concerning syntax and semantics
of the game-developing DSL are enabled via Racket’s meta-
programming facilities.

4.1 Custom Syntax
The main mechanism for syntax customization is by ad-
justing the DSL’s reader (Fig. 5). In particular, it is only
DSLs that are made available as libraries, i.e., accessible via
(require <dsl-name>), that always use the same reader
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1 #lang racket

2 (require syntax/strip-context)

3 (provide (rename-out [my-read-syntax read-syntax ]))

4

5 (define (curly-parsing-handler char in src line col pos)

6 (let ([lst (read-syntax/recursive src in char #f)])

7 (cons 'block lst)))

8

9 (define updated-readtable

10 (make-readtable (current-readtable)

11 #\{ 'terminating-macro curly-parsing-handler))

12

13 (define (my-read-syntax src in)

14 (define (my-read in) (read-syntax src in))

15 (parameterize ([ current-readtable updated-readtable ])

16 (let ([body (port- >list my-read in)])

17 (strip-context

18 # (̀module demo clickomania/main

19 #,@body)))))

clickomania/lang/reader.rkt

Fig. 14. Extended reader for clickomania DSL

as vanilla Racket. In constrast, when a DSL is made avail-
able via through a #lang form, the compiler instead looks
for a <dsl-name>/language/readermodule, which in turn
must export a read-syntax function that determines how to
“read” the module, and parse its text contents into a syntax
object.2 In this work, we will assume we are dealing with
the #lang DSLs, unless specified otherwise.
Even within DSLs that customize their readers, there are

a variety of forms this can take. In particular, if a DSL has
S-expression syntax but parses only certain notations differ-
ently from vanilla Racket, as was the case in clickomania,
the DSL’s reader can use read-syntax from Racket but ad-
just it by parameterizing a Lisp-style readtable that controls
the reader. This readtable represents a mapping of “special”
characters to their corresponding customized parsing han-
dlers and allows extending the vanilla Racket parser with
new behaviors. In cases when the syntax diverges even fur-
ther, then users must write their own readers from scratch.
Based on the extent to which read-syntax is replaced or
adjusted, we classify a DSL’s reader as one of the four cate-
gories: (1) default, (2) extended, (3) custom, or (4) hybrid.

First, when a DSL’s reader is the same as Racket’s built-in
reader, i.e., using the default read-syntax without modifi-
cation of a readtable, the reader is called a default reader. In
other words, when DSL authors want their language to have
the Racket’s default syntax, as in frog/config DSL, they
can reuse and provide Racket’s reader as the DSL’s reader.
Second, a DSL that is primarily S-expression-based but

has some non-S-expression elements—as in typed/racket—
can be implemented by an extended reader which uses the
Racket’s default read-syntax with an updated readtable.
2Alternatively, a reader can be a submodule in the <dsl-name> module.

That is, by accessing and modifying a built-in readtable from
Racket, a reader can parse certain characters differently from
vanilla Racket. In the case of typed/racket, the extended
readtable enables a #{} syntax for local type annotations.
As shown in clickomania programs from Fig. 4 and Fig. 7,
the clickomania DSL’s reader is also an example of an ex-
tended reader, since its S-expression-based syntax differs
from Racket’s syntax by parsing curly brackets as a block
of code. Fig. 14 shows a simplified implementation for the
extended reader.3 In this extended reader, my-read-syntax
is provided as read-syntax (line 3), where read-syntax
used in the definition of my-read-syntax at line 14 is pro-
vided by racket and called when the current-readtable,
which refers to the racket’s readtable, is parameterized by
updated-readtable (lines 14-16). The updated-readtable
is created by extending the Racket’s default readtable with a
parsing handler called curly-parsing-handler for a curly
bracket (lines 9-11). Lines 5-7 then show how this parsing
handler converts the code between curly brackets by joining
the code by 'block. The binding for 'block is expected to
be provided by the clickomania’s expander environment.
Another way to customize syntax is by implementing a

DSL-specific read-syntax function, in which case the reader
is classified as a custom reader. This type of reader is needed
to enable entirely non-S-expression-based syntax, as illus-
trated by shell language part of the rash code in Fig. 12.
To demonstrate this case, a variant of clickomania called
clickomania-infix reads with infix notation, similar to
Python or Rhombus, Fig. 15 shows simplified code for the

3This example of an extended reader is motivated by a StackOver-
flow post: https://stackoverflow.com/questions/38369817/curly-brackets-
to-replace-begin-in-racket.
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1 #lang racket

2

3 (require syntax/strip-context)

4 (provide (rename-out [my-infix-read-syntax

read-syntax ]))

5

6 (define (my-infix-read-syntax src in)

7 (let ([body (custom-parse in)])

8 (strip-context

9 # (̀module any clickomania-infix/main

10 #,body))))

clickomania-infix/lang/reader.rkt

Fig. 15. Custom reader for clickomania-infix DSL

DSL’s custom reader. In this reader, the input program—
passed to the second argument of my-infix-read-syntax,
i.e., in at line 5—is handled via aDSL-specific custom-parse4
which parses and converts code written with infix notation
to S-expressions. For instance, given an expression n1 bop
n2 consisting of a mathematical binary operation bop and
two numbers n1 and n2, custom-parse converts the input to
its corresponding S-expression (bop n1 n2).5 Fig. 16 shows
clickomania-infix code that is semantically equivalent to
clickomania code in Fig. 4, where the custom reader is used
to parse the code.
Last but not least, a hybrid reader refers to the type of

reader that enables multiple syntaxes for a single DSL. We
can create a hybrid reader by conditionally combining differ-
ent types of readers discussed so far: that is, default, extended,
and custom readers. Fig. 17 shows a simple hybrid reader
that is a mix of a default reader and a custom reader. When
the reader peeks a character and sees an open parenthesis
(, it uses the default reader by calling read-syntax from
racket (first clause of the cond conditional in lines 9-13).
When the peeked character is not equal to (, it treats the
code almost the same way as in custom reader from Fig. 15
(else clause in lines 14-18). Assuming that custom-parse
at line 15 is constructed for reading code with infix nota-
tion, as discussed in the custom reader example, this hybrid
reader6 can be used for reading clickomania-infix code
from Fig. 16 as well as normal Racket code.
In summary, a reader can be customized by defining the

read-syntax function and/or configuring a readtable to en-
able custom syntax, which naturally leads to a taxonomy for
readers: (1) default reader, (2) extended reader, (3) custom
reader, and (4) hybrid reader. In addition, in case more than
one type of reader is needed for the same DSL, as described

4The custom-parse used in Fig. 15 is comparable to parse-all from
shrubbery/parse library used in rhombus DSL.
5For simplicity, we do not cover all possible patterns with infix notation.
6This illustrative example takes the entire program and determines which
reader to use, instead of choosing reader line by line or based on encoun-
tering certain characters. To achieve rash-like reading behavior, a more
fine-grained switching of reader is is necessary.

in the hybrid case, language designers are expected to specify
an additional condition per additional reader needed. Racket
provides only limited support for composition of arbitrary
readers, and while defining a new read-syntax offers an es-
cape hatch to other parsing technologies, DSLs in the Racket
ecosystem typically limit customization to the forms that
Racket makes convenient.

4.2 Custom Semantics
Though a DSL may replace Racket’s read-syntaxwholesale
to implement a bespoke syntax at the reader level, it will prac-
tically almost always use the Racket default macro expander
as-is, refining the DSL’s semantics through bindings pro-
vided in the expander’s environment. That is to say, a DSL’s
expander environment is the main mechanism that is used
to customize its semantics, and consists of an initial set of
bindings, which the Racket expander uses to recursively ex-
pand forms in the syntax object to produce a fully-expanded
program (Fig. 5).
Bindings will take the form of either functions and con-

stants as seen before, or macros, which can interact with
the expander itself. In particular, a macro is a function that
consumes and produces syntax objects during the process
of a program’s expansion. Macros typically rearrange the
syntax objects they are given as part of their input, and
may introduce literal syntax-object fragments— constructed
in code using either the syntax or #' forms. Of particular
note, Racket also provides a restricted set of special inter-
position points bindings which facilitate more subtle cus-
tomization of semantics. These interposition point forms are
automatically inserted by the expander around every form
in a program and have names that are prefixed with #%, in-
cluding #%module-begin for declaration of a module, #%app
for function application, #%top-interaction for REPL, and
more [18]. Putting it all together, expanding any program
in a DSL embedded in Racket employs the bindings in the
expander context to produce an final Abstract Syntax Tree
(AST) in terms of core Racket forms.

Of the various dimensions of expander customization, we
identify five main strategies that are used in practice: (1)
using default bindings only, (2) using custom bindings or
(3) using custom bindings but exposing default bindings for
end-user macros, and finally customization of either (4) only
#%module-begin or (5) other interposition points such as
#%app. Let us now explore the ways in which these can be
used by DSL authors to provide custom semantics alongside
the other language design intents.
Language designers enable custom semantics by making

DSL-specific, custom bindings available through the DSL’s
expander environment. While Racket language provides
default bindings—a predefined set of bindings supplied by
Racket—to its users, custom bindings could be newly defined
or override the default bindings with different meanings.
Looking at the clickomania code in Fig. 4, for example, we
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1 #lang clickomania-infix

2

3 fun create_background_image (bsize , bg_img_path , img_path):

4 if 400 <= bsize

5 | def back_img = adjust_image_with_path (bsize , bg_img_path)

6 def img = adjust_image_with_path (bsize * 0.8, img_path)

7 underlay (back_img , img)

8 | adjust_image_with_path (bsize , bg_img_path)

9

10 set_background_image (

11 create_background_image (500, "./ sunset.png", "./ cloud.png"))

12 run (500, 5, ~theme: "candy", ~num_colors: 4, ~num_clicks: 10)

Fig. 16. clickomania-infix code example

1 #lang racket

2

3 (require syntax/strip-context)

4 (provide (rename-out [my-hybrid-read-syntax

5 read-syntax ]))

6

7 (define (my-hybrid-read-syntax src in)

8 (define (my-read x) (read-syntax src x))

9 (let ([ peeked (peek-char in 1)])

10 (cond

11 [( equal? #\( peeked)

12 (let ([body (port- >list my-read in)])

13 (strip-context

14 # (̀module sexp racket

15 #,@body)))]

16 [else

17 (let ([body (custom-parse in)])

18 (strip-context

19 # (̀module nonsexp

clickomania-hybrid/main

20 #,body)))])))

clickomania-hybrid/lang/reader.rkt

Fig. 17. Hybrid reader for clickomania-hybrid DSL

called custom bindings such as adjust-image-with-path,
set-background-image, and run. Assuming that these func-
tion definitions (e.g., adjust-image-with-path at lines 23-
29 in Fig. 2) are written in “image.rkt” and “game.rkt”,
these functions become available in the clickomaniaDSL by
providing them through its expander environment, as spec-
ified by export of the bindings at line 7 in Fig. 18. With all
the custom bindings available via the expander environment,
the clickomania program in Fig. 4 would generate a game
screen that initially looks like the one in Fig. 1. Addition-
ally, DSL authors can provide different semantics for other
interposition points—option (5) from the above list—such as
#%app or #%top-interaction to enable custom semantics.
Although we do not discuss this alternative option in detail,

it is not difficult to envision its implementation based on
earlier discussions of macros.

4.3 Import/Export Control
We identify three different approaches that developers use to
enforce import/export control. The first approach is through
reinterpretation of #%module-begin to check constraints.
For example, clickomania’s check for exporting game-info
(e.g., lines 4-7 in Fig. 6) is enabled this way. Specifically, the ex-
pander environment in Fig. 18 defines my-module-begin and
provides it as #%module-begin; where my-module-begin in-
troduces (provide game-info) in addition to the module
content form . . . as shown in the macro definition (lines
10-15).7 Similarly, the frog/config DSL ensures its users
provide definitions for init, enhance-body, and clean by
supplying a customized #%module-begin. In this manner,
other DSLs could require libraries to be imported by adding
require forms in their #%module-begin expansion.
Another way to control imports and exports in a DSL is

to provide customized semantics for the associated require
and provide forms, or any DSL-specific language constructs
used in importing or exporting DSL code. For example, the
typed/racket DSL is equipped with reinterpreted require
and provide so that these forms can accommodate type
information when they are used for importing or exporting
typed/racket or vanilla Racket code.
Lastly, import/export control can also be achieved by

simply omitting any or all forms that provide imports or
exports from a DSL’s expander environment and thereby
prevent users of the DSL from importing or exporting any
DSL code at all. This scenario is also demonstrated by the
frog/config DSL, which prevented its users from export-
ing any bindings—other than automatically exporting the
three above-mentioned identifiers—by not supplying the
form provide through its expander environment.

7In the my-module-begin macro, with-syntax works similarly to a let
statement, arranging a variable to be used in the template. The format-id
function, whose result is bound to the required-sym variable, is applied to
format an identifier game-info with the corresponding lexical context.
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1 #lang racket

2 (require "image.rkt" "game.rkt" "sound.rkt"

3 (for-syntax racket syntax/parse))

4

5 (provide (except-out (all-from-out racket) #% module-begin)

6 (rename-out [my-module-begin #% module-begin ])

7 (all-from-out "image.rkt" "game.rkt" "sound.rkt")

8 (for-syntax (all-from-out syntax/parse)))

9

10 (define-syntax (my-module-begin stx)

11 (syntax-parse stx

12 [(_ form ...)

13 (with-syntax ([ required-sym (format-id stx "game-info")])

14 #'(#% module-begin form ...

15 (provide required-sym)))]))

clickomania/main.rkt

Fig. 18. Expander environment for clickomania DSL

1 #lang racket

2 (provide title author)

3 (require "config.rkt")

4 (define-values (title author)

5 (game-info))

interop.rkt

(a) racket code using clickomania code

1 > (require "interop.rkt")

2 > title

3 "Tame Same Game"

4 > author

5 "Racketeer"

REPL

(b) REPL demonstrating interop.rkt

Fig. 19. Interaction between racket code clickomania code

4.4 Macro Support
The clickomania DSL allows its users to write and work
with Racket-like macros by making Racket’s default bindings
available at expansion time. For example, a macro named
adjust-image-with-path-macro is defined in Fig. 7 and
used in Fig. 9. Racket manages compile-time and run-time
computations through a phase system that separates run-
time bindings from compile-time bindings to help keep the
computations and constraints of each time separate. Compile
time is considered a higher phase than run time. With this
system, a clear way to enable macro support is by making
macro-generating libraries such as syntax/parse accessible
at phase 1 but not phase 0. The clickomania’s expander
environment provides syntax/parse bindings at phase 1, as
indicated at line 8 in Fig. 18.8 If the expander environment did
not provide the macro library at compile time, it would not
have been clear whether the clickomania DSL is designed
with an intention to support its users to write macros as the
DSL is originally intended for creating a specific game.
While reusing Racket’s macro system for a DSL is rela-

tively straightfrward, implementing a DSL-specific macro
system is considered more difficult in the Racket ecosystem,
as demonstrated byDSLs such as hackett [28], rhombus [19],
and qi [27]. This is because developing a DSL-specific macro

8The phase 1 is specified by for-syntax, each usage of which indicates one
phase higher.

system requires non-trivial efforts to result in amacro system
comparable to Racket’s macro system in terms of compos-
ability [14], robustness [10], hygiene [16, 20], and coopera-
tion [20]. Recent work [3] directly addresses this problem,
but more time will be needed for packages in the Racket
ecosystem to take advantage of the solution.

4.5 Syntactic Embeddability
While the intents discusssed so far are enabled by customiz-
ing either reader or expander, DSL’s support for embedding
of Racket forms requires both of the mechanisms to be tai-
lored in particular ways. That is, a DSL is able to syntactically
embed Racket by using the default reader—or in the termi-
nology of Sec. 4.1, a default, extended, or hybrid reader— and
providing all (or perhaps most) default bindings with compat-
ible meanings of the bindings. For example, the clickomania
DSL in Sec. 2 allows its users to syntactically embed Racket
code by having its extended reader Fig. 14 parse DSL code al-
most identically to Racket, except when it encounters curly
brackets, and also by ensuring that its expander environ-
ment provides all the default bindings that are semantically
equivalent to those from Racket.

Redefining default bindings, including interposition points,
in a DSL’s expander environment does not automatically
mean that the default bindings are not provided in the DSL.
What matters is how much the semantics of the bindings
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1 #lang typed/racket

2 (require typed/2htdp/image)

3 (provide (all-defined-out))

4

5 (: adjust-image-with-path (-> Real String Image))

6 (define (adjust-image-with-path target-size img-path)

7 (let* ([img : Image (bitmap/file img-path)]

8 [img-width : Nonnegative-Integer (image-width img)]

9 [img-height : Nonnegative-Integer (image-height img)])

10 (typed-scale/xy (/ target-size img-width)

11 (/ target-size img-height) img)))

Fig. 20. typed/clickomania function annotated with types

changes through reinterpretation. In the clickomania case,
although the #%module-begin is redefined to require ex-
porting the game-info, this newly defined #%module-begin
does not semantically differ from the one in Racket as it pre-
serves the original contents of the module form . . . (line
14, Fig. 18). And all other bindings from Racket are provided
without any modification (line 5, Fig. 18).

4.6 Interoperability
The main mechanism that enables interoperability of a DSL
in Racket is that the DSL code compiles (through expan-
sion) to Racket, which means that the DSL uses the same
runtime system and value representations as Racket pro-
grams. In this regard, interoperability of a DSL is limited
only when those value representations are opaque or when
Racket’s runtime system is not used after all (as turns out for
urlang DSL in Sec. 5). Like other Racket-embedded DSLs
that are designed with interoperability in mind, as assessed
in Sec. 5, clickomania is designed to work with Racket pro-
grams at runtime. The interoperability of clickomania DSL
is demonstrated by the interaction between clickomania
code in Fig. 6 and racket code in Fig. 8.
Fig. 19 illustrates another simple example of runtime in-

teraction between clickomania and racket programs. First,
racket program interop.rkt imports the clickomania
code from Fig. 4, which automatically provides a binding for
game-info, as discussed in Sec. 4.3. Next, it stores results
of calling game-info in identifiers title and author which
are or exported from the program (lines 2 and 4-5, Fig. 19).
Then, we can call these values imported from interop.rkt
and check that they refer to the ones from the clickomania
program, as shown in Fig. 19. In addition, it is also possible
to import racket libraries from the clickomania program
and show that they can work together at runtime, although
we do not explicitly demonstrate this interaction.

4.7 Static Checking
Racket enables general forms of static checking, including
the implementation of a type system, by providing DSL au-
thors access to the full Racket language at compile time. A

DSL can inspect the syntax objects that make up a program
either before or after expansion to Racket’s core forms, de-
pending on the level that makes sense for the language. The
typed/racket DSL, for example, fully expands programs to
check types [37].

We can create another typed variant of clickomania DSL
that performs type checking at compile time, similar to
typed/racket. What is needed is (1) to determine types
representing classes of values and (2) to specify a set of rules
called type inference rules for inferring types of expressions
based on types of their sub-expressions. In particular, since
type checking is to be done statically at compile time, raising
syntax errors during expansion when types don’t match the
inferred types, custom bindings specified for type checking
are provided in the form of macros or functions that are
invoked at compile time. Racket is well equipped with vari-
ous resources [6, 11, 13] to facilitate implementation of type
systems. Although we do not delve into details of construct-
ing DSL-specific types as well as typing rules due to limited
space, a Racket-embedded meta-DSL called turnstile [7],
based on the idea of type system as macros [6], in particular
is useful in facilitating the creation of type systems for DSLs.

The typed/clickomania DSL does not have to be imple-
mented from scratch, since the DSL is expected to behave like
typed/racket. We can make use of typed/racket bindings
(that incorporate the type system) in addition to specifying
types for clickomania’s custom bindings, as illustrated by a
custom function annotated with type information in Fig. 20.
When the type-annotated custom bindings and overridden
default bindings that perform type checking are available
through the DSL’s expander environment, calling the exam-
ple function with invalid inputs will cause the type checker
to throw a type error at compile time. For example, call-
ing (adjust-image-with-path "100" "./cloud.png") results
in type mismatch, expected: Real given: String in: “100”.
To conclude, Tab. 2 summarizes design intent-enabling

mechanisms discussed in this section.
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Table 2. The summary of racket mechanisms for different design intents

Design Intents Enabling Mechanisms

Custom Syntax Customization of reader (extended, custom or hybrid)

Custom Semantics Custom bindings, Customization of other interposition points (e.g., #%app, #%top, etc.)

Import/Export Control Allow or restrict import/export-related bindings, Management of require/provide in #%module-begin

Macro Support Racket bindings at phase 1

Syntactic Embeddability Default, default-like extended, hybrid reader (a mix of default and others) and default bindings

Interoperability Default bindings, custom bindings, #%module-begin, and other interposition points compiling to Racket forms
via the expander

Static Checking Custom bindings and customization of #%module-begin and other interposition points

5 Analysis of Design Trends
We now look at how popular Racket-embedded DSLs achieve
the language design intents from Sec. 3 by customizing their
readers and expander environments based on the reader
taxonomy and expander customization options discussed
in Sec. 4. In this process, we make observations and verify
hypotheses that we had or are commonly believed in the
Racket community about the ways in which DSL authors
make use of reader and expander environment to design
DSLs in Racket. We believe the hypotheses are unbiased as
the hypotheses H1.1, H2.2 and H2.3 are respectively derived
from the official guide [22], a book [5] and a paper [11].
The rest of hypotheses are reasonable because the language
designers, also Racket programmers, are expected to prefer
their DSLs to be similar to and be able to work with Racket.

Selection of case studies. DSLs analyzed in this paper
were chosen based on their popularity, which was measured
by the GitHub stars. Tab. 3 lists these DSLs, their language
specifications and the numbers of GitHub stars. They were
largely chosen from the Racket Package Index [32]. In some
cases, though not many, DSLs are a small part of the corre-
sponding projects (e.g., frog/config used for configuration
in Frog project [26]). Moreover, while earlier sections pri-
marily consider those DSLs specified as #lang <dsl-name>,
DSLs considered here could be packaged and imported as a
library with (require <dsl-name>). These language spec-
ifications, enumerated in Tab. 3, help clarify which of the
existing DSL specifications to look for when examining the
corresponding DSL. It also shows that 7 out of the 30 studied
DSLs are provided as libraries. In addition, there were several
projects where (1) multiple DSLs exist in a single project (e.g.,
#lang minipascal and #lang minipascal simple) or (2)
the same DSL is provided both as a #lang language or as
a library (e.g., #lang anarki and (require anarki) from
Anarki [2]). In both of these cases, we chose a representative

as the one that we believe the DSL designer would intend
its users to choose. That is because looking at multiple ones
per DSL can make the statistics in Sec. 5.1-Sec. 5.3 biased
or confusing. Racket-embedded DSLs often come with doc-
umentation that clarifies how the DSL authors intend their
languages to be used. When there are multiple versions of
languages and when such documentation exists, we relied
on it to determine which version to use as a representative.

5.1 Reader Customization
Prior to studying the DSLs, we made the following hypothe-
ses about how DSL authors would choose to customize the
readers for their languages, which type of reader is expected
to be more (or less) prevalent, and why this may be the case.

• H1.1. A DSL is more likely to extend Racket syntax than
to have its own custom syntax. If a DSL extends Racket
syntax, the syntax extension is expected to be implemented
via readtable customization. This expectation, also noted
in the Racket Guide [22], means that DSLs with extended
readers are likely to be more common than the ones with
custom readers.

• H1.2. DSL designers prefer S-expression syntax over non-
S-expression syntax, resulting in DSLs with custom syntax
being less common than the DSLs with S-expression syn-
tax. In other words, we expect more use of default and
extended readers than custom readers.

• H1.3. DSLs with multiple syntaxes (e.g., rash) are expected
to be rare. That is to say, we hypothesized that DSLs are
least likely to have a hybrid reader.

Tab. 4 shows the breakdown of different types of reader
used in the DSLs. The results largely confirm the above
hypotheses about the reader customization. First, with regard
to H1.1, there are more extended readers (20.0%) than custom
readers (13.3%). While we expected extended readers to be
much more prevalent than the custom ones, however, the
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Table 3. A selection of Racket DSLs for our analysis

DSL Specification Stars DSL Specification Stars
anarki (require anarki) 1149 malt (require malt) 137
hackett #lang hackett 1137 turnstile #lang turnstile 129
frog/config #lang frog/config 906 video #lang video 123
pie #lang pie 661 racket-clojure #lang clojure 118
rosette #lang rosette 618 sketching #lang sketching 106
rash #lang rash 529 racket-r7rs #lang r7rs 92
typed-racket #lang typed/racket 494 redex (require redex) 89
urlang (require urlang) 296 minipascal #lang minipascal 88
rhombus #lang rhombus 286 algebraic #lang algebraic 73
beautiful-racket #lang br 282 brag #lang brag 62
rackjure #lang rackjure 234 sham (require sham) 66
cur #lang cur 215 lens (require lens) 73
scribble #lang scribble 189 heresy #lang heresy 69
nanopass #lang nanopass 174 qi (require qi) 51
cKanren #lang cKanren 152 racket-lua #lang lua 50

difference turns out to be not large. Second, the number of
default and extended readers combined is indeed greater
than the number of custom readers, confirming H1.2. The
difference (70%) is significant and shows the popularity of
relying on the default reader. Lastly, hybrid readers turned
out to be the least common type, as there was only one DSL,
rash, that falls into this category, which is likely caused by
them being the most difficult to construct.

A substantial number of readers are default type, amount-
ing to 19 out of 30, which is over three times more fre-
quent than the second most common type. Even consid-
ering that a DSL provided as a library automatically uses
the default reader, the default type is twice as much as the
extended type upon excluding the 7 DSLs provided as a
library (Tab. 3). Again, this implies that many DSLs (e.g.,
frog/config [26], rosette [40], cur [4], pie [8], etc.) are
built using the Racket’s default reader as is rather than cus-
tomizing the reader.

5.2 Expander Customization
We made the following three hypotheses about popularity
of the five expander customization options (Sec. 4) to better

Table 4. Types of readers used in DSLs

Default Extended Custom Hybrid

Number of DSLs 19 6 4 1
Percentage of DSLs 63.3% 20.0% 13.3% 3.3%

understand the ways in which language designers choose to
determine a set of bindings for their DSLs.

• H2.1. Custom bindings are the most commonly employed
expander customization option. DSLs are created for spe-
cific domains, and they operate based on DSL-specific,
custom bindings. This expectation suggests that DSLs that
provide (a subset of) default bindings alone are likely to
be rare, if any.

• H2.2. Changing the meaning of interposition points is un-
common among DSLs, as noted in Beautiful Racket [5], due
to the complexity involved. That is, we expect tha tDSLs
that do not customize the meanings of #%module-begin,
and other interposition points are expected to be more
common than the ones that do.

• H2.3. Out of the interposition points, customization of
#%module-begin is more common than that of other in-
terposition points. We expect #%module-begin to be a
popular customization choice because its reinterpretation
can help DSL authors to eliminate boilerplate code and
communicate context-sensitive information during expan-
sion, as noted by the Racket developers [11].

Usage of the expander customization options, as shown
in Tab. 5, confirm two out of the three above-mentioned
hypotheses. First, as speculated in H2.1, custom bindings are
indeed the most popular option to customize expanders of
the studied DSLs. In fact, all of the 30 DSLs provide custom
bindings via their expanders, indicating that none of the
DSLs operate with default bindings alone. Second, there are
more DSLs that do not customize interposition points than
the ones that do, supporting H2.2. However, the percentage
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Table 5. Expander customization options used in DSLs

Default
bindings

Subset of
default bindings

Custom
bindings

Default bindings
at phase 1

Custom
#%module-begin

Other custom
implicit forms

Number of DSLs 18 6 30 5 11 13

Percentage of DSLs 60.0% 20.0% 100.0% 16.7% 36.7% 43.3%

of DSLs that reinterpret #%module-begin and other interpo-
sition points are respectively 36.7% and 43.3%, indicating that
they are a small minority. Based on this, we recognize that
there is significant need for DSL authors to customize these
special macros to tailor default behaviors of DSLs. Third,
DSLs that customize #%module-begin turn out to be fewer
than the ones that customize other implicit forms, contrary
to our expectation in H2.3. Looking at the DSLs that do not
customize #%module-begin but do customize other inter-
position points, #%app and #%top (used for module-level or
top-level bindings of variables) are frequently reinterpreted.
This result suggests that these other interposition points
play a more significant role in designing DSLs than previ-
ously expected. Additionally, we observe that 80% of the
DSLs provide all or subset of default bindings, suggesting
Racket-embedded DSLs have a strong tendency to utilize
bindings from their host language.

5.3 Language Design Intents
Most importantly, we made hypotheses about and subse-
quently investigated popularity of the language design in-
tents among the surveyed DSLs. In particular, we took the
relationship between reader and expander customizations
and the correspondingly enabled design intents into consid-
eration, as illustrated in Tab. 2.
• H3.1. DSLs are likely to provide macro support. That is,
we expect that DSL authors have designed their DSLs in a
way that allows its users to extend the DSLs, as needed.

• H3.2. DSLs are expected to syntactically embed their host
language, Racket. We expect that DSL authors would like
to allow the DSL users to be able to read and write (or
escape to) Racket code.

• H3.3. DSLs are likely to be able to work with Racket. In
other words, we expect more DSLs that support interop-
erability than ones that do not. Similarly to H3.2, this hy-
pothesis is based on our expectations about DSL authors’
preference.

In the process of designing languages, a DSL author is ex-
pected to have written macros and accordingly appreciate
extensibility of Racket based on its macro system. This natu-
rally led us to hypothesize that DSLs are likely to be designed
to support its users to write and work with macros. Popu-
larity of the design intents (Tab. 6) confirms the hypothesis
H3.1, with about two-thirds of DSLs equipped with macro

support. On the other hand, it is interesting to note that one
third of the DSLs do not provide macro support, suggesting
that DSLs may intend to prevent its users from extending the
DSLs. Moreover, 70% of the DSLs are syntactically embed-
dable, validating H3.2. This outcome is related to the fact that
a majority of DSLs choose to use default reader and provide
all (or subset of) default bindings. Note that when a DSL’s
reader and expander environment do not fully satisfy the
requirements for enabling syntactic embeddability (Sec. 4.5)
by a minor difference (e.g., a character is parsed differently
as clickomania, all the default bindings except for provide
are provided as frog/config) we determine whether the
DSL achieves the intent based on qualitative understanding
of the purpose and use cases of the DSL. The last hypothesis
H3.3 is supported by a large majority of DSLs, 83.3%, being
interoperable with Racket. Most of the bindings in the sur-
veyed DSLs generate values that Racket programs can work
with. However, 16.6% of DSLs turned out to not support em-
bedding of Racket forms. For example, some DSLs are meant
to be standalone languages without S-expression syntax—as
in brag [41], minipascal [33] or pie [8], and these lan-
guages are presumably not meant to work with Racket in
any ways. Surprisingly, there is a DSL called urlang [34]
with Racket’s default syntax but running the DSL program
would produce strings representing JavaScript code, results
that cannot work with Racket code at runtime.

Looking at the rest of intents, custom semantics is themost
popular design intent among DSLs, as DSLs are assumed to
operate under their domain-specific operations. This result
is aligned with the hypothesis H2.1 from Sec. 5.2. The least
popular intent turned out to be static checking, whereas most
of the DSLs with static checking achieved it in the form of
type systems, with rhombus [19] being a notable exception
(cf. Sec. 3.7). In addition, while a majority of the intents
are enabled by exactly one (combination of) customization
of the mechanism, as summarized in Tab. 2, import/export
control can be enabled in multiple ways. Out of 12 DSLs
with import/export control, 2 of them achieve the intent
through reinterpretation of #%module-begin, 7 of them by
redefining the Racket import/export bindings (i.e., require,
provide), 4 of them by preventing all or subset of import-
or export-related bindings.9

9One of the 12 DSLs, frog/config, both reinterprets #%module-begin and
prevents import/export bindings.
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Table 6. Language design intents in DSLs

Custom
Syntax

Custom
Semantics

Import/Export
Control

Macro
Support

Embed-
dability

Interoper-
ability

Static
Checking

Number of DSLs 11 30 12 20 21 25 6
Percentage of DSLs 36.7% 100.0% 40.0% 66.7% 70.0% 83.3% 20.0%

5.4 Threats to Validity
Several factors threaten the validity of this survey. First, the
studied DSLs were selected among the listed Racket pack-
ages [32] based on GitHub stars. However, DSLs with the
most GitHub stars are not guaranteed to be the most widely
used or representative Racket-embedded languages. Further-
more, one of our examples was selected from a GitHub repos-
itory where the DSL was a small part of the project (e.g.,
frog/config used in configuring a blog generator), imply-
ing that the popularity is about the project, not about the
language. Second, some of the surveyed DSLs are created
by the same author, or same (sub)set of authors. This could
mean that DSLs they implement are likely to have a similar
set of design intents, potentially making this study biased.
Third, DSLs may not have been fully implemented at the
time of this study, despite the fact that we took these DSLs
from published packages. For example, hackett and cur
specifically mention that development of the languages is
incomplete at the time of writing. Lastly, 30 may not be a big
enough number as there exist many more Racket-embedded
DSLs that can be taken into consideration. While this may
impact the generality of our results, we believe the studied
DSLs are a representative sample of practical DSL usage.
That is because (1) for practicality, DSLs have been selected
prioritizing those with higher number of GitHub stars and
(2) for representation, filtering packages in Racket Package
Index [32] by the tag “language” or “lang” produces fewer
than 100 results at the time of writing this paper. Although
there are likely even more DSLs in the Racket ecosystem, it
seems reasonable that our sample captures a representative
portion of actively used DSLs in Racket.

6 Related Work
This paper connects several lines of work: (a) on classifica-
tion of design intents requiring one to build a new domain-
specific language, (b) techniques and patterns for implement-
ing DSLs, and (c) applications of Racket meta-programming
mechanisms allowing one to do so.
Classification of language intents. Past work has classi-
fiedDSL intents and developed taxonomies of DSLs, although
not in the context of a specific framework to implement them
(e.g., Racket). In particular, Kövesdán et al. [29] developed a
catalog of DSL intents based on the functionalities and usage

patterns. Their classification relies on a set of intent prop-
erties, largely inspired by design pattern formalization that
was originally developed for objected-oriented software [24].
Unlike our taxonomy, Kövesdán et al.’s classification is not
based on design objectives and does not discuss the specific
implementation mechanisms.
DSL design patterns. Prior to our work, several surveys
offered constructive guidance on how to decided whether
developing a DSL would be beneficial for solving a task at
hand, and, if so, what functionality its design should incor-
porate. Mernik et al. [31] offered a family of DSL design
patterns, arranging a set of domains based on the identified
usage scenarios. The work analyzes the patterns based on
application domains and requirements, focusing on specific
functionalities rather than language designers’ needs and
goals with regard to tailoring the look and feel of the re-
sulting language. Fowler [23] lists several reasons why one
should consider creating a domain-specific language, using
a series of examples, following the DSL categorization based
on types of design framework. However, the work neither
offers a clearly defined set of DSL design intents nor does it
explore DSL design patterns that can be allowed by concrete
implementation strategies. Spinellis [35] proposes eight DSL
design patterns, with the classification is based on how a
DSL can be created by harnessing the existing programming
languages available in 2001. Our work not only offers a set
of DSL design intents but look at how these play out among
DSLs embedded specifically into the Racket ecosystem.
Racket-embedded DSLs. Despite Racket’s rich history of
serving as a foundation DSL embedding and a variety of
tools it provides to help programmers to develop domain-
specific languages [3, 11], no prior work has been done to
systematically survey Racket-embedded DSLs and their im-
plementation trends. Regardless, several efforts have been
made to showcase individual DSLs and the advantages they
provide for solving the respective programming/scripting
tasks [4, 6, 25, 38, 40]. Additionally, several small-scale case
studies were conducted to demonstrate the effectiveness of
developing languages for particular domains [1] or using
specific elements of Racket, e.g., macros[3]. While there exist
tutorials on step-by-step construction of toy DSLs for educa-
tional purposes [5, 13], they do not immediately provide the
answers to the questions we have posed in Sec. 1, and, thus,
cannot serve as studies of trends in real-life Racket DSLs.
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7 Conclusion
The design space of domain-specific languages is vast and
diverse. Existing efforts to classify DSLs have largely been
concerned with DSL application domains and usage patterns.
By focusing on DSL intents irrespective of a concrete design
framework, they often lacked coherent explanations as to
what methodologies enable those intents. Moreover, while
it is feasible to identify more language design intents if we
consider multiple existing frameworks for DSL construction,
many of these frameworks have relatively small user base.
Therefore, we focus on Racket as a flatform due to its popu-
larity and the diversity of available DSL implementations.

Our work proposed a taxonomy of DSL design intents as
well as their enablingmechanisms specific to Racket’s ecosys-
tem. In particular, we analyzed existing Racket-embedded
DSLs and made observations about how experienced Racket
programmers use Racket’s meta-programming facilities to
achieve their language design objectives. We expect that
our analysis will be helpful to shed light on the common
design objectives and practices in the Racket community.
For the language designers, our findings will be informative
regarding the capabilities and limitations of Racket as an
implementation platform. For Racket users, our work can
serve as a guide for better understanding the underlying
behavior of the Racket-based programming tools.

While our work is Racket-specific, we believe that findings
from this paper pose interest to the programming language
community and could be applied to other languages with sim-
ilar metaprogramming facilities such as Rust, Scala, OCaml,
Haskell, etc. More specifically, designers of DSLs embedded
in non-Racket languages can use our framework and tax-
onomy describing the main intents in DSL design to better
plan and systematically develop their DSLs. Moreover, given
that other languages like Rust or Scala enable their users
to achieve subsets of language design intents identified and
presented in our work, developers of non-Racket languages
can get ideas about what metaprogramming facilities they
can add or modify within their languages to allow the users,
i.e., DSL designers, to achieve more design objectives that
can be popular among users.
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