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The Rust type system guarantees memory safety and data-race freedom. However, to satisfy Rust’s type rules,
many familiar implementation patterns must be adapted substantially. These necessary adaptations complicate
programming and might hinder language adoption. In this paper, we demonstrate that, in contrast to manual
programming, automatic synthesis is not complicated by Rust’s type system, but rather benefits in two major
ways. First, a Rust synthesizer can get away with significantly simpler specifications. While in more traditional
imperative languages, synthesizers often require lengthy annotations in a complex logic to describe the shape
of data structures, aliasing, and potential side effects, in Rust, all this information can be inferred from the
types, letting the user focus on specifying functional properties using a slight extension of Rust expressions.
Second, the Rust type system reduces the search space for synthesis, which improves performance.

In this work, we present the first approach to automatically synthesizing correct-by-construction programs
in safe Rust. The key ingredient of our synthesis procedure is Synthetic Ownership Logic, a new program
logic for deriving programs that are guaranteed to satisfy both a user-provided functional specification and,
importantly, Rust’s intricate type system. We implement this logic in a new tool called RusSOL. Our evaluation
shows the effectiveness of RusSOL, both in terms of annotation burden and performance, in synthesizing
provably correct solutions to common problems faced by new Rust developers.
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1 INTRODUCTION

Rust is a systems programming language designed for writing low-level code that combines strong
correctness guarantees with the runtime performance of traditional “unsafe” systems languages,
such as C/C++ (Matsakis and Klock II 2014; Rust Team 2017). A distinct feature of Rust is its
ownership type system, which ensures memory safety and data-race freedom, and enables the
compiler to manage memory automatically, without requiring a garbage collector.
The type system of Rust, which is so effective at preventing bugs statically, is also what makes

Rust code hard to write for developers who are new to the language. As an example, consider the
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code in Fig. 1, adopted from StackOverflow.1 Function borrow attempts to return a reference to the
contents of the data component of a value of type Bar. If data contains some value, a reference to it
is wrapped in the constructor Ok of the Result type,2 otherwise, the Err result is returned.

1 struct Bar<T> { data: Option<T> }

2 impl<T> Bar<T> {

3 fn borrow(&self) -> Result<&T, ()> {

4 match self.data {

5 Some(d) => Ok(&d),

6 None => Err(()),

7 }

8 }

9 }

Fig. 1. An ill-typed Rust example

This code fragment is rejected by the Rust type
system because it violates a fundamental invariant
of safe Rust: in each state, a memory location is ei-
ther mutable or shared (aliased), but never both. This
invariant prevents data-races by excluding concur-
rent write accesses and it allows safe de-allocation
once the owner of a location goes out of scope. In
our example, the invariant is violated after pattern-
matching on the value of the self.data field and
assigning its content to d in the first branch. At this
point, the memory location is mutable through d and potentially shared (because additional im-
mutable references may exist, for instance, in borrow’s caller). To fix this problem, the top answer
on StackOverflow suggests changing line 4 to match a read-only reference &self.data, such that
its value is immutably shared between &d and any other references that might exist.

Program Synthesis for Rust. Since navigating the intricacies of the Rust type system can be
difficult for programmers, it is appealing to apply program synthesis to automatically generate
a well-typed implementation of a function from its signature. Of course, in the case of borrow,
synthesizing a well-typed body is trivial—by always returning Err(). In order to capture the
programmer’s intent more precisely, type signatures can be annotated with boolean expressions
that describe the desired behavior of the function. For instance, the following specification for the
borrow function annotates a type signature with a postcondition, which states that borrow’s result
should be of the form Ok if and only if self.data is of the form Some:

#[ensures(self.data.is_some() == result.is_ok())]

fn borrow(&self) -> Result<&T, ()> { todo!() }

This specification is sufficient to automatically synthesize the correct implementation of borrow
suggested on StackOverflow. Three key observations make a successful search for such a program
possible: (a) the return type informs that the body should make use of constructors of the Result

type; (b) the postcondition ensures that the result will not be a vacuous Err; (c) most interestingly,
thanks to the Rust’s strong type system, the only way to obtain a value of type &T is by pattern
matching on &self.data. In particular, the implementation of borrow cannot construct a new
memory location and return a reference to it: this is outlawed in Rust, since the new location would
be de-allocated at the end of the function, leaving the caller with a dangling reference. Therefore,
our postcondition needs to provide only a very partial specification of the intended behavior, saying
nothing about which &T reference to return inside the Ok result. Nevertheless, together with the
type signature and Rust’s type rules, it is sufficient to synthesize the intended implementation.

We present a novel technique for synthesizing programs in safe Rust that satisfy a type signature
and a set of functional annotations, expressed as (mostly) plain boolean Rust expressions. Our key
insight is that the type rules of safe Rust restrict the synthesis search space, which both improves
performance and allows us to capture the programmer’s intent with only partial annotations.

Approach and Challenges. In this work, we follow the deductive approach to program synthesis,
which is based on formal logical specifications, and in which the search for a program is phrased

1https://stackoverflow.com/q/22282117
2The type &T denotes an immutable reference to a value of type T, and &self is a shorthand for self: &Bar<T>.
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as a proof search for judgments in a certain logic (Manna and Waldinger 1980). Given a logical
specification that is sufficiently precise, deductive synthesis produces programs that are correct by
construction, and can be independently validated by third-party type checkers and verifiers.
Given the close connection between Rust types and Separation Logic (SL) developed in the

context of program verification (Astrauskas et al. 2019), a promising direction for synthesizing
Rust programs could be as simple as (1) translating Rust types and functional specifications into
SL, and (2) using an SL-based deductive synthesizer such as SuSLik (Polikarpova and Sergey
2019) to synthesize programs from these SL specs. Unfortunately, this simple approach does not
work: even though every program generated by SuSLik is provably memory-safe, not every such
program satisfies the type rules of safe Rust. For example, SuSLik programs may use aliased mutable
references (e.g., for swapping pointer values), reinterpret a value of one data type as another (e.g.,
take an integer as a pointer and vice versa), and pass around pointers to allocated but uninitialized
memory—none of which is allowed in safe Rust. Moreover, since SuSLik is not aware of Rust’s type
rules, it cannot leverage them to restrict the search space. For instance, the postcondition in the
example above is insufficient to ensure that the synthesized implementation returns a reference
to the value of self.data; SuSLik requires a more comprehensive specification to synthesize the
intended implementation, which increases the overhead for the user.

For deductive synthesis to generate well-typed and correct Rust code, its underlying logic must
(1) capture the rules of safe Rust and (2) allow one to reason about the functional behavior of
Rust programs. Unfortunately, none of the existing program logics and semantics for Rust satisfy
both of these requirements. In particular, the logics used in the Rust verifiers Prusti (Astrauskas
et al. 2019) and Creusot (Denis et al. 2021) can reason about functional correctness, but they
assume that the program already type-checks, and hence do not formalize all the aspects of the
type system in the logic. For example, Prusti’s logic does not prevent two local variables from
storing mutable references to the same heap location; hence, if used for synthesis, this logic might
generate a program that is rejected by the type checker. On the other hand, Aeneas (Ho and
Protzenko 2022) and Oxide (Weiss et al. 2019) capture the type rules of safe Rust, but do not allow
one to reason about functional correctness within the logic. Finally, RustBelt (Jung et al. 2018)
and RustHornBelt (Matsushita et al. 2022) formalize unsafe Rust, whereas we target safe Rust.
To overcome these limitations, we develop Synthetic Ownership Logic (SOL), the first program

logic that faithfully reflects the type rules of safe Rust and can reason about the functional behavior
of Rust programs. Like Prusti, SOL is based on Separation Logic, and it also incorporates ideas
from Creusot and Aeneas. Unlike these existing logics, however, SOL is geared towards synthesis,
purposely restricting the shape of programs it can derive, to make the search tractable.

Contributions. In summary, this paper makes the following contributions:

• Synthetic Ownership Logic (SOL), a variant of Separation Logic that is targeted to program
synthesis of well-typed Rust programs from type signatures and functional specifications.

• RusSOL, the first synthesizer for Rust code from functional correctness specifications. We built
RusSOL by integrating SOL into SuSLik’s general-purpose proof search framework.

• An extensive evaluation of RusSOL with regard to utility and performance. We show that it is
capable of synthesizing a large number of non-trivial heap-manipulating Rust programs, in a
matter of seconds, and that required annotations are on average 27% shorter than the code.

2 OVERVIEW

In this section, we give an overview of our synthesizer, RusSOL, whose high-level workflow is
outlined in Fig. 2. The synthesizer takes as input data type definitions (not shown in Fig. 2) and
optional auxiliary functions, as well as the type signature of the function to be synthesized annotated
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Fig. 2. RusSOL workflow.

with pre- and postconditions, and produces a Rust implementation. We describe this workflow
in two parts. Sec. 2.1 illustrates RusSOL and its specification language on a series of examples.
Sec. 2.2 peeks under the hood of the synthesizer to give a taste of its underlying program logic and
deductive synthesis approach. The formal details are presented in Sec. 3.
Our running example throughout this section is a linked list data type:3

enum List<T> { Nil, Cons { elem: T, next: Box<List<T>> } }

The definition above declares a list parameterized by the element type T; a list is a sum type (enum)
with two variants: an empty list is denoted Nil and a non-empty list is denoted Cons and consists
of a head element and a pointer to the tail (of type Box<List<T>>). Note that according to the Rust
type system, a non-empty list owns both its head and its tail, which prevents uncontrolled aliasing
among both list elements and list nodes. That is, any mutation of a list’s head and tail will require
exclusive ownership over the list itself.

2.1 RusSOL by Example

In this section, we show how RusSOL helps the user generate various operations over linked lists.

Programs from Types. Let us start with a very simple operation: creating a singleton list. Its type
signature, shown below, states that singleton takes ownership of the element elem (which will be
transferred to the new list), and returns an owned list. Instead of implementing the function by
hand, we leave the body as a todo!() macro invocation, which is a placeholder for the code that
the synthesizer will generate, shown on the right.

fn singleton(elem: T) -> List<T> {

todo!()

}

// Synthesis result:

let next = Box::new(List::Nil);

List::Cons { elem, next }

RusSOL can synthesize the intended implementation just from the type signature, without any
functional specification, for the following reasons. Since the List type is parameterized, there is no
way of constructing a new value of type T “out of thin air”. Furthermore, the value of elem cannot be
duplicated (which would be possible only if T implemented, e.g., the Clone trait). Therefore, there are
only two possible well-typed solutions—returning an empty or a singleton list.4 Out of the two, the
empty list solution appears simpler, but requires dropping (de-allocating) the owned argument elem.
The synthesizer tries to avoid dropping because it is unlikely that a function requires ownership
of an argument without using it and, thus, generates the intended implementation. This example
illustrates how Rust’s type system—in this case, parametricity and linear types—vastly reduces the
space of well-typed programs,5 and with it the burden of specifications required for synthesis.

3We use the term data type to refer to both structs and enums in Rust. This particular definition of List is not the most
efficient (Beingessner 2015), but we use it for simplicity. Our tool can also handle more efficient definitions.
4Technically, there are other well-typed programs, which perform unrelated computation before returning a list, but once
again, thanks to the Rust type system, the effect of such unrelated computation would not be observable by clients. The
synthesis tool usually picks the shortest program from those that satisfy the specification.
5Of course, in case of parametricity, this phenomenon has been studied already in the classic paper by Wadler (1989).
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Preconditions and Pure Functions. The next operation we would like to implement is peek,
which gives read-only access to the head element of the list. This intent is reflected in its type

fn peek(&self) -> &T

which takes an immutable reference to the list and returns an immutable reference to an element.
The peek operation is meaningful only on non-empty lists, and, in fact, the Rust type system makes
it impossible to produce a reference &T when the list is empty (so, synthesis would fail). To solve
this problem, we annotate peek with a precondition, demanding that the list be non-empty.

There are multiple ways to express such a precondition in RusSOL, but the most idiomatic one
is to define a pure (side-effect free) function that computes the length of the list, and then write the
precondition abstractly in terms of this function, as shown in the requires annotation in Fig. 3.
Pure functions are a standard approach in program verification for specifying functional behavior.
They are reflected into the logic, enabling their use in specifications. RusSOL performs a syntactic
check that pure functions do not perform any assignments or calls to non-pure functions.

#[pure]

fn len(&self) -> usize {

match self {

List::Nil => 0,

List::Cons { next, .. } =>

1 + next.len(),

}}

#[requires(self.len() > 0)]

fn peek(&self) -> &T {

todo!()

}

// Synthesis result:

match self {

List::Nil => unreachable!(),

List::Cons { elem, .. } =>

elem,

}

Fig. 3. Peek at first element: pure function len (le�), specification (middle), and synthesis result (right).

Pure functions need to be defined manually, which might be perceived as overhead. However,
since these are regular, executable Rust functions, many of them occur in implementations anyway
(such as a len operation on lists). Moreover, a small number of pure functions typically suffices to
specify all operations of a data type. Therefore, the cost-benefit ratio of using the synthesizer is
still favorable, especially since it guarantees that the synthesized code is provably correct (in this
case, that the unreachable!() branch is truly unreachable).

Postconditions. Our next task is to implement push, which inserts a new element at the front of
the list. Our first attempt at specifying push is depicted below. The type signature of push gives it
write access to the list by mutable reference, which is a common pattern for mutator methods in
Rust. In addition to the signature, we add a postcondition—the ensures annotation—which uses the
pure function len we had previously defined to express that the length of the list has increased by
one. Following Creusot (Denis et al. 2021), the notation ^r in function specifications denotes the
final value of the reference r at the time of its expiry, while the regular Rust dereferencing syntax
*r denotes the value of r at the time of its creation. In this case, (*self).len() and (^self).len()

denote the length of the list immediately before and after the call to push, respectively; as is
customary in Rust, the former can be shortened to just self.len().

#[ensures((^self).len() ==

(*self).len() + 1)]

fn push(&mut self, elem T) {

todo!()

}

// Synthesis result:

match self {

List::Nil => {

let next = Box::new(List::Nil);

let self_new = List::Cons { elem, next };

*self = self_new

}

List::Cons { next, .. } => next.push(elem),

}

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 164. Publication date: June 2023.
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#[ensures (match ^self {

List::Nil => false,

List::Cons { ref next, .. } =>

**next === *self,

})]

fn push(&mut self, elem T) { todo!() }

// Synthesis result:

let result = std::mem::replace(self, List::Nil);

let next = Box::new(result);

let self_new = List::Cons { elem, next };

*self = self_new

Fig. 4. Second a�empt at specifying push (le�); intended synthesis result (right).

While the synthesized implementation satisfies the specification, it does not have the intended
behavior because it inserts the new element at the end of the list, as we can see from the recursive
call to push on the tail. RusSOL generates this program first because inserting the new element at
the front is more complex than one might think. In particular, the following naive implementation
is not type-correct in Rust and will, therefore, not be generated by RusSOL:

1 fn push(&mut self, elem: T) {

2 let new_node = List::Cons(elem, Box::new(*self));

3 *self = new_node;

4 }

Line 2 is trying to transfer ownership of self’s value to new_node, which is not allowed because
self’s value is passed via a mutable reference, which explicitly prevents such transfers.6

To obtain the intended behavior, we strengthen the postcondition of push as shown in Fig. 4.
The new postcondition stipulates that at the end of the call, the list referenced by self must be
non-empty, and its next field must point to a list that is structurally equal to the original value of
self (we explain the notion of structural equality === in more detail in Sec. 2.2).
The generated code has the intended behavior. It also shows why this function is non-trivial

to implement: it relies on the library function std::mem::replace, which uses unsafe Rust under
the hood to take ownership of a value behind a mutable reference (here self) replacing it with
another value (here List::Nil). Pointer manipulations in Rust frequently resort to library functions,
such as replace and swap, to work around the limitations of the type system. RusSOL contains
specifications of these functions in its prelude and automatically invokes them when necessary,
through the same mechanism it employs for user-defined helper functions. For example, replace’s
specification indicates that the function returns the old value of dest, and sets dest to src’s value:

1 #[extern_spec] #[ensures (result === *dest && ^dest === src)]

2 fn std::mem::replace<T>(dest: &mut T, src: T) -> T;

Re-borrowing. In the last example of our tour, we show how our technique handles functions
that create and return a reference into a data structure. Function last_mut below returns a mutable
reference to the last node of a list (i.e., the Nil node), such that callers can add nodes after it; for
example, one can write *(xs.last_mut()) = ys to append a list ys to the end of the list xs.

fn last_mut(&mut self) -> &mut List<T> {

todo!()

}

// Synthesis result:

self

The signature of last_mut forces the result value to be a reference to some node reachable from
self, and cannot, for example, reference a freshly created list. This is because the input and output
references implicitly have the same lifetime, which essentially means that the latter can only be
created by re-borrowing from the former. Without a postcondition, however, there is no restriction
on which node of the list to reference, and the simplest solution is just to return self.

6The thread at https://stackoverflow.com/q/28258548 documents a Rust programmer running into a similar problem.
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Unfortunately, it is not sufficient to add a postcondition that the returned reference points to
an empty list. Since self is a mutable reference, the synthesized implementation may modify the
list. So instead of navigating to the end of the list, it may simply assign an empty list to the passed
mutable reference and return that reference:

#[ensures((*result).len() == 0)]

fn last_mut(&mut self) -> &mut List<T> {

todo!()

}

// Synthesis result:

*self = List::Nil;

self

A better way to specify functions that re-borrow from an argument reference is to relate the
argument value in the initial state of the function to the value when the re-borrow expires:

#[ensures((^self).len() ==

(*self).len() + (^result).len())]

fn last_mut(&mut self) -> &mut List<T> {

todo!()

}

// Synthesis result:

match self {

List::Nil => self,

List::Cons { next, .. } => next.last_mut()

}

The postcondition in the specification above expresses that the list self should eventually grow by
the same number of elements as are contained in the list result. A subtle point here is that, unlike
in our previous example, ^self does not refer to the program point immediately after the function
call. Since last_mut returns a reference with the same lifetime as self, both self and result expire
later, at the point when the caller is done using the returned reference, and ^self refers to that
point in the execution. This specification prevents the synthesizer from modifying the length of the
list inside last_mut, which leads to the intended implementation. Interestingly, the postcondition
also expresses a non-trivial property of the code outside this function: the caller can use result

only to grow the original list; this property is guaranteed by RusSOL.

2.2 A Glimpse of Synthetic Ownership Logic

In this section, we illustrate how RusSOL solves the synthesis tasks described in the previous
section, using deductive synthesis and a new program logic called Synthetic Ownership Logic
(SOL). The general workflow of the synthesizer is shown in Fig. 2. Given a Rust type annotated
with a functional specification—via #[requires] and #[ensures] clauses, possibly using #[pure]

functions—the RusSOL front-end first translates this input into a synthesis goal expressed in SOL.
The synthesizer also takes as input data type definitions, as well as specifications of helper functions
that can be called from the target function; these are omitted from the figure to avoid clutter. The
deductive synthesis engine then uses the synthesis goal to derive a program in SOL-Rust, which is
a subset of Rust in a normal form akin to SSA, and with certain implicit operations made explicit
(such as re-borrowing of references and dropping variables at the end of their scope). Finally, the
pretty printer translates this program into more concise and human-readable Rust.

Deductive Synthesis as Symbolic Execution. Recall the singleton function from Sec. 2.1. Its type
signature fn singleton<T>(elem: T) -> List<T> with no further annotations translates into the
following synthesis goal in SOL (the type parameter T of List is omitted for brevity):

{elem : T} _ {result : List} (1)

The synthesis goal is a pair of symbolic heaps, denoting the pre- and postcondition of the target
program. For now, a symbolic heap is simply a set of type bindings {G1 : )1 ∗ G2 : )2 ∗ · · ·}; later in
this section, we refine the bindings with information about the values of the variables. Our symbolic
heaps correspond to symbolic heaps in Separation Logic, where ∗ is separating conjunction and
G : ) is syntactic sugar for a predicate that describes the heap layout of an object of type ) .
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A {elem : T}

drop!(elem); // Drop

D {emp}
C {emp}

let result = List::Nil; // Constr.Nil

B {result : List}

(a) The empty list program.

A {elem : T}

E {elem : T}

let list = List::Nil; // Constr.Nil

{elem : T ∗ list : List}

let next = Box::new(list); // Constr.Box

{elem : T ∗ next : Box}

let result = List::Cons{elem, next}; // Constr.Cons

B {result : List}

(b) The singleton list program.

Fig. 5. Two derivations for the synthesis goal (1).

Drop

{x : T} drop!(x) {emp}

Constr.Nil

{emp} let x = List::Nil {x : List}

Constr.Cons

{
e : T ∗

n : Box

}
let x = List::Cons { e, n } {x : List}

Constr.Box

{l : List} let x = Box::new(l) {x : Box}

Fig. 6. Rules of SOL used in Fig. 5.

Given the goal (1), the synthesizer attempts to generate a program that transforms the symbolic
pre-heap {elem : T} into the post-heap {result : List}. To produce the owned list result, which
is not present in the pre-heap, the synthesizer attempts to use one of the two list constructors, Nil
or Cons. Assume that it chooses the former, emitting the statement let result = Nil, as shown
in Fig. 5a. It will then symbolically execute this statement backwards starting from the current
postcondition B to obtain a new postcondition {emp} C , i.e., an empty heap. This backward step
results in a new synthesis goal, namely to reach an empty heap from the pre-heap {elem : T} A .
The most immediate way to achieve this is to de-allocate elem. Forward symbolic execution of
drop(elem) yields the heap {emp} D , which concludes the program derivation.

Choosing the other list constructor, Cons, leads to the derivation shown in Fig. 5b. Constructing a
non-empty owned List<T> requires an owned T and an owned Box<List<T>>; the latter, in turn, can
be constructed from an owned List<T>, for which we pick the Nil constructor this time. Propagating
the postcondition backwards through these three statements yields the heap {elem : T} E , which
matches our initial precondition A , hence the derivation is complete.
This example illustrates how deductive synthesis derives a program one statement at a time,

every time emitting a statement that can either produce some fragment of the current postcondition
or consume some fragment of the current precondition, and then propagates the corresponding
symbolic heap backwards or forwards, in a form of “bidirectional” symbolic execution. Of course,
the real synthesizer does not always guess the right statement to emit on the first try, and instead
implements cost-driven search in the space of program derivations, as we explain in Sec. 3.4.

The Rules of SOL. To choose candidate statements and to perform symbolic execution, the syn-
thesizer needs to know the effect of each operation on the symbolic heap. Similarly to Separation
Logic, SOL formalizes this knowledge as a set of inference rules about Hoare triples of the form
{P} B {Q}, where P and Q are symbolic heaps and B is a statement. Fig. 6 shows the SOL axioms
used in the derivations in Fig. 5: Drop and three instances of the axiom schema Constr that the
synthesizer derives from the constructors of the given data types, here List and Box.7

7Box is actually a special case and is constructed via the new method, but we treat it as a constructor for simplicity.
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A {; .len > 0 | self : List(; ) }

match self { // Destr.List

List::Nil => {

B {; .len > 0 ∧ ; = {X : Nil, len : 0} | emp}
D {false | emp}

unreachable!() // Unreachable

C {result : T}}

List::Cons { elem, next } => {

E {; = . . . | elem : T ∗ next : Box}

drop!(next); // Drop

{; = . . . | elem : T}

let result = elem; // Rename

F {; = . . . | result : T}

C {result : T}}

{result : T}

Fig. 7. Deriving function head.

Destr.List
{; = {X : Nil, len : 0} | %} 20 {Q}

{; = . . . | e : T(E) ∗ n : Box(F) ∗ %} 21 {Q}

{x : List(;) ∗ %} mat� x

{
Nil => 20

Cons{e, n} => 21

}
{Q}

Unreachable

{false | %} unreachable!() {Q}

Rename

{x : T} let y = x {y : T}

Fig. 8. SOL rules used in Fig. 7.

For example, in the second step of the derivation in Fig. 5b, the synthesizer detects amatch between
the postcondition of Constr.Box and the fragment {next : Box} of the current postcondition.
Hence, it applies the rule backwards, replacing the matched fragment with the precondition of
the rule. On the other hand, in Fig. 5a, the rule Drop is applied forwards, by matching the rule’s
precondition with the precondition of the current synthesis goal. This bidirectional nature of
the proof search gives the synthesizer the flexibility to proceed with whichever side of the goal
can provide the most guidance on the next statement to be generated (for example, proceeding
backwards from emp in our first derivation would be unwise).

Functional Specifications via Snapshots. So far, we have illustrated how SOL encodes Rust types;
to handle functional specifications, we extend this encoding to include pre- and postconditions, as
well as pure functions. Consider a function head that takes an owned non-empty list and returns
its head element, while discarding the tail:

#[requires(self.len() > 0)]

fn head<T>(self) -> T

We now show how RusSOL translates the precondition on the length of the list into SOL, and
uses it to prove that matching self against Nil results in unreachable code.

To reason about functional properties in SOL, we refine each binding in the symbolic heap with
a snapshot (Smans et al. 2010), written G : ) (E), which can be omitted if irrelevant. Intuitively, the
snapshot contains all the information about an object of type) that can be mentioned in a functional
specification, while abstracting away details such as the memory layout. More specifically, if ) is a
primitive type, e.g., i32, then E is just a value of type ) . If ) is a data type, then E is a record that
contains the value of the discriminant X (i.e., a value uniquely identifying the enum variant), the
snapshots of all the fields, and the values of all pure functions that are defined on the type.
Using snapshots, we can translate the specification of head into the following goal in SOL:

{; .len > 0 | self : List(;)} _ {result : T} (2)

Here ; stands for the snapshot of the list in the pre-heap, and the #[requires] clause is translated
into a pure formula ; .len > 0 on the field len of the snapshot. Pure formulas in SOL are ordinary
first-order formulas that can be added to any symbolic heap to constrain the values of snapshots
from that heap (in practice we restrict them to SMT-decidable logics).
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Fig. 7 shows a program derivation from this goal. We start by applying the Destr.List rule in
the forward direction to self : List(;) A . This rule, shown in Fig. 8, is complementary to Constr

and generates a match statement, which consumes self, leaving in its place its constituent fields.
Importantly, in each branch we also learn something about ; , the old snapshot of self; for example,
in the Nil branch, we learn that ; = {X : Nil, len : 0} B , where the value for len is extracted from
the Nil case of the definition of the pure function len. Clearly, the pure formula in the new pre-heap
is inconsistent, since ; .len must be both positive and equal to zero.
At this point, RusSOL fires the Unreachable rule backwards from the post-heap C , which

allows replacing the symbolic heap with an arbitrary one, as long as the pure formula is replaced
with false D . Now the synthesizer can close the Nil branch: although the pre- and post-heaps have
different pure formulas, the SMT solver can verify that one implies the other. More generally, in the
presence of functional specifications, the two directions of symbolic execution are bridged by the
rule of Conseqence (not shown in Fig. 8), familiar from Hoare logic, which requires that the pure
precondition implies the pure postcondition (and that the impure conditions are the same); in our
proof outlines, the applications of this rule are depicted as arcs connecting the two symbolic heaps.

The Cons branch E does not require any pure reasoning: we fire the familiar Drop rule to dispose
of the tail of the list, obtaining the symbolic heap {elem : T}, which is almost the same as the desired
postcondition modulo variable renaming. This is a job for the Rename rule, which emits a move
assignment to rename variables appropriately F . Finally, the Cons branch is closed via a trivial
application of Conseqence, since the pure postcondition C is simply true.

References and Prophecies. Having seen how SOL handles owned values in Rust, we now turn
to references. We consider only mutable references in this section; the treatment of immutable
references is similar, see Sec. 3. The main challenge for generating well-typed code with references
is to satisfy Rust’s borrowing rules, e.g., that a variable that has been borrowed from cannot be used
until the borrow expires.
Variables of a reference type &'a mut T are represented in our symbolic heap as a special kind

of binding, ~
'0
↦−→ ) , where '0 denotes the lifetime of the reference (which we omit if irrelevant or

unchanged). To enforce borrowing rules, every variable in the symbolic heap is annotated with a
blocking set, i.e., the set of lifetimes of references that may have borrowed from it. For example,

executing let y = &mut x from the heap {x : List} results in
{
x{ '0} : List ∗ y

'0
↦−→ List

}
. In the

latter heap, we say that x is blocked by '0. Blocking sets are used internally by the synthesizer to
ensure that a blocked binding is not used by any statement, but they do not complicate user-written
specifications. We omit blocking sets when they are empty. Our blocked bindings are similar to loan
values in Aeneas (Ho and Protzenko 2022), with lifetimes playing the role of their loan identifiers.

Recall from Sec. 2.1 that user specifications can refer to the final value of a mutable reference r

via the syntax ^r. To reason about final values in SOL, snapshots for reference bindings are pairs of
the form ·, ·, e.g., G ↦→ )

(
2, Ĝ

)
, where the left component is the current snapshot of the reference,

and the right component is its final snapshot at the time of expiry. This treatment is inspired
by Creusot (Denis et al. 2021), which internally models references as pairs of values. The final
snapshot Ĝ is a so-called prophecy variable, whose value is initially unknown; in fact, only when the
variable G is dropped do we learn what its final value is—it is G ’s current value just before it gets
dropped. In SOL, this is captured by the rule DropRef in Fig. 9; the generated drop! statement will
later be erased by the pretty printer because references are not dropped explicitly in Rust. Fig. 9
also shows (simplified versions of) other rules for manipulating references; we will use these to
derive our last two examples, push and last_mut (see Sec. 2.1). Note that because a single reference
binding expires exactly once, the same prophecy variable is used for all occurrences of x ↦→ · in the
same scope. We use the variable’s name with an overhead wedge as our convention.
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DropRef

{
q | x\ ↦→ T

(
2, Ĝ

)}
drop!(x) {2 = Ĝ ∧ q | emp}

Write

{
x ↦→ T

(
E, Ĝ

)
∗ y : T(2 )

}
∗x = y

{
x ↦→ T

(
2, Ĝ

)}

ReBorrow

{
x ↦→ T

(
2, Ĝ

)}
let y = &mut ∗x




y
'0
↦−→ T

(
2, ~̂

)
∗

x{'0} ↦→ T
(
~̂, Ĝ

)



Fig. 9. SOL rules for referencemanipulation. Note
that, unlike an owned object, a reference may be
dropped even while blocked since we can pick
any blocking set for \ .

A
{
self ↦→ List

(
;, B̂

)
∗ elem : T

}

let tail = replace(&mut *self, Nil); // Call

B
{
self ↦→ List

(
{X : Nil}, B̂

)
∗ tail : List(; ) ∗ elem : T

}

C
{
self ↦→ List

(
_, B̂

)
∗ tail : List(; ) ∗ elem : T

}

let next = Box::new(tail); // Constr.Box{
self ↦→ List

(
_, B̂

)
∗ next : Box(; ) ∗ elem : T

}

let new = Cons { elem, next }; // Constr.Cons{
self ↦→ List

(
_, B̂

)
∗ new : List({X : Cons, next : ;, ...})

}

*self = new; // Write{
2.X = Cons ∧ 2.next = ; | self ↦→ List

(
2, B̂

)}

drop!(self); // DropRef

D {B̂ .X = Cons ∧ B̂ .next = ; | emp}

Fig. 10. Deriving push from goal (3).

Synthesis with References. The specification of push from Fig. 4 (left) is translated as follows:8

{self ↦→ List(;, B̂) ∗ elem : T} _ {B̂ .X = Cons ∧ B̂ .next = ; | emp} (3)

Since push has no return value, the symbolic heap in the postcondition is empty, but it has a non-
trivial pure formula, generated from the #[ensures] clause. Note how ^self from that clause gets
translated into the prophecy variable B̂ (which is introduced in the pre-heap as the final snapshot
of self); note also that structural equality === is simply equality on snapshots.
The SOL derivation of push from (3) is shown in Fig. 10. We simplified some aspects of this

derivation (e.g., performing some pure reasoning implicitly) to focus on the key points. Starting
from the post-heap, the synthesizer notices that the reference self is absent here but present in
the pre-heap, and hence it has likely been dropped; executing DropRef backwards provides the
information that the snapshot of self, 2 , before the drop must have been its final snapshot B̂ . Since
the current snapshot of self does not match the one available in the pre-heap, the synthesizer
decides to apply Write, to move an owned object—here called new—with the desired value into
the reference self. To construct new, the synthesizer employs the familiar Constr.Cons rule,
augmented with the information about snapshots of the Box and List values:

{e : T ∗ n : Box(=)} let x = Cons { e, n } {x : List(X : Cons, next : =, . . . })}

In this rule, the type Box is treated in a special way: its snapshot is the snapshot of the object it
points to. Using this information, the Constr.Cons step discharges the pure postcondition of push;
it only remains to ensure that the snapshot of next is ; .
Finally, our backwards symbolic execution arrives at a post-heap where the only mismatched

binding is tail : List(;). Recall from Sec. 2.1 that there is no way to obtain this list by dereferencing
self, because one cannot turn a reference into an owned object. Neither can the synthesizer
construct tail as a constant list, because it needs to have a specific snapshot. Consequently,
RusSOL invokes std::mem::replace from its standard library, whose specification we have shown
in Sec. 2.1. It applies the (omitted) Call rule (in the forward direction), which essentially matches a
fragment of the current pre-heap with the callee’s precondition and then replaces that fragment
into the callee’s postcondition. Here, the call replaces the current snapshot of self with {X : Nil},
and in return obtains the required owned list tail, completing the derivation.

8We are omitting the trivial result : ( ) from the postcondition for simplicity.
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Program variable x, y, z, . . .

Lifetime '0, '1

Mutability ` ::= mut | imm

Blocking set \ ::= { '0, '1, . . .}

Type ) ::= T | &'0 ` ) | () × . . .)V + . . .

(primitive) | bool | u8 | i8 | u16 | · · ·

Logical variable G, ~, I, Ĝ, ~̂, Î . . .

Snapshot D, E, F ::= G | {X : V, 0 : E, . . .} | (E, Ĝ )

(primitive) | true | false | 0 | 1 | · · ·

Pure formula q,k ::= E | q = k | · · ·

Symbolic heap %,& ::= emp | x\ : ) (E) | % ∗&

Assertion P, Q ::= {q | % }

Fig. 12. SOL assertion syntax.

Re-borrowing. To handle re-borrowing, SOL needs to reason about the snapshots of parameters
and result whose lifetimes extend beyond the end of the function. We illustrate this reasoning
using last_mut from Sec. 2.1, which returns a mutable reference to the last node in the list. Its
specification translates into the following synthesis goal:

{
self

'0
↦−→ List(;, B̂)

}
_
{
B̂ .len = ; .len + Â .len | result

'0
↦−→ List(2, Â )

}
(4)

We omit the full derivation of last_mut for brevity, and consider only the base case (self = Nil),
where the most interesting reasoning happens (Fig. 11). We explain the symbolic execution in the
forward direction since it is easier to follow; the synthesizer performs this reasoning backwards.
In the Nil case, the symbolic pre-heap A contains just self, whose length is known to be zero.

The first statement re-borrows from self into result, using the rule ReBorrow from Fig. 9. The
current snapshot of result becomes ; , the original snapshot of self. More surprisingly, the current
snapshot of self also changes to the final snapshot of result. This update reflects that the referent
of selfmay be modified through result: the effect of such a modification is that once result expires,
self will point to its final value (just before result expires); since self is blocked anyway, its
current snapshot is irrelevant.

A

{
; .len = 0 | self

'0
↦−→ List(;, B̂ )

}

let result = &mut self; // ReBorrow
{
; .len = 0 | result

'0
↦−→ List(;, Â ) ∗ self{'0}

'0
↦−→ List(Â , B̂ )

}

drop!(self); // DropRef

B

{
; .len = 0 ∧ B̂ = Â | result

'0
↦−→ List(;, Â )

}

C

{
B̂ .len = ; .len + Â .len | result

'0
↦−→ List(;, Â )

}

Fig. 11. Base case of last_mut derivation.

At the end of last_mut, the reference
self is dropped. As per the rule DropRef,
the effect of this statement, apart from re-
moving self from the symbolic heap, is
to learn that self’s final snapshot, B̂ , is its
“current” snapshot Â B . Using this fact, we
can automatically discharge the pure post-
condition B̂ .len = ; .len + Â .len C . Since
result re-borrows from self, the self ref-
erence is dropped at the end of the func-
tion, but its lifetime does not end here (it will only end when result’s lifetime expires). DropRef
reflects that, although the referent of self might very well be modified after self is dropped, it can
be modified only via result (or its transitive re-borrows), and therefore the final snapshot of self
must be the same as the final snapshot of result.

3 SYNTHETIC OWNERSHIP LOGIC, FORMALLY

This section formalizes the assertion language and inference rules of Synthetic Ownership Logic.

3.1 Assertion Language

SOL represents the state of a Rust program as an assertion of the form {q | %}, where % is a symbolic
heap and q is a pure formula. The syntax of the assertion language is given in Fig. 12.

Symbolic Heaps. A symbolic heap is a set of variable bindings connected by SL-style separating
conjunction (∗). Each binding x\ : ) (E) associates a program variable x (potentially blocked by \ )
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with a type ) , refined by a snapshot E . Note that SOL differentiates between program variables,
written in typewriter font, and logical variables, written in italic font. Inside an assertion, program
variables appear only on the left of a binding, whereas logical variables can appear in snapshots
and pure formulas. The blocking set \ of a binding for x is the set of lifetimes of all references that
are currently borrowing from x; in most cases, \ contains at most one lifetime, but larger blocking
sets can arise when multiple references are borrowing different fields of a data type.
The types of SOL include type variables, reference types, algebraic data types, and primitive

Rust types. A data type is a sum of variants, where each variant is a product type tagged with its
constructor V; for example, the type Option<i32> is represented as ()None + (i32)Some.9 A reference
type is annotated with a lifetime and mutability, which can be omitted if irrelevant. In the interest

of readability, we introduce syntactic sugar for bindings with reference types, writing x\
'0
↦−→` ) (E)

in place of x\ : (&'0 ` ) ) (E) (this syntactic sugar was used throughout the examples in Sec. 2).

Snapshots and Pure Formulas. A snapshot represents the value stored in a program variable, and
can be a logical variable, a record, a current-final pair, or a primitive value. A record is a snapshot for
a data type; it consists of the pre-defined discriminant field X that stores the constructor, followed
by a numbered field for each type inside the variant (in Sec. 2, we instead used named fields for
readability). If a data type has associated pure functions, a snapshot is also extended with a ghost
field for each such function. For example, the snapshot {X : Some, 0 : 42, is_some : true} represents
the Rust value Some(42), assuming that is_some is the only pure function defined for Option.
As we mentioned in Sec. 2.2, the snapshot of a reference x is a pair (E, Ĝ), of its current value E

and its final value Ĝ . While the current value can be an arbitrary snapshot term, the final value
is always a special kind of logical variable—a so-called a prophecy variable (Abadi and Lamport
1988; Denis et al. 2021)—which represents the value x will point to at the end of its lifetime. In SOL,
prophecy variables are distinguished from other logical variables by the “hat” symbol (Ĝ, ~̂, . . .).
Note that x’s current value can change during its lifetime (for example, if we write to x), but its
final value never changes; when x is dropped, the prophecy is resolved, i.e., we learn what Ĝ has
been equal to all along. If a reference is immutable, its current value never changes and is always
equal to the final value.

Pure formulas q are quantifier-free logical formulas over snapshots. The exact theory used in q

is not important, as long as it is efficiently decidable by SMT solvers, and supports equality between
snapshots, as well as the standard logical connectives.

Memory Model. A model of an SOL assertion {q | %} is a state ⟨f,H⟩, where f is a valuation of
logical variables that satisfies q , and H is a concrete heap that satisfies % . As is standard in SL
with fractional permissions (Boyland 2013), a heap H : Loc ↦→ (0, 1] × Val is a partial map from
locations to permissions and values.10 A full permission ? = 1 allows write access, whereas any
0 < ? < 1 allows only read access to the heap location.

A model of an unblocked binding x : ) where) is a non-reference or a mutable reference &mut ) ′,
includes full permissions to all heap locations occupied by the value of type ) or ) ′. If ) is an
immutable reference &imm ) ′, then the model includes partial permission to the footprint of ) ′.
On the other hand, a blocked binding x\ : ) with \ ≠ ∅ can be elaborated into a separating

implication (aka “magic wand” (O’Hearn et al. 2001)) %\ −∗ x : ) , where %\ includes all references

with lifetimes in \ : %\ = ∗'0∈\y
\ ′ '0

↦−→ ) ′. A model of a separating implication %\ −∗ x : ) is a model
of x : ) minus a model of %\ ; this represents the fact that some of the permissions originally held by

9To avoid uninteresting notational overhead, we treat recursive types equi-recursively in the logic; our implementation
instead unfolds recursive types whenever it applies the Destr and Constr inference rules.
10For our purposes, the distinction between stack and heap locations is not important: we can model stack variables as
special heap locations addressed by a pair of scope and variable name.
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u
v

#[requires A1] . . .

#[ensures 41] . . .

fn f(x : )1, . . .) → )

}
~ =

{
JA1K4 ∧ . . . | Jx : )1Kbnd ∗ . . .

}

_{
J41K4 ∧ . . . | Jresult : ) Kbnd

}
Jx : &'0 ` ) Kbnd = x

'0
↦−→` ) (G, Ĝ)

Jx : ) Kbnd = x : ) (G)

JxK4 = G J*xK4 = G J^xK4 = Ĝ J4.f()K4 = J4K4 .f J41 === 42K4 = J41K4 = J42K4 . . .

Fig. 13. Translating surface specifications to SOL synthesis goals.

x are now held by its borrowers. When all lifetimes in \ expire, we can exchange the implication
together with %\ for an unblocked binding x : ) : this is called applying the magic wand (in principle,
a magic wand should be partially applied every time a lifetime in \ expires, but for the restricted
set of programs that can be derived by SOL, we do not need such fine-grained accounting).

Finally, the semantics of emp and ∗ is entirely standard; in particular, a model of % ∗& is a disjoint
union of the models of % and & (more precisely, locations with partial permissions are allowed to
overlap, as long as the total permission does not exceed 1). Giving a standard interpretation to ∗ is
important because it gives us for free the soundness of the frame rule (discussed below).

Hoare Triples. The judgments of SOL are Hoare triples of the form {P} 2 {Q}, where P and Q

are assertions and 2 is a program statement. We omit the syntax of statements since it is mostly a
subset of Rust; importantly, our programs do not have loops, but do have (recursive) function calls.
The interpretation of a Hoare triple is the familiar total correctness from SL—stating from a state
that satisfies P, 2 will execute safely and terminate in a state that satisfies Q. Note however, that
since SOL is a synthesis logic, we interpret 2 as unknown (to be discovered during proof search).

By common convention, free logical variables of P and Q are considered implicitly universally
quantified across the triple if they occur in P, and existentially quantified otherwise. Prophecy
variables are an exception: they are always universally quantified. For example, recall the synthesis
goal (4) for last_mut from Sec. 2.2: in this goal, the only existential is 2 , the “current” value of
result, while all other logical variables ('0, ;, B̂, Â ) are universal. This is because the synthesizer gets
to pick the value of result at the end of the function, but the caller gets to pick everything else,
including the value of result at the end of its lifetime (since result’s referent can be mutated after
the function ends).

3.2 From Rust to Synthesis Goals

Deductive synthesis starts from a goal {P} _ {Q}, and attempts to derive a triple {P} 2 {Q}, for
some program 2 , using the synthesis rules, described below. The goal is generated from the surface
specification, i.e., a Rust type signature annotated with #[requires] and #[ensures] clauses, as
shown in Fig. 13. In the precondition, the symbolic heap has a binding for every argument; when
translating a binding, the meta-function J·Kbnd initializes its snapshot with a logical variable (or a
pair of a regular and a prophecy variable, in the case of a reference). We use a convention that the
names of prophecy variables correspond to those of their program variables; this simplifies the
translation and also helps the proof search: because they are always universally quantified, the
prophecies for the same reference coming from the forward and backward direction of the search
need to match up, otherwise the search would fail.

In the postcondition, the return type is translated into a binding for the special variable result.
In the presence of reference arguments, it might seem that objects passed by reference must
be returned to the caller, and hence must also appear in the postcondition. But note that our
translation agrees with the Rust semantics, where all arguments are dropped at the end of the
function; dropping a reference, however, does not drop the object it points to.
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DropRef

{
q | x\ ↦→ ) (E, Ĝ)

}
drop!(x) {E = Ĝ ∧ q | emp}

ReBorrow
'0 : '1 ` = mut ? \ = {'1} : a = imm

{
x

'0
↦−→` ) (E, Ĝ)

}
let y = &a ∗x




y
'1
↦−→a ) (E, ~̂) ∗

x\
'0
↦−→` ) (~̂, Ĝ)




Write

{
x ↦→mut ) (E, Ĝ) ∗

y : ) (F)

}
∗x = y {x ↦→mut ) (F, Ĝ)}

CopyOut
) is primitive

{x ↦→ ) (E, Ĝ)} let y = ∗x

{
x ↦→ ) (E, Ĝ) ∗

y : ) (E)

}

DestrBorrow

) = ()~ × . . .)V0 + ()I × . . .)V1 + . . . {r, . . .} = returns(Q) '1 is fresh{
E = {X : V0, 0 : D, . . .} ∧ q | x{ '1}

'0
↦−→ ) ({X : V0, 0 : ~̂, . . .}, Ĝ) ∗ y

'1
↦−→ )~ (D, ~̂) ∗ . . . ∗ %

}
20 {Q}

{
E = {X : V1, 0 : F, . . .} ∧ q | x{ '1}

'0
↦−→ ) ({X : V1, 0 : Î, . . .}, Ĝ) ∗ z

'1
↦−→ )I (F, Î) ∗ . . . ∗ %

}
21 {Q} . . .

{
q | x

'0
↦−→ ) (E, Ĝ) ∗ %

}
let (r, ...) = mat� x

{
V0 (y, ...) => 20,

V1 (z, ...) => 21, . . .

}
{Q}

ConstrBorrow

) = ()0 × . . .)V0 + ()1 × . . .)V1 + . . . \ = V ∪ . . .
{
x{ '1}

'0
↦−→ ) ({X : Vn, 0 : ~̂, . . .}, Ĝ) ∗ y

V '1
↦−→ Tn (E, ~̂) ∗ . . .

}
drop!(y); ...

{
x\ ↦→ ) ({X : Vn, 0 : E, . . .}, Ĝ)

}

Fig. 14. Core Borrowing Rules.

The #[requires] and #[ensures] annotations are translated into pure formulas using the meta-
function J·K4 , which is mostly straightforward. The only cases worth mentioning are: current and
final dereferencing syntax (*x and ^x) are translated into the corresponding parts of the snapshot,
a pure function invocation is translated into a ghost field access, and structural equality === is
translated into logical equality on snapshots.

3.3 Synthesis Rules

Derivations of Hoare triples are built using synthesis rules. Many of them already appeared in
Sec. 2.2, so in the interest of space we focus only on new and non-trivial details (the full version
of all the rules is available in the supplementary material). The rules can be divided into three
categories: ownership rules work with bindings of non-reference types, borrowing rules work with
reference-type bindings, and structural rules are not specific to SOL or Rust.

Ownership Rules. Ownership rules include Drop, Rename, Unreachable, Constr, and Destr,
all of which made an appearance in Sec. 2.2. Constr and Destr are rule schemas, which are
instantiated for each data type. The only ownership rule we have not shown so far is Primitive,
which constructs a value of a primitive type, but this rule is straightforward.

Borrowing Rules. Borrowing rules are the heart of SOL and its most complex part, since they
encode the intricate borrowing semantics of Rust; the core borrowing rules are depicted in Fig. 14.
The first three of them should be familiar from Sec. 2.2. DropRef is intended for dropping a
reference-typed argument at the end of the function, thereby resolving its prophecy Ĝ . As we
mentioned above, this means deallocating the binding variable but not its referent, which is not
an operation that can be explicitly invoked in Rust, hence this rule emits a custom macro drop!,
which is later removed by the pretty-printer. Note that a reference can be dropped even if it is
blocked; this prevents us from ever unblocking any reference it was re-borrowing from, which is
not a problem when all references are dropped at the end of the function.
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Write and CopyOut are the rules for writing and reading references.Write moves an owned
value into a mutable reference. CopyOut copies a primitive value from a reference into a new
owned value; the reason for this restriction is that moving from under a reference is not allowed in
Rust, while copying is allowed only for primitive types.11

The ReBorrow rule is useful for re-borrowing (parts of) a reference-typed argument to either
return it or pass it to another function (including a recursive call). If the original reference x is
mutable (` = mut), the re-borrow y is allowed to be either mutable or immutable, but either way,
x gets blocked; technically, with an immutable y, we could downgrade x to immutable instead of
blocking it, but we did not find this useful for synthesis (we can always create more immutable
references from y). If ` = imm, however, then y must be immutable as well, but no blocking is
required: both references co-exist in the heap holding partial permissions to the same referent. It is
worth noting that a similar rule can be formulated for borrowing an owned value, but we did not
find it necessary for our use cases.
The final two rules in Fig. 14, DestrBorrow and ConstrBorrow, are the counterparts of

Constr and Destr for references. DestrBorrow pattern-matches on a reference x to a data type,
which amounts to re-borrowing all of its fields; as a result, its effect is a combination of Destr and
ReBorrow: like in the former, each branch of the match starts with all the fields of its respective
variant and gets to assume the structure of x’s (current) snapshot; but in the spirit of the latter, x
is still around inside the branches, albeit blocked. Since the code after the match might be using
any unblocked bindings of Q, they must be returned from the match (denoted by returns(Q)).
ConstrBorrow undoes the effect of DestrBorrow, by assembling the re-borrowed fields back
together into a single data type reference (in the terminology of Sec. 3.1, this rule applies a magic
wand, albeit in a restricted setting, where the left-hand side of the wand always consists of all fields
of x). Two more borrowing rules are omitted from Fig. 14: they are similar to DestrBorrow and
ConstrBorrow but work with nested references.

Structural Rules. Apart from rules that are specific to Rust, SOL inherits standard structural
rules from Hoare logic and SL, such as the frame rule, the rule of consequence, and the rule for
sequential composition. Additionally, from the latest version of Synthetic Separation Logic (Itzhaky
et al. 2021a), it inherits the mechanism for recursive calls based on cyclic proofs; this mechanism
handles proofs of termination and also supports discovering recursive auxiliary functions.

3.4 Proof Search

Gadgets. In the interest of clarity, we presentedmost SOL rules in the style of small axioms (O’Hearn
et al. 2001), which only mention the minimal set of bindings they need. To build a full derivation,
small axioms must be used in conjunction with structural rules, which are unwieldy in automated
proof search because they apply to any goal in a number of ways. Instead, our proof search uses
gadgets, i.e., admissible rules that fuse small axioms and structural rules. For example, the small
axiom DropRef cannot be directly applied to the goal:

{E .len = 0 | x ↦→ List(E, Ĝ) ∗ result : usize(42)} _ {Ĝ .len = 0 | result : usize(42)}

because neither the pure postcondition nor the symbolic heaps are in the right shape. Fusing
DropRef with the rules of frame and consequence, however, yields the gadget

{q | x ↦→ ) (E, Ĝ) ∗ '} drop!(x) {k | '} if (E = Ĝ ∧ q) ⇒ k

This gadget syntactically unifies with the goal above, yielding a proof obligation |= (E = Ĝ ∧E .len =

0) ⇒ Ĝ .len = 0, which is easily discharged by the SMT solver.

11This is a simplification in our formalism: our implementation allows copying any type that implements the Copy trait.
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DropRef-Backward{
q | x\ ↦→ ) (E ′, Ĝ) ∗ %

}
21

{
E = Ĝ ⇒ k | x\

′

↦→ ) (E, Ĝ) ∗ '
}

{
q | x\ ↦→ ) (E ′, Ĝ) ∗ %

}
21; drop!(x) {k | '}

Similarly, instead of using unre-
stricted sequential composition 21; 22
where 21 and 22 are arbitrary pro-
grams, we fuse the sequential com-
position rule with each of the small
axioms, yielding the forward or backward version of the gadget by restricting either 21 or 22 to be a
specific atomic statement. For example, the backward gadget for DropRef is shown above.

Recall that in Sec. 2 we frame synthesis as “bidirectional symbolic execution” and mention that
some statements are more naturally generated in one direction than the other. For example, the
Constr rule generates constructors backwards (at the end of the program), to allow the synthesizer
to search for necessary constructor arguments in the following steps, like in Fig. 5b. We can now
formalize this intuition: forward vs. backward symbolic execution simply corresponds to applying
forward vs. backward gadgets during proof search. To speed up the search, we only create one
direction of the gadget for each atomic statement—for example, there are no forward gadgets for
Constr or DropRef and no backward gadgets for Destr or Call. Note that forward and backward
gadgets can still be guided by both the pre- and the postcondition of the goal. For example,DropRef-
Backward relies on the precondition to decide which reference x to drop—it does not conjecture x
out of thin air, leaving 21 to create it. This is an example of a synthesis rule being more restrictive
than a verification rule would be, because it has no program to guide it.

Search Algorithm. To search the space of derivations composed of gadgets, RusSOL uses best-first
backtracking search, similar to prior work on deductive synthesis (Kneuss et al. 2013; Polikarpova
and Sergey 2019). At a high level, the algorithm maintains an and-or search tree, whose nodes are
synthesis goals {P} _ {Q}. At each step, the lowest-cost leaf node is expanded according to all
applicable SOL gadgets. The cost of a node is a heuristic function of the size of P and Q.
To avoid exploring redundant orders of rule applications, the search is split into phases. First,

we apply only forward gadgets to maximally decompose or leverage the precondition (e.g., Destr,
DestrBorrow, CopyOut). Then we apply only backward gadgets to decompose the postcondition
(Constr and ReBorrow) or match its reference bindings and their values with the precondition
(DropRef, ConstrBorrow, andWrite). Lastly, when all the bindings in the pre- and post-heap
are matched modulo variable names, primitive bindings, and extra owned bindings in the pre-state,
we apply Drop, Rename, and Primitive to bridge the two heaps. A proof branch is closed once it
reaches a goal where both symbolic heaps in the goal are empty and the pure precondition implies
the pure postcondition (checked by an SMT solver). The search terminates when it finds a full
derivation where all branches are closed.

4 EVALUATION

Wehave implemented our prototype synthesizer RusSOL in Scala, by integrating the gadget versions
of SOL rules (Sec. 3.4) into the SuSLik deductive synthesis framework. To search the space of SOL
derivations, we were able to reuse SuSLik’s existing best-first search algorithm mostly unchanged.
We design our empirical evaluation to answer the following research questions:

(RQ1) Can RusSOL synthesize a variety of non-trivial Rust programs in a reasonable time?
(RQ2) Can RusSOL indeed leverage Rust types to reduce annotation overhead?
(RQ3) Are RusSOL’s synthesized programs indeed well-typed and provably functionally correct?

4.1 Benchmarks and Setup

Since there is no established benchmark suite for Rust synthesis, we have assembled our own suite,
using synthesis tasks from four different sources:
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• Rust is a collection of 51 idiomatic Rust programs extracted from StackOverflow posts and
the popular tutorial on linked lists (Beingessner 2015), and also written by us; these programs
purposely exercise a variety of Rust features and include all examples form Sec. 1 and Sec. 2. For
each of these programs, we retained its original type signature and added minimal functional
annotations required to synthesize an implementation behaviorally equivalent to the original.

• SuSLik includes 19 synthesis tasks from the latest SuSLik benchmark suite (Itzhaky et al. 2021b).
We excluded tasks that are not meaningful in safe Rust, either because they are trivial (de-
allocating a data structure) or impossible due to aliasing (programs on doubly-linked lists).
We also excluded tasks that require branch abduction, an advanced technique for synthesizing
conditionals; this feature is orthogonal to the main focus of this paper, and yet requires non-trivial
implementation effort, so we leave it for future work. For the remaining tasks, we manually
translated them into Rust data types and signatures, and added minimal annotations required to
synthesize the intended implementation.

• Verifier contains all 47 functions from the Prusti and Creusot test suites that came with
sufficiently complete functional specifications (the remaining test cases are code snippets with
assertions but no meaningful end-to-end behavior); we left these specifications unchanged.

• 100-Crates consists of 2671 Rust function signatures automatically extracted from the top 100
crates on crates.io. We excluded signatures with unsupported types, such as slices, raw pointers,
characters, and floats. Because these signatures have no functional annotations, we can rarely
expect the synthesizer to guess the intended program, but returning a value of the intended type
can still be non-trivial, especially when dealing with data types, generic types, and references.
The purpose of this suite is to stress-test the synthesizer’s ability to generate well-typed Rust.

All experiments were conducted on a consumer-grade laptop with an Intel i7 CPU and 16GB RAM.

4.2 Results

RQ1: Generality and Efficiency. To answer RQ1, we analyze RusSOL’s performance on annotated
benchmarks (i.e., all except 100-Crates). The results are summarized in Tab. 1. These synthesis
tasks include functions that manipulate a variety of data types, including linked lists, binary and
=-ary (rose) trees, and binary search trees. Many of these functions are recursive, and some—such
as non-destructive append and rose tree copy, discussed below—require the synthesizer to discover
(mutually-)recursive auxiliary functions; RusSOL is able to handle such functions thanks to the
cyclic synthesis approach by Itzhaky et al. (2021a). The annotated benchmarks also cover a range of
challenging Rust features, such as generics, mutable and shared references, re-borrowing parts of a
data structure, implementing iterators, and data types that store and nest references.

As reported in Tab. 1, RusSOL is able to solve 115 out of 117 synthesis tasks. Of the two failed tasks,
one is from StackOverflow12 and is unsolvable without unsafe code (not even with internally-unsafe
standard library functions). The other failure—calculating the length of a list of lists—is unrelated
to Rust ownership rules and is caused by RusSOL’s inability to synthesize a pure arithmetic
expression. The 115 solved tasks have non-trivial complexity: derivations typically contain tens of
rule applications, up to a maximum of 103 for the rose tree copy benchmark. The final pretty-printed
Rust programs are 5.4 lines long on average, and up to a maximum of 30 lines. For all of these
tasks, we manually checked that the synthesized programs indeed match the user intent or the
original implementation. This analysis was done as a sanity check and to confirm that the partial
specifications were sufficiently strong.

Most programs were synthesized within only a few seconds (1.8s on average), with rose tree copy
as the only long-running outlier at 28s. We also compared RusSOL’s results on SuSLik benchmarks

12https://stackoverflow.com/q/29570781
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Table 1. Synthesis results in 4 categories. For each category, we give the total number of a�empted functions
along with how many were successfully synthesized, the mean time it took to synthesize each function, the
mean number of rules required to find the solution, the mean LOC of the synthesized body, and the mean
ratio between synthesis result and spec size (where applicable, this ratio is compared to that of SuSLik).

Source Group # Tasks Synthesis result Annotations
# Solved Time (s) SOL rules Rust LOC Code/Spec

Rust

SLL Tutorial 7 7 1.6 36.7 6.3 1.1
StackOverflow 5 4 0.9 28.5 4.8 2.0
Custom 39 39 2.7 32.8 6.3 1.3

SuSLik

Integers 1 1 0.4 19 4 2.3 (+125%)
Singly linked list 7 7 3.5 41.4 10.1 2.9 (+170%)
Sorted list 2 2 0.7 26.5 5.0 0.8 (+293%)
List of lists 2 1 2.7 50 15 1.0 (+117%)
Binary tree 5 5 2.9 58.6 16.0 3.5 (+196%)
Rose tree 2 2 18.3 91.0 25.0 2.3 (+70%)

Verifier
Prusti 41 41 0.2 9.4 1.4 0.6
Creusot 6 6 0.4 20.8 3.2 0.8

Total annotated 117 115 1.8 26.5 5.4 1.4

100-crates
Primitive 1036 1036 0.3 18.5 1.0 ∞

Non-Primitive 1635 1328 0.5 20.8 1.4 ∞

with those reported for SuSLik (Itzhaky et al. 2021b) (they were run on different but comparable
hardware). Like RusSOL, SuSLik also fails on one of the 19 benchmarks, albeit a different one:
it times out on rose tree copy after 30 minutes. Among the commonly solved benchmarks, the
synthesis times are similar: 3.1s for RusSOL vs. 2.2s for SuSLik on average. Note, however, that
SuSLik has an unfair advantage: it requires the user to provide bounds on the unfolding depth of
inductive predicates (its equivalent of Destr and Constr rules), and without these bounds, it is
only able to solve 14 out of 19 benchmarks before timing out. RusSOL does not impose any such
bounds, and moreover, typically requires more Destr/Constr applications than SuSLik, because
Rust types have more levels of nesting (e.g., a List’s tail is inside a Box). We attribute RusSOL’s
strong performance despite the absence of bounds to the extra guidance provided by the Rust types.

RQ2: Annotation Overhead. To address RQ2, we compute the size ratio of the synthesized Rust
code to user-provided annotations, measured in AST nodes (that is, larger is better). Annotations
include everything that the user has to write only if they are using the synthesizer: the #[requires]
and #[ensures] clauses, as well as those pure functions that we judged to not be independently useful
outside of specifications (for example, the len function on lists is excluded from annotations, while
the elems function, which returns the mathematical set of lists’ elements, is included). Moreover, if
multiple synthesis tasks in a group used the same pure function, we count it only once.

Last column of Tab. 1 reports the results. On average annotations are 27% more concise than the
synthesized code. This is an encouraging result, especially since, in our experience, annotations are
often easier to write because the user has to worry less about ownership. The Verifier category
records a particularly low ratio as these benchmarks are designed to test verifiers, generally with
small functions and many annotations. On the other hand, in the SuSLik category, the code is on
average 2.8 times larger than the specification—an unsurprising result as these tests were designed
to showcase the benefits of synthesis. Finally, the Rust suite is the most representative of the tasks
we envision RusSOL to be used for, with its annotation ratio in between the two extremes.
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For the SuSLik benchmarks, we also compared our Code/Spec ratio to that of SuSLik and
found ours to be 172% higher on average. This confirms our intuition that a lot of information
can be extracted from the Rust data type definitions and function signatures. Decoupling pure
functions from data type definitions and making use of Rust’s generics to reuse data types between
benchmarks further reduces the amount of input a user has to provide: for example, for all 19
SuSLik benchmarks we need to define only three data types (a linked list, a binary tree, and a rose
tree), whereas SuSLik requires eight distinct inductive predicates.

RQ3: Well-Typing and Functional Correctness. The programs synthesized by RusSOL are
guaranteed to be correct against the SOL rules by construction, because RusSOL extracts programs
from SOL derivations. Proving soundness of the SOL rules themselves would require an established
formal semantics for safe Rust that captures both the borrowing rules and functional properties.
Unfortunately, as of now, no such semantics exists. Therefore, to increase our confidence in the
soundness of SOL, we seek to confirm empirically that the synthesized programs are indeed well-
typed and can be certified correct by an independent verifier. To this end, we ran all programs
synthesized for the annotated benchmarks through the Rust compiler and a supported subset
thereof through the Creusot verifier; neither tool uncovered any errors. Many of the Verifier

benchmarks as well as a few from the Custom group exhibit intricate behavior, at the cutting edge of
existing Rust verification tools. For example, RusSOL can reason about arbitrarily-nested borrows,
and restrict what clients can do with reference-typed results (much like the assert_on_expiry

pledge in Prusti, something which Creusot does not yet support). The latter feature enables
RusSOL to synthesize a get_root function for a binary search tree (BST), which guarantees that
the BST invariant will be preserved even if the returned reference to the root is mutated.

fn factor_first(x: Either<(T,L),(T,R)>)

-> (T, Either<L,R>) {

match x {

Either::Left(tpl) => {

let res = Either::Left(tpl.1);

(tpl.0, res) }

Either::Right(tpl) => {

let res = Either::Right(tpl.1);

(tpl.0, res)

}}}

Finally, in order to test RusSOL’s ability to handle real-
world Rust types, we turn to the 100-Crates benchmark
suite. We ran the synthesizer on all the 2671 supported
type signatures, and, whenever synthesis succeeded, we
type-checked the solution using the Rust compiler. The
results are reported at the bottom of Tab. 1.We separate the
tasks into two categories, depending onwhether the return
type is primitive. Tasks with primitive return types admit
trivial solutions (immediately return a constant value);
hence in the following, we focus on the “non-primitive”
category where many synthesized programs are non-trivial and some are very close or identical to
the original code. One example, the factor_first function from Either, is shown above, and more
can be found in the accompanying artifact (Fiala et al. 2023). The Rust compiler did not uncover any
errors in the solved benchmarks in either category. As one can see from the table, RusSOL is able
to solve 1328 out of 1635 non-primitive tasks. There are three main reasons why the remaining 307
tasks fail: (1) they require Unreachable in some branches (e.g., unwrap) but with no precondition
RusSOL cannot use this rule, (2) they need unsafe code, or (3) the return type is not constructible
(e.g., because it has private fields) and we did not give RusSOL the required functions for creating it.

4.3 Discussion

Our experiments show that RusSOL can synthesize a broad range of Rust implementations with a
modest annotation overhead. We identify three categories of results that are especially noteworthy:

(1) Synthesis from types alone. Apart from singleton, discussed in Sec. 2, we found several non-
trivial real-world examples from the 100-Crates benchmark suite, whose behavior could be
reproduced by RusSOL using only their type signatures.
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(2) Complex reasoning about references. In addition to last_mut from Sec. 2 and get_rootmentioned
above, both of which require reasoning about re-borrowing and what the client can do with the
returned reference, another notable example is the next function for a linked list iterator. This
function operates on a datatype (Iter) whose field has a reference type, and as such requires
subtle reasoning known to be hard both for human programmers and for verifiers (for example,
Prusti does not support such datatypes). Indeed, the tutorial we take this from highlights four
plausible ill-typed implementations before showing the correct result.

(3) Complex recursion. As we mentioned above, RusSOL can synthesize not only self-recursive
functions, but also functions that call recursive auxiliaries. One example is non-destructive
append, which takes as input immutable references to two linked lists and creates a new list
containing elements of both. The main function recursively traverses one of the lists, and upon
reaching the end, it calls an auxiliary, whose task is to recursively copy the other list. This
auxiliary is not provided by the user, but is automatically discovered by RusSOL. Another
example is rose tree copy, whose implementation consists of two mutually recursive functions:
the main function that copies a tree and an auxiliary that copies its list of children.

At the same time, our experiments highlight several limitations of the current implementation:

(1) Traits. RusSOL does not support traits and associated functions, which makes it incomplete
when working with generics or datatypes with private fields. This limitation is the main reason
for failures on the 100-Crates benchmark suite.

(2) Conditionals. RusSOL cannot generate arbitrary conditionals, as it does not implement branch
abduction. As a result, it cannot handle SuSLik benchmarks such as sorting or BST insertion.

(3) Arithmetic. RusSOL cannot synthesize non-trivial arithmetic expressions, because it focuses on
heap manipulation rather than synthesizing pure expressions.

(4) Unsafe code. RusSOL cannot generate unsafe code; any unsafe code required to solve the task
needs to be wrapped inside a safe wrapper provided to RusSOL as a library function.

The former three limitations are not fundamental: these features can be implemented with more
engineering effort, albeit at the cost of extending the search space. The last restriction is more
fundamental, since RusSOL uses the safe Rust type system to guide the search.

5 RELATED WORK

Synthesis for Rust. To our knowledge, RusSOL is the first tool to synthesize Rust programs
that satisfy user-provided specifications. The only other Rust synthesizer we are aware of—
SyRust (Takashima et al. 2021)—generates code snippets to test unsafe libraries. SyRust targets
straight-line sequences of API calls and does not support conditionals, loops, or recursion. It also
does not support any kind of functional specifications and is only concerned with well-typing.
Moreover, because SyRust generates hundreds of thousands of snippets per API under test, it
does not need to always get the typing perfectly right, as long as the rejection rate by the Rust
compiler is low enough. For these reasons, SyRust can get away with a lightweight encoding of
Rust’s typing constraints into SAT, whereas RusSOL requires a full-fledged program logic, in order
to reason about functional properties and guarantee well-typing by construction.

Synthesis of Heap-Manipulating Programs. One line of work we directly build upon is Synthetic
Separation Logic (SSL) (Itzhaky et al. 2021a; Polikarpova and Sergey 2019), which is a logic for
deriving heap-manipulating C-like programs from Separation Logic specifications, implemented in
the SuSLik tool. One aspect of Rust that SSL captures natively is the treatment of the heap as a
linear resource. It had also been previously extended with immutable pointers (Costea et al. 2020),
which can be used to encode (some aspects of) Rust’s shared references.
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The main impedance mismatch between SSL and Rust is that Rust also treats stack variables as
linear resources, which own parts of the heap and cannot alias (whereas in SSL, stack variables are
just a way to name heap locations). For that reason, SOL models stack variables very differently
from SSL: each stack variable has its unique binding in the symbolic heap and cannot appear in pure
formulas. In addition, to model borrowing and shared references, SOL extends SSL with advanced
heap assertions akin tomagic wands (O’Hearn et al. 2001) and fractional permissions (Boyland 2013);
the former model variables that have been borrowed from, the latter model shared references.

Program Logics for Rust. Recent years have seen a proliferation of verification tools for Rust (As-
trauskas et al. 2019; Denis et al. 2021; Ho and Protzenko 2022; Jung et al. 2018; Lattuada et al.
2023; Lehmann et al. 2023; Matsushita et al. 2022, 2021; Wolff et al. 2021) and formalizations of its
ownership and borrowing discipline (Jung et al. 2019; Weiss et al. 2019). Unfortunately, none of
these formalisms could be directly used for synthesis, because a synthesizer needs to reason about
functional properties, and enforce the borrowing rules of safe Rust. No prior work supports both.

In particular, Oxide (Weiss et al. 2019) and StackedBorrows (Jung et al. 2019) formalize Rust’s
borrowing rules as a static and dynamic semantics, respectively, but are not meant for reasoning
about functional properties. Aeneas (Ho and Protzenko 2022) positions itself as a verification tool,
but targets extrinsic verification: it translates a Rust program into a functional language, to enable
proving its properties within a proof assistant.
On the other hand, Prusti (Astrauskas et al. 2019; Wolff et al. 2021) and Creusot (Denis et al.

2021) specifically target intrinsic reasoning about functional correctness, but their logics do not
capture all aspects of Rust’s type system. More specifically, Creusot encodes Rust into a pure
language, and the soundness of this encoding relies on the program already being well-typed in safe
Rust. Prusti translates Rust into the Viper intermediate language (Müller et al. 2016) and reasons
about it using a variant of Separation Logic, which has the same limitations as SSL: Prusti’s logic
can verify a program that, although memory-safe, does not actually type-check in Rust.

Our new logic SOL was inspired by several of these prior formalisms. Our translation from Rust
types to Separation Logic builds upon ideas from Prusti, but we use Creusot’s prophetic encoding
of references, (which in turn evolved from RustHorn (Matsushita et al. 2021)), instead of Prusti’s
pledges. Our encoding of the borrowing rules using blocking sets is similar to Aeneas (and, to a

lesser extent, to StackedBorrows). Specifically, a SOL state like
{
x{ '0} : T ∗ y

'0
↦−→ T(f)

}
would be

written in Aeneas as an environment x ↦→ loan '0, y ↦→ borrow '0 (f : T) (where f is a symbolic
value). Both assertions indicate that the variable x is currently on loan and therefore inaccessible;
the main difference is that our notation (in combination with the prophetic encoding of snapshots)
makes it easier to establish what the snapshot of x will be once the loan expires.

6 CONCLUSION

We presented the first automatic synthesis of safe Rust programs from type signatures and formal
specifications. Its core is Synthetic Ownership Logic, a new program logic for deriving programs
that are guaranteed to satisfy Rust’s type and borrowing rules, as well as user-provided functional
specifications. This logic unlocks new ways to prune the search by using Rust types, which often
severely limit the range of operations applicable to a variable. Compared to synthesis techniques
for other languages, this pruning reduces the annotation overhead and speeds up the search.

Possible directions for future work include an extension of the supported Rust subset, optimiza-
tions of the search algorithm, as well as exploring various applications of our synthesis approach.
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DATA AVAILABILITY

The software artifact accompanying this paper is available online (Fiala et al. 2023). The artifact
contains the source code and build scripts for RusSOL, a corpus of case studies that can be used
to reproduce the experimental results described in Sec. 4, and a README file in markdown that
provides detailed step-by-step instructions for running RusSOL and the experiments. The artifact
also contains an appendix for this article (in PDF) that describes additional synthesis rules and
discusses notable synthesis results from our case studies.
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