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Abstract

This dissertation presents a study of type systems as program semantics, their inter-

derivation, and effects they have on a program execution.

Developing type systems for programming languages is a challenging task. When

describing the formalism underlying a type system, the type system designer usually

keeps in mind a series of denotational aspects specifying what the types mean. Indeed,

the type system should be adequate and ensure a program property of interest. It

should be also expressive: a well-developed formalism should reject as few good

programs as possible.

Operational aspects of type systems and type checking formalisms that specify

how types are inferred have received much less attention. This work makes two

contributions with respect to the design of practical type systems and type-checking

algorithms by taking an operational view on a static program semantics.

Multiple semantics for type checking and type inference are possible. However,

before using one semantics instead of another, one needs to prove an appropriate

correspondence theorem. The first contribution of this work is the elimination of

this obligation. We demonstrate a constructive technique to inter-derive different

operational semantics of type checking by applying a series of behaviour-preserving

program transformation techniques. A pleasant consequence of employing program

transformations is that no soundness and completeness theorems need to be proven for

pairs of type-checking semantics: they are instead corollaries of the correctness of the

inter-derivation and of the initial specification.

The second contribution of this work is a gradual version of a type system for strong

encapsulation in object-oriented languages. Focusing on the impact of a rich type

system on the dynamic operational semantics provides a mechanism for incremental

migration of programs to use more expressive types. The described approach provides

a tradeoff between annotation verbosity and dynamic checking of the encapsulation

invariant. The technique is proven sound, evaluated on a well-studied code base and

released as a publicly available compiler prototype.
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Operationele Aspecten van Typesystemen:

Onderling Afleidbare Semantieken van Typecontrole
en Graduele Types voor Object Eigendom

Dit proefschrift presenteert een studie van typesystemen als semantieken van pro-

gramma’s, hun onderlinge afleiding, en de effecten die ze hebben op de uitvoering

van programma’s.

De ontwikkeling van typesystemen voor programmeertalen is een uitdagende taak.

Bij het beschrijven van het onderliggend formalisme van een typesysteem, houdt

de ontwerper van het typesysteem meestal bepaalde denotationele aspecten in het

achterhoofd, die de betekenis van de types bepalen. Het typesysteem moet effectief

zijn en een bepaalde eigenschap afdwingen. Het moet ook expressief zijn: een goed

ontwikkeld formalisme moet zo weinig mogelijk correcte programma’s verwerpen.

Operationele aspecten van typesystemen en typecontrole formalismen die definiëren

hoe types worden geı̈nfereerd hebben minder aandacht gekregen in de onderzoekslite-

ratuur. Dit werk levert twee wetenschappelijke bijdragen in verband met het ontwerp

en de implementatie van praktische typesystemen en typecontrole algoritmes vanuit

een operationele visie op een statische programmasemantiek.

Meerdere semantieken voor typecontrole en type-inferentie zijn mogelijk. Echter,

alvorens een semantiek te kunnen gebruiken in plaats van een andere, moet men een

correspondentieresultaat bewijzen. De eerste bijdrage van dit werk is de afschaffing

van deze verplichting. We tonen een constructieve techniek om verschillende

operationele semantieken van typecontrole van elkaar af te leiden met behulp van

een reeks van semantiek-behoudende programmatransformaties. Een aangenaam

gevolg van het gebruik van programma transformaties is dat er geen stellingen over

correctheid en volledigheid moeten worden bewezen voor elke combinatie van twee

v
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typecontrolesemantieken: deze volgen nu uit de juistheid van de onderlinge afleiding

en van de oorspronkelijke specificatie.

De tweede bijdrage van dit werk is een graduele versie van een typesysteem voor

sterke encapsulatie in objectgeoriënteerde talen. Door te focussen op de impact

van een rijk typesysteem op de dynamische operationele semantiek, bereiken we

een mechanisme om programma’s incrementeel meer expressieve types te laten

gebruiken. De beschreven aanpak biedt een afweging tussen een grote nood aan

annotatie enerzijds en dynamische controle van de encapsulatie-invariant anderzijds.

De techniek is correct bewezen, geëvalueerd op een goed bestudeerde codebase en

uitgebracht in de vorm van een publiek beschikbaar compilerprototype.
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very short notice.

I had a great time at Aarhus University, and my visit there would not have been half

such a breathtaking experience without its insightful and fun people. Thank you, Ian

Zerny, Jan Midtgaard, Peter A. Jonsson, Jakob G. Thomsen, Erik Ernst, Dominik

Raub, Karl Klose, Christian Hofer and Tillmann Rendel, I am really missing the

weekly Entropy meetings. Special thanks to Ann Eg Mølhave for making my visit

smooth and unadventurous.

My three-months internship at Microsoft Research Cambridge and hacking into the

guts of Haskell’s demand analyser in summer 2012 were a true climax in my PhD

journey. This internship put me in the privileged position to unleash my PL expertise

to tackle a real-world problem. For this, I am sincerely grateful to my host Simon

Peyton Jones. Thank you, Simon, for bringing me to the world of mainstream

functional programming, where purely practical problems reside side-by-side with

semantic beauty. I wish to extend my gratitude to Dimitrios Vytiniotis, who went

far beyond the call of duty to a random student and offered me hours of exhaustive

sessions in front of the white board, and to Simon Marlow, who was always tactful

and friendly, answering piles of questions about GHC technicalities. I also wish to

acknowledge researchers and guests of the Programming Principles and Tools group

and, in particular, Andrew Kennedy, Mooly Sagiv, Noam Rinetzky, Gilles Barthe and

Claudio Russo for giving a different perspective to the things I thought I knew. Of

course, the internship entailed meeting a lot of brother-in-arms students: Dan Rosén,

Sooraj Bhat, Abigail See, Nik Sultana, Anton Osokin and François Dupressoir, who

generously shared the spirit of the inimitable atmosphere of research. In addition, I

am grateful to Dr. Xiao Wang, who made me feel in Cambridge like at home.



ACKNOWLEDGEMENTS ix

Four years spent within the DistriNet research group brought me together with top-

flight researchers, whom I am proud to call my colleagues and wish to thank for

the rich intellectual environment they have created: Nelis Boucké, Mario Henrique
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Introductory Words

In this dissertation we address the two issues in the design and implementation of type

systems: the development of correct and expressive algorithms for type checking and

the gradual migration of programs to use a richer type system.

Developing type systems for programming languages is challenging. When describing

a formalism, for a type system a theoretician usually keeps in mind several aspects

that a type system should possess. For instance, a type system should be adequate

and ensure a program property of interest. There is also no doubt in the importance of

the expressiveness of a type system: a well-developed formalism should reject as few

good programs as possible.

Although adequacy and expressiveness are primary concerns of a type system designer,

they are not the only characteristics that should be taken into the account. Thinking

of type checkers in terms of implementation, i.e., operationally, one can wonder

how efficient is one or another implementation of a given type-checking algorithm.

Another valid concern of a practically-oriented programmer would be the possibility

for type-debugging programs, i.e., given a type error, figure out what has actually has

caused it and which particular constraints of the type formalism have not been satisfied.

The expressiveness of a type system also has its cost: sophisticated program properties

require verbose annotations in order to capture the programmer’s intentions about the

desired program behaviour and preserve a desired invariant in the whole program.

This problem could be remedied by annotating parts of a program incrementally and

relying on dynamic checks in not yet annotated parts, thus, performing a gradual

migration.

Part I of this dissertation presents an operational view on type checking algorithms.

Type systems are thought of not as traditional sets of derivation rules but as program

interpreters, implementing a particular program semantics. This view makes it

possible to implement different type-checking algorithms as program interpreters and

make them the subject of program transformations. By applying a series of behaviour-

preserving program transformation techniques, we show how to inter-derive a series

1
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of operational formalisms of type checking. The pleasant consequence of employing

program transformations is that no soundness and completeness theorems need to

be proven for pairs of type-checking semantics: they are instead corollaries of the

correctness of the inter-derivation and of the initial specification.

Part II of the dissertation is dedicated to taming the verbosity of type-systems

for strong encapsulation in object-oriented languages. In order to overcome the

rigidity and verbosity of an existing type system from the literature, we develop

a corresponding gradual formalism, which provides a tradeoff between annotation

verbosity and the safety guaranties of the original approach. In principle, only a small

amount of annotations are required to indicate a programmer’s intention with respect

to the desired encapsulation property, allowing the compiler to instrument a program

with necessary run-time checks. Given a fully-annotated program, the desired

invariant for it can be checked statically at compile time. For partially-annotated

programs, necessary dynamic checks will be emitted by a compiler, whenever a

type information is insufficient for compile-time guarantee about the encapsulation

invariant.

Both problems addressed share the operational view on type systems. In the first part

of the dissertation type-checking formalisms are thought of as operational semantics,

which makes them a subject of inter-derivation using program transformation

techniques. In the second part, the type-based invariant checking is “projected” to the

operational semantics of the underlying programming language, resulting in dynamic

checks, when there is not enough information for type-level reasoning.



Part I

Inter-Derivable Semantics of
Type Checking

3





Chapter 1

Introduction and Problem
Statement

Μεταβάλλον ἀναπαύεται.

(In change is rest.)

HERACLITUS

Plus ça change, plus c’est la même chose.

JEAN-BAPTISTE ALPHONSE KARR

Type systems in programming languages are a well-established way to ensure

fundamental properties of programs. The principle “well-typed programs do not go

wrong” introduced by Milner [144] and evolved to “well-typed programs do not get

stuck” by Wright and Felleisen [212] give an idea of some very basic types of these

properties, such as program execution progress. However, modern type systems are

also targeted to infer more specific program properties such as possible computational

effects, non-interference, control-flow information and strictness [152, 191, 216, 98].

These enhancements inevitably affect the implementation of a type checking/inference

algorithm, making it significantly harder to evaluate and to reason about. Therefore,

when designing a type system as a form of program analysis, one should always

distinguish between the analysis itself and a program that implements the analysis.

A well-designed type system makes a tradeoff between the expressiveness of its

definition and the effectiveness of its implementation. The goal of this work is to

5
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Expressions e ::= n | x | λx : τ.e | e e

Numbers n ::= number

Values v ::= n | λx : τ.e
Types τ ::= num | τ→ τ
Typing environments Γ ::= /0 | Γ,x : τ

Syntax

(t-var)
(x : τ) ∈ Γ

Γ ⊢ x : τ
(t-lam)

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx : τ1.e : τ1→ τ2

(t-app)

Γ ⊢ e0 : τ1→ τ2

Γ ⊢ e1 : τ1

Γ ⊢ e0 e1 : τ2
(t-num)

Γ ⊢ number : num

Type checking rules

Figure 1.1: Syntax and Church-style type system of the simply typed lambda calculus.

bridge this gap and establish a systematic transition from an expressive definition to

an effective implementation.

1.1 Type Checking as Program Semantics

Traditionally, type systems are described as collections of logical inference rules

that are convenient to reason about. Such a representation is, however, not quite

suitable to observe the process of type inference or type checking, which makes the

debugging and optimization of typing algorithms complicated. In order to provide

a more operational view to the procedure of checking and inference types, one can

recall that type systems are often referred to as static program semantics. So, in fact,

a type assignment procedure is just a way of thinking of what a program should do in

terms of its types as opposed to expressions and values.

We start developing this simple observation by considering a type-checking procedure

for the simply typed lambda calculus (STLC) as our running example. In STLC

the only values are lambda-abstractions of the form λx : τ.e, variables or numeric

literals, and expressions are either values or applications. Figure 1.1 describes the

well-known typing rules for Church monomorphic static semantics of STLC [31].

Computationally, such a model, implemented straightforwardly in a functional



TYPE CHECKING AS PROGRAM SEMANTICS 7

Figure 1.2: A sequence of type-checking reductions for an ill-typed term (1.1).

programming language, corresponds to a recursive descent over the inductively-

defined language syntax, where a given expression is recursively traversed, so its type

is derived when no typing errors occur. In the case of a typing error, however, it

might be hard to track the true origin of the type error. For example, consider a small

ill-typed program in STLC:

λx : num→ num. λy : num. x y (λz : num. x z) (1.1)

From the code, it might not be immediately clear why type checking is going to fail.

Even more, the implementation of typing rules from Figure 1.1 as a recursive descent,

without auxiliary instrumentation for debugging (e.g., logging), does not keep track

of well-typed parts of the program that have been checked already. It is not clear, for

instance, what steps have been taken before the type error occurred and which parts

of the program have been typed successfully.

In order to remedy the problem of being able to reason about computational aspects,

we need to pick more algorithmic representations of the type checking procedure.

Below, we consider two alternative formalisms of type checking: a reduction

semantics and an abstract machine.

1.1.1 Reduction semantics for stepping through the type
checking

A reduction semantics for type checking was proposed initially by Kuan et al. [123].

Defined as a set of term-reduction rules, such a term-rewriting system gives an

operational view on the static program semantics, which is convenient for debugging
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complex type checking procedures, since the developer can trace each step of the type

computation.

The reduction formalism treats expressions and types as elements of the same semantic

space, so-called, hybrid language, where types can play the roles of values, although,

plain (i.e., non-hybrid) values cannot be parts of types, which makes the system

different from dependently-typed programming languages [132, 154, 161]. Informally,

each step of execution in the evaluation strategy of type checking with reductions

can be described as follows. First, the current program term is decomposed into

a context computational context (i.e., “a term with a hole”) and a redex (i.e., an

elementary expression to be evaluated). Second, the contraction (i.e, evaluation) is

performed (e.g., a lambda-abstraction is applied to its argument, which results in term

substitution). Finally, the obtained result of contraction is “plugged” into the context’s

hole, and the newly recomposed term is returned. This sequence of steps is performed

until a syntactically correct type is obtained. If this is not the case, the result of the

evaluation with reductions is considered as “stuck” and characterizes a type error.

Figure 1.2 shows the sequence of steps for type checking preceding the type error

while processing the ill-typed program (1.1).1 The figure clearly indicates steps

that have been performed during the type checking. For instance, in the first step,

the lambda-expression λx : num→ num.(. . .) is replaced by the hybrid expression

(num→ num)→ (. . .), where (. . .) denotes a not-yet evaluated (i.e., not yet type-

checked, in this terminology) hybrid part of the program. After five steps, the program

reduces to a “stuck” hybrid term. By tracking the sequence of steps backwards,

one can see that the cause of the typing error is an application of the non-function

expression (x y) of type num to the expression λz.num.(. . .). This is depicted by the

innermost ill-formed type application (num (-> num num)) in the last execution step

in Figure 1.2.

Therefore, a reduction semantics for type checking enables one to track the process

of type checking, making it possible to figure out the origin of a type error and its

denotation in the form of an ill-formed type application. However, such a semantics

still does not allow us to examine the “rest” of the type-checking process after the

type error occurs. This aspect of the type checking is remedied using the following

formalism.
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Figure 1.3: A sequence of abstract machine steps for an ill-typed term.

1.1.2 Abstract machine for context exploration and error
recovery

When type-checking a program, one wants the type errors to be detected as early

as possible. At the same time, the type checker should not fail after the first error:

it should instead report it and recover to examine the rest of the program. As we

have seen in the previous example, a reduction semantics for type checking, while it

succeeds in depicting the sequence of steps during type checking, it is not particularly

convenient for observing the remaining type computations after a type error has

occurred.

In order to address this issue, we pick another operational formalism for type

checking: a small-step SEC machine. The machine is a state transition system that

deterministically maps one control triple to another. It is inspired by Landin’s SECD

formalism [124, 58], but lacks the last component of its control state—D, which

we do not need, since there is no “dump” of the control flow in our machine. The

control state of the machine consists of three components (registers): S—a stack for

inferred types, E—a type environment binding variables with their types and C—a

stack of control components, driving the machine. Given a control state, there are

three possible scenarios how the machine can act:

1. The machine makes a step by mapping a state deterministically to another state,

if a matching rule exists in the machine’s semantics.

1We implemented the reduction strategy for type checking of STLC in PLT Redex framework [79], so

the syntax of expressions and types is slightly different from the one in Figure 1.1. The full implementation

can be found in Section A.1 of Appendix A.
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2. If the state’s component C is empty and S is not, the state is considered as a final

state of execution and the type on top of the S component is taken as a result of

type checking.

3. If there is no rule for the machine to make a step from a given state and the

state is not a final one, then it is considered as a stuck state and corresponds to

type-checking failure.

Without going any deeper into the formal description,2 we invite the reader to

take a look at the sequence of machine transitions for our example of an ill-

typed program (1.1).3 The last state of the sequence is indeed stuck, as the

control stack component C is not empty and there is no rule to make any further

transition; this corresponds to a type-checking error. By observing the state one

can see that the typing environment at the moment the type error is occurred is

{〈y,num〉,〈x,num→ num〉} and the error is caused by an attempt to process a non-

function type num on top of the result stack S, where a function type is expected,

which is indicated by the control element Fun (. . .) on top of the control stack. Just by

observing the state, we have already learned a lot about the nature of the type error.

Furthermore, having a little bit more insight about how the present abstract machine

works, the algorithm could extract the rest of the program to type-check from the

control stack and continue the type checking! In this case, for instance, we could

take the expression (λz : num.x z) from the topmost control stack component and then

restart the machine from the state

〈nil,{〈y,num〉,〈x,num→ num〉},(λz : num.x z,nil)〉.

This would give us the type of the expression.

From the example above, we have demonstrated that the abstract machine-based

semantics for type checking provides freedom in reasoning not only about the

sequence of steps taken during the typing algorithm, but also about the evaluation

context and the environment at any moment of the execution, which provides a basis

for implementation of error recovery in a straightforward way.

1.2 The Problem: Too Many Theorems to Prove

As we have shown in the previous section, different ways of representing type

assignments are convenient for particular applications such as reasoning, effective

2Full semantic state-space and the transition function of the SEC machine are presented in Chapter 4.
3A PLT Redex implementation of the abstract register machine for type checking can be found in

Section A.2 of Appendix A.
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implementation or debugging the type checking procedure. However, before applying

any of these semantics for the task of interest, some kind of correspondence between

them should be proven in order to make sure that the operational formalism models

original type checking rules in a sound and complete way.

Traditionally, appropriate soundness and completeness theorems need to be proven

for this purpose. For example, the correctness of the correspondence between the

natural type checking semantics (Figure 1.1) and the reduction semantics was proven

by Kuan [121]. The result establishing a connection between the derivation-based

static semantics and the type checking in the form of abstract machine is due to Hankin

and Le Métayer [98].

In the meantime, one can think about other operational formalisms. For instance,

the SEC machine, which we demonstrated in the previous section, is not the only

possible abstract machine-like formalism. One may like to make use, for instance, of a

variation of Felleisen and Friedman’s CEK machine (Interpreter III of Reynolds [174])

for type checking [80]. And again, a formal correspondence theorem relating the

natural static semantics and the abstract machine should be proven, similarly to the

way it has been done for a family of traditional abstract register machines for the

semantics of ISWIM [126] in the recent book by Felleisen et al. [79, Chapter 6].

What we would like to possess is a method to inter-derive different semantics of

type checking in a way that the correspondence between them would be established

automatically and correct by construction. Fortunately, such a method exists and

this part of the present dissertation provides and investigates it in application to type

checking algorithms.

1.3 The Method: the Functional Correspondence
to the Rescue

When reasoning about formal semantics of some computation, one usually describes it

by a set of rules or clauses employing some sort of a mathematically-structured meta-

language. In fact, doing this, one assumes that the semantics of this meta-language is

uniform and well understood. A natural consequence of this assumption is an attempt

to employ an existing programming language with a well-understood semantics as

such a meta-language. Informally, one can use computations to describe computations.

Furthermore, if a semantics of a formalism of interest (e.g., type checking for STLC)

is implemented in some actual programming language as a program, one can apply
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a series of semantics-preserving transformations to this program.4 The resulting

program will correspond to another semantics of the investigated formalism, and what

is left is only to identify this semantics and give it a name.

The method described above, which we are going to employ in order to inter-derive

different semantics for type checking, is known as functional correspondence [51].

Following this approach, implementations of formal semantics in functional program-

ming languages can be transformed into each other. In retrospect [2], the technique

was initially pioneered by John C. Reynolds [174], who connected denotational

semantics, natural semantics and big-step abstract machines using closure conversion,

CPS transformation and defunctionalization as semantics-preserving program trans-

formations in a meta-language. Later, Danvy et al. established the relation between

small-step and big-step abstract machines using fusion by fixed-point promotion,

and between reduction semantics and small-step abstract machines using refocusing

and transition compression. Finally, the functional implementations of structural

operational semantics and reduction semantics were related via CPS transformation

and defunctionalization. We address the interested reader to Chapter 5 of the current

dissertation or to Olivier Danvy’s ICFP 2008 paper [51] for a brief state-of-the-art

survey of applications of functional correspondence.

In the present work, we employ the toolset of functional program transformations

investigated by Danvy et al. [2, 17, 52, 49, 62, 136] to establish the desired connection

between various semantics of type-checking: traditional natural semantics in the

form of recursive descent, reduction semantics by Kuan et al. [123] and an abstract

machine by Hankin and Le Métayer [98]. The full derivation chain is depicted

diagrammatically in Figure 1.4. Captions on arrows indicate the transformations

employed and sections in chapters of the present work providing detailed explanation

of the technique applied. In the course of the transformation we also derive a series

of novel semantic artifacts of type checking, such as reduction-free type checker or a

type checking big-step CEK-machine, as intermediate results of our derivations.

1.4 Main Contributions

The overall contribution of this part for the dissertation is a demonstation of the

application of well-studied functional program transformations to inter-derive type-

checking algorithms. Below, we explain its parts in detail.

4Here, semantics-preserving refers to the semantics of the chosen meta-language (as opposite to the

semantics, implemented in the meta-language) and means that the behaviour of a transformed program in

the meta-language is equivalent to the behaviour of the initial program.



14 INTRODUCTION AND PROBLEM STATEMENT

A mechanical correspondence between type checking via
reductions and via evaluation

Our first contribution is establishing a mechanical correspondence between two

semantics of type checking: the reduction semantics by Kuan et al. [121, 122, 123] and

the traditional formalization of type checking as inference rules, implemented in the

form of a recursive descent [164]. We define the syntax of Kuan’s hybrid language for

type reductions and its semantics in terms of the chosen meta-language and then derive

a traditional type-checking algorithm by applying semantics-preserving transforma-

tions, such as refocusing [52], lightweight fusion [158], refunctionalization [60] and

others. The transformations we use are off-the-shelf and have already been proven to

be semantics-preserving, so no correspondence theorems between the two semantics

has to be proved. The method is illustrated in the setting of a simply-typed lambda

calculus, but we also discuss its applicability for other formalisms, such as System

F [93, 175] or Damas and Milner’s algorithm W [144].

A mechanical correspondence between type checking via
evaluation and via an abstract machine

Our second contribution is a natural continuation of the first and can be described as

an establishing of a mechanical correspondence between type checking in the from

of recursive descent [164] and type checking in the form of an abstract machine,

reminiscent to Peter Landin’s SECD formalism [124, 58]. The representation of a

type checking algorithm in the form of an abstract machine has been known and was

first observed by Hankin and Le Métayer [98] in the context of Jensen’s strictness

analysis for higher-order programs [113]. The derived correct by construction

correspondence, we present, however, is novel. The method, from which the

correspondence is established, is based on use of semantics-preserving program

transformation techniques, mostly dual to ones we used for the first contribution:

defunctionalization [62], direct-style transform [57] and others. To illustrate the

approach, we use the simply-typed lambda calculus for the sake of simplicity. We

also discuss possible extensions of the methodology to richer type systems.

A family of semantically equivalent artifacts for type checking

While providing a chain of derivations connecting the three semantics of type

checking, we derive a series of novel, semantically-equivalent artifacts for type

checking, as is shown in Figure 1.4. Among others, we extract a reduction-free type

checker, a big-step type-checking CEK machine and a stack-threading type-checking

evaluator. Therefore, systematically applying program transformations to well-studied
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type checking semantics ends up giving a series of novel and interesting algorithms

which, to the author’s knowledge, have not been described elsewhere.

1.5 Notes on the Implementation

In order to implement different semantics for type checking, we have chosen an

appropriate meta-language that is expressive enough to incorporate the toolset of a

working semanticist seamlessly and at the same time provide a solid background to

reason about the correctness of program transformations.

One possible candidate to this role would be the Racket programming language5 with

its extension PLT Redex, which we used to implement examples from Section 1.1.

Defining semantics in PLT Redex is short, elegant and is very close to the

mathematical notation as the reader can check by taking a look at Appendix A.

However, the PLT Redex model is not quite suitable for our goals, since it

(a) is tailored for concise definitions of reduction-based semantics specifically, and

(b) relies heavily on the macro system of Racket, its host programming language.

This makes it complicated to perform program transformations. Also, the lack of a

type system deprives us of the possibility to type-check the correctness of the encoded

definitions, resulting in error-prone code, suffering from issues such as, for instance,

non-exhaustive pattern-matching.6

We have chosen Standard ML (SML) [145] to the role of a metalanguage for

the implementation and transformations. SML is a statically-typed, call-by-value

language with computational effects.

For the sake of brevity we omit some of the program artifacts in Chapters 3 and 4,

keeping only essential parts to demonstrate the corresponding program transformation.

At each transformation stage the trailing index of all involved functions is incremented.

The accompanying code for derivations in Chapters 3 and 4 is also available on

GitHub:

http://github.com/ilyasergey/typechecker-transformations

5http://racket-lang.org/
6In fact, Racket provides an optional type system based on the notion of occurrence typing [202].

However, it requires expansion of all macros before type checking, which prevents a semanticist from

assigning meaningful types to semantic artifacts when working with PLT Redex.

http://github.com/ilyasergey/typechecker-transformations
http://racket-lang.org/
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1.6 Outline

Part I of the dissertation describes the research the author conducted while visiting

Aarhus University in 2010 and 2011 and is based on a combination of the following

research papers and technical reports:

• Ilya Sergey and Dave Clarke. A correspondence between type checking via

reduction and type checking via evaluation. Information Processing Letters,

volume 112, issue 1-2, pages 13–20, January 2012. Elsevier.

• Ilya Sergey and Dave Clarke. A correspondence between type checking via

reduction and type checking via evaluation. Accompanying code overview.

CW Reports, volume CW617, 20 pages, Department of Computer Science, KU

Leuven. January 2012. Leuven, Belgium.

• Ilya Sergey and Dave Clarke. From type checking by recursive descent to

type checking with an abstract machine. In Claus Brabrand and Eric Van Wyk,

editors, proceedings of the Eleventh Workshop on Language Descriptions, Tools

and Applications (LDTA 2011), pages 1–7. 26–27 March 2011. Saarbrücken,

Germany. ACM.

The remainder of this part is structured as follows:

Chapter 2 – Background

The chapter provides necessary background about the basics of program semantics,

funcional programming and functional program transformations.

In the first part of the chapter, we give a brief overview of the ways to describe

computations and provide an informal survey of different semantic formalisms. We

focus mainly on small-step operational semantics. We also enumerate a series of

abstract machine-based formalisms along with their applications to the construction

of sound program analyses using abstract interpretation.

In the second part, we recall the basic concepts of functional programming, such

as the lambda calculus, first-class and higher-order functions and closures. We

focus specifically on continuation-passing style and control operators for delimited

and undelimited continuations as they are essential for the implementation of the

derivations in further chapters.

In the third part, we introduce some well-studied functional program transformations.

Readers familiar with the implementation of production-quality compilers [12,
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162] will meet some old friends here: continuation-passing style and direct-style

transformations, defunctionalization and refunctionalization, deforestation and many

others.

Finally, we conclude the chapter with a toy example, employing most of the

presented notions, tools and techniques: deriving a small-step, tail-call optimized

stack-threading machine for computation of Fibonacci numbers from the standard

recursive procedure, which corresponds to a big-step semantics.

Chapter 3 – From type checking via reduction to type checking
via evaluation

The chapter presents a mechanical derivation of the correspondence between type

checking via reductions and traditional compositional type checking implemented

in the form of a recursive descent, filling the left part of the diagram in Figure 1.4.

We describe an implementation of the corresponding semantic artefacts in the meta-

language and the chain of the subsequent program transformations. The reader

interested in non-essential implementation details is invited to take a look at the

accompanying code in Appendix B or to the appropriate technical report [182]. This

chapter corresponds to the first main contribution of this part of the dissertation and

is a part of the article published in Information Processing Letters, volume 112, issue

1-2 [183].

Chapter 4 – From type checking via evaluation to type checking
with an abstract machine

This chapter continues the story that began in Chapter 3 and presents a mechanical

derivation of the correspondence between the compositional type checking algorithm

in the form of a recursive descent and type checking in the form of an abstract machine,

reminiscent to Landin’s SECD formalism, thus, filling in the right part of the diagram

in Figure 1.4. This chapter corresponds to the second main contribution of the Part I

and is a part of the paper published in the proceedings of the Eleventh Workshop on

Language Descriptions, Tools and Applications (LDTA ’11) [181].

Chapter 5 – Related Work and Applications

In this chapter, we provide a survey of related work making use of Danvy’s tool-chain

for inter-deriving semantic artefacts. We focus mainly on recent research in semantics

for concurrent and parallel programming. We also discuss possible applications of the
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investigated type checking formalisms, for instance, for type debugging or type and

effect analyses via abstract interpretation.

Chapter 6 – Conclusion and Future Work

The conclusion summarizes the findings of Part I. In this chapter, we elaborate on the

obtained results and indicate directions for future research.



Chapter 2

Background

When describing the semantics of a program, we rely on mathematical notation as a

metalanguage, the interpretation of which enables one to understand the meaning of

the program. The next natural step is to define a semantics of a program directly by

providing an interpreter, i.e., a program executing another program.

Indeed, any programming paradigm can be used to implement an interpreter. For

instance, one can implement an interpreter in the form of a program in a functional

programming language. Such a choice would have major consequences: it turns out

that an interpreter written in the functional programming paradigm can be a subject

of multiple behaviour-preserving transformations, and the result of each of these

transformations will yield a new interpreter, delivering the same result, but having

different computational properties. This observation has been taken as a basis of a

technique, known as functional correspondence: program semantics are represented as

interpreters and interpreters can be inter-derived using program transformations. Such

a derivation corresponds to the constructive proof of equivalence of the corresponding

semantics.

The goal of this chapter is to provide necessary background about the semantics of

computations, functional programming and behaviour-preserving functional program

transformations—three main components of the functional correspondence method-

ology. Readers familiar with these concepts are still encouraged to take a look on

the text as it provides some important insights for the results described in Chapters 3

and 4.

19
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2.1 Program Semantics and Abstract Machines

Program semantics is often defined as the meaning of a grammatically correct pro-

gram. Such a broad definition gives one the freedom to construct different formalisms

capturing different aspects of what meaning is. The semantics literature [153, 209]

usually distinguishes three main classes of program semantics:

• Denotational semantics defines a meaning of a program by mapping it to a

specific mathematical object in a particular domain (e.g., a function) [180].

• Axiomatic semantics defines the meaning of a program in terms of properties of

the effect produced by executing the program [102].

• Operational semantics describes how to compute a program on some abstract

machine and specifies what the result of a program is [166, 167].

Below, we give a brief overview of the first two approaches and focus on the last one.

2.1.1 Denotational semantics

Denotational semantics was originally introduced by Dana Scott and Christopher

Strachey in order to reason about programs as state transformers [180, 153], answering

the question, what a program is. The effect of program execution is, thus, modelled

by relating a program to a mathematical function. Originally, denotational semantics

was proposed to reason about imperative programs, for instance for computing the

propagation of constants or reaching definitions. The semantics was applied later

to establish fundamental results about functional programs as well. For instance,

denotational semantics of the lambda calculus has been taken as a concrete domain

to derive a series of type systems from the literature using abstract interpretation [39].

Although mathematically elegant, denotational semantics is, however, not particularly

useful to deal with non-determinism and concurrency [164].

2.1.2 Axiomatic semantics

Axiomatic semantics defines the meaning of programs in terms of axioms and laws

that particular constructs of the language should obey. Thus, the meaning of the

program is a set of facts that can be derived from the program’s shape according

to the axioms. A canonical example of axiomatic semantics is Hoare triples [102]—

the simplest axiom system to reason about effects of imperative programs in terms

of changes in the state they perform. It is also typical of axiomatic semantics to
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Expressions e ::= x | λx.e | e e

Values v ::= λx.e

Figure 2.1: Syntax of the untyped lambda calculus

ignore some aspects of program execution [153], which is not an obstacle for inferring

partial correctness properties of programs. Referring to Pierce [164], we note that the

“classic” axiomatic semantics experiences difficulties when reasoning about languages

with procedures, which, however can be remedied by using more powerful formalisms,

such as separation logic [176] and by annotating procedures explicitly [111].

2.1.3 Operational semantics

Operational semantics is of main interest for this work, as it focuses on computational

aspects of the program (i.e, it answers the question “How?”) and usually can be

directly mapped into an implementation of an interpreter. In the operational approach,

the behaviour of a program is specified by a set of rules as a program would be

executed on some sort of abstract machine. An abstract machine operates with states,

which are typically tuples of one or several components. For instance, the state could

be just an expression, and each machine transition maps it to another expression.

More elaborate abstract machines are possible, and we enumerate some of them in

Section 2.1.4 of this chapter.

As a demonstration of operational semantics we will use the untyped lambda

calculus [32], a simpler version of the formalism employed in Chapter 1 (Figure 1.1).

The syntax of the untyped lambda calculus is presented in Figure 2.1 and includes only

three syntactic elements: variables, lambda-abstractions and applications. Values are

represented by lambda abstractions only.

The meaning of a program in terms of operational semantics is its result, i.e., the final

state (or a set of states) reached by a machine, when started with a program in its

initial state. However, it is not always the case that an abstract machine reaches some

sort of a final state. In this case, one might be more interested not in the existence

of a final state, but in the process of computations, i.e., a sequence of steps that has

been performed when computing the program. This fundamental difference in views

on computations (result-oriented or process-oriented) led to two major subclasses of

operational semantics.
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(B-Val)
v ⇓ v

(B-App)
e1 ⇓ (λx.e) e2 ⇓ v {v/x}e ⇓ v′

(e1 e2) ⇓ v′

Figure 2.2: A big-step operational semantics of the untyped lambda calculus

Big-step operational semantics

Big-step operational semantics, often also referred to as natural semantics or

evaluation dynamics, defines a set of rules, that describe how to obtain the result of

a program. What is important is that such semantics are usually recursive by nature

and do not present the notion of intermediate state of a computation, but just describe

how a particular program is mapped to its result, thus establishing a relation between

an initial and a final state. When describing a big-step operational semantics, one

traditionally follows the principle of semantic compositionality (Frege’s principle):

the meaning of a whole (program) is a function of the meanings of its (syntactic) parts

together with the manner in which these parts are combined.

Figure 2.2 presents a version of a big-step semantics of the untyped lambda-calculus

as the relation (⇓). There are only two rules. The rule (B-Val) says that the value

evaluates to itself. The rule (B-App) describes evaluation of ab application without

specifying the computation order of a function and argument expressions (e1 and e2,

respectively). Another good example of a big-step semantics is a set of rules for the

type checking in a simply-typed lambda calculus as it is described in Figure 1.1. For

instance, the rule (t-app) does not specify which of two application’s subexpressions’

types should be inferred first: the one of e1 or e2. Instead, the rule just relies on

the results of type checking of e1 and e2, using the same type-checking relation (⊢)
“recursively”.

Big-step operational semantics is often chosen as a way to formalize computations

because of its simplicity and a declarative character, which results in a small number

of inference rules which greatly simplifies the reasoning about programs. Reasoning

is performed by induction on the shape of derivation trees following the standard

induction principle:

1. Prove that a property of interest holds for all simple derivation trees by showing

that it holds for the axioms of the transition system.

2. Prove that the property holds for all composite derivation trees: for each rule

assume that property holds for its premises (the induction hypothesis) and then

prove that it also holds for the conclusion of the rule.
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The biggest disadvantage of the big-step approach is that it does not provide a

representation of the computational sequence. As a result, using some rules one does

not know what the next step in the execution will be, since the semantics just says

how to evaluate the whole program at once. This characteristic is crucial for showing

program properties, such as execution progress, which can be informally phrased as

follows: if a program can be assigned a type (i.e., the program type checks), then it

either has been already evaluated to a value (i.e., a final state), or can still “make a

step”. Obviously, the second part about progress (i.e., “making a step”) cannot be

formalized in a big-step settings, since there is no notion of step.1 Moreover, the

big-step semantics does not distinguish the failing or non-terminating programs and

a program may fail to evaluate due to a missing case in the evaluation rules. The

standard practice to remedy this issue is to provide a number of administrative error-

handling rules and prove a coverage lemma, ensuring that all error cases have been

handled [76]. The type soundness then would ensure that a well-typed program will

not end up with an application of an error-handling rule.

Another domain that can hardly be addressed by a big-step formalism is reasoning

about concurrent programs: having several processes, one cannot switch between

them as there is no intermediate state for other processes to be suspended in.

To fix this issues one needs a kind of semantics that gives an explicit notion of a next

evaluation step, so we come to the next section.

Small-step operational semantics

Small-step operational semantics, often also referred to as structural operational

semantics, in its general view was formally introduced by Plotkin [166] in his seminal

work “A Structural Approach to Operational Semantics” as a relation on program

states.

Reduction semantics Speaking about program expressions as the simplest kind

of possible program state, one usually defines a small-step formalism in terms of

congruence and contraction rules. This approach is known in the literature as

reduction semantics, such that each its step constructs a new expression.2 For

instance, for the untyped lambda calculus, a reduction semantics induced by the β-

reduction relation ( 7→β) is described in Figure 2.3. {v/x}e denotes a capture-avoiding

substitution of a value v to the place of all occurrences of a variable x in the expression

e. The rules that propagate the actual computation down the expression structure,

1However, a different formulation of a big-step semantics co-inductively allows to establish a weaker

version of type soundness [128, 8], involving only the first part of the property about typing the final result.
2In the literature, the term “reductions” is traditionally used to denote various kinds of small-step

semantics. In contrast, the term “evaluation” refers to big-step formalisms.
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(E-App1)
e1 7→β e′1

(e1 e2) 7→β (e′1 e2)
(E-App2)

e2 7→β e′2

(v e2) 7→β (v e′2)

(E-AppAbs)
(λx.e) v 7→β {v/x}e

Figure 2.3: Congruence-based small-step operational semantics of the untyped

lambda calculus [164].

such as (E-App1) and (E-App2), are referred to as congruence rules, and the rule

(E-AppAbs) is a contraction rule.

One can notice that there is only one way to evaluate an expression in a seemingly non-

deterministic case of an application: first, the function part e1 is evaluated down to a

value v and only then the argument part e2 is evaluated. Once both sides are values, the

contraction rule is applied. This order corresponds to the evaluation strategy known as

call-by-value (CBV), meaning that the argument is evaluated down to a value before

it is passed to a function.3 This strategy describes precisely the order of computation,

which is also implied that there is at most one “recursive call” to 7→β in rules in

Figure 2.3.

Although the reduction semantics as we defined it is convenient for describing a

simple syntax-driven transition system, it does not keep track of the expression

decomposition process. Each step corresponds to a contraction rule (e.g., (E-AppAbs)

from Figure 2.3), but after this, the expression should be recomposed back and the

rules only state implicitly how to do it. What is more important is that the rules

defined this way do not carry the context of computations around, which makes it

complicated to describe concepts such as exceptions, advanced control operators (see

Section 2.2.6) or context-oriented language features [34, 117].

In order to remedy this issue, Felleisen and Hieb suggested a description of

congruence rules via reduction contexts [81]. A description of reduction contexts for

the untyped lambda calculus is presented in Figure 2.4. Informally, a context is a “term

with a hole” and its recursive definition points out explicitly which subexpression (a

redex) should be contracted next. We denote syntactic decomposition of an expression

e to a context E and a redex e′ as e=E[e′] The semantic rules are drastically simplified

and are described by only one rule (ContractAbs) that describes contraction within

the context. The transition in such a semantics is represented by three procedures:

3Other strategies, such as call-by-name (CBN) and call-by-need are popular in implementation of lazy

functional programming languages with memoization [163], however we do not focus on them in this work

and refer an interested reader to the work [61].
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Contexts E ::= [ ] | E e | v E

Reduction contexts

(ContractAbs)
E[(λx.e) v] 7→β E[{v/x}e]

Context-based small-step semantics rules

Figure 2.4: Reduction contexts and context-based reduction semantics for untyped

lambda calculus.

decomposition of an expression into a context and a redex, contraction, and a

recomposition of an expression from the result of the contraction (contractum) and a

context. The procedure is repeated and a possible valid result of the program is a value.

This reformulation of a standard reduction semantics is often called an abstract syntax

machine [79] as it is, indeed, the simplest abstract machine with a one-component

state—an expression e and a fairly “big” execution step: decompose – contract –

recompose.

A note on terminology There is a small controversy in the terminology in a

semantics literature: sometimes a term structural operational semantics refers to the

semantics where each step is either an elementary decomposition or recomposition

(i.e., “remove” or “put” one level of a reduction context), or a contraction. In contrast,

the reduction semantics considers the whole chain decompose – contract – recompose

as one step [51].

Despite the simplicity of the reduction semantics, it is not the only possible for

programs. For instance, one can imagine a possibility of implementing another

evaluation strategy, when a body of a lambda-abstraction λx.e is not traversed when

applied due to the substitution {v/x}. Instead, one would like to delay the use of the

value v before the actual moment the variable x is examined in the expression e. In

order to do so, when decomposing an expression to a context and a redex, one would

need to maintain an extra component, namely, a local environment, as a mapping from

variables to values. In contrast with an abstract syntax machine, such a semantics

would correspond to a much more fine-grained abstract machine, whose step is either

a contraction or “peeling away” of one layer of a context, and a state has now two

components: a context and an environment. This is the subject of the next section.
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2.1.4 Abstract register machines

Literature on program semantics often emphasizes a category of abstract register

machines defined as of small-step operational semantics, whose state contains several

components (i.e., registers). By abusing terminology, we will further refer to abstract

register machines simply as to abstract machines.4 Most of the notable abstract

machines are named according to the abbreviated names of their state components.

In this section, we will outline some essential exemplars of abstract machines

and indicate their applications. A broader overview of abstract register machine

formalisms can be found in Felleisen et al.’s book [79, Chapter 6].

Landin’s SECD machine

Landin introduced the SECD machine as the first implementation of the lambda

calculus as a programming language [124]. Following from its name, the state of

the SECD machine consists of four components. The SECD machine is stack-based,

so the arguments and results are stored in a result stack component S. The current

variable environment component that maps variable names to their values is second

and is denoted by E. The control component C contains a stack of control elements and

its head always points to the next element to be processed. Finally, the last component,

D for dump, is used to store the stack of temporary components from other registers

and can be used, in particular, to implement jumps in a program.

Figure 2.5 provides a definition of the state-space elements and the transition relation

(⇒SECD) of the simplest SECD machine for the untyped lambda-calculus. The

notation x 7→ clo stands for a possibly empty non-ordered set of mappings from

variables to closures, and ρ[x 7→ (v,ρ′)] denotes an update of and an environment

ρ for a variable x. The initial state for a SECD machine for an expression e and

an environment ρ is a quadruple 〈nil,ρ,Term(e) :: nil,nil〉. The final configuration

corresponds to a state 〈clo :: nil,ρ,nil,nil〉 for some closure clo and value environment

ρ.

A reader can notice a similarity between the description of the SECD machine and

the abstract machine demonstrated in Chapter 1. A stack-based machine of this shape

will play a key role in the derivation presented in this work and will be considered in

detail in Chapter 4.

4Sometimes we will use the term “big-step abstract machines” when referring to big-step operational

semantics with a multi-component initial state.
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Values v ::= λx.e

Environments ρ ::= x 7→ 〈v,ρ〉
Continuations κ ::= mt | ar(e,ρ,κ) | fn(v,ρ,κ)

Variable environments and continuations

〈x,ρ,κ〉 ⇒CEK 〈v,ρ′,κ〉 where ρ(x) = (v,ρ′)
〈(e1 e2),ρ,κ〉 ⇒CEK 〈e1,ρ,ar(e2,ρ,κ)〉

〈v,ρ,ar(e,ρ′,κ)〉 ⇒CEK 〈e,ρ′, fn(v,ρ,κ)〉
〈v,ρ, fn(λx.e,ρ′,κ)〉 ⇒CEK 〈e,ρ′[x 7→ (v,ρ)],κ〉

The CEK machine transition relation

Figure 2.6: The CEK machine for the untyped lambda calculus

CEK machine

CEK machine was introduced by Felleisen and Friedman [80] as a realistic model

of the context-based reduction semantics with explicit variable environments that is

amenable to efficient implementation.

Instead of substitution, which is typical for β-reduction, the CEK machine uses

environments and closures (i.e, values paired with variable environments) to model

substitution. The state, thus, consists of three components: a control string (i.e., an

expression) C, the current environment E and a continuation K, a list-like inductive

data type representing the “rest of computation” (see Section 2.2.5). Figure 2.6

provides a definition of environments, continuations and the transition relation (⇒CEK

) of the CEK machine. The initial state for an expression e with no free variables is a

triple 〈e, /0,mt〉. A valid final state of the CEK machine is of the shape 〈v, /0,mt〉.

One can notice strong similarities between the context-based abstract syntax machine

and the CEK machine. For instance, reduction contexts E (Figure 2.4) can be

represented by continuations inside-out as follows: [ ] is represented by mt; E[([ ] e)]
is represented by ar(e′,ρ,κ) where ρ binds free variables of e′ to represent e and

κ represents E; finally, E[(v [ ])] is represented by fn(v′,ρ,κ), where ρ binds free

variables of v′ to represent v, and κ represents E. A mechanical proof of this

correspondence is the subject of numerous works [2, 3, 4] and the same proof widely

used in Chapter 3 of the present dissertation.
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Small-step abstract machines and control-flow analysis

Effective implementation is not the only reason of exploring different abstract

machine-based formalisms. Recently, abstract machines have acquired significant

attention as a simple way to construct numerous static analyses via the method known

as “abstracting abstract machines” [204, 139]. The reason of this is twofold. First,

abstract machines are instances of small-step operational semantics, and, therefore,

provide explicit notions of an intermediate state and a step of computation. Second,

abstract register machines possess one more important characteristic: by the structure

of the state, they make explicit the representation of important computational aspects,

such as bound variables (thanks to the environment component E of SECD or CEK

machines) or continuations (by employing the K component of the CEK machine).

In order to get exhaustive information about bound variables and control flow in

a higher-order program, one just needs to collect all reachable states during the

program execution. This sort of computation is described by a notion of collecting

semantics [43].

Unfortunately, the problem of collecting all reachable states is undecidable in general

as it is equivalent to solving the halting problem. The usual approach in the literature is

to compute an approximation of the set of all reachable states by the method known as

abstract interpretation [40, 42]. In application to abstract machines, this would mean

defining a sound abstraction for concrete states by some sort of abstract states in the

way that each abstract state may correspond to multiple concrete states. By designing

the space of abstract states in the way such as the space is finite and proving the sound

approximation property (known as a Galois connection [137]), one can employ an

abstract collecting semantics as a collecting semantics built on top of the “abstract”

abstract machine (i.e., one operating with abstract states). Thanks to the finiteness of

the abstract state-space, the abstract collecting semantics is always computable.

Employing this methodology implies a small refactoring of a state-space of a

“concrete” abstract machine in order to avoid recursive definitions (e.g., environments

and continuations, as in Figure 2.6). Van Horn and Might describe the systematic

methodology for doing this [204, 139] by resolving the circular dependencies in a

concrete state-space. Sergey et al. show how to employ monadic comprehensions

to implement both “concrete” and “abstract” versions of an abstract machine in the

same framework [184]. The “abstracting abstract machines approach” has also been

recently extended for the object-oriented paradigm [141] and is used as a unifying

technique to compare families of points-to analyses for Java-like languages [192].
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2.1.5 Computational look on operational semantics

The observant reader could have already noticed that there are significant similarities

between all operational formalisms and the way a programmer usually implements an

interpreter. This section emphasizes and summarizes these similarities, which are a

crux of our study.

From the intuition behind a big-step semantics, a functionally-oriented reader can

easily recognize the form of catamorphism: big-step operational semantics is simply

a fold over a program’s syntactic tree thought of as a data type. A fold is usually

implemented as a recursive descent, an evaluator that calls itself on subparts of a

traversable structure, i.e. defined by structural induction on source terms.

An abstract machine is also an interpreter. However, in contrast with evaluators,

abstract machines are implemented by providing a transition function and a driver

loop function. A transition function defines a step logic of the semantics. A driver

loop function performs the step iteration and specifies what a final state is.

In these terms, the states of an abstract machines are simply inputs and outputs of the

transition function. As has been pointed out, any small-step semantics corresponds to

a sort of abstract machine.

Therefore, we have an informally defined correspondence between operational

formalisms and their computational counterparts:

• big-step operational semantics ≈ evaluator ≈ recursive descent;

• small-step semantics ≈ abstract machine ≈ transition and driver loop

functions.

We believe that this insight is sufficient for the reader to recognize both types of

formalisms from the shape of their implementations.

2.2 Elements of Functional Programming

Traditionally, one thinks of functional programming as a declarative programming

paradigm. In the world of contemporary mainstream programming, functional

programming is represented by various dialects of programming languages such as

Lisp, ML and Haskell. In contrast with the imperative paradigm, represented by such

languages as Pascal, Java and C, where a program is thought as a sequence of steps to

compute the desired results (i.e., informally, the program is an answer to the question

“How?”), in a declarative language the programmer describes a desired result itself
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(i.e., the program is an answer to the question “What?”), assuming the solution of the

problem to be inferred from the problem description.

In functional programming, the declarative aspect is reached by thinking of a program

as of a composition of expressions. Programs written in such a way, allow one

to understand them and reason about them compositionally. This approach to

program development has proven to be useful in multiple application domains, such as

compiler construction, financial computations, constructing electric circuits, scientific

computing and many others. The literature on applications of functional programming

counts thousands of remarkable works, and we recommend the interested reader to

start from the seminal paper of John Hughes [106]. In the present work, we are going

to use functional programming as a way to define interpreters and reason about them.

This section provides a short overview of the main concepts of functional program-

ming that we will use as the tool for describing the semantics of computations and,

eventually, for establishing the results in Chapters 3 and 4.

2.2.1 The lambda calculus

The lambda calculus is the core underlying formalism of all functional programming

languages. It was originally inspired by the works of Moses Schönfinkel and was

formally introduced by Alonzo Church [32] as a formal system to study compositions

of computations. The simplest form of the lambda calculus contains only three

syntactic constructs, also referred to as terms or expressions: variables, lambda-

abstractions (as a representation for functions), and applications. Initially, the

lambda calculus was introduced in its untyped form. Later, the simply-typed lambda

calculus was introduced as a formalism ensuring extra properties of terms [31]. The

polymorphic lambda calculus, also known as System F, one of the most widely-

used typed formalisms on top of the lambda-calculus, has been later independently

discovered by Girard and Reynolds [93, 175].

The idea of basing a programming language on the lambda calculus was pioneered

by Landin [124]. He also pointed out the resemblance between contemporary

programming language concepts and Church’s lambda calculus [125], stating that

lambda abstractions correspond to procedure declarations and applications correspond

to procedure calls. The lambda calculus has since been taken as the basis of

several modern programming languages, such as Standard ML [145], Scheme [196],

Haskell [163], Objective Caml [129], F# [198] and Scala [156].
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2.2.2 Key concepts of functional programming

There is no strict notion of what a functional programming language is. However,

most of the languages holding the lambda calculus as their core and considered as

functional ones, share the following traits:

• Programs are expressions. Since a program is constructed as the composition

of expressions, each expression yields a value after being evaluated, which,

in its turn, might be consumed by other expressions. It is expressions that

are considered as building blocks in contrast with statements in imperative

programming languages, which are treated according to their side effects.

• Functions are first-class citizens. Functions are full-fledged values in the

language: they can be passed along as arguments to other functions. The latter

are normally referred to as higher-order functions. Sometimes, higher-order

functions not depending on the environment, are referred to as combinators

and form the basis of function-oriented techniques such as combinator pars-

ing [107].5

2.2.3 Closures

Since functions can be created and passed as values in functional languages, the

function pointer itself is not sufficient to represent a function, as the function could

have been created in a specific environment. In fact, values bound to the function’s

free variables (i.e., those, not bound by the function’s parameters) may outlive their

point of declaration, for instance, when the function is returned as a result of another

function. As an example, consider the following simple code fragment in Standard

ML:

fun mult n

= let fun g x = x * n

in g end

The result of the call mult 42 will be the function that multiplies its argument by42.

In this case, the free variable n in the body of the function g will be bound to 42.

In order to consider the functions along with the environment they are created in,

Landin introduced the notion of closure to correctly represent functional values [124].

A closure is a term paired with an environment, representing the values bound to

5The notion of combinator was independently introduced by Moses Schönfinkel and Haskell Curry, and

plays a key role the correspondence between lambda calculus and combinatory logic [45]. It is also essential

for effective implementation of lazy functional programming languages [162, Chapter 13].



ELEMENTS OF FUNCTIONAL PROGRAMMING 33

free variables in the term’s body.6 The resulting pair component is closed in the

sense that all free variables in the term component now refer to bound variables in

the environment component.

Closure-based semantics of programming languages is a well-known alternative to a

traditional substitution-based semantics [164, Chapter 7]. The key difference between

them is that the former performs a lookup into the environment component of the

closure, once a value of a free variable is evaluated, whereas the latter avoids dealing

with free variables, eagerly performing a capture-avoiding substitution of values

according to the reduction strategy. This difference is often used as motivation to

introduce closures as a way to implement computations more efficiently [79], as

substitution of values is then delayed to the moment of actual examination of the

corresponding variables.

Most contemporary mainstream programming languages have some analogue of

closures. For instance, the Java programming language [95] supports both named

and anonymous inner classes that can be thought as closures in the sense that objects

(values) generated from these definitions (similarly to lambda-abstractions) can refer

to variables in their enclosing scope. In order to compile these inner definitions,

a technique, similar to lambda-lifting in functional languages (see Section 2.3.8)

is applied [65], whereby captured references to the outer class’ environment are

converted to object fields analogously with a closure’s environment component.7

2.2.4 Tail calls and tail-call optimization

One well-known programming technique in functional style assumes implementation

of most functions in the tail-call style. The function call is in the tail-call position of

its caller function if it is the last expression of the caller to be evaluated before the

caller returns the result. If the function performs a tail-call of itself, it is referred to as

tail-recursive. Tail calls are essential for a program compilation technique known as

tail call optimization [196], which consists of the removal of the caller’s frame from

the call stack once the callee in the tail position has been invoked. This allows, in

particular, the implementation of a tail-recursive function as a loop thereby avoiding

program stack overflow errors [38].

From the semantical point of view, the evaluation of the program, whose functions are

all in tail-call positions forms a sequence, in contrast with an evaluation tree in the non

tail-call case, where all constituents of the expression should be evaluated before the

expression can be computed. The use of tail calls is a great way to sequentialize

6In fact, values now are defined as closures, which gives a circularity in the definition and poses some

known challenges when interpreting the semantics [204, 139].
7At the present moment, this compilation technique is being discussed as a strategy to implement first-

class functions in the upcoming Java 1.8 (JSR 335).
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computations in a functional program, which brings us to the following essential

concept from functional programming.

2.2.5 Continuation-passing style

The existence of first-class functions as an inherent component of functional

programming makes it possible to parametrize a function with the rest of its

computation. This programming technique is known as continuation-passing style

(CPS) and is usually implemented by making functions accept an additional parameter

for a continuation. In CPS, when the intermediate computation step is complete,

the continuation parameter is applied to its result (i.e., the result is passed to the

rest of computation as an argument). Tail calls in functions pass the continuation

parameter unmodified, whereas non-tail calls augment the continuation to name the

result of the call and continue the computation with the named intermediate result. The

listing below presents two implementations of the factorial functions implemented in

Standard ML: the traditional one in direct style and the one in CPS.

(* Implementation of the factorial in the direct style *)

fun fact n

= if n = 0 then 1 else n * fact (n - 1)

(* Implementation of the factorial in CPS *)

fun fact_cps (n, k)

= if n = 0 then k 1

else fact_cps (n - 1, fn x => k (x * n))

(* Running the CPS factorial by a non-CPS function *)

fun run_fact n = fact_cps (n, fn x => x)

Note that in order to run the program in CPS, one should provide an initial

continuation that will be used as a basis to process the “outermost” result of the called

function. In the example above, this is performed by a function run_fact that pass

the identity function fn x => x for fact_cps as an initial continuation.

Despite its simplicity, CPS is used by semantics engineers and compiler engineers.

The former gain from the fact that the program is CPS is linearized: the program

itself encodes the evaluation orders with all intermediate results named, which allows

on to represent computations in CPS as a sequence in contrast with the evaluation

tree in the general case thereby producing an easy semantics as the basis for the

deriving of semantics-based artifacts, such as systematically constructed control-flow

analyses [137, 138, 139, 179, 184, 186]. Moreover, the initial formulation of the

denotational semantics of imperative languages as state transformers was done in the

form of CPS in order to manage non-local control operators, such as function returns

and the raising of exceptions [153].



ELEMENTS OF FUNCTIONAL PROGRAMMING 35

For practical purposes, CPS is used as an intermediate form for further program

transformations and optimizations [12, 89]. It is easy to notice that in the pure

CPS form, each call is a tail call, so each function invokes another function or its

continuation parameter as the only expression in its body. Such form proved, however,

impractical as it would require rewriting all program constructs to CPS [55]. One

typically keeps pure and total primitives (i.e., defined on all arguments) in the original

direct style. For instance, the mathematical primitives such as >, −, + and others are

left unmodified as well as the conditional expression, which otherwise would accept

two continuations, corresponding to each branch.

CPS, Administrative Normal Form and Static Single Assignment

As it has been noted, CPS allows the representation of computations of a functional

program sequentially, which makes it useful as a clean and simple formalism.

However, other ways of sequentialization of computations are possible. For instance,

Sabry and Felleisen [178] suggested an untyped version of the monadic normal form

by Moggi [100, 148], in which all intermediate results are assigned to variable and then

the variables are used in the subsequent computations. This form is usually referred

to as administrative normal form (ANF), following Flanagan et al. [87].

Since in CPS each intermediate result is assigned to the continuation parameter,

one can notice the similarity between CPS and the form known as static single

assignment [149], in which each variable in the program is assigned only once. The

correspondence between CPS and SSA has been formally shown by Kelsey [115]. He

has also shown that some CPS programs cannot be compiled to SSA; however these

are not obtained by the regular CPS transformation (see Section 2.3.1).

2.2.6 Control operators in higher-order languages

Writing programs in continuation-passing style gives the programmer the explicit

possibility to manage the control flow of the program, since continuations are now

represented as functions, which are first-class. For instance, one can compose a

continuation with another function (as it is done in the factorial example above) or

simply drop it, which would correspond to the explicit interruption of the control flow,

which is normally implemented in imperative languages using exceptions, explicit

returns and control operators such as break and continue.

However, as has been discussed previously, it is not always convenient to write the

whole program in CPS, as this style might introduce a fair amount of administrative

code for proper continuation management. In order to overcome this issue, multiple

control operators have been introduced to higher-order languages, making it possible
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to manage the first-class continuations. Nowadays, control operators are implemented

in the majority of modern higher-order functional languages, such as Scheme and

Standard ML of New Jersey. There are two main ways to classify first-class

continuations. First, continuations can be either undelimited (i.e., they represent

the entire rest of the computation), or delimited (i.e., the represent only a fragment

of the rest of computation). Second, continuations can be either jumpy or pushy.

Jumpy continuations are similar to jumps in imperative languages, as they are

resumed by aborting the current continuation. Pushy continuations are similar to

non-tail calls implemented in CPS, as the are resumed by composing them with the

current continuations Traditionally, in practice only two combinations of first-class

continuations are considered: undelimited and jumpy, and delimited and pushy.

Undelimited continuations

First-class undelimited continuations are made available in functional programming

languages via control operators such as call/cc. Applications of first-class

undelimited continuations include, among others, backtracking, modelling coroutines,

lightweight processes and non-local exits from recursion [82]. Historically, call/cc

is a successor of Landin’s J-operator [127], which was introduced in order to connect

Algol 60’s goto statements [125] with the semantics of lambda calculus [124].

We show the intuition behind the control operators for undelimited continuations with

the following example involving Scheme’s call/cc primitive. Consider the following

arithmetic expression:

1+2+ 3×4

one implicitly assumes that the first subexpression to be evaluated is the emphasized

part 3× 4. The rest of the expression is the continuation of the first expression’s

evaluation. It can be informally represented as a term with a “hole”: 1+2+ � .

Scheme’s call/cc operator gives a possibility to capture this continuation and use

it as a function, whose argument is substituted for the placeholder “hole” �. For

instance, consider the following pseudo-Scheme code:8

1+2+ call/cc (λk. 8× (k 5)) (2.1)

The captured continuation, denoted by the light grey box, is bound to the variable

k, i.e., k = 1+2+ � . The call of k within the call/cc construct aborts the

8The example can be implemented in Racked as

(+ 1 2 (call/cc (lambda (k) (* 8 (k 5))))),

given the package racket/control is imported.
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evaluation of the outer continuation 1+2+ � and instead uses it as a function k in

the body of the lambda-expression passed to call/cc. Traditionally, call/cc’s given

continuation is jumpy, that is, the rest of the current continuation, 8×�, is dropped

once k is applied. Thus, the expression (2.1) is turned into the expression k 5, which

evaluates to

1+2+ 5

and yields 8 as a result.

Delimited continuations

Unlike operators similar to call/cc, control primitives for delimited continuation

management provide a mechanism to capture only the part of the rest of computation,

use it as a first-class continuation and compose the result with the current continuation.

Delimited continuations were introduced independently by Felleisen [78] and by

Danvy and Filinski [53]. The way the composition with the current continuation

is implemented determines whether the delimited control operators are static, i.e.,

compatible with CPS (e.g., Danvy and Filinski’s shift and reset) or dynamic (e.g.,

Felleisen’s control and prompt).

We demonstrate the use of Danvy and Filinski’s control operators shift and reset

by the following simple example with arithmetic expressions:9

1+ reset (2+ shift (λk. 3× (k 5)) ) (2.2)

In the code above, the operator reset first captures a delimited continuation

(emphasized by the dark grey box) that does not spread to the whole rest of

computation, and shift defines how the captured delimited continuation should be

applied. Informally, one considers the “outer” continuation 1+ � and the delimited

continuation k = 2+ � , captured by a control delimiter reset. According to the

semantics of shift and reset, the captured delimited continuation will be applied

as a function k in the body of the lambda-expression given as argument to shift, so

expression (2.2) turns into the following one:

1+ 3× ( 2+ 5 )

9A proper implementation of the example in Racket would look like

(+ 1 (reset (+ 2 (shift k (* 3 (k 5)))))).
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and evaluates to 22. It is worth mentioning that, unlike call/cc, the considered

delimited control operators do not abort control flow and instead compose the captured

continuation with the rest of the computation.

Recently, delimited control operators received a lot of attention because of their

applications to the effective implementation of asynchronous computations [177],

partial evaluation [13, 48], code generation [200] and mobile computing [195]. Also,

possible formalizations of the delimited control operators with multiple prompts have

been recently investigated [71] along with their behavioral theory [20].

We address the reader interested in intuition behind the pushy and jumpy continuations

to the work by Flatt et al. [88]. The introduction of Dariusz Biernacki’s dissertation

[19] provides an exhaustive overview of control operators in higher-order languages;

the same work also connects different styles of semantics for delimited continuations.

2.3 Transformations of Functional Programs

After making acquaintance with the main concepts of higher-order functional program-

ming in Section 2.2, we obtained a way to define the semantics of computations in a

declarative way. Now, we come to the last subject of our study: functional program

transformations, which can serve as a toolbox to inter-derive computations.

In this section, we briefly enumerate a series of relevant functional program

transformations that either contribute to the derivations described in the present work,

or are implicitly belong to the functional correspondence tool-chain. All computations

we consider in this section are behaviour-preserving, i.e., they do not change the

result of the program. What they alter is computational properties, and we are going

to exploit this fact further to inter-derive semantics. Most of the transformations

discussed below have left inverses, which makes them (and, therefore, the result of

the derivation) reversible.

2.3.1 CPS transformation

A CPS transformation is a function that takes a source program in a direct style

and converts it into continuation-passing style. The original formulation of CPS

transformation is due to Fischer [85] and Plotkin [165].

The original CPS transformation implemented in such a way that produces a program

with a large amount of rudimentary reductions induced by passing continuations

explicitly everywhere in the program, which are usually referred to as administrative

reductions. Danvy and Filinski suggested an alternative transformation that yields a
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resulting program with a minimal amount of administrative reductions [54]. Danvy

has described a simple algorithm to transform lambda-terms into CPS that amounts to

three steps [46]:

1. Give a name to each intermediate application.

2. Sequentialize the evaluation of these named applications by a traversal of their

syntax tree. The tree traversal will therefore mimic the reduction strategy, for

instance, the “innermost” expression will be put first.10

3. The resulting expression is equipped with a continuation.

For instance, the result of applying the 3-steps CPS transformation to the expression11

f (+ (g 1) (h 2)) (2.3)

is

λk. ĝ 1 (λx1. ĥ 2 (λx2. +̂ x1 x2 (λx3. f̂ x3 k))) (2.4)

where f̂ , ĝ, ĥ and +̂ are CPS-transformed versions of functions f , g, h and +, taking

an extra parameter for a continuation, and k is the initial continuation.

2.3.2 Direct-style transformation

Direct-style transformation is a left inverse of CPS transformation in the sense that

it translates a CPS-transformed program to the equivalent program in direct style.

The algorithm of the direct-style transform can be easily obtained by inverting the

three steps of the CPS transformation: continuations are turned to subsequent let-

expressions, whose right-hand sides can be then inlined, which eliminates the need

to pass the continuation as a parameter. The direct-style transform was originally

formulated by Danvy [47], and later Danvy and Lawall studied the direct-style

transformation extended to first-class continuations [57].

It is important to notice that in the presence of continuation dropping due to non-local

returns, the direct-style transform might require the use of control operators such as

call/cc.

10Which corresponds exactly to the administrative normal form [87].
11Here we consider the plus operation + as a function of two parameters, so it is written in the prefix

form.
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2.3.3 Defunctionalization

Defunctionalization is a program transformation that converts a higher-order program

with first-class functions into an equivalent first-order program. Defunctionalization

was pioneered by Reynolds in his work on definitional interpreters [174] and

later formulated algorithmically by Danvy and Nielsen and studied in a series of

applications [62].

Defunctionalization is a global program transformation that changes the representa-

tion of a function space (i.e., all first-class functions in a program) into a first-order

algebraic datatype, represented by a series of constructors. This data type enumerates

all inhabitants of the function space. Each inhabitant is represented as a tagged

summand (i.e., a particular datatype constructor) binding the values corresponding

to free variables of the represented function, thereby capturing the environment

component of the function (see the discussion about closures in Section 2.2.3). The

code component of a function is described by providing a special dispatcher function,

traditionally referred in the literature as apply. The dispatcher function is defined

as a set of disjoint clauses, where each of the clauses corresponds to the body of a

particular function space inhabitant.

From the practical perspective, defunctionalization can be considered as a simple

technique to translate higher-order code to first-order, which makes numerous

optimization techniques from the first-order world available in higher-order languages.

Multiple practical problems arise when one tries to implement defunctionalization

efficiently. First, it seems like a heavy-weight solution to implement the whole

function space of a program using just one algebraic datatype and one dispatcher

function. The usual implementation technique involves computing of simple flows-

to information of the program, determining statically which functions can be

invoked at which call sites. This is normally done using a context-insensitive

control-flow analysis [186, 138].12 Another idea, usually referred to as lightweight

defunctionalization consists of including in the list of variables bound by a particular

summand of a datatype only those free variables that cannot be statically proven to

refer to the same run-time entity (i.e., there might be more than one closure instance

arising from the same lambda-abstraction) [14]. This idea allows one to substitute an

indirect function call with a direct call to a statically known function, which can be

pushed further by using the techniques to solve the generalized environment problem

in higher-order languages [138, 140].

The essential property of defunctionalization, which we are going to exploit in forth-

coming chapters, is that it turns a composed continuations in the form of anonymous

12Traditionally, the simplest possible context-insensitive control-flow analysis is used to split the function

space into disjoint components prior to performing defunctionalization. The impact of using a context-

sensitive control-flow analysis (also known as k-CFA) for performing the defunctionalization is still unclear.
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lambda-abstraction into a stack-like structure in a zipper-like fashion [105], thereby

bridging the evaluators in CPS and stack-based transition systems.

2.3.4 Refunctionalization

Refunctionalization is a left inverse of defunctionalization. While defunctionalization

converts a higher-order program into a first-order program by replacing first-class

functions by constructors of an appropriate datatype and supplying a dispatcher

function, refunctionalization translates a first-order program into an equivalent higher-

order program by substituting constructors of the defunctionalized datatype and

inlining the corresponding clauses of the dispatcher function, turning them into the

bodies of anonymous functions [50]. Refunctionalization has been demonstrated to

be useful for proving the equivalence of data-processing programs in the functional

accumulator-passing style and the continuation-passing style (e.g., the reverse

function on lists). Moreover, it turns out that most instances of the Zipper [105] are

defunctionalized continuations.

In the story of this dissertation, refunctionalization will play a crucial role for the

derivation of a recursive descent type checker from the reduction type checking

semantics.

2.3.5 Deforestation

Deforestation is a program transformation that eliminates intermediate construction of

tree-like structures when processing them. The term and the technique are originally

introduced by Philip Wadler [206]. Sometimes, deforestation is defined in terms

of a hylomorphism, the composition of an anamorphism (i.e., a construction of a

data structure) and a catamorphism (i.e., a compositional traversal of a structure,

also known as fold) [133]. Once a composition of functions is proven to be a

hylomorphism, it is a valid target for deforestation.

Lists are a particular case of trees, and, as we will show in Chapter 3, reduction

contexts form a list-like structure. In the study of the application of functional

correspondence to program semantics, deforestation occurs when transforming an

implementation of a reduction semantics to avoid subsequent decomposition and

recomposition of the reduction contexts. We will use deforestation as the first

derivation step in Chapter 3.
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2.3.6 Lightweight fusion

Fusion is a general term for the program optimization technique that involves the

combination of composition of adjacent computation into one computation. A

particular case of fusion is deforestation (see Section 2.3.5). Ohori and Sasano

suggested a method referred to as lightweight fusion [158] that works for general

recursive functions on general algebraic data types. The essence of the method is

in extending the function inlining process with a new fusion law that translates a term

of the form (fix g.λx.e) ◦ f into a new fixed point term fix h.(λx.e′) by promoting

the function f through the fixed point operator resulting in a particular expression e′

in the body of fix.

An example of such a fixed point fusion is the derivation of a big-step abstract machine

from a small-step abstract machine—a state-transition function together with a driver

loop in a trampolined style (see Section 2.3.7). The initial small-step abstract machine

is represented by a transition function f and a “driver loop” g, whose fixed point is

computed [59]. The resulting big-step machine is represented by a recursive function

that maps an initial state to a terminal result.

The lightweight fusion approach has some significant limitations. For instance, one

cannot fuse two successive applications of the same function or apply the fusion

transformation to mutually recursive functions.

2.3.7 Trampoline style and trampoline transform

Trampoline style is a programming technique that is used in some of the Lisp im-

plementation as an optimization to turn tail-recursive or mutually-recursive functions

into the form of a small-step abstract machine [91]. Trampoline style-programming is

implemented as a library function in the Lisp dialect known as Clojure [101] as a way

to overcome the lack of tail-call optimization in the Java Virtual Machine [173].

The trampolined recursive function is turned into a driver loop such that each iteration

returns a thunked value for the “next step”. I.e., instead of actually making a call

in its tail, a trampolined function returns the function to be called (a thunk), and

the driver loop calls it, thus allowing stepwise execution without stack growth. In

the forthcoming chapters we will demonstrate the implicit use of the trampoline

transform technique by subsequent CPS transformation and defunctionalization. The

resulting program will exhibit tail-recursive behaviour, which makes it the subject of a

straightforward driver loop extraction. Abusing terminology, the trampoline transform

can be considered as an inverse of lightweight fusion (see Section 2.3.6). i.e., so-called

lightweight fission.
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2.3.8 Lambda lifting

Lambda lifting is a program transformation that names all lambda-abstractions in

a functional program and turns them into global functions by moving them to the

program top level [114]. To be performed correctly, lambda lifting is almost always

preceded by closure conversion, so these two notions are often confused in the

compiler literature. Lambda lifting has been formally specified and proved to be

correct by Fischbach and Hannan [84]. Later, Danvy and Schultz implemented an

quadratic-time algorithm [65], in contrast with the original cubic-time translation.

In object-oriented community, where anonymous classes play the role of lambda-

abstractions, closure conversion and lambda-lifting might be thought of as the

refactorings “convert anonymous class to inner” and “move inner class to upper level”.

These refactorings are implemented, for instance, in the IntelliJ IDEA programming

environment [110].

2.3.9 Closure conversion

Closure conversion is a global program transformation that eliminates free variables in

lambda abstractions and inner functions by passing an explicit environment parameter

instead. The result of the transformation is a program that can be a subject of lambda

lifting. Closure conversion is different from defunctionalization in the sense that it

neither introduces a data type to represents inhabitants of the function space, nor

replaces lambda-abstractions with constructors of this datatype. However, closure

conversion is similar to defunctionalization in the sense that it performs the analysis

of free variables in the bodies of lambda-abstractions, before extracting them as

parameters. Closure conversion is different from lambda lifting since it just eliminates

free variables, but does not turn inner and functions and lambda-abstractions into

top-level functions. However, closure conversion is almost always a transformation

preceding lambda lifting. The resulting program can incur a quadratic blowup in

size because of additional variable passing. Techniques, similar to those used in

lightweight defunctionalization [14] can be used in order to reduce the amount of

free variables extracted as parameters [190, 194].

Together with lambda lifting, closure conversion have application as a tool in

the functional correspondence chain providing the way to mechanically connect

denotational semantics with natural (big-step) semantics of an arbitrary computational

formalism [174]. Although remarkable, we leave this aspect uncovered in the present

work.
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2.3.10 Lambda dropping

Lambda dropping is a left inverse from lambda lifting. The technique was originally

proposed by Danvy and Schultz [64] as a way to restore the original lexical block

structure of a functional program with recursive equations. Strictly speaking, lambda

dropping is an inverse of the composition of lambda lifting with closure conversion:

the essence of the transformation is that it eliminates the parameters that are always

used in the same scope, so the function does not need to pass them along: they are

instead replaced by local variables. In this respect, the goal of the lambda dropping is

coherent with dependency analysis as it is described by Peyton Jones [162], which

is used to generate block structure from recursive equations, relying on a similar

algorithm referred to as “block sinking”. Danvy and Schultz also show how lambda

dropping can be applied for partial evaluation and revealing global read-only variables

by localizing lexical blocks.

2.3.11 Contification

Contification is a compiler optimization that turns a function that always returns to

the same program point into a continuation [89] of its callers. Indeed, if a function

always returns to the same program point, then this function’s calls and returns

can be viewed as describing intraprocedural instead of interprocedural control-flow.

In a sense, contification is similar to lambda-dropping, as it also moves functions

from the global program level to bodies of other functions. Contification is used

as an intermediate program transformation in optimizing compilers of functional

programming languages such as MLton [208], after the program has been turned

into first order by closure conversion. The functions to be contified are usually

determined using dominance analysis on a static program call graph. From a

functional correspondence perspective, contification can be considered as a technique

to extract inner subroutines of an evaluator, for example, extracting contraction

functions.

2.3.12 Other transformations

In our study, we will also make use of a series of “small” transformations, although

used in production compilers, are not referred to by any specific name due to their

simplicity. We will assign some names to them locally to this thesis.

Result-stack extraction By result stack extraction we mean replacing local

variables of a function by a global stack containing the results of intermediate calls.
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(fib-1)
1 ⇓fib 1

(fib-2)
2 ⇓fib 1

(fib-n)
(n−1) ⇓fib v1 (n−2) ⇓fib v2

n ⇓fib v1 + v2

Figure 2.7: Natural semantics of Fibonacci numbers computation

The result stack component is passed along function calls as an extra parameter. It

stores intermediate values after they have been computed but before they are used.

Evaluating an expression leaves its result on top of the data stack. Function calls,

therefore, expect to find their argument and the to-be-called function on top of this

data stack. In the case of nested calls, the immutable part of the stack is saved by the

caller, whereas, a callee is invoked with a reduced or fresh stack.

Control-stack extraction As has been pointed out, the result of defunctionalizing

a program in CPS is a data type representing continuations that typically has a

stack structure, reminiscent of the Zipper or continuations of a CEK machine. In

our transformations, we make this structure explicit by refactoring the result of

defunctionalization into a stack and passing it along to function calls as an extra

argument.

2.4 Pulling it All Together: Inter-Deriving Seman-

tics for Fibonacci Numbers

In the concluding section of this chapter we put all presented components together

and demonstrate the interplay between different semantics and interpreters on a toy

example—Fibonacci numbers.

Big-step semantics for Fibonacci numbers

When presenting Fibonacci numbers, one usually does it in the form of a recurrent

equation. Such an equation can be presented as a “semantics”, whose inputs are just

natural numbers (Figure 2.7). Armed with the knowledge about operational semantics
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from Section 2.1.3, the reader can easily recognize that this definition is expressed

using the big-step operational formalism.13

Our goal is to provide a small-step stack-based register abstract machine to compute

Fibonacci numbers. In the subsequent sections we show how to do this by employing

functional correspondence. At each stage of the transformation we increase the index

of the function fib. Parts of the code essential for each derivation are highlighted by

grey boxes .

Initial implementation

Our first step is to implement the formalism from Figure 2.7 in the form of a recursive

evaluator in Standard ML, which brings us to the following definition.

fun fib0 n

= if n = 1 orelse n = 2 then 1

else let val v1 = fib0 (n - 1)

val v2 = fib0 (n - 2)

in v1 + v2 end

Extracting a result stack

We rewrite the procedure fib0 in a way that fixes the order between the computed

intermediate results v1 and v2 by replacing local variables by a result stack passed as

an extra parameter.

fun fib_stack (s: int list , n: int)

= if n = 1 orelse n = 2 then 1 :: s

else let val s1 = fib_stack (s, n - 1)

val s2 = fib_stack (s1, n - 2)

in case s2 of

v1 :: v2 :: s3 => (v1 + v2) :: s3

end

fun fib1 n = fib_stack (nil, n)

The result is a callee-save, explicit stack-threading evaluator [58].

13The first Fibonacci number is computed for 1 and not for 0: it was unconsciously picked by the author

according to the tradition of the Russian mathematical school, where natural numbers start from one. This

choice became conscious during the discussion with Olivier Danvy at the preliminary defense of the thesis.
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CPS transformation

Our evaluator fib_stack has a number of non-tail calls to itself:

fun fib_stack (s: int list , n: int)

= if n = 1 orelse n = 2 then 1 :: s

else let val s1 = fib stack (s, n - 1)

val s2 = fib stack (s1, n - 2)

in case s2 of

v1 :: v2 :: s3 => (v1 + v2) :: s3

end

fun fib1 n = fib_stack (nil, n)

We turn them into tail calls by employing the CPS transformation (see Section 2.3.1).

The CPS-transformed evaluator now looks as follows:

fun fib_cps (s, n, k)

= if n = 1 orelse n = 2 then k (1 :: s)

else fib_cps (s, n - 1, fn s1 =>

fib_cps (s1, n - 2, fn s2 =>

case s2 of

v1 :: v2 :: s3 => k ((v1 + v2) :: s3)))

fun fib2 n = fib_cps (nil, n, fn (x :: ) => x )

Defunctionalization

After we have CPS-transformed our evaluator, we see a number of anonymous

functions representing continuations. We turn these continuations into a first-order

datatype by employing defunctionalization (see Section 2.3.3):
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datatype cont = CONT_MT

| CONT_FIB1 of int * cont

| CONT_FIB2 of cont

fun fib_defun (s, n, C)

= if n = 1 orelse n = 2 then continue (1 :: s, C)

else fib_defun (s, n - 1, CONT FIB1 (n, C) )

and continue (s, CONT MT )

= (case s of (x :: _) => x)

| continue (s, CONT FIB1 (n, C) )

= fib_defun (s, n - 2, CONT FIB2 C )

| continue (s, CONT FIB2 C )

= case s of (v1 :: v2 :: s3) => continue ((v1 + v2) :: s3, C)

fun fib3 n = fib_defun (nil, n, CONT MT )

Unifying control

The result of defunctionalization is used by the function continue to dispatch calls.

The number component is used for dispatch by the function fib_defun. Our next

transformation is control unification: we provide a function fib_defun’ and a

datatype cont’ that implement dispatch on both the structure of integer and the

structure of a continuation:

datatype cont ’ = CONT_MT ’

| CONT_FIB1 ’ of int * cont ’

| CONT_FIB2 ’ of cont ’

| NUM’ of int * cont ’

fun fib_defun ’ (s, NUM’ (n, C) )

= if n = 1 orelse n = 2 then continue1 (1 :: s, C)

else fib_defun ’ (s, NUM’ (n - 1, CONT_FIB1 ’ (n, C)))

and continue1 (s, CONT MT’ )

= (case s of (x :: _) => x)

| continue1 (s, CONT FIB1’ (n, C) )

= fib_defun ’ (s, NUM’ (n - 2, CONT_FIB2 ’ C))

| continue1 (s, CONT FIB2’ C )

= case s of (v1 :: v2 :: s3) => continue1 ((v1 + v2) :: s3, C)

fun fib4 n = fib_defun ’ (nil, NUM’ (n, CONT_MT ’))
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Introducing a control stack

The enhanced continuation data type cont’ has a list-like structure with three

constructors taking arguments and CONT_MP playing the role of nil. Let’s turn it into

a traditional ML-style list by introducing a dedicated data type control_element

for control elements. The cont’ data type then turns into a control stack, which is

depicted by the following implementation.

datatype control_element = NUM of int

| CF1 of int

| CF2

fun fib_control (s, NUM n :: C )

= if n = 1 orelse n = 2 then fib_control (1 :: s, C)

else fib_control(s, NUM (n - 1) :: CF1 n :: C)

| fib_control (s, CF1 n :: C )

= fib_control (s, NUM (n - 2) :: CF2 :: C)

| fib_control (s, CF2 :: C )

= (case s of (v1 :: v2 :: s3) => fib_control ((v1 + v2) :: s3, C))

| fib_control (s, nil )

= (case s of (x :: _) => x)

fun fib5 n = fib_control (nil, NUM n :: nil)

From a big-step to a small-step abstract machine

One can notice that the function fib_control in the previous section is tail-recursive,

i.e., all the calls it performs are tail calls to itself. Such a function is a candidate

for a lightweight fission, which yields the transition function step and driver loop

iterate.
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〈S, Num(1) :: C〉 ⇒SCfib
〈1 :: S, C〉

〈S, Num(2) :: C〉 ⇒SCfib
〈1 :: S, C〉

〈S, Num(n) :: C〉 ⇒SCfib
〈S, Num(n−1) :: CF1(n) :: C〉

〈S, CF1(n) :: C〉 ⇒SCfib
〈S, Num(n−2) :: CF2 :: C〉

〈v1 :: v2 :: S, CF2 :: C〉 ⇒SCfib
〈(v1 + v2) :: S, C〉

Figure 2.8: A small-step abstract machine for Fibonacci numbers

type state = int list * control_element list

(* step : state -> state *)

fun step ( s, NUM 1 :: C )

= (1 :: s, C)

| step ( s, NUM 2 :: C )

= (1 :: s, C)

| step ( s, NUM n :: C )

= (s, NUM (n - 1) :: CF1 n :: C)

| step (s, CF1 n :: C )

= (s, NUM (n - 2) :: CF2 :: C)

| step ( v1 :: v2 :: s3, CF2 :: C )

= ((v1 + v2) :: s3, C)

(* step : state -> int *)

fun iterate (v :: _, nil)

= v

| iterate (s, C)

= iterate (step (s, C))

(* fib6 : int -> int *)

fun fib6 n = iterate (nil, NUM n :: nil)

Based on the correspondence described in Section 2.1.5 and a shape of the function

step, we can easily extract the definition of a small-step operational semantics,

corresponding to an abstract machine with a two-component state. The formal

descriptions of this machine is presented in Figure 2.8. The machine is reminiscent

of Landin’s SECD machine with only two components: a result stack S and a control

stack C. This formal definition ends our derivation.



Chapter 3

From Type Checking via
Reduction to Type Checking
via Evaluation

This chapter is the first part of the story about mechanical inter-derivation of type

checking semantics.

We connect two independently investigated formalisms: one, due to Kuan et al., in

the form of a term rewriting system and the other in the form of a traditional set

of derivation rules, thus, initiating the left part of the diagram in Figure 1.4. By

employing a set of techniques investigated by Danvy et al. [4, 51, 58, 59, 60, 62],

we mechanically derive the correspondence between a reduction-based semantics for

type-checking and a traditional one in the form of derivation rules, implemented as a

recursive descent. The correspondence is established through a series of semantics-

preserving functional program transformations.

Following the presented methodology of semantic correspondence, we connect

different semantics of type checking by the construction and inter-derivation of

their computational counterparts. Thus, no soundness and completeness theorem

need to be proven: they are instead corollaries of the correctness of inter-derivation

and of the initial specification. Starting from the implementation of a reduction-

based semantics, we employ a series of semantics-preserving functional-program

transformations to eventually obtain a traditional recursive descent for type-checking.

The transformations we use are off-the-shelf [52], and we invite an interested reader

to take a look on the overview of the available techniques with references to the

corresponding correctness proofs [51].

51
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(t-var)
(x : τ) ∈ Γ

Γ ⊢ x : τ
(t-lam)

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx : τ1.e : τ1→ τ2

(t-app)

Γ ⊢ e1 : τ1→ τ2

Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(t-num)

Γ ⊢ number : num

Figure 3.1: Church-style type checking rules of the simply typed lambda calculus,

revisited.

3.1 Starting Point: a Hybrid Language for Type
Checking

We consider a reduction system for type checking the simply typed lambda calculus.

The system was originally proposed by Kuan et al. [123] and is presented as a

case study in the scope of PLT Redex framework [122]. The approach scales to

Curry-Hindley type inference and Hindley-Milner let-polymorphism. The techniques

presented in the current work can be adjusted to these cases by adding unification

variables, so for the sake of brevity we examine only the simplest model. The

hybrid language λH and its semantics are described in Figure 3.2. The reduction

system introduces a type-checking context T that induces a left-most, inner-most

order of reduction. Variable occurrences are replaced by their types at the moment

a λ-abstraction is reduced, according to rule [tc-lam]. Rule [tc-lam] also introduces

the arrow type constructor. Finally, rule [tc-τβ] syntactically matches the function

parameter type against an argument type.

The classical way to represent type checking is via a collection of logical derivation

rules assuming a construction of a proof-tree for a well-typed program. Such rules for

the simply typed lambda calculus are given in Figure 3.1. According to Kuan et al.,

a complete type reduction sequence is one that reduces to a type. The existence of a

complete reduction sequence resulting by a type is the case for well-typed terms only.

The following theorem states that a complete type reduction sequence corresponds to

a complete type derivation proof tree for a well-typed term in the host language and

vice versa.

Theorem 3.1.1. [123] (Soundness and Completeness for 7→t)

For any e and τ, /0 ⊢ e : τ iff e 7→∗t τ

The question we address in this chapter is whether a natural correspondence between
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Hybrid terms e ::= n | x | λx : τ.e | e e | τ→ e | num
Numbers n ::= number

Types τ ::= num | τ→ τ
Type-checking contexts T ::= T e | τ T | τ→ T | [ ]

Hybrid language and type-checking contexts

T [n] 7→t T [num] [tc-const]
T [λx : τ.e] 7→t T [τ→{τ/x} e] [tc-lam]

T [(τ1→ τ2) τ1] 7→t T [τ2] [tc-τβ]

Type-checking reduction rules

Figure 3.2: Reduction semantics of λH .

these semantics exists which avoids the need for the soundness and completeness

theorems. The answer to this question is positive and below we show how to derive a

traditional type-checker mechanically from the given rewriting system.

3.1.1 Chapter outline

The remainder of the chapter is structured as follows. Section 3.2 gives an overview

of our method, enumerating the techniques involved. Section 3.3 describes an

implementation of the hybrid language and its reduction semantics in Standard ML.

Section 3.4 describes a set of program transformations corresponding to the transition

from the reduction-based semantics for type inference to a traditional recursive

descent.

3.2 Method Overview

An overview of the program transformations is shown in Figure 4.2. We start by

providing the implementation of a hybrid language for the simply typed lambda

calculus, a notion of closures in it and a corresponding reduction semantics via

contraction as a starting point for further transformations (Section 3.3). The

reduction-based normalization function is transformed to a family of reduction-free

normalization functions, i.e., ones where no intermediate closure is ever constructed.

In order to do so, we first refocus the reduction-based normalization function to
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Reduction-Based

Type Checker

Refocusing (§ 3.4.1)
+

Contraction inlining
(§ 3.4.2)

��

Recursive

Descent

Reduction-Free

Type Checker

Lightweight Fusion (§ 3.4.3)

Transition Compression
(§ 3.4.4)

// Big-Step
CEK machine

Direct-Style Transformation
(§ 3.4.8)

+
Refunctionalization (§ 3.4.7)

+
Switching domains (§ 3.4.6)

OO

Figure 3.3: Inter-derivation from a reduction-based to a compositionsl type checker

obtain a small-step abstract machine implementing the iteration of the refocus function

(Section 3.4.1). After inlining the contraction function (Section 3.4.2), we transform

this small-step abstract machine into a big-step one by applying a technique known

as “lightweight fusion by fixed-point promotion” [59] (Section 3.4.3). This machine

exhibits a number of corridor transitions, which we then compress (Section 3.4.4). We

then flatten its configurations and rename its transition functions to something more

intuitive (Section 3.4.5). We also switch domains of evaluator functions to factor out

artifacts of the hybrid language (Section 3.4.6). The resulting abstract machine is

in defunctionalized form, so we refunctionalize it (Section 3.4.7). The result is in

continuation-passing style, so we transform it into direct style (Section 3.4.8). The

final result is a traditional compositional type-checker.

In Section 3.4.8 we rely on the library of undelimited continuations to model

top-level exceptions. For the sake of brevity, we omit some program artifacts

(sometimes only giving their signature), keeping only essential parts to demonstrate

the corresponding program transformation. The reader interested in particular details

of the implementation of helper functions is welcome to take a look the accompanying

code overview in Appendix B. All essential definitions of functions and datatypes

in the text can be found using the index at the end of the dissertation. At each

transformation stage the trailing index of all involved functions is incremented.
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3.3 A Reduction-Based Type Checker

This section provides the initial implementation of λH in SML, which will be used for

further transformations in Section 3.4.

3.3.1 Reduction-based hybrid term normalization

The reduction-based normalization of hybrid terms is implemented by providing an

abstract syntax, a notion of contraction and a reduction strategy. Then we provide

a one-step reduction function that decomposes a non-value closure into a potential

redex and a reduction context, contracts the potential redex, if it is actually one, and

then recomposes the context with the contractum. Finally we define a reduction-based

normalization function that repeatedly applies the one-step reduction function until a

value (i.e., an actual type of an expression) is reached.

In the specification of λH , the contraction of lambda expressions (rule [tc-lam]) is

specified using a meta-level notion of capture-avoiding substitutions. However, most

implementations do not use actual substitutions and keep an explicit representation

of what should be substituted on demand, leaving the term untouched [79, pages

100–105]. To model explicit substitutions, we chose the applicative order version

of Curien’s calculus, which uses closures, i.e, terms together with their lexical

environment [17]. The cited paper also relates values in the language of closures

with values in λ-calculus (see Section 2.5). From the implementation perspective, it

is done by introduction of embedding functions. The environments map variables to

values (i.e., types in this case) while reducing an expression, which corresponds do the

capture-avoiding substitution strategy [52, Section 6]. The chosen calculus allows us

to come eventually in Section 3.4 to a well-known representation of a type-checking

algorithm with an environment Γ, which predictably serves the same purpose, i.e.,

mapping variables to their types.

3.3.2 Abstract syntax of λH : closures and values

The abstract syntax for λH , which is presented in Figure 3.2, is described in SML

below. It includes integer literals, identifiers, lambda-abstractions, applications as

well as hybrid elements such as numeric types and arrows τ→ e. Types are either

numeric types or arrow types. The special value T_ERROR s is used for typing errors;

it cannot be a constituent of any other type. A value in the hybrid language is either

an integer or a function type.
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datatype typ = T_NUM

| T_ARR of typ * typ

| T_ERROR of string

datatype term = LIT of int

| IDE of string

| LAM of string * typ * term

| APP of term * term

datatype hterm = H_LIT of int

| H_IDE of string

| H_LAM of string * typ * hterm

| H_APP of hterm * hterm

| H_TARR of typ * hterm

| H_TNUM

Typing environments TEnv represent bindings of identifiers to types, which are values

in the hybrid language. In order to keep to the uniform approach for different

semantics for type inference [181], we leave environments parametrized by the type

parameter ’a, which is instantiated with typ in this case.

signature TEnv = sig

type ’a gamma

val empty : (string * ’a) gamma

val extend : string * ’a * (string * ’a) gamma -> (string * ’b) gamma

val lookup : string * (string * ’a) gamma -> ’a option

end

We introduce closures into the hybrid language in order to represent the environment-

based reduction system. A closure can either be a number, a ground closure pairing

a term and an environment, a combination of closures, a closure for a hybrid

arrow expression, or a closure for a value arrow element, namely an arrow type.

Environments bind identifiers to values.

datatype closure = CLO_NUM

| CLO_GND of hterm * bindings

| CLO_APP of closure * closure

| CLO_ARR of typ * closure

| CLO_ARR_TYPE of typ

withtype bindings = typ TEnv.gamma

We also specify the corresponding embeddings of values to closures and of terms to

hybrid terms (the definitions are omitted and can be found in Appendix B):

val type_to_closure : typ -> closure

val term_to_hterm : term -> hterm
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3.3.3 Notion of contraction

A potential redex is either a numeric literal, a ground closure pairing an identifier and

an environment, the application of a value to another value, a lambda-abstraction to

be type-reduced, an arrow type, or a ground closure pairing a term application and an

environment. All these possibilities are described by the following data type:

datatype potential_redex

= PR_NUM

| PR_IDE of string * bindings

| PR_APP of typ * typ

| PR_LAM of string * typ * hterm * bindings

| PR_ARR of typ * typ

| PR_PROP of hterm * hterm * bindings

A potential redex may trigger a contraction or it may get stuck. These outcomes are

captured by the following datatype:

datatype contractum_or_error = CONTRACTUM of closure

| ERROR of string

The string content of ERROR is an error message.

The contraction function contract reflects the type-checking reduction rules for

λH . For instance, any integer literal contracts to a numeric type T_NUM, a lambda

expression contracts to an arrow expression of the hybrid language, and the contraction

of a potential redex PR_APP checks whether its first parameter is a function type and

its parameter type matches the argument of the application, and then, if it is the case,

replaces the application by a function result type.

(* contract: potential_redex -> contractum_or_error *)

fun contract PR_NUM

= CONTRACTUM CLO_NUM

| contract (PR_ARR (t1, t2))

= CONTRACTUM (type_to_closure (T_ARR (t1, t2)))

| contract (PR_IDE (x, bs))

= (case TEnv.lookup (x, bs)

of NONE => ERROR "undeclared identifier"

| (SOME v) => CONTRACTUM (type_to_closure v))

| contract (PR_LAM (x, t, e, bs))

= CONTRACTUM (CLO_GND (H_TARR (t, e), TEnv.extend (x, t, bs)))

| contract (PR_APP (T_ARR (t1, t2), v))

= if t1 = v

then CONTRACTUM (type_to_closure t2)

else ERROR "parameter type mismatch"

| contract (PR_PROP (t0, t1, bs))

= CONTRACTUM (CLO_APP (CLO_GND (t0, bs), CLO_GND (t1, bs)))

| contract (PR_APP (t1, t2))
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= ERROR "non-function application"

A non-value closure is stuck when an identifier does not occur in the current

environment or non-function type is used in a function position or a function

parameter’s type does not correspond to the actual argument’s type.

3.3.4 Reduction strategy

Reduction contexts are defined as follows:

datatype hctx = CTX_MT

| CTX_FUN of hctx * closure

| CTX_ARG of typ * hctx

| CTX_ARR of typ * hctx

A context is a closure with a hole, represented inside-out in a zipper-like fashion [105].

Following the description of λH ’s reduction semantics we seek the left-most inner-

most potential redex in a closure. In order to reduce a closure, it is first decomposed.

The closure might be a value and not contain any potential redex, otherwise it can

be decomposed into a potential redex and a reduction context. These possibilities are

captured by the following datatype:

datatype type_or_decomposition = VAL of typ

| DEC of potential_redex * hctx

A decomposition function recursively searches for the left-most inner-most redex in a

closure. Examples of some specific decomposition functions may be found in recent

work of Danvy [52]. In our implementation we define decomposition (decompose) as

a big-step abstract machine with two state-transition functions, decompose_closure

and decompose_context. The former traverses a given closure and accumulates the

reduction context until it finds a value and the latter dispatches over the accumulated

context to determine whether the given closure is a value or a potential redex. The

function decompose starts by decomposing a closure within an empty context. For

the full definition of the decomposition functions, see the accompanying code. The

recomposition function recompose takes a context and a value to embed, peels off

context layers and iteratively constructs the resulting closure. The implementation of

these functions is essential for the further derivation, so we provide it below:
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(* decompose_closure : closure * hctx -> type_or_decomposition *)

fun decompose_closure (CLO_NUM , C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_ARR_TYPE v, C)

= decompose_context (C, v)

| decompose_closure (CLO_GND (H_LIT n, bs), C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_GND (H_IDE x, bs), C)

= DEC (PR_IDE (x, bs), C)

| decompose_closure (CLO_GND (H_LAM (x, t, e), bs), C)

= DEC (PR_LAM (x, t, e, bs), C)

| decompose_closure (CLO_GND (H_APP (t0, t1), bs), C)

= DEC (PR_PROP (t0, t1, bs), C)

| decompose_closure (CLO_GND (H_TNUM , bs), C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_GND (H_TARR (t, e), bs), C)

= decompose_closure (CLO_GND (e, bs),

CTX_ARR (t, C))

| decompose_closure (CLO_APP (c0, c1), C)

= decompose_closure (c0, CTX_FUN (C, c1))

| decompose_closure (CLO_ARR (v, c), C)

= decompose_closure (c, CTX_ARR (v, C))

(* decompose_context : hctx * typ -> type_or_decomposition *)

and decompose_context (CTX_MT , v)

= VAL v

| decompose_context (CTX_FUN (C, c1), v0)

= decompose_closure (c1, CTX_ARG (v0, C))

| decompose_context (CTX_ARG (v0, C), v1)

= DEC (PR_APP (v0, v1), C)

| decompose_context (CTX_ARR (v0, C), v1)

= DEC (PR_ARR (v0, v1), C)

(* decompose : closure -> type_or_decomposition *)

fun decompose c

= decompose_closure (c, CTX_MT)

(* recompose : hctx * closure -> closure *)

fun recompose (CTX_MT , c)

= c

| recompose (CTX_FUN (C, c1), c0)

= recompose (C, CLO_APP (c0, c1))

| recompose (CTX_ARG (v0, C), c1)

= recompose (C, CLO_APP (type_to_closure v0, c1))

| recompose (CTX_ARR (v0, C), c1)

= recompose (C, CLO_ARR (v0, c1))
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3.3.5 Reduction-based normalization

Reduction-based normalization is based on a function that iterates a one-step reduction

function until it yields a value. At each iteration the normalization function inspects its

argument. If it is a potential redex within some context it will be contracted using the

function contract from Section 3.3.3 and then be recomposed. If during contraction

an error occurs, it must be reported:

datatype result = RESULT of typ

| WRONG of string

(* iterate: type_or_decomposition -> result -> result *)

fun iterate (VAL v) = RESULT v

| iterate (DEC (pr, C))

= (case contract pr

of (CONTRACTUM c’) => iterate (decompose (recompose (C, c’)))

| (ERROR s) => WRONG s)

At this point we should take into account the fact the terms we want to type-check via

reduction-based normalization are from the host language (and described by the data

type term), whereas intermediate values of reductions are within the larger hybrid

language (i.e., they are of type hterm). So we should first embed plain terms into

hybrid ones using the function term_to_hterm.

The function type_check runs the reduction-based normalization function normalize

and processes an obtained result.

(* normalize: term -> result *)

fun normalize t = iterate (decompose (CLO_GND (term_to_hterm t,

TEnv.empty)))

(* type_check: term -> typ *)

fun type_check t

= case normalize t

of (RESULT v) => v

| WRONG s => T_ERROR s

3.4 From Reduction-Based to Compositional Type
Checker

In this section, we follow a systematic approach to the construction of a reduction-free

normalization function out of a reduction-based normalization function [52].
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3.4.1 Refocusing

The operation of decomposing and recomposing a term is usually referred to as

refocusing. As it has been pointed out by Danvy and Nielsen [63], a refocusing

function may be expressed via the decompose_closure function, mentioned in

Section 3.3.

(* refocus : closure * hctx -> type_or_decomposition *)

fun refocus (c, C) = decompose_closure (c, C)

The new version of the type checker differs from the original one by the definition

of the function iterate1 using the function refocus instead the composition of

decompose and recompose. The type checker is now reduction-free, since no step-

based reduction function is involved. The function iterate1 operates directly on the

result of refocusing instead.

(* iterate1 : type_or_decomposition -> result *)

fun iterate1 (VAL v)

= RESULT v

| iterate1 (DEC (pr, C))

= (case contract pr

of (CONTRACTUM c’)

=> iterate1 (refocus (c’, C))

| (ERROR s)

=> WRONG s)

(* normalize1 : term -> result *)

fun normalize1 t

= iterate1 (refocus (CLO_GND (term_to_hterm t,

TEnv.empty), CTX_MT))

fun type_check t

= case normalize1 t

of (RESULT v) => v

| WRONG s => T_ERROR s

3.4.2 Inlining the contraction function

We inline the function contract (Section 3.3.3) in the definition of iterate1. There

are six cases in the definition of contract, so the DEC clause in the definition of

iterate1 is replaced by six DEC clauses. The resulting function is called iterate2.

fun iterate2 (VAL v)

= RESULT v

| iterate2 (DEC (PR_NUM , C))

= iterate2 (refocus (CLO_NUM , C))

| iterate2 (DEC (PR_ARR (t1, t2), C))
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= iterate2 (refocus (type_to_closure

(T_ARR (t1, t2)), C))

| iterate2 (DEC (PR_IDE (x, bs), C))

= (case TEnv.lookup (x, bs)

of NONE

=> WRONG "undeclared identifier"

| (SOME v) =>

iterate2 (refocus (type_to_closure v, C)))

| iterate2 (DEC (PR_LAM (x, t, e, bs), C))

= iterate2 (refocus

(CLO_GND (H_TARR (t, e),

TEnv.extend (x, t, bs)), C))

| iterate2 (DEC (PR_APP (T_ARR (t1, t2), v), C))

= if t1 = v

then iterate2 (refocus (type_to_closure t2, C))

else WRONG "parameter type mismatch"

| iterate2 (DEC (PR_PROP (t0, t1, bs), C))

= iterate2 (refocus (CLO_APP (CLO_GND (t0, bs),

CLO_GND (t1, bs)), C))

| iterate2 (DEC (PR_APP (t1, t2), C))

= WRONG "non-function application"

fun normalize2 t

= iterate2 (refocus (CLO_GND (term_to_hterm t, TEnv.empty), CTX_MT))

fun type_check t

= case normalize2 t

of (RESULT v) => v

| WRONG s => T_ERROR s

3.4.3 Lightweight fusion: from small-step to big-step abstract
machine

The next step is to fuse the definitions of iterate2 and refocus from the previous

section. The result of the fusion, called iterate3, is directly applied to the result

of decompose_closure and decompose_context. The result is a big-step abstract

machine consisting of three mutually tail-recursive state-transition functions [59]:

• refocus3_closure, the composition of iterate2 and decompose_closure

and a clone of decompose_closure,

• refocus3_context, the composition of iterate2 and decompose_context,

which directly calls iterate3 over the value of decomposition,

• iterate3, a clone of iterate2 that calls the fused function refocus3_closure.

The resulting implementations of the functions look as follows:
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(* refocus3_closure : closure * hctx -> result *)

fun refocus3_closure (CLO_NUM , C)

= refocus3_context (C, T_NUM)

| refocus3_closure (CLO_ARR_TYPE v, C)

= refocus3_context (C, v)

| refocus3_closure (CLO_GND (H_LIT n, bs), C)

= refocus3_context (C, T_NUM)

| refocus3_closure (CLO_GND (H_IDE x, bs), C)

= iterate3 (DEC (PR_IDE (x, bs), C))

| refocus3_closure (CLO_GND (H_LAM (x, t, e), bs), C)

= iterate3 (DEC (PR_LAM (x, t, e, bs), C))

| refocus3_closure (CLO_GND (H_APP (t0, t1), bs), C)

= iterate3 (DEC (PR_PROP (t0, t1, bs), C))

| refocus3_closure (CLO_GND (H_TNUM , bs), C)

= refocus3_context (C, T_NUM)

| refocus3_closure (CLO_GND (H_TARR (t, e), bs), C)

= refocus3_closure (CLO_GND (e, bs),

CTX_ARR (t, C))

| refocus3_closure (CLO_APP (c0, c1), C)

= refocus3_closure (c0, CTX_FUN (C, c1))

| refocus3_closure (CLO_ARR (v, c), C)

= refocus3_closure (c, CTX_ARR (v, C))

(* refocus3_context : hctx * typ -> result *)

and refocus3_context (CTX_MT , v)

= iterate3 (VAL v)

| refocus3_context (CTX_FUN (C, c1), v0)

= refocus3_closure (c1, CTX_ARG (v0, C))

| refocus3_context (CTX_ARG (v0, C), v1)

= iterate3 (DEC (PR_APP (v0, v1), C))

| refocus3_context (CTX_ARR (v0, C), v1)

= iterate3 (DEC (PR_ARR (v0, v1), C))

(* iterate3 : type_or_decomposition -> result *)

and iterate3 (VAL v)

= RESULT v

| iterate3 (DEC (PR_NUM , C))

= refocus3_closure (CLO_NUM , C)

| iterate3 (DEC (PR_ARR (t1, t3), C))

= refocus3_closure (type_to_closure

(T_ARR (t1, t3)), C)

| iterate3 (DEC (PR_IDE (x, bs), C))

= (case TEnv.lookup (x, bs)

of NONE

=> WRONG "undeclared identifier"

| (SOME v) =>

refocus3_closure (type_to_closure v, C))

| iterate3 (DEC (PR_LAM (x, t, e, bs), C))

= refocus3_closure (CLO_GND (H_TARR (t, e),

TEnv.extend (x, t, bs)), C)

| iterate3 (DEC (PR_APP (T_ARR (t1, t3), v), C))

= if t1 = v



64 FROM TYPE CHECKING VIA REDUCTION TO TYPE CHECKING VIA EVALUATION

then refocus3_closure ((type_to_closure t3), C)

else WRONG "parameter type mismatch"

| iterate3 (DEC (PR_PROP (t0, t1, bs), C))

= refocus3_closure (CLO_APP (CLO_GND (t0, bs),

CLO_GND (t1, bs)), C)

| iterate3 (DEC (PR_APP (t1, t2), C))

= WRONG "non-function application"

(* normalize3 : term -> result *)

fun normalize3 t

= refocus3_closure (CLO_GND (term_to_hterm t,

TEnv.empty), CTX_MT)

fun type_check t

= case normalize3 t

of (RESULT v) => v

| WRONG s => T_ERROR s

3.4.4 Compressing corridor transitions

In the abstract machine from the previous section many transitions are corridors, i.e.,

they yield configurations for which there is a unique place for further consumption.

In this section, we compress these configurations by inlining the corresponding

consumers’ clauses. We copy the functions from the previous sections, changing their

indices from 3 to 4.

We are also taking advantage of the equivalence between refocus4 closure

(embed value in closure v, C) and refocus4 context (C, v).

For example, the clause refocus4_closure (CLO_GND (H_LAM (x, t, e), bs), C)

is refactored as follows:

refocus4_closure (CLO_GND (H_LAM (x, t, e), bs), C)

= (* by unfolding the call to refocus4_closure *)

iterate4 (DEC (PR_LAM (x, t, e, bs), C))

= (* by unfolding the call to iterate4 *)

refocus4_closure (CLO_GND (H_TARR (t, e),

TEnv.extend (x, type_to_value t, bs)), C)

So the resulting implementations look as follows:

fun refocus4_closure (CLO_GND (H_LIT n, bs), C)

= refocus4_context (C, T_NUM)

| refocus4_closure (CLO_GND (H_IDE x, bs), C)

= (case TEnv.lookup (x, bs)

of NONE

=> WRONG "undeclared identifier"

| (SOME v) =>
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refocus4_context (C, v))

| refocus4_closure (CLO_GND (H_LAM (x, t, e), bs), C)

= refocus4_closure (CLO_GND (H_TARR (t, e),

TEnv.extend (x, t, bs)), C)

| refocus4_closure (CLO_GND (H_APP (t0, t1), bs), C)

= refocus4_closure (CLO_GND (t0, bs), CTX_FUN (C, CLO_GND (t1, bs)))

| refocus4_closure (CLO_GND (H_TNUM , bs), C)

= refocus4_context (C, T_NUM)

| refocus4_closure (CLO_GND (H_TARR (t, e), bs), C)

= refocus4_closure (CLO_GND (e, bs), CTX_ARR (t, C))

and refocus4_context (CTX_MT , v)

= RESULT v

| refocus4_context (CTX_FUN (C, c1), v0)

= refocus4_closure (c1, CTX_ARG (v0, C))

| refocus4_context (CTX_ARG (v0, C), v1)

= iterate4 (v0, v1, C)

| refocus4_context (CTX_ARR (v0, C), v1)

= refocus4_context (C, (T_ARR (v0, v1)))

and iterate4 (T_ARR (t1, t4), v, C)

= if t1 = v

then refocus4_context (C, t4)

else WRONG "parameter type mismatch"

| iterate4 (t, v, C)

= WRONG "non-function application"

fun normalize1 t

= refocus4_closure (CLO_GND (term_to_hterm t, TEnv.empty), CTX_MT)

fun type_check t

= case normalize1 t

of (RESULT v) => v

| WRONG s => T_ERROR s

After this transformation all clauses of the function refocus4_closure for non-

ground closures are now dead, i.e., unused, and therefore can be safely removed.

One can also notice that all transitions of refocus4_closure are now over ground

closures, so we can flatten them by peeling off the closure part.

3.4.5 Renaming transition functions and flattening configura-
tions

The resulting simplified machine is a familiar ‘eval/apply/continue’ abstract machine

operating over ground closures. For this section we rename refocus4_closure to

eval5, refocus4_context to continue5 and iterate4 to apply5. We flatten the

configuration of refocus4_closure as well as definitions of values and contexts.
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Therefore, closures are no longer involved in computations, and the former hybrid

contexts and abstract machine transition functions look now as follows:

datatype context = CTX_MT

| CTX_FUN of context * hterm * bindings

| CTX_ARG of typ * context

| CTX_ARR of typ * context

datatype result = RESULT of typ

| WRONG of string

(* eval5 : hterm * (string * typ) list * context -> result *)

fun eval5 (H_LIT n, gamma , C)

= continue5 (C, T_NUM)

| eval5 (H_IDE x, gamma , C)

= (case TEnv.lookup (x, gamma)

of NONE

=> WRONG "undeclared identifier"

| (SOME v) =>

continue5 (C, v))

| eval5 (H_LAM (x, t, e), gamma , C)

= eval5 (H_TARR (t, e), TEnv.extend (x, t, gamma), C)

| eval5 (H_APP (t0, t1), gamma , C)

= eval5 (t0, gamma , CTX_FUN (C, t1, gamma))

| eval5 (H_TNUM , gamma , C)

= continue5 (C, T_NUM)

| eval5 (H_TARR (t, e), gamma , C)

= eval5 (e, gamma , CTX_ARR (t, C))

(* continue5 : context * typ -> result *)

and continue5 (CTX_MT , v)

= RESULT v

| continue5 (CTX_FUN (C, c1, gamma), v0)

= eval5 (c1, gamma , CTX_ARG (v0, C))

| continue5 (CTX_ARG (v0, C), v1)

= apply5 (v0, v1, C)

| continue5 (CTX_ARR (v0, C), v1)

= continue5 (C, (T_ARR (v0, v1)))

(* apply5 : typ * typ * context -> result *)

and apply5 (T_ARR (t1, t4), v, C)

= if t1 = v

then continue5 (C, t4)

else WRONG "parameter type mismatch"

| apply5 (t, v, C)

= WRONG "non-function application"

(* normalize5 : term -> result *)

fun normalize5 t = eval5 (term_to_hterm t, TEnv.empty , CTX_MT)

(* type_check : term -> typ *)

fun type_check t

= case normalize5 t
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of (RESULT v) => v

| WRONG s => T_ERROR s

3.4.6 Removing hybrid artifacts and switching domains

The next simplification is to remove λH -related artifacts from machine configurations.

We copy functions from the previous section and perform some extra corridor

transition compressions. For instance,

eval5 (H_LAM (x, t, e), gamma , C)

= (* by unfolding the definition of eval5 *)

eval5 (H_TARR (t, e), TEnv.extend (x, type_to_value t, gamma), C)

= (* by unfolding the definition of eval5 *)

eval5 (e, TEnv.extend (x, type_to_value t, gamma),

CTX_ARR (type_to_value t, C))

As a result, there are no more clauses mentioning elements of the hybrid language

such as H_TNUM (removed as an unused clause of eval5) and H_TARR. So now we

can switch the domain of the eval5, continue5 and apply5 functions from hterm to

term. The second observation is that algebraic data type result is in fact isomorphic

to the data type typ, so we can switch the domain of values as well as follows:

RESULT (T NUM) 7→ T NUM
RESULT (T ARR (τ1,τ2)) 7→ T ARR (τ1,τ2)

WRONG (s) 7→ T ERROR (s)

The domain switching changes the signature of the function eval and yields the

following implementation.

datatype result = RESULT of typ

| WRONG of string

datatype context = CTX_MT

| CTX_FUN of context * term * bindings

| CTX_ARG of typ * context

| CTX_ARR of typ * context

(* term * (string * typ) list * context -> typ *)

fun eval6 (LIT n, gamma , C)

= continue6 (C, T_NUM)

| eval6 (IDE x, gamma , C)

= (case TEnv.lookup (x, gamma)

of NONE

=> T_ERROR "undeclared identifier"

| (SOME v) =>
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continue6 (C, v))

| eval6 (LAM (x, t, e), gamma , C)

= eval6 (e, TEnv.extend (x, t, gamma),

CTX_ARR (t, C))

| eval6 (APP (t0, t1), gamma , C)

= eval6 (t0, gamma , CTX_FUN (C, t1, gamma))

(* continue6 : context * typ -> typ *)

and continue6 (CTX_MT , v)

= v

| continue6 (CTX_FUN (C, c1, gamma), v0)

= eval6 (c1, gamma , CTX_ARG (v0, C))

| continue6 (CTX_ARG (v0, C), v1)

= apply6 (v0, v1, C)

| continue6 (CTX_ARR (v0, C), v1)

= continue6 (C, (T_ARR (v0, v1)))

(* apply6 : typ * typ * context -> typ *)

and apply6 (T_ARR (t1, t4), v, C)

= if t1 = v

then continue6 (C, t4)

else T_ERROR "parameter type mismatch"

| apply6 (t, v, C)

= T_ERROR "non-function application"

(* term -> typ *)

fun normalize6 t

= eval6 (t, TEnv.empty , CTX_MT)

fun type_check t

= normalize6 t

This might come as a surprise, but the resulting abstract machine is the well-known

environment-based CEK machine [80]. eval6’s argument of type term * (string

* typ) list * context corresponds to a control state, where the control string is

represented by terms fo type term, environments are of type (string * typ) list

and the continuation component K is represented by the type context.

3.4.7 Refunctionalization

The abstract machine obtained in the previous section is in fact in defunctionalized

form [62]: the reduction contexts, together with continue6, are the first-order

counterpart of continuations. To obtain the higher-order counterpart we use a

technique known as refunctionalization [60]. The resulting refunctionalized program

is a compositional evaluation function in continuation-passing style.
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(* eval7 : term * (string * typ) list * (typ -> typ) -> typ *)

fun eval7 (LIT n, gamma , k)

= k T_NUM

| eval7 (IDE x, gamma , k)

= (case TEnv.lookup (x, gamma)

of NONE

=> T_ERROR "undeclared identifier"

| (SOME v) =>

k v)

| eval7 (LAM (x, t, e), gamma , k)

= eval7 (e, TEnv.extend (x, t, gamma),

fn v => k (T_ARR (t, v)))

| eval7 (APP (e0, e1), gamma , k)

= eval7 (e0, gamma ,

fn t => case t

of T_ARR (t1, t2)

=> eval7 (e1, gamma ,

fn v1 =>

if t1 = v1

then k t2

else T_ERROR "parameter type mismatch")

| _ => T_ERROR "non-function application")

(* normalize7 : term -> typ *)

fun normalize7 t

= eval7 (t, TEnv.empty , fn x => x)

fun type_check t

= normalize7 t

3.4.8 Back to direct style

The refunctionalized definition from the previous section is in continuation-passing

style: it has a functional accumulator and all of its calls are tail calls. To implement it

in direct style in the presence of non-local returns in cases where typing error occurs,

the library for undelimited continuations SMLofNJ.Cont, provided by Standard ML

of New Jersey, is used.

val callcc = SMLofNJ.Cont.callcc

val throw = SMLofNJ.Cont.throw

(* normalize8: term -> typ *)

fun normalize8 t = callcc (fn top =>

let fun eval8 (LIT n, gamma) = T_NUM

| eval8 (IDE x, gamma) = (case TEnv.lookup (x, gamma)

of NONE => throw top (T_ERROR "undeclared identifier")

| (SOME v) => v)

| eval8 (LAM (x, t, e), gamma)
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= T_ARR (t, eval8 (e, TEnv.extend (x, t, gamma)))

| eval8 (APP (e0, e1), gamma)

= let val t = eval8 (e0, gamma)

val v1 = eval8 (e1, gamma)

in (case t of T_ARR (t1, t2)

=> if t1 = v1 then t2

else throw top (T_ERROR "parameter type mismatch")

| _ => throw top (T_ERROR "non-function application"))

end

in eval8 (t, TEnv.empty)

end)

(* type_check: term -> typ *)

fun type_check t = normalize8 t

The resulting program is a traditional evaluator for type checking, such as the one

described by Pierce [164, pages 113-116]. This implementation also corresponds

straightforwardly to the type checking rules à la Church, as defined in Figure 3.1.

The only one difference is that our implementation uses undelimited continuations

via callcc to propagate encountered type errors whereas a classical implementation

would just perform some additional check in each clause of the eval function or use

the exceptions. This last transition completes the chain of transformations and the

chapter.



Chapter 4

From Type Checking via
Evaluation to Type Checking
with an Abstract Machine

In this chapter, we continue the story about the mechanical inter-derivation of type

checking semantics and demonstrate an application of techniques investigated by

Danvy et al. to derive an abstract machine for typing from the traditional recursive

descent approach. Again, all techniques we are going to use are off-the-shelf and no

appropriate correspondence theorems between an initial type system and the derived

abstract machine needs to be proven as they follow directly from the correctness of

inter-derivation and of the initial specification.

A recursive descent-based implementation, which we obtained at the end of Chap-

ter 3, is something straightforward to implement based on declarative typing rules

(Figure 1.1, see Chapter 1). The abstract machine we will derive in this chapter

exposes behaviour similar to Landin’s SECD machine [124] and gives a solid basis

for further optimizations using abstract interpretation.

4.1 Type-Checking Abstract Machines

The first step towards connecting type inference by recursive descent with type

inference via abstract machines is due to Hankin and Le Métayer [98]. The authors

provided a description of an abstract machine-like formalism for implementing type

71
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checking and type inference systems. The described technique is in the spirit of

Hannan and Miller [99] and yields in several stages an abstract machine based on

the given type derivation rules. That machine strongly resembles Landin’s SECD

machine [124]. The only difference between the resulting machine and the original

SECD machine is that the former has no “D” component since there is no “dump” in

the corresponding evaluator, so we call the respective artifact SEC machine following

the tradition to name machines after their control strings. A simplified version of the

small-step machine, defined by its state space and the transition relation, is given in

Figure 4.1.

We use the standard notation for stack, where nil denotes an empty stack and c :: C is

equivalent to the operation push taking some element c and a list C. By abusing the

notation, we also use the construct c :: C to perform pattern-matching on non-empty

stacks with a top element c. We use an underscore “ ” to denote any possible element

in the left-hand side of the transition relation. The typing environment lookup E[x 7→ τ]
matches an environment E, such that E = E ′,x : τ,E ′′ for some environments E ′ and

E ′′, such that E ′′ does not bind x. Finally, an environment extension E ⊔ {x 7→ τ}
returns a new environment E ′,x : τ. Names of transition rules are consistent with

the prototype implementation from Section A.2 of Appendix A, which we used to

generate Figure 1.3.

We use the standard notation ⇒∗t to express the reflexive-transitive closure of the

relation⇒t . The following theorem has been proven for soundness and completeness

of the derived machine:

Theorem 4.1.1. [98] (Soundness and Completeness for⇒t)

Γ ⊢ e : τ iff 〈S,Γ,e :: C〉 ⇒∗t 〈τ : S,Γ,C〉.

One can see that the third component of the abstract machine (i.e., “C” for control)

contains λ-terms as control elements, but also specific tokens, such as Lam, Fun

and Arg, with extra bits of context information. Intuitively it is clear that these

elements correspond somehow to combination of type constituents in derivation rules.

However, the question that was open until now is what is a formal meaning of this

correspondence?

In this work, we describe a staged mechanical inter-derivation of the two above

mentioned type inference procedures via the program transformations used in

Reynolds’s functional correspondence between evaluators and big-step abstract

machines [2, 174] and in Danvy et al.’s work on the systematic deconstruction of

Landin’s SECD machine [58]. The correspondence between a traditional type system

and a SEC machine for type inference is provided by the construction and inter-

derivation of their computational counterparts. The pleasant consequence is that no

soundness and completeness theorems need to be proven: they are instead corollaries

of the correctness of inter-derivation and of the initial specification [49].
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Expressions e ::= n | x | λx : τ.e | e e

Types τ ::= num | τ→ τ
Results stack S ::= nil | τ :: S

Control elements c ::= e | Lam(τ,S) | Fun(e) | Arg(τ,τ)
Control stacks C ::= nil | c :: C

Typing environments E ::= /0 | E,x : τ

Abstract machine state-space

〈S,E,n :: C〉 ⇒t 〈num :: S,E,C〉 [num]
〈S,E[x 7→ τ],x :: C〉 ⇒t 〈τ :: S,E[x 7→ τ],C〉 [var]
〈S,E,(λx : τ.e) :: C〉 ⇒t 〈nil,E ⊔{x 7→ τ},e : Lam(τ,S) :: C〉 [lam]
〈S,E,(e1 e2) :: C〉 ⇒t 〈S,E,e1 :: Fun(e2) :: C〉 [app]

〈τ2 :: S,E,Lam(τ1,S
′) :: C〉 ⇒t 〈(τ1→ τ2) :: S′,E,C〉 [t-lam]

〈(τ1→ τ2) :: S,E,Fun(e2) :: C〉 ⇒t 〈(τ1→ τ2) :: S,E,e2 : Arg(τ1,τ2) :: C〉 [t-fun]
〈τ1 :: :: S,E,Arg(τ1,τ2) :: C〉 ⇒t 〈τ2 :: S,E,C〉 [t-arg]

Transition rules

Figure 4.1: A small-step abstract machine for type checking à la Hankin and

Le Métayer [98].

4.1.1 Chapter outline

The remainder of this chapter is structured as follows. Section 4.2 gives an overview

of our method, enumerating the techniques involved. Section 4.3 provides the

implementation of type checking of the simply typed lambda calculus and describes

the initial setting for further functional transformations. Section 4.4 describes the set

of program transformations corresponding to the construction of an abstract machine

for type inference from the traditional type inference procedure in the form of a

recursive descent.

4.2 Method Overview

A diagram with an overview of program transformations is shown in Figure 4.2.

We provide an implementation of a traditional type checker for the STLC in the form

of a recursive descent as a starting point for further transformations (Section 4.3).
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. Recursive

Descent

Data Stack
Introduction (§ 4.4.1)

��

Type-Checking

SEC Machine

Stack-Threading

Evaluator

CPS Transformation
(§ 4.4.2)

Defunctionalization
(§ 4.4.3)

//
Big-Step

CEK machine
with Result Stack

Control Stack
Introduction (§ 4.4.5)

+
Environment

Extraction (§ 4.4.4)

OO

Figure 4.2: Inter-derivation from a compositional type checker to a type-checking

SEC machine

We successively refactor it into a stack-threading callee-save evaluator, i.e., one that

pushes its results on an explicit local stack, which is passed around as a parameter —

the component “S” of a control string (Section 4.4.1). The obtained evaluator is in

non-tail call form, so we transform it into continuation-passing style (Section 4.4.2)

and then defunctionalize it (Section 4.4.3), which leads to the big-step stack-threading

CEK machine. The type environment is still a part of some defunctionalized contexts,

so we extract it as an explicit parameter of the evaluator, i.e., the component “E” of the

control string (Section 4.4.4). We introduce an explicit control stack (the component

“C” of the control string) in order to merge together several mutually recursive

transition functions (Section 4.4.5), which yields a big-step SEC machine. Finally,

we rework the big-step machine into a small-step one by extracting an iteration

function (Section 4.4.6). The final machine is Landin’s SECD machine lacking the

“D” component of its control string, since no explicit control flow management with

dumps is needed for type-checking.

4.3 Initial Setting: Type Checking via Recursive

Descent

This section provides the initial implementation of a type checking procedure for

the simply typed lambda calculus, which will be used for further transformations in

Section 4.4.
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4.3.1 Terms and types

The abstract syntax of simply typed lambda calculus includes integer literals,

identifiers, lambda-abstractions and applications. Types are either numeric types or

arrow types. The special value T_ERROR s is used for typing errors and cannot be a

constituent of any other type. We implement terms and types with the following SML

data types:

datatype term = LIT of int

| IDE of string

| LAM of string * typ * term

| APP of term * term

datatype typ = T_NUM

| T_ARR of typ * typ

| T_ERROR of string

4.3.2 Type checking procedure

Typing environments TEnv represent bindings of identifiers to types. They carry

typing assumptions about free variables in λ-terms. The value empty corresponds

to an empty environment, extend extends an environment with a new binding of

a variable into a type and, the function lookup extracts the typing assumption,

associated with a particular variable. A lookup may fail, which is reflected by its

return type ’a option.1

signature TEnv =

sig

type ’a gamma

val empty : (string * ’a) gamma

val extend : string * ’a * (string * ’a) gamma ->

(string * ’a) gamma

val lookup : string * (string * ’a) gamma -> ’a option

end

The canonical procedure for type checking [164, pages 113-116] is implemented as a

recursive descent as follows.

exception TYPING_ERROR of string

(* check0 : term * typ gamma -> typ *)

fun check0 (LIT n, e)

1In order to keep to a uniform approach for different semantics for type inference (see [123, 183] or

Chapter 3 of this dissertation), we leave environments parametrized by the type parameter ’a, which is

instantiated with typ in this case.
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= T_NUM

| check0 (IDE x, e)

= case TEnv.lookup(x, e)

of (SOME t) => t

| NONE => raise (TYPING_ERROR "undeclared identifier")

| check0 (LAM (x, arg_type , body), e)

= let val body_type = check0 (body ,

(TEnv.extend (x, arg_type , e)))

in T_ARR (arg_type , body_type)

end

| check0 (APP (e1, e2), e)

= case check0 (e1, e)

of T_ARR (t1, t2) =>

let val arg_type = check0 (e2, e)

in if arg_type = t1

then t2

else raise (TYPING_ERROR "parameter type mismatch")

end

| _ => raise (TYPING_ERROR "non-function application")

(* type_check : term -> typ *)

fun type_check t = check0 (t, TEnv.empty)

4.3.3 Representation of typing errors

Three kinds of typing errors might occur during type checking:

• Undefined identifier in an environment, corresponds to the MatchError

exception of SML thrown in the second clause of check0 function.

• Non-arrow type in a function position, is represented by a MatchError raised

at the top-level of check0 function

• A type mismatch between a function parameter type and an argument type, a

TYPING_ERROR exception is thrown at the last clause of check0 function.

Moreover, there are at least three different ways to represent typing errors in practice

and propagate the information about them to the client of the type checker.

1. “Bubbling up”: for results of recursive calls, the type-checking procedure

checks explicitly whether the result is a type error. If it is, this information

is returned immediately to an “upper level”.

2. Using exceptions: when a type error occurs, the necessary information for the

client of the type checker can be put into an exception, which is immediately
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thrown. This approach is employed in the described implementation of the

function check0.

3. Continuation dropping: if the type-checker is in continuation-passing style, one

can interrupt the current control flow in case of a typing error. Then an error

value will be returned instead of applying the continuation to the result [53].

In the following series of transformations we will be switching between the second

and the third approaches.

4.4 From Recursive Descent to SEC Machine

The derivational approach we describe in this section takes advantage of Reynolds’s

functional correspondence between different ways to represent semantic artifacts [174]

and more recent work by Danvy et al. on the deconstruction of Landin’s SECD

machine [58].

4.4.1 Extracting a result stack

In the canonical implementation of a type checker the results of nested calls of the

check0 function are allocated on local stack frames of callees. We represent this

model explicitly by introducing local result stacks and passing them around as an

explicit parameter of the check1 function. A data stack, which is the “S” component

of a control string for the machine presented in Section 4.1, stores intermediate values

after they have been computed but before they are used. Computing an expression

leaves its value on top of the data stack. Applications expect to find their argument

and a function on top of this data stack. In case of nested calls the immutable part

of the stack is saved by the callee, and the caller is invoked with a reduced or fresh

stack. This kind of evaluator is classified as a callee-save,2 explicit stack-threading

one according to Danvy and Millikin [58, Appendix D].

The implementation of the function type_check is changed correspondingly to take

the head of the result list as the result of a computation.

(* check1 : term * typ list * typ gamma -> typ list *)

fun check1 (LIT n, s, e)

= T_NUM :: s

| check1 (IDE x, s, e)

= case TEnv.lookup(x, e)

2The terminology is due to the convention according to which the local environment and the result stack

are saved and restored by the callee subroutine.
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of (SOME t) => t :: s

| NONE => raise (TYPING_ERROR "undeclared identifier")

| check1 (LAM (x, arg_type , body), s, e)

= let val (body_type :: _) =

check1 (body , nil, (TEnv.extend (x, arg_type , e)))

in T_ARR (arg_type , body_type) :: s

end

| check1 (APP (e1, e2), s, e)

= case check1 (e1, nil, e)

of s0 as (T_ARR (t1, t2) :: _) =>

let val s0 as (T_ARR (t1, t2) :: _) = check1 (e1, nil, e)

val (arg_type :: x :: _) = check1 (e2, s0, e)

in if arg_type = t1

then t2 :: s

else raise (TYPING_ERROR "parameter type mismatch")

end

| _ => raise (TYPING_ERROR "non-function application")

(* type_check : term -> typ *)

fun type_check t

= let val (v :: s) = check1 (t, nil, TEnv.empty)

in v end

4.4.2 CPS transformation

The function check1 from the previous section is transformed into continuation-

passing style (CPS). This is done in three steps, as described in Danvy’s report [46].

Briefly, each intermediate result of a computation is extracted into a new local

variable, their computations are sequentialized and a new formal parameter, namely,

a continuation is introduced. Thus the intermediate results are named by the formal

parameters of each of the lambda-abstractions that define the continuation.

(* check2 : term * typ list * typ gamma *
(typ list -> typ list) -> typ list *)

fun check2 (LIT n, s, e, k)

= k (T_NUM :: s)

| check2 (IDE x, s, e, k)

= k (case TEnv.lookup(x, e)

of (SOME t) => t :: s

| NONE => (T_ERROR "undeclared identifier") :: nil)

| check2 (LAM (x, arg_type , body), s, e, k)

= check2 (body , nil, (TEnv.extend (x, arg_type , e)),

fn (body_type :: s0) =>

k (T_ARR (arg_type , body_type) :: s))

| check2 (APP (e1, e2), s, e, k)

= check2 (e1, nil, e,

fn s0 =>

case s0

of (T_ARR (t1, t2) :: _) =>
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check2 (e2, s0, e,

fn (arg_type :: x :: _) =>

if arg_type = t1

then k (t2 :: s)

else (T_ERROR "parameter type mismatch") :: nil)

| _ => (T_ERROR "non-function application") :: nil)

(* type_check : term -> typ *)

fun type_check t

= let val (v :: s) = check2 (t, nil,

TEnv.empty , fn x => x)

in v end

Since we have CPS-transformed our program, we may replace exception raising by

non-local returns, as it is done now in the last clause of check2 function: a T_ERROR

is returned directly if a typing error occurs. This small transformation corresponds

to the switching between the second and third methods of typing error representation

described in Section 4.3. The resulting procedure, considered as an interpreter of

λ-terms, is a traditional continuation-passing one.

4.4.3 Defunctionalization

The next step is to defunctionalize the continuations in the implementation of the type

checker from Section 4.4.2. The function space of the program under consideration

is inhabited by the four function values that arise from considering four function

abstractions from the definitions of functions check2 and type_check: one initial

continuation in type_check and three more in two last clauses of check2. We

therefore partition the function space into four summands and represent it as the

following first-order data type:

datatype cont = CONT_MT

| CONT_LAM of typ * cont * typ list

| CONT_FUN of cont * term * typ gamma

| CONT_ARG of typ * typ * cont

Those defunctionalized continuations represent first-order evaluation contexts of type

computations on top of the abstract syntax of the calculus. Contexts are produced at

places of former lambda-abstractions (the initial call of the function type_check and

third and forth clauses of the function check2) and consumed by a dispatcher-like

function continue3.

(* check3 : term * typ list * typ gamma * cont ->

typ list *)

fun check3 (LIT n, s, e, C)

= continue3 (C, (T_NUM :: s))
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| check3 (IDE x, s, e, C)

= continue3 (C,

(case TEnv.lookup(x, e)

of (SOME t) => t :: s

| NONE => (T_ERROR "undeclared identifier") :: nil))

| check3 (LAM (x, arg_type , body), s, e, C)

= check3 (body , nil, (TEnv.extend (x, arg_type , e)),

CONT_LAM (arg_type , C, s))

| check3 (APP (e1, e2), s, e, C)

= check3 (e1, s, e, CONT_FUN (C, e2, e))

(* continue3 : cont * typ list -> typ list *)

and continue3 (CONT_MT , s)

= s

| continue3 (CONT_LAM (arg_type , C, s), (body_type :: s0))

= continue3 (C, T_ARR (arg_type , body_type) :: s)

| continue3 (CONT_FUN (C, e2, e), s0 as (T_ARR (t1, t2) :: _))

= check3 (e2, s0, e, CONT_ARG (t1, t2, C))

| continue3 (CONT_FUN (C, e2, e), _)

= (T_ERROR "non-function application") :: nil

| continue3 (CONT_ARG (t1, t2, C), (arg_type :: x :: s1))

= if arg_type = t1

then continue3 (C, t2 :: s1)

else (T_ERROR "parameter type mismatch") :: nil

(* type_check : term -> typ *)

fun type_check t

= let val (v :: s) = check3 (t, nil,

TEnv.empty , CONT_MT)

in v end

The resulting machine is an analogue of the well-known environment-based CEK

machine with an explicit component s for the result stack [80]. Each tail call

implements a state transition of the machine.

4.4.4 Extracting the environment as a parameter

One can notice that the type environment is part of the data type of evaluation contexts.

We massage the type checking machine by extracting an environment to a separate

explicit parameter of the function continue4. It will correspond to the component

E in the control string of the final abstract machine. Now the constructor CONT_FUN,

which is consumed by continue4, does not contain an environment as a parameter.

We also rearrange parameters of the data type cont to give them a list shape. The data

type of contexts is now as follows:
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datatype cont = CONT_MT

| CONT_LAM of typ * typ list * cont

| CONT_FUN of term * cont

| CONT_ARG of typ * typ * cont

The next natural step is to take advantage of the list-like structure of contexts

represented by cont.

4.4.5 Adding an explicit control stack

In this section we introduce the last component of the control string of the abstract

machine, namely, the control stack C. The defunctionalized contexts from the

Section 4.4.4 expose a stack-like structure with CONT_MT as the empty element.

The structure can be refactored into a stack of control tokens, corresponding to the

particular summands of cont. To unify the structure of states we also introduce

one more extra control token for terms. Control stack tokens are represented by the

following data structure:

datatype control_element = C_ARG of typ * typ

| C_FUN of term

| C_LAM of typ * typ list

| C_TERM of term

Former CONT_MT element corresponds now to an empty control stack. Since the

domain of control elements is now “lifted” to control_element, we may safely

merge the functions continue4 and check4 to get the unified function check5.

(* check5 : typ list * typ gamma * control_element list

-> typ list *)

fun check5 (s, e, C_TERM (LIT n) :: C)

= check5 (T_NUM :: s, e, C)

| check5 (s, e, C_TERM (IDE x) :: C)

= check5 (case TEnv.lookup(x, e)

of (SOME t) => t :: s

| _ => (T_ERROR "undeclared identifier") :: nil,

e, C)

| check5 (s, e, C_TERM (LAM (x, arg_type , body)) :: C)

= check5 (nil, TEnv.extend (x, arg_type , e),

C_TERM body :: C_LAM (arg_type , s) :: C)

| check5 (s, e, C_TERM (APP (e1, e2)) :: C)

= check5 (s, e, C_TERM e1 :: C_FUN e2 :: C)

| check5 ((body_type :: s0), e, C_LAM (arg_type , s) :: C)

= check5 (T_ARR (arg_type , body_type) :: s, e, C)

| check5 (s0 as (T_ARR (t1, t2) :: _), e, C_FUN e2 :: C)

= check5 (s0, e, C_TERM e2 :: C_ARG (t1, t2) :: C)

| check5 (_, e, C_FUN e2 :: C)

= (T_ERROR "non-function application") :: nil
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| check5 (v2 :: x :: s1, e,

C_ARG (arg_type , result_type) :: C)

= if v2 = arg_type

then check5 (result_type :: s1, e, C)

else T_ERROR "parameter type mismatch" :: nil

| check5 (s, e, nil)

= s

(* type_check : term -> typ *)

and type_check t

= let val (v :: s) = check5 (nil, TEnv.empty ,

C_TERM t :: nil)

in v end

The resulting interpreter is a big-step SEC machine where each tail call of check5

corresponds to a transition. Now we are going to turn it into a small-step machine by

introducing an explicit driver-loop function.

4.4.6 From a big-step to a small-step SEC machine

Since the big-step SEC machine from Section 4.4.5 has only one type of control

string, it is straightforward to transform it into a small-step machine by introducing a

dedicated driver-loop function iterate6:

type state = typ list * typ gamma * control_element list

(* step6 : state -> state *)

fun step6 (s, e, C_TERM (LIT n) :: C)

= (T_NUM :: s, e, C)

| step6 (s, e, C_TERM (IDE x) :: C)

= (case TEnv.lookup(x, e)

of (SOME t) => (t :: s, e, C)

| _ => raise (TYPING_ERROR "undeclared identifier"))

| step6 (s, e, C_TERM (LAM (x, arg_type , body)) :: C)

= (nil, TEnv.extend (x, arg_type , e),

C_TERM body :: C_LAM (arg_type , s) :: C)

| step6 (s, e, C_TERM (APP (e1, e2)) :: C)

= (s, e, C_TERM e1 :: C_FUN e2 :: C)

| step6 ((body_type :: s0), e, C_LAM (arg_type , s) :: C)

= (T_ARR (arg_type , body_type) :: s, e, C)

| step6 (s0 as (T_ARR (t1, t2) :: _), e, C_FUN e2 :: C)

= (s0, e, C_TERM e2 :: C_ARG (t1, t2) :: C)

| step6 (_, e, C_FUN e2 :: C)

= raise (TYPING_ERROR "non-function application")

| step6 (v2 :: x :: s1, e, C_ARG (arg_type , result_type) :: C)

= if v2 = arg_type

then (result_type :: s1, e, C)

else raise (TYPING_ERROR "parameter type mismatch")
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(* iterate6 : state -> typ *)

fun iterate6 (v :: s, _, nil)

= v

| iterate6 state

= iterate6 (step6 state)

(* type_check : term -> typ *)

fun type_check term

= iterate6 (nil, TEnv.empty , C_TERM term :: nil)

At each step of the execution the machine performs a transition to a new state and the

function iterate6 checks the termination condition. This last transition completes

our chain of transformations. The transition function of the described small-step

SEC machine corresponds directly to the set of transition rules given in Figure 4.1.

Arrow types are consumed implicitly in the last transition rule by being popped from

the result stack S with no additional check. However, the necessary check of type

correspondence is performed thanks to the control element Arg(τ1,τ2).





Chapter 5

Related Work and
Applications

The derivations we presented in Chapters 3 and 4 are particular cases of employing

functional correspondences to inter-derive semantic artifacts. Similar techniques have

been widely applied during the last decade [2, 17, 49, 62, 136], and we invite the

interested reader to take a look on the works [52, 51] for an exhaustive overview of

applications of the technique, including, but not limited to:

• evaluators with computational effects [4];

• inter-deriving semantic artifact for object-oriented programming in the setting

of Abadi and Cardelli’s untyped calculus of objects [1, 56]

• systematic decomposition and rethinking of Landin’s SECD machine [58];

• describing the CPS hierarchy and locating delimited continuations in it [16];

• deriving an abstract machine for the call-by-need lambda calculus [3];

• formalizing and analyzing the semantics of the Scheme programming lan-

guage [18] and

• bootstrapping the method to systematically construct small-step abstract seman-

tics for families of abstract interpretation-based static analyses [139, 204].

In this chapter, we provide a short survey of most recent and relevant work on semantic

derivation focusing mostly on reduction semantics and abstract machines (Section 5.1).

85



86 RELATED WORK AND APPLICATIONS

We also initiate a discussion on application of the derived artifacts and the technique

in general as applied to type checking algorithms (Section 5.2).

5.1 Related work

The functional correspondence between different semantics artifacts has been recently

applied to various tasks. Ager et al. [4] investigate the correspondence between

semantics described in terms of monadic evaluators and languages with computational

effects. They show that a calculus for tail-recursive stack inspection corresponds to a

lifted state monad. This correspondence allows one to combine the state monad with

other monads and obtain abstract machines with both tail-recursive stack inspection

and other computational effects. A similar technique applied to the standard call-by-

need reduction for the λ-calculus yields a reduction-free stateless abstract machine and

a heapless natural semantics for call-by-need evaluation [61]. Danvy and Zerny [66]

present a purely syntactic theory of graph reduction for the canonical combinators

S, K, and I, where graph vertices are represented with evaluation contexts and let

expressions. This syntactic theory is expressed as a reduction semantics. Through the

series of functional transformations, the authors derive a store-based abstract machine

whose architecture coincides with that of Turner’s original reduction machine.

More recently, Anton and Thiemann [11] took reduction semantics for different

implementations of coroutines from the literature and obtained equivalent definitional

interpreters by applying the same sequence of transformations we used. The opera-

tional semantics obtained is transformed further into a denotational implementation

that provides the necessary basis to construct a sound type system.

Reduction semantics for type inference Reduction semantics for type checking,

proposed initially by Kuan et al. [123], is another operational view on type inference

algorithms. Although in this work we demonstrated the derivation only for type

checking of the simply-typed lambda calculus in Church style, the same inter-

derivation can be also provided with a few adjustments for the type inference

algorithm à la Curry/Hindley. In fact, the reduction semantics for type inference

proposed by Kuan et al. implies implicit inlining of the traditional unification function

for the collected constraints, which results in a few additional reduction rules. Those

rules involve the special term of the form (unify τ1 τ2 p) for some types τ1, τ2

and a hybrid expression p. The types also should be extended for type variables

ξ, which are a subject of unification. We believe that reverting the transformations

from Chapter 3 (Figure 4.2) for the Curry/Hindley inference rules and expanding the

unification traversal would give the reduction rules similar to those by Kuan et al.
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5.2 Applications

The approach described in our work allows one to derive mechanically abstract

machine operational representation for type derivations from their computational

counterparts, implemented in the form of recursive descent. However all presented

artifacts are handcrafted, the implementation of the automatic transformation is to

be addressed in the future work. All transitions presented, except for environment

extraction as we described it in Section 4.4.4, are well-known for implementors

of interpreters for functional programming languages. In general, the presented

technique scales to implementation of many static analyses defined compositionally

in the form of derivation rules: all one needs to do is to provide a straightforward

initial implementation of the appropriate recursive descent. This section discusses

applications of the correspondence presented.

Type debugging Reduction semantics for type inference provides a powerful

framework to implement type debuggers and improve the quality of error messages.

Currently, the majority of techniques used for this task rely on program slicing [172,

201]. An explicit notion of evaluation context for type inference can provide better

information for type reification based on the expected type of an expression, as it is

done, for instance, in the Scala programming language [156].

Abstract machines and abstract interpretation with types The transition

system described in Figure 4.1 (see Chapter 4) exhibits some generic elements, which

can be adjusted according to the specific procedure of computations involving types.

As it has been shown through Sections 4.4.2-4.4.5, the control stack elements Lam,

Fun and Arg are derived from defunctionalized continuations. They trigger system-

specific computations involving combinations of previously obtained types, stored in

the result stack S.

Hankin and Le Métayer [98] in their work on lazy types derive an abstract machine

similar to the one we have constructed in our work. The type system they consider is

augmented with Jensen’s strictness logic [113]. As a consequence, a computational

counterpart for the typing for lambda-abstractions involves iterating through multiple

abstract values of the formal parameter’s type, which leads to the exponential

complexity of the derivation algorithm. In our transition system this possible pitfall

would correspond to the computation of the transition rules [lam] and [t-lam] in

Figure 4.1, as they deal with processing the argument type of a function and emitting

the control element Lam. The abstract machine-like representation allows one to

coarsen the result of a type derivation by choosing different abstract domains to iterate

through when the control element Lam is processe, thus reducing a machine’s abstract

state space.
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A similar idea is applicable to a more recent work on a type system for security and

abstract non-interference by Zanardini [216]. Non-interference refers to the possibility

that two computations can be distinguished by observing some public parts of data.

Types in the described system have denotational meaning and are defined in terms

of abstract value domains, thereby identifying properties which cannot be distinguish

in a particular domain. Parity or the sign of an integer, are the simplest examples of

such abstract properties. An appropriate type system is encoded originally in terms of

derivation rules, which involve iterations through possibly infinite semantic domains.

From the abstract machine point of view, such an iteration would be triggered by

control stack elements. It does not change the nature of type to be computed but makes

it more precise depending on chosen semantic domains, which define the set of control

elements. Thus, an abstract machine-like representation would give an effective way

to control the precision of the type-based analysis just by redefining the meaning of

appropriate control stack elements. Exploring this possibility is a direction for the

future work.



Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions

In program analysis, one always has to distinguish between an analysis as its formal

definition and a program that implements it. In this work, we proposed a methodology

to bridge this gap by using the inter-derivational method due Reynolds [174] and

Danvy et al. [52]. As an example, two non-standard implementations of a traditional

type checking algorithm were considered: one in the form of recursive descent

and another in the form of Landin’s SECD machine. The correspondence between

these two models was provided by the construction and inter-derivation of their

computational counterparts. Through a series of behaviour-preserving program

transformations we have shown that both models are computationally equivalent.

Starting from one particular traversal strategy, a family of algorithms was derived.

All of them implement the same traversal strategy, but exhibit different computational

properties. To the best of our knowledge, this is the first application of the study of

the functional correspondence semantics to type systems. The result is a step towards

reusing different computational models for compositional program analyses, such that

the equivalence of the models is correct by construction.
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6.2 Future work

6.2.1 Handling type system evolution

In further research we are going to address scalability issues of the described

approach employing functional correspondence. In the presence of various pluggable

type systems one may want to augment the typing rules or add new ones, so the

resulting abstract machine will change as well. The natural question is how to

reflect these changes incrementally without going again through the whole chain of

transformations. We also leave a comparison of different implementations of a type

checker with respect to performance to the future work.

6.2.2 Incorporating term substitutions

In Chapter 3, we started our derivation from a reduction-based small-step semantics

with closures. In contrast, the original semantics by Kuan [122] used reduction-

based semantics with capture-avoiding substitutions. For the sake of brevity, in the

present work we have referred on the correspondence between the applicative order

version of Curien’s calculus, which uses closures, and a calculus with capture-avoiding

substitutions [17]. However, we believe that this discrepancy could be also avoided

by applying the functional correspondence to a substitution procedure as described

by Pierce [164, Chapter 7] yielding a form of context/closure decomposition we

started from in Section 3.3.4. Shifting (i.e., alpha-renaming) of variables would be

then unnecessary, since substitution does not need to be capture-avoiding, as variable

and type names cohabit in different semantic spaces. We leave incorporation of this

derivation to the future work.

6.2.3 Relation to attribute grammars

The relation between attribute grammar approaches [73, 118] and the described

transformations described in this dissertation is another interesting topic of discussion.

Since attributes are functions from AST nodes to attribute values, type checking can

be represented as a computation of such attribute values. However, the approach

described deals with an eager semantics of type checking whereas practical attribute

grammars perform the value computation lazily. The possible way to unify these two

approaches is to derive a call-by-need semantics for type checking in the spirit of the

recent work by Danvy et al. [61].
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6.2.4 Application of functional correspondence to other se-
mantic formalisms

Rewriting logic semantics for type inference Meseguer and Roşu proposed

rewriting logic semantics (RLS) as a programing language definitional framework

that unifies operational and algebraic denotational semantics [134]. Later, Ellison

et al. applied the term-rewriting mechanism for define polymorphic type inference

algorithm à la Hindley-Milner [75]. The authors focus on performance aspects of the

derived interpreter and mention its similarity to Kuan et al’s reduction semantics [123].

However, to the best of our knowledge, no formal correspondence between execution

of a formalism in RLS and reduction semantics is established so far, which makes

rewriting logic an exciting candidate to be included into the chain of inter-derivable

semantics artifacts.

Semantics of languages with aspects In this work, we have demonstrated an

application of functional correspondence to the type checking semantics. However,

the degree of applicability of the technique is much wider. Another possible client of

the approach would be a semantics for Aspect-Oriented Programming (AOP) [116].

One of the most elaborate semantics so far is the one suggested by Dutchyn in his

PhD dissertation [72]. The suggested formalism is based on the well-known CEK

machine with the form of a first-order control operators. Advice, a crucial concept

of AOP, are implemented as first-order continuations stored in a separate component

of the machine state. The semantics used later to derive a model of execution

levels in AOP, which helped successfully resolve the long-standing problem of aspect

interference [199]. We believe that taking the Dutchyn’s original semantics and

applying the discussed transformations would help to obtain a compositional natural

or denotational semantics for higher-order aspect-oriented languages and give a solid

basis for constructing static analysis form programs with aspects.

6.2.5 Mechanization of transformations

A natural further step in the line of research we presented is to provide mechanized

support for functional correspondence. The PLT Redex framework [79] is one of

the most promising candidates for the role of such a platform, however, so far

it provides only a limited amount of facilities for semantic formalisms, focusing

mainly on context-based reduction semantics. Planning to incorporate the functional

correspondence approach to the PLT Redex environment, one should expect a lot

of complication with the macro-expansion system of Racket, to which PLT Redex

heavily relies.
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Another promising direction is a mechanization of the meta-theory behind the

functional correspondence in a proof assistant, such as Coq [15] or Agda [154].

Some work is done in this direction, for instance, the formalization of the CPS

transformation [67] and refocusing [187]. In the recent work, Swierstra provided

an implementation of a derivation of an executable Krivine abstract machine [120]

from a small step interpreter for the simply typed lambda calculus in the depen-

dently typed programming language Agda, following the functional correspondence

technique [197]. The approach contains multiple useful techniques known in the

dependently-typed programming community, for instance, views [132] and Bove-

Capretta transformation of non-structurally recursive definitions [22]. However, a

general framework incorporating the formalization of all transformations from the

functional correspondence toolchain is still missing.



Part II

A Gradual Type System for
Object Ownership
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Chapter 7

Introduction and Problem
Statement

In practice, programmers are more than willing to add type

annotations to guide the type inference engine, and to document

their code. However, the choice of just what annotations are

required, and what changes are required in the type system, has

been an ongoing topic of research.

SIMON PEYTON JONES

Type systems for ownership in object-oriented languages provide a declarative way to

statically enforce a notion of object encapsulation in object-oriented programs. Object

ownership ensures that objects cannot escape from the scope of the object or collection

of objects that own them. Variants of ownership types allow a program to enjoy such

computational properties as data race-freedom [24], disjointness of effects [33], vari-

ous confinement properties [205] and effective memory management [25]. Ownership

types also enable modular reasoning using knowledge about aliasing [150].

7.1 The Problem: Making Ownership Types Prac-
tical

There are several obstacles to the adoption of ownership types. The first one is

verbosity. A programmer should declare explicitly the ownership structure which

instances of different classes are expected to have. Moreover, a number of annotations
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should be provided for fields, parameters, method results and local variables in order

to preserve the information about the ownership structure in the whole program

and perform an adequate type checking. One way to overcome the verbosity

problem is to omit annotations and use type inference instead. However, unlike

traditional type systems, ownership annotations are mostly design-driven, thus full

inference of ownership types is not particularly useful, since a correct, trivial (but not

useful) ownership typing always exists [69]. Therefore, inference is only practically

applicable when some annotations are already provided to indicate the programmer’s

intent. But even in the case of partially-annotated programs, ownership type inference

tends to produce an excessive amount of inferred annotations [147] or imprecise

results due to the conservatism of the underlying analysis [143]. A second obstacle

is that ownership types are often too rigid and restrictive to capture the dynamic

evolution of an object graph in real applications, and in some cases the constraints

imposed need to be relaxed.

7.2 The Method: Gradual Types

Adding ownership annotations into the code is similar to the migration from untyped

to typed code, a topic of much research nowadays [86, 109, 188, 189]. Complete

absence of types facilitates the fast prototyping and rapid evolution of a system, so

one might need to introduce types into the code only when the demands for reliability

and performance of the program are established. Ownership types provide more fine-

grained safety guarantees. In this respect refactoring a program to employ them can

be considered as a migration from typed to “even more typed” code. This observation

leads to the idea of applying a gradual approach for an incremental migration.

Considering a type as a set of data and operations allowed on this data, one may

wonder what these allowed operations are. For instance, applying an integer value as

a function to some argument or calling a non-declared method of an object are not

allowed operations, which are checked by traditional type systems. More advanced

type systems help to check the programs for even more non-trivial but incorrect

behaviour, such as null-pointer errors [77] or incorrect object initialization [171].

However, objects as data structures do not carry information about ownership: it

should be declared by the programmer, and subsequently checked by the compiler.

Hence, the role of type systems for ownership in static program analysis is twofold:

they provide both mechanisms for declaring an invariant by augmenting a data

structure with additional information and for checking the declared invariant.

This separation of type annotations into “declarations” and “checking-helpers” makes

it possible to provide a gradual approach for ownership types and ownership
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invariants.1 A chosen ownership policy states the minimal amount of “declaration”

annotations to indicate the intention of the programmer with respect to the safety

invariant, ensured by this policy. The rest of annotations is considered as “helpers”,

which are optional, thus, can be statically omitted, so the compiler will insert necessary

dynamic casts and checks. Certainly, a fully-annotated program will statically ensure

the desired property, just like the traditionally well-typed programs “do not get

stuck” [212].

7.3 Intuition behind Gradual Ownership Types

This section gives the essence of ownership types enforcing the owners-as-dominators

policy (OAD) and provides some intuition on the gradualization of the type system

from two perspectives: one of a working programmer and another of a programming

language theoretician.

Ownership types are based on a nesting relation on objects (≺). At run-time, each

object o has an owner, which is another object o′, such that o ≺ o′. Nesting is a tree-

shaped partial order on objects with greatest element world. The OAD invariant can

be informally stated as follows in terms of a program’s run-time object graph:

Given an object o and its owner o′, every path in the object graph

from the program roots along object fields that ends in o, contains o′.

This means, there are no object fields referring to o that bypass o′. This means that one

object cannot refer to a second object directly as a field, unless the first object is inside

the second object’s owner. This kind of ownership is called deep, since the nesting is

transitive. Its counterpart is shallow ownership: the access to objects is controlled

without enforcing an object graph property such as owners-as-dominators.

7.3.1 Gradual ownership types: a programmer’s view

From the programmer’s perspective, the object-level encapsulation property described

by the OAD invariant is something the implementor of a container class would

normally like to enforce. The intention would be to limit the scope of instances of

auxiliary classes relevant to the implementation and make them to be strictly within

1The same separation of roles of type annotations is also typical for other domain-specific type systems,

such as for security [151].
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the instance of the container. The following partial implementation of the class List

in Java [95] uses instances of the class Link to keep the traditional single-linked

structure:

class List {

Link head;

void add(Data d) {

head = new Link(head , d);

}

// other methods

}

class Link {

Link next;

Data data;

Link(Link next , Data data) {

this.next = next; this.data = data;

}

}

In order to indicate the fact that instances of the class link can be confined within some

other instance object (i.e., have an owner), this owner should be mentioned explicitly

in the header of the class Link. The class then becomes ownership-parametrized and

is defined now as class Link<owner>.

The next step of the migration is to specialize the instance of Link, created within the

method add() of List, i.e, indicate the fact that this instance of List is the owner

of the newly instantiated Link. This is done by adding one more annotation to the

allocation site: new Link<this>(head, d).

So far, all the work has been done by a programmer, so the reader might wonder, where

the gradual typing actually is. In fact, this amount of annotations is the only work

the programmer should do to indicate her intentions about ownership structure in the

considered program, namely, stating which classes can be owned and which particular

instances should be owned. These annotations provide sufficient information for the

compiler to figure out what checks should be performed at runtime in order to ensure

the owners-as-dominators invariant. Of course, the programmer can specify more fine-

grained constraints by adding more annotations into the code. For instance, to ensure

that an instance of Link is always followed by a link with the same owner, one should

add following annotations (greyed), making the invariant stronger:

class Link <owner > {

Link <owner> next; Data data;

Link(Link <owner> next , Data data) {

this.next = next; this.data = data;

}

}
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In the approach we take, annotating both fields and method parameters is not

necessary. However, doing so reduces the amount of runtime assertions. For instance,

had we omitted the annotation of the field next, each assignment to it would cause

an extra check of the invariant. Otherwise one could assign to next an instance of

Link, owned, for instance, by another list. Other possible views to gradualization of

the ownership type system can be taken, for instance, allowing one to omit class and

instance annotations, but provide field annotations instead as “ownership interfaces”.

We we consider these possibilities as well as their drawbacks in Chapter 10.

Summarizing, Figure 7.1 gives the full code of our running example: the class

List using ownership types [33]. The latter implementation of the class carries two

ownership parameters: owner and data. The first parameter, owner, refers to the

List instance’s immediate, or primary, owner. The second parameter, data, refers,

by conventions of the type system, to some object outside or equal to owner. As usual,

this refers to the current instance itself. The same reasoning is applicable to two

auxiliary classes, Link and Iterator. In the List’s method add(), the programmer

indicates, by creating an instance of the class Link with owners this and data

respectively, that this particular instance of Link is nested within its creator instance

List and the content of the link can be accessed only through the owner referred to as

data in List. The same is true for the instance of the class Iterator. Figure 7.2

presents an informal diagram illustrating the desired dynamic heap topology and

encapsulation boundaries.

7.3.2 Gradual ownership types: a semanticist’s view

A programming language theoretician may wonder, which part of the annotations in

the type system does actually “do the trick” when defining the desired the ownership

relation, and which just serves in order to handle assigned types correctly.

Provided and optional type annotations One can notice that all the ownership

information required to describe the topology for the list example as on Figure 7.2, can

be provided by only five annotations. Three class parametrizations name the owners

of the class instances and two allocation sites provide concrete owners for created

objects. These annotations, emphasized by framed boxes in Figure 7.1, declare the

information about ownership structure and nesting of objects involved (i.e., this ≺
owner ≺ data ≺ world) and define the owners of new instances. The remaining

annotations, greyed in the code, serve as constraints and “propagate” ownership

information through the program, as mutable variables and fields are traditionally

annotated with types to keep information about objects they point to.

We require the first kind of annotations to be explicitly specified, because it
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class List <owner, data> {

Link <this, data> head;

void add(Data <data> d) {

head = new Link <this, data> (head , d);

}

Iterator <this, data> makeIterator() {

return new Iterator <this, data> (head);

}

}

class Link <owner,data> {

Link <owner, data> next;

Data <data> data;

Link(Link <owner, data> next , Data <data> data) {

this.next = next; this.data = data;

}

}

class Iterator <owner, data> {

Link <owner, data> current;

Iterator(Link <owner, data> first) {

current = first;

}

void next() { current = current.next; }

Data <data> elem() { return current.data; }

boolean done() { return (current == null); }

}

// An arbitrary class to represent data elements

class Data <dataOwner> {

Object <world> myArbitraryField;

}

Object listOwner = ...

Object dataOwner = ...

Data <dataOwner> d1 = new Data <dataOwner> ();

Data <dataOwner> d2 = new Data <dataOwner> ();

List <listOwner, dataOwner> list = new List <listOwner, dataOwner> ();

list.add(d1);

list.add(d2);

Iterator <list, dataOwner> iter = list.makeIterator();

Data <dataOwner> fetched = iter.elem();

// Illegal reference

fetched.myArbitraryField = list.head;

Figure 7.1: A motivating example and the design intention: a list and its iterator code

with structural (boxed) and constraint (greyed) ownership annotations.
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(a) reflects the programmer’s intentions with respect to the invariant, and,

(b) enables a simpler implementation of run-time dynamic checking, i.e., no

ownership information needs to be inferred dynamically (see Chapter 10 for

a detailed discussion).

Alternative approaches are discussed in Chapter 10 of this dissertation.

Figure 7.2: A desired heap topology for the

program in Figure 7.1.

Type casts and boundary checks
The runtime checking of conformance

of an object’s ownership structure to its

expected structure, imposed by the type,

is performed at run-time via dynamic

type casts. This technique is typical for

gradual approaches: when an untyped

value is coerced to a typed value, a

dynamic check is performed to ensure

that the further interactions through

this particular reference conform to the

target’s type contract, in this setting, its

ownership type. However, the preser-

vation of the OAD invariant requires

not only conformance of actual and

expected types, but also checking that

the nesting constraints are preserved—

this information is lost when ownership

information is lost.

The only place where the owners-as-

dominators invariant can actually be

broken is by a bad field assignment,

which makes field assignments good

candidates for extra run-time checks. Let us consider the following code:

class D<owner > {

D myD;

...

}

D<q> otherD = ...;

D<p> d = new D<p>();

d.myD = otherD;
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The correctness requirement for such an assignment demands that p ≺ q. However,

the declaration of the field myD lacks ownership information, so there is a chance that

the OAD invariant will be violated since the type of myD may no longer impose any

nesting between p and q. This is a sort of contract that should be checked dynamically.

We call these boundary checks.

One can notice that dynamic type casts operate with objects’ ownership structures,

whereas boundary checks traverse a part of the heap and, therefore, are significantly

more expensive in terms of execution overhead. However, performing type casts

before boundary checks might help to avoid most of them, since after the check we

gain some extra knowledge of an object’s structure. This observation leads us to a

two-staged, typed-directed transformation, where each stage uses the available type

information to insert one sort of check: for type conformance and nesting, respectively.

In the following chapters we will develop a staged algorithm for the correct translation.

The first pass will insert dynamic casts and the second will handle possible OAD
violations by inserting boundary checks.

Formal, unknown and dependent owners An important part of the ownership

type system is the static representation of owners. The example in Figure 7.1

demonstrated one usage of ownership class parameters. The following example

exhibits the concept of dynamic aliasing [33], which employs local final variables

as local owners:

final List <p, world> list = new List <p, world>();

Iterator <list , world> iter = list.makeIterator();

Variable list denotes the owner of the iterator iter. When list goes out of scope,

the type Iterator<list, world> and other types containing owner list become

illegal.

Following gradual types we introduce a notion of the special unknown owner “?”.

Types annotated with “?” in a gradually-typed language defer the checking of types to

run-time via checks inserted by the compiler. In our system, types with no annotations

are just syntactic sugar for types with all ownership annotations unknown, e.g., List

≡ List<?,?>. The following code gives the essence of unknown owners:

List list; // ≡ List<?,?>

list = new List <p, world>();

list = new List <this, world>();

List <p, world> newList = list; // inserted cast (List<p, world>)list

The first two assignments are valid since the type of list does not specify which

objects must own the instance referred by the variable. The last assignment



INTUITION BEHIND GRADUAL OWNERSHIP TYPES 103

1 class E<P> { D myD = ... }

2

3 class D<owner > {

4 E<owner > e;

5 void use(D<owner > arg) { ... }

6 void exploit(E<owner > arg) { this.e = arg; }

7 void test(E e) {

8 final D d = e.myD; // implicitly, d: D<dD.owner>

9 d.use(d); // type refinement, but no type cast required

10 d.exploit(e); // type refinement, type cast required

11 }

12 }

Figure 7.3: Dependent owners in action.

is valid too; however, it requires a dynamic cast, due to the type refinement

List<?, ?> ⇒ List<p, world> to make sure that the owners of list match the

specification of newList.

Information lost due to unknown owners can be partially regained by tracking

dependencies between immutable references and owners of objects they refer to. For

this purpose we introduce the notion of dependent owners that record the origin of

some owner arguments, allowing one to check them for equality without knowledge

about how they are nested.

Figure 7.3 provides some intuition about dependent owners. Class E declares a field

of type D. However, information about the owner of the object referred to by field

myD is lost due to the missing ownership annotation in the field declaration at line 1.

As a consequence, the owner of variable d at line 9 is unknown. Nevertheless, since

d is final, one can see that the owner of the object referred by d is the same as the

one expected as of a parameter of the instance method d.use(). This knowledge is

preserved by assigning the type D<dD.owner> to variable d. This should be read as

“d has the type D and the owner of the object referred to by d is locally denoted as

dD.owner”. The superscript D.owner refers to the particular ownership parameter of

the statically known type D. Thus, by equality of owners, no extra dynamic check

is required at line 9. Still, the owner of e remains unknown, so the method call

d.exploit() at line 10 is potentially dangerous due to type refinement, and therefore

the cast E<?>⇒ E<dD.owner> is required. Without dependent owners we would lose

precision when checking types.2

2We have chosen the term “dependent owners” because of similarity of the idea to the notion of path-

dependent types [157]—the value of the owner depends on the value of an object.
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7.4 Main Contributions

This part of the dissertation contributes Gradual Ownership Types, a framework for

the gradual migration of programs in Java-like object-oriented languages to a richer

type system in the spirit of the one by Clarke and Drossopoulou [33], which ensures

the owners-as-dominators encapsulation invariant. We investigate formal aspects of

gradual ownership types, discuss the implementation and evaluate the approach on a

well-studied codebase. Overall, our work makes the following contributions.

A formalization of a gradual ownership type system and a type-
directed compilation for a Java-like language

Our main contribution in this part of the dissertation is a formalisation of gradual

ownership type system in the setting of a toy Java-like language, similar to

Featherweight Java [108], but featuring an explicit mutable heap. The core calculus is

based on the ownership type system of Clarke and Drossopoulou [33], which ensures

the owners-as-dominators invariant. The developed type system establishes a version

of a “relaxed” typing relation that introduces the notion of unknown owners and

allows the compiler to move parts of invariant checking from compilation to the run-

time phase. We also formalize a type-directed compilation procedure, which inserts

dynamic checks into the code whenever a type checker fails to ensure the ownership

invariant preservation statically. Finally, the translation is proven to be sound with

respect to the described gradual system (i.e., every gradually well-typed program can

be compiled into a well-typed program with dynamic checks), and a proof of the

ownership invariant preservation in a well-typed program with checks is provided.

The overall system enables the migration from ownership-unaware to ownership-

annotated code. It is expressive enough to investigate the concepts of interest and

is close enough to a real language to guide the implementation.

A translating compiler for the gradual ownership types

Our second contribution is a proof-of-concept implementation of a translating

compiler for full Java 1.4 that supports gradual ownership types and provides hints

for a smooth program migration. The implementation is made as an extension of the

JastAddJ extensible Java compiler [74] using the JastAdd framework, which based

on the extensive use of attribute grammars [73]. The compiler itself and its testsuite

with numerous small examples of programs with gradual ownership types are freely

available on GitHub for extension and experiments:
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http://github.com/ilyasergey/Gradual-Ownership

A report on program migration using gradual ownership types

Our third contribution is an evaluation of the developed compiler for Java with gradual

ownership types in the scope of the Java Collection Library. We report on migrating

several collection classes starting from the minimal amount of type annotations in

order to ensure the invariant and using compiler support for debugging and gradual

migration. We provide an example of a class that we were able to instrument

completely with owner annotations and, therefore, reach full static guaranties of

the designed invariant preservation. We also report on problems when migrating

some classes due to limitations in the expressiveness of the formalism, which can

be remedied in the future work. Finally, we observe a case of a class that might

experience a sort of undesired behaviour, when an owned object “leaks” its owner’s

scope.

A discussion on gradualization of type systems for object
ownership

Our additional contribution is a discussion on extensions of the presented method

in the context of alternative type systems for strong encapsulation in object-oriented

programs. Although the described approach of “gradualization” is presented in the

scope of the owners-as-dominator invariant, we argue that it is idiomatic and sketch

the ways it can be applied to some other ownership type systems. We also initiate a

discussion on possible design choices when implementing gradual ownership types,

accounting to both expressiveness and efficiency.

7.5 Outline

Part II of the dissertation describes the research based on a combination of the

following research papers and technical reports:

• Ilya Sergey and Dave Clarke. Gradual Ownership Types. In Helmut

Seidl, editor, proceedings of the 21th European Symposium on Programming

(ESOP 2012), volume 7211 of Lecture Notes in Computer Science, pages 579–

599. 24 March – 1 April 2012. Tallinn, Estonia. Springer.

http://github.com/ilyasergey/Gradual-Ownership
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• Ilya Sergey and Dave Clarke. Gradual Ownership Types. CW Reports, volume

CW613, 43 pages, Department of Computer Science, KU Leuven, Leuven,

Belgium, December 2011.

• Ilya Sergey and Dave Clarke. Towards Gradual Ownership Types. In Interna-

tional Workshop on Aliasing, Confinement and Ownership (IWACO 2011). 25

July 2011. Lancaster, UK.

The remainder of this part is structured as follows.

Chapter 8 – Calculus of Gradual Ownership Types

The chapter presents JO?, a core calculus of gradual ownership types and its extended

version JO+
? , accounting for dynamic type casts and boundary checks. First, the

syntax and static semantics of JO? are described. Second, the intuition behind the

dynamic checks for the owners-as-dominators invariant is recalled and a type-directed

translation from JO? to JO+
? is presented along with enhanced typing rules for JO+

? .

An operational semantics of JO+
? is defined in the form of an abstract CEK-machine

with an explicit heap component. Finally, the subject reduction and the owners-as-

dominator invariant preservation theorems are formulated and proven. The last results

of the chapter state that a well-typed program in JO? can be always compiled to a

well-typed program in JO+
? and execution of the latter will not violate the owners-as-

dominator invariant.

Chapter 9 – Implementation and Evaluation

In this chapter, we describe the main design decisions taken while implementing

the gradual ownership types framework as an extension of the JastAddJ extensible

Java compiler for Java 1.4. In particular, we discuss issues that arose during the

implementation of dependent owners, supporting typical object-oriented features:

anonymous and inner classes, and virtual method overriding. We also provide a

report on the experience of migrating some container implementations from the Java

Collection Library to support ownership type annotations. We discuss the performance

overhead and some idiomatic cases when the described approach cannot be applied “as

is” due to limitations in its expressiveness.

Chapter 10 – Discussion and Related Work

In this chapter, we start with a discussion on extending the framework of gradual

ownership types for different existing ownership policies from the literature. We
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continue with an overview of possible design choices of the implementation in order

to trade the flexibility of the type system to the runtime performance and vise versa.

We then proceed with an overview of related work, giving a birds-eye view on modern

hybrid type systems in mainstream programming languages and focusing mainly on

techniques for ownership inference as a main competitor to the approach described in

the present work.

Chapter 11 – Conclusion and Future Work

In the last chapter of this part we reflect on the contributions of the work, and

summarize main challenges to be overcome in future investigations, mainly, with

respect to modularity and better assistance for incremental code migration. Finally,

we discuss possible applications of the presented technique in practice.



Chapter 8

A Calculus of Gradual
Ownership Types

Every time programming language theoreticians have troubles

understanding what is going on, they invent a new calculus.

NEEL KRISHNASWAMI

In this chapter, we discuss theoretical aspects of gradual ownership types. In

Section 8.1, we introduce JO?, a core Featherweight Java-like language with gradual

ownership types, and provide its static semantics. In Section 8.2, we define the type-

directed compilation scheme in the form of a translation from JO? to an extended

language JO+
? , augmented with type casts and boundary checks in order to provide

dynamic guaranty of the ownership invariant. Section 8.3 presents the dynamic

semantics of the language JO+
? . Finally, Section 8.4 states main theorems about the

formalism: subject reduction, invariant preservation in JO+
? and static type safety of

JO? with respect to the compilation procedure.

8.1 The language JO?

To investigate the meta-theory of gradual ownership types, we define JO?, an

imperative Java-like language, extended with ownership types, and unknown and

dependent owners, based on the system JOE1 by Clarke and Drossopoulou [33].

108
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Programs P ::= class j∈1..m

Class declarations class ::= class c〈αi∈1..n〉 extends c′〈p j∈1..n′〉
{fdk∈1..m; methl∈1..u}

Field declarations fd ::= t f

Method declarations meth ::= t m(t x) {e}
Expressions e ::= x | let x = b in e | v

Computations b ::= x. f | x. f = x | x.m(x) |
new c〈pi∈1..n〉 | null

Values v ::= ι | null

Run-time owners k ::= world | ι
Owners p,q ::= x | this | k | ? | α
Types t,s ::= c〈pi∈1..n〉

Objects o ::= 〈c〈ki∈1..n〉, f 7→ v〉

Typing environments E ::= /0 | E,x : t | E, ι : t | E, p≺ p′

Bindings B ::= /0 | B,α = k | B,x = v

Heaps H ::= ι 7→ o

Variables x,y,z,this

Heap locations ι
Formal owners α

Dependent owners xc.i

Unknown owners ?

Figure 8.1: Syntax of JO?. Runtime syntax elements are emphasized by grey

boxes. Boxed elements denote syntactic elements, inserted by a compiler, not by a

programmer.

8.1.1 Syntax

Programs, classes and expressions Figure 8.1 provides the full syntax of JO?.

Entities used at runtime only are in grey . We also emphasize administrative entities,

used by the translating compiler, but not by the programmer, using framed boxes. A

program in JO? is a collection of classes. A class definition

class c〈αi∈1..n〉 extends c′〈p j∈1..n′〉{fdk∈1..m; methl∈1..p}
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describes a class named c, parametrized by the ownership parameters αi∈1..n with the

superclass c′, whose ownership parameters are instantiated with p j∈1..n′ .
1

The class contains fields fdk∈1..m and methods methl∈1..u; a field is defined by a type

annotation and a field name: t f ; a method is defined by its return type, name,

formal parameter signature, and body expression: t m(t x) {e}. Methods have only

one parameter for simplicity. Expressions in JO? are in the administrative normal

form (ANF) [87], i.e., results of all intermediate atomic computations are named and

assigned to the immutable variables. Local variables can be used as owners, as long

as they do not escape the scope of their local stack frame [33]. This is a weakening of

the original formulation of the owners-as-dominators invariant, which also considered

local stack frame references as possible edges of an object graph preventing one, for

instance, from using iterators as in Figure 7.1 [36].

Atomic computations include field lookup, field update, method call, object creation

and null.

Types and owners A type c〈pi∈1..n〉 consists of a class name c and a vector of

ownership arguments pi∈1..n.

Owners are represented syntactically by owner and term variables (α and x, respec-

tively), dependent owners and run-time owners such as world and heap locations

(i.e, run-time object identifiers). Run-time values in owner positions are introduced

into the source language to simplify the progress/preservation formulation and proofs.

xc.i denotes the dependent owner corresponding to the i-th ownership parameter of

the object referred to by the term variable x, whose statically known class type is c.

Dependent owners are not supposed to be specified by the programmer. Instead, they

are inferred by the compiler. For convenience, we often use an alternative notation

c〈σ〉 for a type c〈pi∈1..n〉, assuming σ to be a substitution {αi 7→ pi | i ∈ 1..arity(c)},
where αi are formal ownership parameters of the class c.

To distinguish between different kinds of owners when checking, the well-formedness

of types, we introduce several helper functions (Figure 8.2).

Objects and heaps In addition to having the class name and field values, an object

also has a binding for its owner parameters, either world or some non-null heap

locations. A heap H is a partially defined map from locations to objects.

1More expressive possibilities exist in the literature, for example, by allowing the programmer to declare

the expected relationship the between owner parameters of a class [37].
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defined(p) , p 6= ? and p 6= xc.i

undefined(p) , ¬defined(p)

actual(p) , p = world and p = ι for some ι

arity(c) , n, s.t. class c〈αi∈1..n〉 ∈ P

owner(c〈〉) , world

owner(c〈pi∈1..n〉) , p1, where n > 0

owner j(c〈pi∈1..n〉) , p j, where 0 < j ≤ n

owners(c〈pi∈1..n〉) , p1 . . . pn

Figure 8.2: Helper functions of JO?.

8.1.2 Typing environments and owners

A typing environment E binds variables and heap locations to types and defines

ordering assumptions on owners in terms the nesting relation ≺. The bindings B map

formal owners to run-time owners and variables to values.

The dynamic semantics is defined in Section 8.3 in terms of an explicit binding of

free variables, rather than via substitution. The presence of binding environment in

the typing judgements of the form E;B ⊢ F for some succedent F does not affect the

static semantics of JO?, but we will need it to establish equalities between typing

environments and dynamic bindings in the proof of the type preservation theorem.

To avoid duplicating work, we include a binding list in the assumption set of most

judgements.

A typing environment E is well-formed if ≺ is antisymmetric on dom(E), i.e, the

environment does not introduce cycles in ownership. The definition of well-formed

environment-binding pairs (E;B ⊢ ⋄) will be described in detail in Section 8.4.

Informally, the pair E;B enables owners and types in E to be used modulo equalities

in the run-time binding environment B. To keep the presentation tractable, we avoid

explicitly stating rules dealing with such equalities.

The well-formed owner relation (E;B ⊢ p) is shown in Figure 8.3. The rules (OWN-

DEPENDENT) and (OWN-?) are novel for the gradual type system.

It is important to notice that a dependent owner is well-formed only if the

corresponding variable is bound by a typing environment with some class c and it

requires that i does not exceed the ownership-arity of the class c (the rule (OWN-

DEPENDENT)). The reason of this is the fact that dependent owners in practice are not

inserted by the programmer, but are artifacts of the type-checking procedure, which
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E;B ⊢ p Well-formed owners

(OWN-WORLD)

E;B ⊢ ⋄

E;B ⊢ world

(OWN-VAR)

E;B ⊢ ⋄
E;B ⊢ x : t

E;B ⊢ x

(OWN-VAL)

E;B ⊢ ⋄
E;B ⊢ ι : t

E;B ⊢ ι

(OWN-?)

E;B ⊢ ⋄

E;B ⊢ ?

(OWN-DEPENDENT)

E;B ⊢ x : c〈. . .〉 for some class c

i ∈ 1..arity(c)

E;B ⊢ xc.i

(OWN-IN)

E;B ⊢ ⋄
p≺ p′ ∈ E

E;B ⊢ p, p′

E;B ⊢ p≺ p′ Nested owners, defined(p), defined(p′)

(IN-ENV)

p≺ p′ ∈ E

E;B ⊢ p≺ p′

(IN-REFL)

E;B ⊢ p

E;B ⊢ p≺ p

(IN-TRANS)

E;B ⊢ p≺ p′

E;B ⊢ p′ ≺ p′′

E;B ⊢ p≺ p′′

(IN-VAR)

E;B ⊢ x : t

p = owner(t)

E;B ⊢ x≺ p

E;B ⊢ p. p′ Consistently-nested owners

(SUB-LEFT)

E;B ⊢ p E;B ⊢ q

undefined(q)

E;B ⊢ p. q

(SUB-RIGHT)

E;B ⊢ p E;B ⊢ q

undefined(q)

E;B ⊢ q. p

(SUB-INCL)

E;B ⊢ p≺ p′

E;B ⊢ p. p′

(SUB-WORLD)

E;B ⊢ p

E;B ⊢ p. world

Figure 8.3: Well-formed owners and owner nesting.
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E;B ⊢ p ∼ p′ Consistent owners

(CON-REFL)

E;B ⊢ p

E;B ⊢ p ∼ p

(CON-RIGHT)

E;B ⊢ p E;B ⊢ q

undefined(q)

E;B ⊢ q ∼ p

(CON-LEFT)

E;B ⊢ p E;B ⊢ q

undefined(q)

E;B ⊢ p ∼ q

E;B ⊢ t ∼ t ′ Consistent types

(CON-TYPE)

E;B ⊢ c〈pi∈1..n〉
E;B ⊢ c〈qi∈1..n〉
pi ∼ qi ∀ i ∈ 1..n

E;B ⊢ c〈pi∈1..n〉 ∼ c〈qi∈1..n〉

E;B ⊢ t Well-formed type t

(G-TYPE)

arity(c) = n

E;B ⊢ p1 . pi ∀i ∈ 1..n

E;B ⊢ c〈pi∈1..n〉

E;B ⊢ t ≤ t ′ Nominal subtyping

(SUB-REFL)

E;B ⊢ t

E;B ⊢ t ≤ t

(SUB-TRANS)

E;B ⊢ t ≤ t ′ E;B ⊢ t ′ ≤ t ′′

E;B ⊢ t ≤ t ′′

(SUB-CLASS)

E;B ⊢ c〈σ〉
class c〈αi∈1..n〉 extends c′〈ri∈1..n′〉{. . .}

E;B ⊢ c〈σ〉 ≤ c′〈σ(ri)i∈1..n′〉

E;B ⊢ t . t ′ Consistent subtyping

(GRAD-SUB)

E;B ⊢ c〈σ〉 ≤ c′〈σ′〉
E;B ⊢ c′〈σ′〉 ∼ c′〈σ′′〉

E;B ⊢ c〈σ〉 . c′〈σ′′〉

Figure 8.4: Owner and type consistency; well-formed types; traditional and consistent

subtyping.
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ensures that the corresponding “base” variable x is bound in the local scope (see the

rule (T-LET) in Section 8.1.5 and the definition of function fill).

The definition of the nesting relation on owners (Figure 8.3, E;B ⊢ p≺ p′) captures

only defined owners. It is then embedded into a more general consistent nesting

relation (E;B ⊢ p. p′), which deals also with dependent and unknown owners.

Informally, no precise information about nesting can be retrieved from unknown or

dependent owners. Note that . is not transitive, so E;B ⊢ q . ? and E;B ⊢ ? . p do

not in general imply E;B ⊢ q . p for any defined p and q.

8.1.3 OAD invariant, formally

To state the OAD invariant we need a definition of a heap flattening to turn a heap

into a typing environment. The notation Ĥ represents the flattening of a heap H into a

typing environment Ĥ.

Definition 8.1.1 (Heap flattening).

Ĥ , {(ι ≺ o),(ι : c〈o,ki∈2..n〉) | (ι 7→ 〈c〈o,ki∈2..n〉, . . .〉) ∈ H}

Definition 8.1.2 (Owners-as-Dominators Invariant [159]). OAD(H) , for all loca-

tions ι, ι′ and run-time owners k,

H(ι) =
〈
c〈ki∈1..n〉, f 7→ v

〉

fi 7→ ι′ and H(ι′) = 〈t ′, . . .〉
owner(t ′) = k



 ⇒ Ĥ; /0 ⊢ ι≺ k

In words, if object ι references object ι′ via a field, ι must be inside the owner of

ι′. The definition, however, does not prevent a flattened heap Ĥ itself from having

cyclic nesting chains (i.e., (ι ≺ . . . ι′ . . . ≺ ι for some ι 6= ι′). We address this issue in

Section 8.4.1 by defining well-formed heaps.

8.1.4 Type consistency and subtyping

Types can be constructed from any class using any owner in scope (including an

unknown owner “?”), as long as the correct number of arguments are supplied

and the owner (the first parameter), if present, is provably consistently-inside all

other parameters. The corresponding relation E;B ⊢ t defining well-formed types is

presented in Figure 8.4 along with the definitions of consistent owners and types.



THE LANGUAGE JO? 115

c′〈σ′′〉

c〈σ〉

.

<<
②
②
②
②
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②
②
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c′〈σ′〉

∼

// c′〈σ′′〉

c〈σ〉

.

<<
①
①
①
①
①
①
①
①

≤

OO

Figure 8.5: Consistent subtyping explained.

The type consistency relation answers the question: which pairs of static types could

possibly correspond to comparable run-time types? It allows the type checker to

compare types that include dependent and unknown owners. We define the type

consistency relation ∼ on types parametrized with partially known and dependent

owners via the rules in Figure 8.4 (the relation E;B ⊢ t ∼ t ′).

The definition of the subtyping E;B ⊢ t ≤ t ′ is standard for parametrized object-

oriented type systems; ownership parameters are invariant [33]. In order to eliminate

non-determinacy from the type-checking algorithms we need to construct a relation

that combines two kinds of subsumption of types: type consistency and subtyping.

This relation is used then in type rules whenever an implicit upcast is necessary [164].

Siek and Taha suggest a way to design such a consistent-subtyping relation (.) [189]

for the calculus Ob<: of Abadi and Cardelli [1]. If two types t = c〈σ〉 and t ′ = c′〈σ′′〉
are related via the consistent-subtyping relation, i.e., t . t ′, they can differ along both

directions: the type consistency relation ∼ and the subtyping relation ≤. This is

illustrated by the diagram on the left of Figure 8.5. The diagram on the right shows

one possible way to define the . relation through the intermediate type c′〈σ′′〉 such

that the whole diagram commutes. According to the definition of the type-consistent

relation it is easy to see that the class type of this mediator should be equal to c′. In

fact, if c′ is a superclass of the class c, the necessary substitution can be computed

in a straightforward way by just ascending the chain of superclasses. The “upper-left

mediator” is a connecting link between two types. This intuition is formalized via the

rule (GRAD-SUB) in Figure 8.4.

The correspondence between a possible “bottom-right” and “upper-left” mediator

from Figure 8.5 is stated by the following theorem:

Lemma 8.1.3 (Mediator switch for .). If E;B ⊢ t ∼ t ′′ and E;B ⊢ t ′′ ≤ t ′, then

E;B ⊢ t . t ′.
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Proof. “Upper-left” mediator for the definition of. is built by induction on the height

of the subtyping relation, type consistency is then preserved.

Though the formal construction of the derivation for the relation . might seem to be

non-deterministic, it is not so. In fact, for a fixed type c〈σ〉 and its super-class c′ there

is only one possible way to derive the corresponding super-type c′〈σ′〉. This fact is

due to the deterministic nature of the plain subtyping relation definition: for each pair

of types t, t ′ at most one derivation tree for the relation t ≤ t ′ is possible.

8.1.5 Expression, method and class typing

Typing rules for computations, expressions and methods are described in Figure 8.6,

following the standard approach [164]. Type rules for variables and values are

standard. m⊎m′ denotes the disjoint union of finite maps m and m′, requiring that

their domains are disjoint. σz is the substitution σ⊎{this 7→ z} for any substitution

σ. We use the mappings F c and M T c for retrieving types of fields and methods

of a class c. In the rules (T-LET) and (METHOD), the helper function fill converts

declared types with unknown owners to types with dependent owners to track owner

dependencies.

fill(x,c〈pi∈1..n〉) , c〈qi∈1..n〉, where qi =

{
xc.i if pi = ?

pi otherwise.

The definitions of well-formed classes ( ⊢ c) and programs ( ⊢ P;e) are standard and

are present in Figure 8.7. The class Object is located on the top of class hierarchy and

it has only one owner parameter. A program is well-formed (E ⊢ P;e) if its constituent

classes are well-formed and its trailing, main, expression is well-typed.

8.2 Type-directed translation: the language JO+
?

This section describes the type-based translation of programs in JO? to an extended

language, JO+
? with run-time checks, preserving the OAD invariant dynamically in

the case where the provided static type annotations are not sufficient for compile-time

reasoning.
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E;B ⊢ b : t Well-typed computation (under ⊢)

(T-NEW)

E;B ⊢ c〈pi∈1..n〉
defined(pi) ∀i ∈ 1..n

E;B ⊢ new c〈pi∈1..n〉 : c〈pi∈1..n〉

(T-LKP)

E;B ⊢ z : c〈σ〉
F c( f ) = t

E;B ⊢ z. f : σz(t)

(T-UPD)

E;B ⊢ z : c〈σ〉 F c( f ) = t

E;B ⊢ y : s

E;B ⊢ s. σz(t)

E;B ⊢ z. f = y : σz(t)

(T-CALL)

E;B ⊢ y : s M T c(m) = (y′, t→ t ′)

E;B ⊢ z : c〈σ〉 E;B ⊢ s. σz(t)

σ′ ≡ σ⊎{y′ 7→ y}

E;B ⊢ z.m(y) : σ′z(t
′)

E;B ⊢ e : t Well-typed expression

(T-VAR)

E;B ⊢ ⋄ x : t ∈ E

E;B ⊢ x : t

(T-LET)

E;B ⊢ b : t

E,x : fill(x, t);B ⊢ e : s

E;B ⊢ let x = b in e : s

(T-VAL)

E;B ⊢ ⋄ ι : t ∈ E

E;B ⊢ ι : t

(T-NULL)

E;B ⊢ t

E;B ⊢ null : t

E ⊢ t ′ m(t y){e} Well-typed method (under ⊢)

(METHOD)

E,y : fill(y, t) ⊢ e : s

E ⊢ s. t ′

E ⊢ t ′ m(t y){e}

Figure 8.6: Typing rules of JO? for computations, expressions and methods. Greyed

parts mark explicit consistent-subtyping checks that may lead to the insertion of

dynamic checks.
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E;B ⊢ c Well-typed class

(CLASS-OBJECT)

⊢ class Object〈α1〉{}

(CLASS)

E ≡ α1 ≺ world,(α1 ≺ αi)i∈2..n,this : c〈αi∈1..n〉
E ⊢ c′〈σ〉 owner(c〈αi∈1..n〉) = owner(c′〈σ〉)

{ fi∈1..m}∩dom(F c′) = /0 E ⊢ t j∈1..m E ⊢ methk∈1..p

∀m ∈ names(methk∈1..u)
∩ dom(M T c′)




M T c(m)≡ t→ t ′

M T c′(m)≡ t ′′→ t ′′′

t ≡ σ(t ′′) t ′ ≡ σ(t ′′′)

⊢ class c〈αi∈1..n〉 extends c′〈σ〉{t j f j∈1..m; methk∈1..p}

E ⊢ P;e Well-typed program

(PROGRAM)

⊢ class j ∀ class j ∈ P

E ⊢ e : t

E ⊢ P;e

Figure 8.7: Typing rules for classes and programs in JO?.

8.2.1 OAD invariant violations, revisited

One can notice that the “plain” subtyping relation from the original calculus JOE1 [33]

operates with types with all known owners and ensures that ownership parameters of

these types are equal modulo subtyping in both the context of the caller and the callee.

This property is referred to as restricted visibility [36] and states that types of objects

assigned to fields, passed as arguments to method calls, returned from field access or

method call must have a well-formed ownership structure (i.e., visible) in both the

context of the callee and the caller. In the presence of a gradual type system, the type

checker may reason only about the parts of types it knows statically. In our case, the

known parts of types are the defined owners. Let us consider the code fragment below

as an example of incomplete reasoning requiring extra dynamic checks:
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class D<owner > {

C<?> f // any instance of C is suitable

}

...

D<p> x = new D<p>();

C<q> y = new C<q>();

x.f = y; // invariant violation

Assuming that neither the object referred to by x nor its owner p are within q, one

can see that the last line of the code fragment violates the OAD invariant. However,

this case cannot be handled statically via the type system because of the relaxed

requirements for the type C<?> of the field f, which would allow an assignment to

occur irrespectively of the actual run-time owners. An appropriate boundary check

should be performed dynamically to ensure that the target object is permitted to access

the value assigned to the field.

However, field assignments are not the only place where some sort of dynamic checks

might be needed. With gradual types, the presence of . in the premises of the rules

for method calls and returns enables ownership structure of the type of an argument or

a returned value to be refined or coarsened correspondingly. When some components

of a type are supposed to be refined, a dynamic type cast is needed. The code example

below provides intuition on the role of gradual types in method parameter and return

types and dynamic type casts.

class A<owner > {

C<?> f; // no owner specified for f

C<owner > specify() {

// type refinement

return this.f; // type cast required

}

}

class B<owner > {

C<owner > g; // an owner is specified

void update(C<owner > h) { this.g = h; }

}

// Definition of the class C

A<p> a = new A<p>();

B<p> b = new B<p>();

C<q> c = new C<q>();

a.f = c; // type coarsening, no type cast required

b.update(a.f); // type refinement, a type cast required

b.update(a.specify()); // no type cast required

In general, such program places correspond to whenever a value is assigned to a local

variable or field or passed to or returned from a method. In the system we consider
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only method calls and returns and assignments to fields, since let-expressions are not

annotated with types and their types are inferred by the compiler.

Essentially, type casts and boundary checks are two orthogonal procedures. The

former are standard for gradual type systems: they perform a postponed check that

the run-time structure of a datatype corresponds to the programmer’s expectations.

The latter are particular to systems with ownership types, as they postpone the check

that the program does not violate the OAD invariant.

Later, in Section 8.2.4 we describe a two-pass type-directed algorithm to sequentially

insert both of these types of checks into the program code.

8.2.2 Syntax of JO+
?

The syntax is extended for dynamic type casts and boundary checks, inserted by a

compiler.

Computations b ::= . . . | 〈t〉x | x. f ← y

The statement 〈t〉x ensures that the run-time type of an object referred to by x matches

the type t. The statement x. f ← y performs the check that a field reference from x

to y via the field f does not violate the ownership invariant and then performs the

field update atomically. Casts and checks are not supposed to be inserted by the

programmer. They are inserted instead by the compiler, as described in Section 8.2.4.

8.2.3 Helper relations and program typing in JO+
?

If two types are related via ., there is a freedom to choose the run-time semantics of

type casts, moving along either ∼ or ≤ axis. In the original work on gradual types for

objects [189], the authors chose to check the subtyping at run-time via type casts (i.e.,

move along the y-axis on the picture from Figure 8.5). More concretely, given t . t ′′,

an intermediate type t ′, such that t ∼ t ′, is built statically. So, only the subsumption

t ′ ≤ t ′′ needs to be checked at run-time, and this is implemented via the mechanism of

type casts. In contrast, in our case, the definition of . already gives us an algorithm

to compute an “upper-left mediator” (see Figure 8.5).

Following the rule (GRAD-SUB), we compute the type c′〈σ′〉 that is on the same

class-level as the target type c′〈σ′′〉 for the upcast. The following lemma justifies

this computation:
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Lemma 8.2.1 (Inversion lemma for.). If E;B ⊢ t . t ′′, then there exists a type t ′ such

that E;B ⊢ t ≤ t ′ and E;B ⊢ t ′ ∼ t ′′.

To construct an “upper-left” mediator type t ′ in the previous lemma, we use an extra

helper function t ↑ c that computes a supertype of the type t at class c.

Definition 8.2.2 (↑).

c〈σ〉 ↑ c , c〈σ〉

c′〈σ〉 ↑ c , d〈α j 7→ σ(p j) j∈1..m〉 ↑ c

where class c′〈αi∈1..n〉 extends d〈p j∈1..m〉
and class d〈α j∈1..m〉 ∈ P.

t ↑ c〈 〉 , t ↑ c.

In words, the partially defined function ↑ pulls up the information from the substitution

σ of the initial type c〈σ〉 until it reaches the desired superclass c. If the class hierarchy

Object is reached without making a match, the function is undefined. The following

lemma states the basic properties of ↑.

Lemma 8.2.3 (Basic properties of ↑). For all E, B, t, t ′,

1. (t ↑ t) = t

2. (E;B ⊢ t)∧ (E;B ⊢ t ′)∧ (t ↑ t ′ 6=⊥)⇒ E;B ⊢ t ≤ (t ↑ t ′)

3. E;B ⊢ t . t ′⇒ E;B ⊢ (t ↑ t ′)∼ t ′.

Proof. By induction on the definition of ↑

Our next step is to figure out which particular checks should be performed at run-time.

Actually, all relations between defined owners (i.e., non-unknown and non-dependent

ones) might be already inferred at the type checking stage and, thus, statically checked

via the rules for owner ordering.

The relation E ⊢ t⊳ t ′ states that t satisfies all constraints imposed by the known

owners of t ′. It is used to detect where type casts should be inserted.

Definition 8.2.4 (t is more defined than t ′).

E ⊢ t⊳ t ′ , E ⊢ t . t ′ and ∀i qi 6= ? ∨ pi 6= qi

where (t ↑ t ′) = c〈pi∈1..n〉 and t ′ = c〈qi∈1..n〉
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If for some concrete owner qi of the right operand, the corresponding owner of the left

operand pi is either unknown or is some dependent owner, the function returns false.

One can see that is not the case when pi 6= qi for some i and both pi and qi are defined.

This is filtered out by the clause t . t ′. The situation when the target type (on the

left-hand side) is more precise in some of its owners than the source type (in the right-

hand side) is typical case for type refinement. We use ⊳ to detect where type casts

should be inserted. Since the consistency on owners is symmetric, the uncertainty can

be caused by the lack of information about owners both from the side of a provided

and expected type.

If the information about the first owner parameter of type t of some declared field is

not known statically, the OAD invariant cannot be guaranteed. In this case a boundary

check should be inserted. The predicate specified(t) is true iff a type t provides enough

static information about its owners to ensure preservation of the OAD invariant.

Definition 8.2.5 (t specifies its owner). specified(t), p1 6= ?, where t = c〈pi∈1..n〉

The type rules for type casts and boundary checks are presented in Figure 8.8. For

JO+
? we use different typing relations, namely, ⊢C and ⊢C

B
corresponding to type

casts and boundary checks, respectively. These two relations are similar to ⊢ for

JO?. The purpose of each of them is to ensure the specific safety conditions after the

corresponding stage of the translation.

Informally, ⊢C guaranties conformance of run-time and expected types; ⊢C
B

augments

⊢C with the guaranty of preservation of the OAD invariant. Both these are not the case

for the original relation (⊢).

One significant difference between the former typing relation ⊢ and the new ones is

that all the occurrences of . in the typing of statements are now concentrated on the

rule (T-CAST). In the rest of the .-rules are replaced by ⊳ (greyed parts). The rule

(T-CHECK) ensures type conformance via ⊳, but not the preservation of the OAD
invariant: this is postponed until run-time. The rule (T-UPD”) is specifically targeted

to ensure the OAD invariant.

8.2.4 Type-directed program translation

We adopt the idea of Siek and Taha [189] to define a type-directed type cast insertion

relation and extend it with the boundary check insertion relation (Figure 8.9, relations
C
 and

B
 , respectively). We distinguish insertions of type casts and boundary checks

as two different procedures. First, type casts are inserted into a program whenever

additional information about types needs to be regained. Then the boundary check

insertion translation works on the program with inserted casts, so each step of the

translation eliminates an aspect of uncertainty caused by incomplete type annotations.
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E;B ⊢C b : t Well-typed computation (under ⊢C )

(T-CAST)

E;B ⊢ y : s E;B ⊢ t

E;B ⊢ s . t

E;B ⊢C 〈t〉y : t

(T-UPD’)

E;B ⊢ z : c〈σ〉 F c( f ) = t

E;B ⊢ s ⊳ σz(t) E;B ⊢ y : s

E;B ⊢C z. f = y : σz(t)

(T-CALL’)

E;B ⊢ y : s M T c(m) = (y′, t→ t ′)

E;B ⊢ z : c〈σ〉 E;B ⊢ s ⊳ σz(t)

σ′ ≡ σ ⊎ {y′ 7→ y}

E;B ⊢C z.m(y) : σ′z(t
′)

E ⊢C t ′ m(t y){e} Well-typed method (under ⊢C )

(METHOD’)

E,y : fill(y, t);B ⊢ e : s

E;B ⊢ s ⊳ t ′

E;B ⊢C t ′ m(t y) {e}

E;B ⊢C
B

b : t Well-typed computation (under ⊢C
B

)

(T-CHECK)

E;B ⊢ z : c〈σ〉 F c( f ) = t

E;B ⊢ y : s E;B ⊢ s ⊳ σz(t)

E;B ⊢C
B

z. f ← y : σz(t)

(T-UPD”)

E;B ⊢ z : c〈σ〉 F c( f ) = t E;B ⊢ y : s

E;B ⊢ s ⊳ σz(t) specified(σz(t))

E;B ⊢C
B

z. f = y : σz(t)

Figure 8.8: Selected typing rules of ⊢C and ⊢C
B

. Greyed parts denote differences with

the original static semantics as defined by the relation E;B ⊢ b : t. Omitted rules are

identical to those of the relation ⊢.
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Type cast insertion

Type cast insertion
C
 is a first stage of the complete gradually-typed program

translation. Figure 8.9 provides the definition of selected rules for the cast insertion

relation that specifies the translation. It is written E ⊢ e1
C
 e2 : t for expressions and

holds if, under the assumptions from E, expression e1 is translated into expression e2

and the type of e1 is inferred as t according to the relation ⊢. It is defined in the same

way for methods. For the omitted computations (i.e, new instance allocation or field

reference) the translation proceeds to the body of the inner expression. For variables

the translation is defined as the identity.

The rules for classes and whole programs are straightforward and omitted. Each

inserted cast creates a fresh variable and increases the depth of the processed let-

expression whenever the consistent-subtyping relation is mentioned in the premise of

a typing rule. Type cast insertions are type-guided: no cast is inserted if the predicate

⊳ holds on the types being compared. For conditional insertions we define the helper

function C , which uses non-recursive local decomposition of an expression e via the

context G and optionally inserts type-casts:

CE〈t1, t2〉(e) , if (E ⊢ t1 ⊳ t2) then e else (let y′ = 〈t2〉y in G[y′])
where y′ is fresh, e = G[y]

G ::= [ ] | let x = z.m([ ]) in e | let x = (z. f = [ ]) in e

The following lemma holds for the relation
C
 with respect to the ⊢C -typing.

Lemma 8.2.6 (
C
 is ⊢C -sound for expressions). If E ⊢ e

C
 e′ : t then E ⊢C e′ : t.

Proof. See Section C.1 of Appendix C for a detailed proof (Lemma C.1.1).

The corollary follows naturally:

Corollary 8.2.7 (
C
 is ⊢C -sound for methods). If E ⊢ t ′ m(t y) {e}

C
 t ′ m(t y) {e′}

then E ⊢C t ′ m(t y) {e′}

Proof. See Section C.1 of Appendix C for a detailed proof (Corollary C.1.2).
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E ⊢ e
C
 e′ : t Type cast insertion for expressions

(C-UPD)

E ⊢ z : c〈σ〉 F c( f ) = t

E ⊢ s. σz(t) E ⊢ y : s

E,x : fill(x,σz(t)) ⊢ e1
C
 e2 : s′

E ⊢ let x = (z. f = y) in e1
C
 

CE〈s,σz(t)〉(let x = (z. f = y) in e2) : s′

(C-CALL)

E ⊢ z : c〈σ〉 M T c(m) = (y′, t→ t ′) E ⊢ y : s

E ⊢ s. σz(t) σ′ ≡ σ⊎{y′ 7→ y}

E,x : fill(x,σ′z(t
′)) ⊢ e1

C
 e2 : s′

E ⊢ let x = z.m(y) in e1
C
 

CE〈s,σz(t)〉(let x = z.m(y) in e2) : s′

E ⊢ t ′ m(t y){e}
C
 t ′ m(t y){e′} Type cast insertion for methods

(C-METHOD)

E ⊢ e1 : s E ⊢ s. t ′ e2 = F [z]

E,y : fill(y, t) ⊢ e1
C
 e2 : s

E ⊢ t ′ m(t y){e1}
C
 

t ′ m(t y){F [CE〈s, t
′〉(z)]}

E ⊢ e
B
 e′ : t Boundary check insertion for expressions

(B-UPD)

E ⊢ z : c〈σ〉 F c( f ) = t E ⊢ y : s

E ⊢ s ⊳ σz(t)

E,x : fill(x,σz(t)) ⊢ e1
B
 e2 : s′

E ⊢ let x = (z. f = y) in e1
B
 

let x = B 〈σz(t)〉(z. f = y) in e2 : s′

Figure 8.9: Selected rules of compilation of JO? to JO+
? : cast and check insertion.
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Boundary check insertion

Boundary check insertion
B
 is the second stage of the whole translation (Figure 8.9).

The translation
B
 works on top of a ⊢C -well-typed program. The only type of the

statement that can be affected by
B
 is a field update, since it is only one that can

possibly break the OAD invariant.

The helper function B is defined to replace plain assignments with boundary-checked

field assignments whenever insufficient type information about primary owners is

provided:

B 〈t〉(b) , let (z. f = y) = b in (if specified(t) then b else z. f ← y)

F ::= [ ] | let z = b in F

For the rest of the statements, expressions and methods,
B
 is applied recursively to

the inner expression’s body. For variables the translation is defined as the identity.

Proposition 8.2.8 (Boundary check insertion and ⊢C -typing). E ⊢ e′
B
 e′′ : s iff E ⊢C

e′ : s.

The typing judgement ⊢C
B

is defined to assign types to expressions, statements and

methods after boundary check insertion. The selected rules of the judgement are

provided in Figure 8.8. The rules for the rest of statements and expressions are similar

to those of ⊢C . When there is a boundary check translation of the expression e′ to e′′,

the latter is guaranteed to be ⊢C
B

-typed in the extended language (Lemma 8.2.9).

Lemma 8.2.9 (
B
 is ⊢C

B
-sound for expressions). If E ⊢ e′

B
 e′′ : t then E ⊢C

B
e′′ : t.

Proof. See Section C.1 of Appendix C for a detailed proof (Lemma C.1.4).

The soundness result for methods follows naturally from Lemma 8.2.9.

Corollary 8.2.10 (
B
 is ⊢C

B
-sound for methods). If E ⊢ t ′ m(t y) {e}

B
 t ′ m(t y) {e′}

then E ⊢C
B

t ′ m(t y) {e′}

Proof. See Section C.1 of Appendix C for a detailed proof (Corollary C.1.5).
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Complete program translation

The whole program translation is defined as the composition of cast and boundary

check insertions.

Definition 8.2.11. E ⊢ e e′′ : t iff E ⊢ e
C
 e′ : t and E ⊢ e′

B
 e′′ : t for some e′ ∈

JO+
? .

The translation relation E ⊢ e1 e2 : t can be extended to classes and programs in a

straightforward fashion. For instance, we denote ⊢ P1;e1 P2;e2 if a program P2;e2

is obtained from P1;e1 by the compositional type-directed translation.

The following theorem is a direct corollary of Lemmas 8.2.6 and 8.2.9 and states the

type soundness of the complete translation of a ⊢-well-typed program with respect for

⊢C
B

-typing.

Theorem 8.2.12 (Program translation is ⊢C
B

-sound.). E ⊢ e : t implies E ⊢ e e′ : t

for some e′. Furthermore, E ⊢ e e′ : t for some e implies E ⊢C
B

e′ : t.

Proof. By the fact that E ⊢ e : t implies E ⊢ e
C
 e′ : t for some e′ and applying

Lemmas 8.2.6 and 8.2.9 subsequently.

8.3 Operational semantics of JO+
?

This section provides a definition of dynamic semantics of JO?. The rules of the small-

step operational semantics of JO? are presented in Figure 8.10. The semantics is in

the form of a small-step CEK-like abstract machine, with a single-threaded store H,

binding environment B and explicit continuations K [79]. We have chosen this model

since it can be easily extended with new types of computations and expressions. A

continuation K is, informally, a serialized next step of computation:

Continuations K ::= mt | call(x : (t,σ),e,B,K) | fail(K)

In some sense, the notion of continuations in a Java-like language is similar to the

global program stack, which is the basis of another way to formalize the small-step

operational semantics for core Java [159].

The empty continuation mt corresponds to the empty control stack. which is the case

at the beginning and at the correct end of program execution. call(x : (t,σ),e,B,K)
describes the discipline of popping the stack when a method ends its execution and its

caller’s local environment B should be restored with a result assigned to a variable x.
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The variable x, to which the result of the method will be assigned, is annotated with

the declared return type t at the callee’s side and the local substitution σ to be applied

to t at the caller’s side. These annotations can be obtained during the type-checking

phase via the rule (T-CALL); they do not affect the dynamic semantics and are used

only in the soundness proof. Finally, fail(K) denotes the result of failing casts and

boundary checks.

To implement dynamic type casts, we first need a bit of machinery to relate syntactic

types with dynamic types extracted from the object heap during program execution.

We define a helper relation H; B ⊢ t ⋉ t ′ for type instantiation to compute the

dynamic type t ′ corresponding to a static type t in dynamic environments H and B

by instantiating owners as follows.

Definition 8.3.1 (Type instantiation).

∀ i ∈ 1..n qi =





k if





pi = xc. j

H(B(x)) = 〈t, . . .〉
k = owner j(t ↑ c)

dependent owner

pi if actual(pi) run-time owner

B(pi) if defined(pi) formal owner

? otherwise unknown owner

H;B ⊢ c〈pi∈1..n〉⋉ c〈qi∈1..n〉

The statement Ĥ ⊢ s⊳ t ′ in the premise of the rule (CAST-CHECK) might seem odd

since the check uses not pure subtyping but the “more defined than” relation on types.

However, there is nothing wrong since all owners of the left operand s are known and

to satisfy the relation all the actual owners of its “upper-left” mediator should match

actual owners of the type t ′. The semantics of type cast only cares about known owners

in t ′. For the sake of simplicity we do not handle the case B(x) = null in the rules.

The rule (BOUNDARY-CHECK) reflects the formulation of the ownership invariant.

The test ι ≺ k in the rule (BOUNDARY-CHECK) can be performed at run-time by

checking whether k is ι or some transitive owner of ι—this information is obtained

via the flattened heap Ĥ.

There is some space for design choices when formulating the last assumption of the

premise Ĥ ⊢ ι≺ k. For instance, we could have used the following statement instead:

H(ι) = 〈d〈pi∈1..m〉, . . .〉 k1 ∈ pi∈1..m

It is a stronger assumption since in this case an owner k1 of the object y is required to

be one of owner parameters of the object referred to by x. The static version of this
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assumption was formulated in the statement of the original OAD invariant by Clarke

et al. [36].

Indeed, this premise wold reflect better the typing rule (CLASS) but, in fact, we do

not need it to be so strong to preserve the OAD invariant. Surprisingly, ignoring other

owner parameters of y, as we did in the rule (BOUNDARY-CHECK), still ensures that

the invariant holds! The local order of owner parameters with respect to the primary

owner imposed by the rule (CLASS) is sufficient to preserve the global ownership

structure.

8.4 Type safety

In the concluding section of this chapter, we state the type safety of JO? as a corollary

of the correctness of the type-guided program translation with respect to program

typing and the type safety of the extended language JO+
? with type casts and boundary

checks. We also show that well-typed programs in JO+
? preserve the OAD invariant

dynamically. We do not formulate a progress theorem explicitly [212], focusing

mainly on the subject reduction and the OAD invariant preservation. We argue that

progress in JO+
? is ensured by the type system of the original calculus JOE1 by Clarke

and Drossopoulou [33], since for most of the statements of the typing relation ⊢C
B

,

excluding those for specific computations of JO+
? , form a subset of JOE1’s typing

relation ⊢ (with no effect annotations taken into the account). The proof of progress

for the newly introduced computations in JO+
? , i.e, dynamic type casts and boundary

checks, is trivial. A complete formal treatment with the of theorems from this section

is available in the Appendix C.

To recall how compilation in JO? is related with typing, we start from the following

proposition, which is a straightforward corollary of Theorem 8.2.12 and gives one an

indication about the programs that can be compiled:

Proposition 8.4.1 (Compilation and gradual typing). E ⊢ P;e iff ∃P′,e′. E ⊢
P;e P′;e′.

That is, well-formedness of a program guarantees its compilation.

To prove the preservation of the OAD invariant, Clarke and Drossopoulou introduce

the notion of a well-formed heap H with respect to the type annotations provided and a

well-formed context-binding pair E;B [33, Section 6.3]. Unfortunately, this approach

does not work well in the presence of gradual types, since unknown owners prevent us

from reasoning about the precise correspondence between heap objects and syntactic

owners.

The preservation of the OAD invariant in our calculus relies instead on three facts:
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1. The initial configuration of any program obeys the OAD invariant;

2. The subject reduction theorem guarantees well-formedness for a subsequent

configuration;

3. Making a step from any well-formed configuration obeying the OAD invariant,

preserves the invariant.

In the remainder of this section we formalize these statements.

One can notice that in the typing rules for JO+
? , the consistent-subtyping relation is

present only in the rule (T-CAST) for dynamic type casts, i.e., those inserted by the

compiler, as was described in Section 8.2. This phenomenon is typical for gradual type

systems: all relaxed assumptions about types are concentrated in rules for dynamic

check statements. This design of a type system results in the following interesting

property that a fully-annotated well-typed program in JO? will not result in the fail

continuation. At the same time, a program with allnot-necessary annotations omitted

may still end with fail continuation if one tries to assign some object o to inappropriate

field, which would cause to o to escape its owner’s context.

8.4.1 Typing dynamic environments

The operational formalism we use is an abstract CEK-machine with a heap, so we

need to separate environments to provide typing for heap objects and references in

stack frames. We define heap and stack environments as follows:2

Heap environments E ::= /0 | E , ι : c〈ki∈1..n〉 | E , ι≺ k

Stack environments E ::= nil | E :: E

In the remainder of this section, we assume that static typing environments E defined

in Section 8.1 contain only term and owner variables in their domain, but not heap

locations.

Figure 8.11 describes the relation of well-formed triples (E ,E;B ⊢ ⋄), equivalences

between static and dynamic owners (E ,E;B ⊢ p = p′) and well-formed continua-

tions (E ;E;B 
 〈e,K〉). Although the rule (BINDING-VALUE) for well-formed

environment-binding pairs might look a bit complicated, it is essential to handle

dependent owners correctly an run-time. In words, it ensures that the actual run-time

type of the value v is a proper subtype of the static type c〈σ〉 (modulo equivalences)

2Even though the judgments of the form ι≺ k in heap environments can be derived from the heap entries

ι : c〈ki∈1..n〉, we made them explicit in the environment in order to simplify the proofs.
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with dependent owners zc. j replaced by runtime owners of t, lifted via the helper

function t ↑ c to the level of a class c.

Figure 8.12 defines well-formed run-time objects (E ⊢ ι 7→ o : t), heaps (E ⊢ H)

and, eventually, well-formed program states (E ,E 
 〈H,B,e,K〉). The last clause

Ĥ ⇒ E in the premise of the rule (HEAP) is the key ingredient to define correct run-

time heaps. It states that the environment E provides no more information than can be

obtained from the flattened heap via the standard rules.

Definition 8.4.2 (Heap entailment). E ⇒ E ′ iff E , /0 ⊢ H for all statements H ∈ E ′

Note that well-formedness of an environment E is an important requirement.

Otherwise, we would end up with “well-formed” heaps that after flattening would

exhibit cyclic nesting chains (i.e., ι ≺ . . . ι′ . . . ≺ ι for some ι 6= ι′) thereby depriving

the definition of the owners-as-dominators invariant any sense.

A stack environment is well-formed if all its constituents are well-formed. The

definition of a well-formed run-time state (E ,E 
 〈H,B,e,K〉, Figure 8.12) assumes

the expression e to be well-typed (E ,E0;B ⊢C
B

e : t) and that environments E and

E are well-formed. The last clause ensures, in particular, that the heap H has no

ownership cycles (E ⊢ H), otherwise the well-formedness of the typing environment

E would be violated.

The following lemma describes the valid shape of an initial program state.

Lemma 8.4.3 (Initial state typing). E ,E;B ⊢C
B

e : t iff E ,(E :: nil) 
 〈H,B,e,mt〉 for

some initial heap H such that E ⊢ H.

Proof. By the rule (T-STATE), Figure 8.12.

8.4.2 Subject reduction

In this section we establish a subject reduction result for program states in JO+
? . That

is, making a step from a well-formed state yields another state that is also well-formed.

Definition 8.4.4 (Heap environment extension). An environment E ′ is an extension

of E (written E ′≫ E ) if and only if E ⊆ E ′.

Definition 8.4.5 (Stack environment evolution). We say that a stack environment E

transforms to a stack environment E
′

(written E։ E
′
) if one of the following holds:

• E
′
= E ′ :: E for some E ′ (method call);

• E
′
= (E0,x : t) :: tail(E) for some t and x /∈ dom(E0) (variable assignment);



TYPE SAFETY 133

E;B ⊢ ⋄ Well-formed environment-binding pair

(BINDING-EMPTY)

E ,E is well-formed

E ,E; /0 ⊢ ⋄

(BINDING-OWNER)

α≺ p ∈ E E ,E;B ⊢ k ≺ p

α /∈ dom(B)

E ,E;B,α = k ⊢ ⋄

(BINDING-VALUE)

E ,E;B ⊢ v : t z : t ′ ∈ E t ′ = c〈σ〉 z /∈ dom(B)
E ,E;B ⊢ t ≤ c〈σ⊎{zc. j 7→ owner j(t ↑ c)}〉

E ,E;B,z = v ⊢ ⋄

E;B ⊢ p = p′ Owners equality

(IN-BIND1)

E ,E;B ⊢ ⋄
α = k ∈ B

E ,E;B ⊢ α = k

(IN-BIND2)

E ,E;B ⊢ ⋄
z = ι ∈ B

E ,E;B ⊢ z = ι

(IN-BIND3)

E ,E;B ⊢ ⋄ E ,E;B ⊢ z = v

E ,E;B ⊢ z : c〈σ〉 E ,E;B ⊢ v : t

E ,E;B ⊢ zc.i = owneri(t ↑ c)

E ;E;B 
 〈e,K〉 Well-formed continuation

(TC-CALL)

E ,E0;B ⊢C
B

e : s E ,E0;B ⊢ s ⊳ t

∀p ∈ dom(σ) (E ,E0,B ⊢ p = p′)⇔ (E ,E1,B
′ ⊢ σ(p) = p′)

E ,E1,(x : fill(x,σ(t))),E;B′ 
 〈e′,K〉
E ;E0 :: E1 :: E;B 
 〈e,call(x : (t,σ),e′,B′,K)〉

(TC-MT)

E ,E;B ⊢C
B

e : t

E ;E :: nil;B 
 〈e,mt〉

(TC-FAIL)

E ;E;B 
 〈e,K〉
E ;E;B 
 〈e, fail(K)〉

Figure 8.11: Well-formed bindings and continuations, owners equality.
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E ⊢ ι 7→ o : t Well-formed object

(HEAP-OBJECT)

o≡ 〈c〈σ〉, f 7→ v〉
E ; /0 ⊢ c〈σ〉 E ; /0 ⊢ ι≺ owner(c〈σ〉)

E ; /0 ⊢ v f : s E ⊢ s ⊳ σι(F c( f )) ∀ f ∈ dom(F c)

E ⊢ ι 7→ o : c〈σ〉

E ⊢ H Well-formed heap

(HEAP)

E is well-formed

ι : t ∈ E E ⊢ ι 7→ o : t

∀ι 7→ o ∈ H Ĥ⇒ E

E ⊢ H

E ,E 
 〈H,B,e,K〉 Well-formed state

(T-STATE)

E ⊢ H E ;E;B 
 〈e,K〉
E ;E 
 〈H,B,e,K〉

Figure 8.12: Well-formed objects, heaps and states.

• E
′
= (E1,x : t) :: tail(tail(E)) for some t and x /∈ dom(E1) (method return).

The functions head and tail are defined for stack environments as standard ones for

lists. We use the notation E0 = head(E), E1 = head(tail(E)) etc.

Theorem 8.4.6 states the subject reduction invariant. The type preservation result is

specific for JO+
? because of the premise containing ⊳ in the rule (HEAP-OBJECT).

This is the way the aliasing is controlled in JO+
? : an object aliased by a field conforms

to the signature of the field it is referred to by (in terms of concrete owners). It is worth

noticing that this is not always the case in JO?.

Theorem 8.4.6 (Subject reduction in JO+
? ). If e ∈ Expr in JO+

? , S = 〈H,B,e,K〉,

E ,E 
 S for some well-formed E ,E and S ⇒ S ′, then E ′,E
′

 S ′ for some well-

formed E ′,E
′

such that E ′≫ E and E։ E
′
.

Proof. See Section C.2 of Appendix C for a detailed proof (Theorem C.2.16).
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8.4.3 OAD invariant preservation

Theorem 8.4.7 ensures that for all well-formed states, if it is possible to make a next

step in the operational semantics, then the OAD invariant is preserved for the heap

component of the resulting state.

Theorem 8.4.7 (OAD preservation in JO+
? ). If e ∈ Expr in JO+

? , S = 〈H,B,e,K〉,
E ;E 
 S , OAD(H) and S ⇒ S ′ for some S ′ = 〈H ′, , , 〉 then OAD(H ′).

Proof. See Section C.2 of Appendix C for a detailed proof (Theorem C.2.17).

8.4.4 Static type safety of JO?

In order to characterize static type safety of JO+
? , we need to correctly handle all

possible execution scenarios. We define the predicate NPE for null-pointer error on

states to consider the result of dereferencing fields pointing to null.

Definition 8.4.8 (Null-pointer error states). The state S = 〈H,B,e,k〉 is stuck due to

dereferencing a null-pointer (NPE(S )) iff e=D[y] for some y and B(y) = null, where

null evaluation contexts D [155] are defined below:

D ::= let x = [ ].m(y′) in e | let x = ([ ]. f = y′) in e | let x = [ ]. f in e

The NPE-states are terminal for execution traces in the semantics of JO?/ JO+
? , since

there are no transition rules for them. They could be handled statically by using

another pluggable type system, such as one described in [77]. We avoid addressing

NonNull-annotations and corresponding static safety results in this work.

Definition 8.4.9 (Initial state). Assume P;e to be a program in JO+
? , and that

expression e has no free variables (except this), H = {world 7→ •}, B = {this 7→
world} is an initial binding environment. Then the initial configuration of P;e is

init(e) = 〈H,B,e,mt〉.

Following [36], we introduce a singleton class World with no owner parameters to

represent the unique object corresponding to the owner of world-annotated instances,

and for the completeness we need to provide its type. Taking E = {world : World}
and E = {this : World} :: nil, we obtain /0 ⊢C

B
P;e⇒ E ,E 
 init(e) by Lemma 8.4.3.

Theorem 8.4.10 ends our chain of safety statements.

Given a well-typed program in JOE1, it can be translated to a ⊢C
B

-typed program in

JO+
? . The latter is then embedded into an initial state S via Definition 8.4.9, and

S is well-formed by construction. Finally, a sequence of steps from the well-formed
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initial state leads to a well-formed state (Theorem 8.4.6) again, and each step preserves

the OAD invariant (Theorem 8.4.7). The following result ensures that every well-

compiled program will either not terminate, or execute to the end state, or will fail

because of dynamic type cast or boundary check failure.

Theorem 8.4.10 (Static type safety of JO?). If ⊢ P;e P′;e′ and init(e′)⇒∗ S , then

one of the following statements holds:

(a) S = 〈H,B,v,mt〉 for some H,B and v (final state);

(b) NPE(S ) (null-pointer error);

(c) ∃S ′ : S ⇒ S ′ (progress);

(d) S = 〈H,B,b, fail(K)〉, where b = 〈t〉y or b = z. f ← y for some H,B, t,y,z, f

and K (OAD violation attempt).

Proof. Follows immediately from Theorems 8.2.12, 8.4.6 and 8.4.7 and well-

typedness of the initial program state.

Combined Theorems 8.2.12, 8.4.7 and 8.4.10 state that the provided gradual type

system ensures that

(a) During the execution of a partially-annotated compiled program no ownership

invariant will be violated, but a type cast of boundary check failure may occur

due to the dynamic invariant violation.

(b) A fully-annotated well-typed program will be executed until the final or null-

pointer error state with no ownership invariant violation, or will not terminate.



Chapter 9

Implementation and
Evaluation

The gap between theory and practice is

not as wide in theory as it is in practice.

Author unknown

In this chapter, we present a prototype implementation of the front-end of a translating

compiler for gradual ownership types and discuss the main challenges that occurred

and design choices made during the implementation of the compiler. We also provide

a short report about the migration of several classes from the Java Collection Library

to support ownership types and the owners-as-dominators invariant.

9.1 Implementation

A prototype compiler for Gradual Ownership Types has been implemented using the

JastAdd framework as an extension of the JastAddJ compiler for Java [74]. Thanks

to the aspect-based model of JastAdd, no original implementation code needed to be

changed. The extension is about 2,600 lines of code, not including tests, blank lines

and comments. A prototype is available on GitHub:

http://github.com/ilyasergey/Gradual-Ownership

137
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Although generics were introduced in Java 5, we have chosen Java 1.4 as the host

language for the sake of simplicity. Parametric polymorphism is an orthogonal feature

to ownership parametrization, although recent research has shown that they can be

unified [170].

The type analysis and type-directed translation are implemented as attributes in the

reference attribute grammar framework [74]. The type analysis is built on top of

the standard Java type-checking algorithm, which is augmented to handle ownership-

parametrized types. The compiler uses several default conventions as well as manifest

ownership [37] to seamlessly embed the raw Java code into an ownership-aware

environment. Similarly to the JO? calculus, class and interface ownership parameters

can be used to indicate ownership statically, as well as method final parameters, local

variables and class instance fields. To be parametrized by some owners, a class or

an interface requires all its super classes and the interfaces it implements to carry

ownership parameters. This is to ensure that no casts of ownership-parametrized types

to raw types are allowed, since it could lead to a violation of the OAD invariant [170].

The only exception to this rule is the handling of Object class. We assume that

two Object classes exist: one is ownership-parametrized and the other is owned

by world and considered as a special case of the first. If a class does not extend

the standard, non-parametrized version of Object explicitly, it is allowed to declare

ownership parameters. Classes that inherit from parametrized classes or interfaces but

do not declare ownership parameters are implicitly assumed to be owned by world,

which is made the owner of their supertypes.

The developed compiler provides hints for easily migrating to ownership types by

emitting static error messages and warnings. A static error message is emitted

whenever necessary annotations are omitted. A warning message is displayed

whenever dynamic casts or boundary checks need to be inserted.

9.1.1 Program transformation

We discuss the implementation of the particular parts of the translation using a familiar

example, depicted in Figure 9.1.

The type-directed translation is implemented as a source-to-source transformation

by erasing ownership types, augmenting classes with fields for owner parameters

and inserting run-time checks into the code of expressions. The compiler may also

need to modify code that interacts with owner-parametrized classes, i.e, some client

applications might need to be recompiled. Therefore, the interoperability of our

approach with compiled libraries is still an issue to be addressed in the future work.

The result of the type-directed translation with some implementation details omitted

is shown in Figure 9.2.
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class E<P> {

D d = new D<P>();

}

class D<owner > {

E<owner > e;

void use(D<owner > arg) {}

void exploit(E<owner > arg) { this.e = arg; }

void test() {

final E e = new E<this>();

final D d = e.d; // boundary check required

d.use(d);

d.exploit(e); // dynamic cast required for e

}

}

Figure 9.1: A partially-annotated program with gradual ownership types.

9.1.2 Implementing ownership parameters

To enable dynamic checks of the ownership structure, auxiliary final private fields to

store the ownership parameters of a class are generated during the translation. These

fields are initialized immediately in the primary constructor of the class. In the case

of a call to a super-class constructor, the initializers for ownership fields are inserted

right after the super() statement. The compiler will also change the signatures of

all constructors of the processed class: their parameter lists will be extended in front

with additional parameters for owners.

The generated private owner fields and utility methods are placed at the beginning

of each class’ body. After the translation ownership parametrization is erased. For

instance, the classes E and D in Figure 9.2 now have private fields P and owners

to represent owners, respectively. We do not alpha-rename ownership parameters in

order to avoid name conflicts with actual fields, but provide necessary checks for name

clashes instead. The generated method __owner() in each case is used to retrieve the

primary owner of a class.

9.1.3 Implementing dependent owners

Instead of transforming Java programs into ANF, the compiler expresses dependent

owners in terms of source code locations (i.e., encoded positions in a source file) cor-

responding to the expression that computes the owned object. For example, consider

the code in Figure 9.1. The expression e.d in the statement final D d = e.d is
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class E {

// Generated owner fields and utility methods

final private Object P;

public Object __owner(){ return E.this.P; }

public E __castAs_E(Object P) {...}

public D __safeUpdate_d(D o) {...}

// Inner utility method for boundary checks

private boolean __insideOwnerOf(Object o) throws ... {...}

// Transformed class body

E(Object P) {

super(); this.P = P;

}

D d = new D(E.this.P);

}

class D {

// Generated owner fields and utility methods

final private Object owner;

public Object __owner() { return D.this.owner; }

public D __castAs_D(Object owner) {...}

// Inner utility methods for null-pointer safety

private static D D_put(D _arg , Map map, String loc) {...}

private static E E_cast(E _arg , Object P) {...}

// Transformed class body

D(Object owner) {

super(); this.owner = owner;

}

E e;

void use(D arg) { }

void exploit(E arg) { this.e = arg; }

void test() {

final Map _depMap = new HashMap();

final E e = new E(D.this);

final D d = D_put(e.d, _depMap , "11_19");

d.use(d);

d.exploit(E_cast(e, _depMap.get("dep_11_19_D_owner")));

}

}

Figure 9.2: The result of translation of the code from Figure 9.1. Fully-qualified class

names and bodies of the generated utility methods are omitted for the sake of clarity.
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typed with a dependent owner due to the absence of ownership parametrization of a

field d in the class E. The “label” assigned to this expression is retrieved from its

position as 11 19 (Figure 9.2).

The utility static method for maintaining a local map of dependent owners, D_put(),

helps to deal with owners of anonymous expressions, which can be used as dependent

owners. The operation D_put() in Figure 9.2 binds the dependent owner with the

position loc in the locally-allocated map, represented by a passed argument map with

the owner of the receiver instance object of type D and returns the object of type D

unchanged. This method is implemented as a local static method in order to deal

with cases where the expression with producing a dependent owner is null, so the

recording of a dependent owner will not lead to a null-pointer exception. In the case

of non-null object, the corresponding dependent owner can be later retrieved using

the standard Map’s method get().

We rely on the computational semantics of Java, so no dependent owner can be

requested before it has been initialized. Moreover, if the expression at some location

has been recalculated, its dependent owners will be also recalculated.1

Any expression in the program can give rise to dependent owners, which potentially

can be used in further checks. To avoid having to manage all possible source locations,

the compiler runs a simple static analysis to determine which dependent owners might

be used in the current context. If no dependent owners are involved, no local map of

dependent owners will be generated. This is the case, for instance, in methods use()

and exploit() of the class D. The class E does not have a method similar to D_put(),

because there are no methods operating with dependent owners in E.

9.1.4 Implementing casts and boundary checks

The cast operation is class-specific and is implemented via methods like __castAs_E()

and __castAs_D() in Figure 9.2. These methods take the expected static owners and

perform a dynamic check of the ownership structure of the object using its owner

fields. Local static helper methods such as E_cast() are generated in order to provide

succeeding casts for the null reference. Figure 9.3 provides details of the generated

implementation of a method __castAs_E() of the class E.

A run-time exception containing debugging information about owners will be thrown

if a cast fails, otherwise the same object will be returned. The class-specific cast

operation implemented this way is polymorphic, however, because of the lack of

the parametric polymorphism and covariant method result overriding in Java 1.4, the

1Note that mutable variables cannot be used as qualifiers for dependent owners, so the result of the

translation refers to the location of the last variable reference instead. In contrast, for final variables owners

are inferred.
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public E __castAs_E(Object P) {

final Object _P = E.this.P;

if (_P.equals("World") && P.equals("World")) {/* it’s ok */}

else if (P.equals("UnknownOwner")) {/* it’s ok */}

else if (P != _P) {

throw new Error("Owner parameter equality error: " + debugInfo(P));

}

return this;

}

Figure 9.3: Generated machinery for the type cast in the class E from Figure 9.2.

utility cast-methods are implemented via massive code duplication in the inheriting

classes.

The machinery for boundary checks is implemented in a similar way. Utility methods

are generated only for updates of the fields that do not specify their primary owners.

An example of a boundary check is the method __safeUpdate_d() of the class E in

Figure 9.2. The details of the generated implementation is shown in Figure 9.4. In

order to check the transitive ownership when updating a field, we make use of Java’s

reflection mechanism to retrieve primary owners by using the method __owner() and

calling the owner’s method __insideOwnerOf().

There are no boundary checks methods in class D as it specifies the primary owner of

its field e. Ownership-parametrized fields with unknown owners may occur even in

world-owned classes. Therefore, the translation will affect them as well.

9.1.5 Supporting inner classes via manifest ownership

In Java a non-static inner class is nested in the body of another class and contains an

implicit reference to its enclosing instance (the outer instance). Although private inner

classes enable some instance-specific subroutines to be encapsulated, an instance of

such a class can be leaked and referred to through a field by another object outside of

its outer instance, which, again, may break the desired invariant. There are multiple

suggestions on the problem of interoperation of inner classes and different ownership

policies. For example, a solution proposed initially by Clarke [37] and elaborated

later by Boyapati et al. [23] allows inner classes to violate the owners-as-dominators

invariant. The proposed variant of ownership types allows inner class objects to

have privileged access to the representations of the corresponding outer class objects,

which, in principle, makes it possible for an inner class to escape its outer instance’s

scope by being assigned to an external reference. This leads to a weaker statement of
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public D __safeUpdate_d(D o) {

if (o == null) return o;

boolean result;

try { result = this.__insideOwnerOf(o); }

catch (Exception e) {

throw new Error("Unexpected error in method __insideOwnerOf()");

}

if (result) {

return (this.d = o); // perform update and return the result

} else {

throw new Error("Ownership invariant violation: " + debugInfo(o));

}

}

// An utility method to check the nesting relation ≺
private boolean __insideOwnerOf(Object o) throws ... {

java.lang.reflect.Method m;

try {m = o.getClass().getMethod("__owner", new Class[0]);}

catch (NoSuchMethodException e) {

/* o’s owner is world (implicitly) */

return true;

}

Object oOwner = m.invoke(o, new Object[0]); // get o’s owner

/* Reflexivity */

if (oOwner == this) return true;

/* o’s owner is world (explicitly) */

if (oOwner.equals("World")) return true;

/* my owner is o’s owner */

Object myOwner = this.__owner();

if (myOwner == oOwner || myOwner == o) return true;

java.lang.reflect.Method m1;

try {m1 = myOwner.getClass().getMethod("__owner", new Class[0]);}

catch (NoSuchMethodException e) {

/* o’s owner is not world, but mine is world */

return false;

}

/* Transitivity */

java.lang.reflect.Method insideOwner;

try {

insideOwner = myOwner.getClass().getMethod("__insideOwnerOf", ...);

} catch (NoSuchMethodException e) { return false; }

Object[] ownerArgs = new Object[]{oOwner};

if (insideOwner != null) {

// transitivity

return ((Boolean)insideOwner.invoke(myOwner , ownerArgs));

}

return false; // failed boundary check

}

Figure 9.4: Generated machinery for the boundary checks in the class E from

Figure 9.2.
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the ownership invariant, so the encapsulation theorem by Boyapati et al. becomes: x

can access an object owned by o only if:

1. x≺ o, or

2. x is an inner class object of o.

In contrast with this proposal, we are interested in keeping the traditional ownership

invariant (see Definition 8.1.2) for inner classes. Considering owner parameters

as permissions to refer to owner objects, one can notice that in instance methods

and fields of a class, the following permissions are accessible: this, world and

ownership parameters. All of them correspond to the immutable references within the

class body. What one expect to have is a way to pass these permission to the body of

an inner class.

One possible solution to adapt the ownership type system to handle inner classes

would be to implicitly assume that inner classes are located within the same

encapsulation boundaries as their outer class. This solution, though, would impose

too much of restriction on inner class instances as they would be implicitly ownership-

parametrized and restricted to some particular encapsulation boundary, which might

have not been a programmer’s intention. Instead, we make the outer instance’s

ownership parameters legal in the scope of an inner class if the programmer declares

them in the header of an inner class as owner arguments explicitly, i.e., by a sort of

closure-conversion. This is the way to prevent an inner class carrying no ownership

parameters from wrapping an object, owned by its outer instance, and carrying it away

as in the following code:

class G<owner > {

G<this> myOuterField = new G<this>();

class F {

G<this> myInnerField = myOuterField;

}

/* G.this-owned reference escapes G’s encapsulation boundary

through an inner class instance. */

F getF() { return new F(); }

}

However, most of the time one does not intend an inner class to be parametrized, since

it is often intended to be used only within its outer class’ body and, thus, deal with

only one parametrization, imposed by its outer instance ownership structure. To solve

this design problem, we employ manifest ownership, a mechanism allowing one to

declare owned classes without explicit owner type parameters [37, 170]. A manifest

class does not have an explicit owner parameter, rather the class’s owners are fixed, so



IMPLEMENTATION 145

interface Iter <P, Q> {}

class D<owner > {

class MyItr implements Iter <D.this, D.this.owner> {

D<D.this.owner > myD = new D<D.this.owner >();

}

MyItr getItr() { return new MyItr(); }

void main() {

final D d = new D<this>();

Iter <d, this> iter = d.getItr(); // ok

D<this> d1 = iter.myD; // ok

}

}

Figure 9.5: The definition of an inner class employing manifest ownership (greyed).

The owner D.this refers to an outer instance of the inner class MyItr. The owner

D.this.owner refers to an outer instance’s ownership parameter owner.

all the objects of the class have the same owners. In the case of inner classes, the outer

instance’s parameters can be used to declare the inner class’ manifest ownership.

In the current implementation the only way to supply a manifest parametrization for an

inner class is to make it extend an owner-parametrized class (or implement an owner-

parametrized interface). Figure 9.5 provides an example of employing the manifest

ownership for inner classes. We are using qualified names to refer outer instance’s

this and owner parameters. The MyItr class is implicitly parametrized by its outer

instance and outer instance’s owner, thanks to its superclass parametrization (greyed

in the code fragment above). The result of this parametrization is illustrated by the

body of the method main() in Figure 9.5. Thanks to dynamic aliasing and manifest

ownership of the class MyItr, the type Iter<d, this> is a valid supertype of the

type d.MyItr in a context where d is an immutable variable referring to an object of

type D<this>. Therefore, the assignment Iter<d, this> iter = d.getItr() is

well-typed.

9.1.6 Gradual ownership types and inheritance

In the current implementation, we provide a syntactic sugar for subclassing, assuming

non-parametrized subclasses of parametrized classes to be owned by world, i.e.,

implementing a form of manifest ownership as follows:
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class S<owner , outer > { ... }

/*
Implicitly:

class T extends S<world, world> { ... }

*/

class T extends S { ... }

The same default convention is provided for extending interfaces.

Following the Liskov Substitution Principle, we implement the following policy with

respect to the return types overridden methods: a type with known owners can be used

as a substitute for a type with corresponding unknown owners, but not vice versa. This

is a slightly weaker policy comparing with the one described by the rule (CLASS),

which requires equality of ownership structures in methods’ return types (modulo

class-specific substitutions). In fact, the covariant subtyping of method return types

with respect to the order ⊳ is still sound with respect to OAD preservation, so we

allow it.

Let us consider the following example of valid method overriding:

// ⊳-covariant method return type overriding

class A<aOwner > {

A<?> foo(A<?> param) { ... }

}

class B<bOwner > extends A<bOwner > {

A<bOwner > foo(A<?> param) { ... } // ok

}

class C<cOwner > extends B<cOwner > {

A foo(A<?> param) { ... } // return type is A<cOwner>

}

Method foo() in the class B is overridden by providing a refined owner in the return

type: bOwner. As syntactic sugar, since the parametrization of the return type A of

method foo() in class C is omitted, its owner is inferred based on the inheritance as

cOwner. In contrast, the following definition is considered as invalid:

class D<dOwner > extends B<dOwner > {

// ⊳-contravariant method return type overriding

A<?> foo(A<?> param) { ... } // error

}

There is no variance with respect to method parameter owners: the correspondence of

owners of parameter types should be strict modulo class-specific substitution. If the

overridden method’s parameter type has the same class, but is more defined than (⊳)

the parameter type in the same method of the superclass, a necessary dynamic type
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cast will be missing, which might lead to violation of the invariant, as in the following

example:

class E<eOwner > extends B<dOwner > {

// ⊳-covariant parameter type overriding

A<eOwner > foo(A<eOwner > param) { ... }

}

...

// p and q are arbitrary owners

A<p> e = new E<p>();

A<q> a1 = new A<q>();

// Type-correct, but missing

// a dynamic cast insertion to specify eOwner of a1

e.foo(a1);

In principle, we could allow one to use less defined owners in types of overridden

methods (e.g., ? instead of eOwner), as it would be consistent with the standard

subtyping of functions, which assumes contravariance in parameter types. However,

this would complicate the type checking procedure and conflict with the typing rules

of Java 1.4, which does not allow contravariant method overriding, so we did not

implement this option in the current prototype.

It is important to note that the variance issues described above are orthogonal to

the variance of types with respect to nesting of known owners (≺). Following the

observation from the work of Clarke and Drossopoulou [33], we prohibit known

owners to vary in corresponding types of subclasses, as this would make the type

system unsound.

9.1.7 Current limitations

The current prototype implementation of gradual ownership types for Java 1.4

experiences a number of limitations with respect to language features. These

limitations are the subject of the future work.

• Ownership parametrization of arrays is not supported. Intuitively, arrays as

simple containers should be parametrized by two ownership parameters [170],

in the spirit of the example with a single-linked list (Figure 7.1). However, doing

so would require us to make changes in the representation of arrays on the level

of a virtual machine, and we wanted to keep our translating compiler operating

on the level of the source code.

• Current implementation does not allow one to define owner-polymorphic

methods [37]. The system also does not make use of existential owners [26,
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130]. However, the interplay between existential and gradual ownership

types is beyond the scope of this work. The lack of owner-polymorphic

methods and existential owners prevents from the smooth migration of the code

implementing the logic of a factory pattern [90]. As a possible workaround, one

can pass an additional immutable parameter to be used as a owner thanks to the

dynamic aliasing. Of course, world is a valid owner in static methods.

9.2 Experience

Key libraries for recurring data structures should be

specifically studied in terms of their encapsulation

properties and interconnection structure.

TOBIAS WRIGSTAD and DAVE CLARKE [214]

How does one empirically validate a type system? A natural answer to this question

is to use it for annotation and type-checking of a large existing codebase and measure

how many components can be given types [202].

However, one more important aspect should be taken into account. Originally

proposed gradual types by Siek and Taha [188] help to reduce the amount of casts

in dynamically-typed languages. In contrast, gradual ownership types introduce extra

dynamic checks, imposed by user-provided ownership annotations. As was shown

at the end of Chapter 8, a fully-annotated program would not suffer from execution

overhead. One may still wonder what the drawback in terms of performance is, when

a program is annotated only partially, for instance, when only a minimal amount of

annotations is provided in order to declare the ownership policy.

We provide quantitative answers to the questions about applicability of gradual

ownership types and the performance overhead they impose by incrementally porting

several classes from the Java Collection Framework (JCF) from Java SDK version

1.4.2 to use Gradual Ownership Types.

Most traditional collection classes that contain linked data structures implement

internal logic to handle their entries in a way similar to the example in Figure 7.1.

To design a case study for our experiment, we assumed that internal entries should be

dominated by their outer collection instances, so they are not exposed to the external

objects with the only exception of iterators [6, 23]. This makes collections with

entries a good candidate for ownership types and the owners-as-dominators policy.

Our intention was to ensure the OAD invariant holds for inner classes such as Entry
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Class(es) Files LOC
Minimal annotations Maximal annotations

Ann Ratio Ovhd Ann Ratio Ovhd

LinkedList 6 2162 17 0.007 91% 34 0.015 0%

TreeMap 3 881 7 0.008 32% 28 0.03 15%

LinkedList
8 3037 23 0.007 48% 61 0.02 8%

TreeMap

Figure 9.6: Results of annotating several classes from Java Collection Framework of

Java SDK version 1.4.2 with gradual ownership types.

of collection classes such as LinkedList and TreeMap, without changing the existing

code, but only by adding annotations.2 The questions we were trying to answer are:

1. How many annotations (i.e., lines of code changed) are needed minimally to

declare a desired policy with respect to the OAD invariant?

2. What is the execution overhead with added annotations in comparison with a

program with no annotations at all?

3. How many annotations are needed for full static checking? and

4. Is it possible to fully migrate a set of classes (i.e., provide a static guarantee of

invariant preservation) by adding annotations only?

Figure 9.6 provides a table with results of our experiments, reporting on the number

of added annotations, affected lines of code and performance overhead, thereby

answering the questions above.

The analysed code base consists of 46 source files, comprising about 8,200 lines of

code, not including blank lines and comments. All these files were analysed by a

compiler, however, only a few of them were actually changed by adding ownership

annotations, as reported in the table with the results (the column “Files”). The

experiments with strongly-encapsulated entries were made for two collection classes:

LinkedList and TreeMap, separately and together. The first three columns provide

a name of a collection class(es) instrumented with annotations, a number of affected

files in a JCF (i.e., those requiring adding annotations), and the total number of lines

2A curious reader may wonder, why not provide ownership types to collection themselves, as, for

example, in our running example with a single-linked list (Figure 7.1). We decided not to do so, as this

migration would require recompiling the whole JCF library with new constructor signatures, which would

make it unusable for any client code. In contrast, the changes required to encapsulate entries are rather

modular.
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of code in affected files. The next group of three columns presents the results for

the minimal amount of annotations necessary to declare the encapsulation invariant.

Column “Ann” provides the number of added annotations, Column “Ratio” represents

a fraction Ann/LOC, and Column “Ovhd” reports on the additional execution

overhead with respect to non-annotated code based on a series of extensive read/update

benchmarks. The final group of three columns reports on the result of providing the

maximal possible amount of annotations in order to get as close as possible to the

static guarantee of the OAD invariant preservation.

Below, we discuss some important aspects of the migration, discovered while

providing ownership annotations for collection classes LinkedList and TreeMap.

LinkedList

The minimal amount of annotations to ensure the OAD invariant for instances of the

inner class Entry of LinkedList is 17, comprising 7 annotations to the LinkedList

class itself and 10 in five other classes. Class Iterator was owner-parametrized to

preserve the OAD invariant, as the inner class ListItr has access to entries of the list.

The correctly annotated class ListItr is defined as follows; the iterator is owned by

the instance of LinkedList (employing manifest ownership):

class ListItr implements ListIterator <LinkedList.this>

The ownership argument LinkedList.this stands for the reference to the outer

instance of the inner class ListItr.

We implemented a series of simple benchmarks consisting mostly of multiple updates

and iterations through a list. These reveal that the minimal annotations cause the

average execution time per update to double (so the 91% overhead in Figure 9.6),

mainly because of boundary checks involving use of reflection in order to examine

the ownership structure of objects every time a list update was performed. However,

the implementation of LinkedList in JCF allows full annotation. By adding 17 extra

annotations in the LinkedList class (i.e., 34 annotations in total), one can reach zero

execution overhead and full static preservation of the OAD invariant.

TreeMap

For the best result in terms of performance and the invariant preservation the

TreeMap class requires 28 annotations, consisting of 26 annotations in the class

itself and two extra annotations in the interfaces Iterator and Map respectively.

Because of the static factory method buildFromSorted, which also operates on

entries reconstructing a map, it is impossible to provide a fully static ownership
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guarantee without modifying the original code. The possible solutions would be

making the method non-static, or by providing an extra final method parameter as

an alias for the potential owner, relying on the dynamic aliasing. Another alternative

solution is to use owner-polymorphic methods [35], which are not supported in

the current formalism. We tested the performance overhead by employing a set of

stress benchmarks involving multiple updates and iterations. Because of incomplete

annotation, in the presence of some non-avoidable casts for instances of entries created

within the method buildFromSorted, the annotated TreeMap class still exhibits a

small execution time overhead. This explains the 15% and 8% slowdowns reported in

the last column of the table in Figure 9.6.

Detected possible object ownership leaks

Our compiler has helped to detect a place in the Java Collection Framework where a

possible “leak” of the inner Entry classes with respect to the OAD invariant occurs.

The class ResourceBundleEnumeration declares a package-protected field of type

Iterator. Although this field is initialized with the iterator of some Set instance in

the constructor, it can be reassigned elsewhere in client code, which may lead to an

OAD invariant violation.

class ResourceBundleEnumeration implements Enumeration {

Set set;

Iterator iterator;

Enumeration enumeration;

ResourceBundleEnumeration(Set set, Enumeration enumeration) {

this.set = set;

this.iterator = set.iterator();

this.enumeration = enumeration;

}

// other methods

}

In fact, this issue occurs because the relation between the objects referred by set

and iterator is not captured in their type signatures. As a result, one can write the

following code, which allows an arbitrary client of a ResourceBundleEnumeration

instance to access the stored iterator, which clearly violates the OAD invariant:



152 IMPLEMENTATION AND EVALUATION

Enumeration enum = ... ;

Set set = ... ;

ResourceBundleEnumeration rbe

= new ResourceBundleEnumeration(set, enum);

Iterator wildIterator = rbe.iterator();

// use wildIterator

This problem could be remedied by making the field of type Set final and using

it as a dynamic owner in the type of iterator. Our compiler would generate the

code with necessary dynamic checks for updates of this field to enforce the invariant

dynamically. However, to statically ensure OAD guarantee, significant refactoring

would be required.

Concluding this chapter, we summarize that a relatively small number of necessary

annotations and a reasonable performance overhead for non-fully annotated programs

in our case study (Figure 9.6) make us believe that the current implementation of

gradual ownership types can be applied to migrate large code bases to ownership types

without significant changes in the code.
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Discussion and Related Work

In this chapter, we provide a discussion how to adapt the present approach for gradual

ownership types to other ownership disciplines from the literature. We also provide a

survey of related work, enumerating a series of techniques similar to the approach we

have taken, namely, dynamic ownership and ownership inference.

10.1 Discussion

Several design choices were made in our approach to gradual ownership types. This

section discusses other alternatives.

10.1.1 Alternative ownership disciplines

In our work we used the owner-as-dominator discipline as a base for applying the

gradual technique. However, most of existing parametric ownership disciplines, such

as multiple ownership [27], ownership domains [6], external uniqueness [35] or

owners-as-ombudsmen [160], can be “gradualized” using a similar approach with

no changes to the part related to type cast insertion. The difference between most

of existing disciplines lies in the encapsulation invariant that is enforced and the

relationships between owners and ownees that need to be maintained. In the present

work, the encapsulation invariant is ensured using the boundary checks; other systems

may require specific modifications of the definitions of the consistently nesting

relation, the helper function specified and the runtime semantics of boundary checking

according to the object encapsulation policy. For instance, in the case of ownership

153
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domains [6] one can think of run-time checking whether an object belongs (perhaps,

transitively) to a particular domain.

10.1.2 Required annotations and default conventions

The present approach required that ownership parameters be specified at all allocation

sites. Hence object owners are all known at creation time. We decided on this

requirement after analyzing existing approaches to ownership inference [92, 143].

All these approaches either require that some initial information on the ownership

structure of objects is provided (i.e., the parametrization and the actual annotations)

or they yield results that are hard to deal with (e.g., excessively large number of

parameters per class or only trivial annotation schemes). The explanation of this

phenomenon is simple: by specifying annotations, the programmer specifies her vision

of the ownership structure of the object.

Two other possibilities were considered.

• The first approach was to annotate field and method types, thereby annotating

the interface of the object. This approach unfortunately creates a significant

overhead in the implementation, which would require run-time tracking of

object aliasing: whenever an object owner becomes known, for example, by

assignment into a field whose owners are specified, all other aliases to that

object need to be checked for validity. Furthermore, the ownership of objects

with the same owner as the assigned object also need to be updated—objects can

have the same owner, even if this owner is not known; consider for example, the

Entry objects in a linked list. The required run-time modifications are likely to

introduce too much run-time overhead. This problem can be partially remedied

by employing an advanced escape analysis [30], however, in the presence of

multiple factory methods the impact of the analysis will be significantly reduced.

Nevertheless, this approach is similar to what occurs in dynamic ownership [94].

• The second approach was to allow annotations to occur anywhere in the code.

This approach is clearly best suited for programmers, but it clearly also suffers

the same problems as annotating just the interface.

In principle, it is easy to implement a default convention following the design principle

we have taken, according to which a objects instantiated at non-annotated allocation

sites will be automatically owned by world. However, the current implementation

does not feature this syntactic sugar.
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10.1.3 Treatment of libraries

In order to ensure that library code correctly preserves the OAD invariant, our

approach requires that certain classes be rewritten to enable client code to be

sufficiently flexible. At the very least, a new parametrized definition of Object is

required so that other classes can be parametrized. Our approach essentially assumes

that any library code that needs to be owner-aware must be rewritten, but rewriting the

library is a significant overhead, the kind which gradual typing aims to avoid.

Three alternative approaches to deal with libraries are possible.

• One is to ignore leaks of an object into ownership-unaware code, and assume

a weaker ownership invariant that amounts to saying that an object is protected

only within code compiled by our compiler, thinking of libraries as of “black

holes”. With this more pragmatic approach, library code can more gradually

be converted to owner-aware code and trusted library code can “safely” be

ignored. From the theoretical perspective this approach is promising, as one

could elaborate a notion of blame [207] with respect to ownership types along

with the corresponding principle well-type code cannot be blamed for OAD
violation.

• A second alternative is to implement the byte-code instrumentation procedure

that inserts the run-time checks to monitor field assignments in the code. In

more detail, if an object is passed to a library, it should be passed in a

way it will be never assigned to a field of an external (with respect to its

owner) instance. Although this approach is feasible in practice, it is likely to

introduce a big performance overhead, since any field update within libraries,

possibly involving owned objects, should be checked in order not to violate the

ownership invariant.

• The third approach is to perform a static analysis of library (byte)code along

the lines of Ma and Foster’s work [131] to infer possible ownership annotations

for libraries. However, it might be hard to capture real ownership patterns by

analyzing a standalone library with some assumptions about a context it might

be used in, and the result of the analysis can be either too optimistic or too

restrictive (see Section 10.2.4 for the survey of results in ownership inference).

10.1.4 Implementing boundary checks

In order to preserve the OAD invariant, boundary checks occur whenever an object is

stored in a field of a type with an unknown primary owner of another object. An

alternative look to a class field that does not specify its primary owner is that it
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does not care what the owners are. One can thereby reformulate the OAD invariant

(Definition 8.1.2) in a way that only owner-annotated fields participate in the definition.

This would allow expensive boundary checks to be omitted, keeping only dynamic

casts, at the expense of a weaker invariant. Such a system may be worth further

investigation.

10.2 Related Work

Multiple approaches have been proposed in the last decade in order to bridge the gap

beween the dynamically and statically typed programs. To the best of our knowledge,

none were applied to ownership types. Below, we describe some of the “hybrid”

approaches to type checking from the literature as well as provide a survey of relevant

technique targeted to decrease verbosity of ownership types.

10.2.1 Gradual types and contracts

Our work is inspired by BabyJ language by Anderson and Drossopoulou [10], and

is strongly based on the idea of gradual types by Siek and Taha [188, 189], which

has been recently applied to Java-like generics [109] and modular typestate [210].

The notion of blame control is known in the context of gradual types to provide

better debugging support [207]. Since dependent owners contain information about

source code locations, the information from labels makes it easy to track back the

flow dependencies and eliminate uncertainty by adding extra ownership annotations.

This makes dependent owners similar to blame labels.

Like types by Wrigstad et al. [215] is a mechanism for the scripting language Thorn to

provide static typing for dynamic values that exhibit a structure similar to the declared

types. This structural treatment of like types allows a number of compiler optimization

to be applied to the generated code. It is a matter of discussion whether like types can

be easily extended to support enhanced object properties such as object ownership.

The idea of combining static and dynamic type checking is also close to the work of

Flanagan on hybrid types [86]. Hybrid types may contain refinements in the form

arbitrary predicates on underlying data. The type checker attempts to satisfy the

predicates statically using a theorem prover. If the prover is not able to satisfy the

predicate, the corresponding check is postponed until run-time.

Unlike the system we consider, hybrid types do not impose extra structural properties

on the data they operate with. The run-time checker operates with type casts, treating

them as logical implications, which makes it difficult to say if gradual ownership types

can be formulated in terms of hybrid types without requiring necessary annotations
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in order to specify the encapsulation boundaries. According to the classification

proposed by Greenberg et al. [96], systems with hybrid and gradual types are related

to the class manifest systems, i.e., those which contain additional constraints on data

as part of types and enable a type checker to reason about them. Their counterparts are

latent systems, in which contracts are purely dynamic checks [83]. Our framework is

closer to the manifest systems because of type-level reasoning with owner parameters.

10.2.2 Dynamic ownership

Gordon and Noble, in their work on dynamic ownership, introduce ConstraintedJava,

a scripting language that provides dynamic ownership checking [94]. The authors

suggest a dynamic ownership structure consisting of an owner pointer in every object.

Operations are provided to make use of and change these owner pointers. The

semantics of the language relies on a message-passing protocol with a specific kind

of monitoring, similar to our boundary checks. Messages are classified into several

categories based on their relative positions of the message sender and receiver in the

ownership tree. “Bad” messages are captured by run-time monitoring.

10.2.3 Existential types for ownership

Existential ownership types [130] offer variant subtyping of owners based on

existential quantification [26]. This approach also allows owner-polymorphic methods

to be elegantly implemented and it distinguishes objects with different and equal

unknown owners. Existential quantification also helps to implement effective run-time

downcasts in the presence of ownership types: a subtype’s inferred owners are treated

as existentially quantified [213]. The key difference between these approaches and

ours is that existential ownership expresses don’t care whereas gradual types express

don’t know concerning the unknown owners.

10.2.4 Ownership inference

The need for some sort of ownership inference as a way to decrease the annotation

burden has been outlined in Clarke’s PhD dissertation: Ideally, we would like to specify

only which objects are representation — that is have only the keyword rep — and

let the compiler use static analysis to determine whether the representation really is

protected [37, page 188].

Ownership types systems generally require a significant amount of annotations to

express the types, but this can be burdensome for the programmer. What makes
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matters worse is that library code also needs to be annotated, in general, to work

effectively with ownership types. Addressing this problem leads naturally to the

question of ownership type inference. But matters are not so simple.

Unlike traditional type schemes à la Hindley-Milner, ownership annotations are

mostly design-driven: it is mostly up to the programmer to decide whether some

object should be owned by this or by world. Many ownership type systems admit

a trivial collection of annotations, for example, by setting all objects to be owned by

world. Consequently, even elaborate approaches to type qualifier inference [28, 97]

are ineffective, as they infer any solution that satisfies the constraints, but cannot give

a best, i.e., the most precise, solution.

In this section, we provide a brief survey of approaches for ownership inference,

focusing mainly on those that infer type annotations, but also on those that infer

properties of the ownership by examining the run-time structure of objects. Three

approaches are considered: dynamic inference, static inference, and interactive

inference.

Dynamic approaches

The pioneering work on the dynamic inference of ownership types is Wren’s master’s

thesis [211]. The essence of his approach is to run programs with a profiler that

keeps track of all heap “snapshots”, collecting full information about the topology of

the heap at any moment. All heap snapshots are then merged the resulting graph is

analysed in order to infer dominance relations between objects. The work provides

a graph-theoretical background for run-time inference, including a description of

the most precise program heap topology with respect to the owners-as-dominators

invariant. On the negative side, the ownership functions cannot be mapped directly

to types. To remedy this, the author formulates the system of equations to assign

annotations to particular object allocation sites. The proof of correctness of these

equations as well as conditions for the uniqueness of the solution was left for future

work.

Potanin, Noble and Biddle [169] employ a similar tool to take snapshots of the heaps

of running programs. They applied their tool to a large corpus of Java programs and

computed various metrics on the collected heaps related to notions of uniqueness,

ownership and confinement, to determine how often such concepts appear in actual

running programs. Their results indicate that such concepts are often used in practice.

No indication was given on how to use the results to provide annotations to programs.

Mitchell provides a similar technique for dynamic ownership inference by summariz-

ing memory footprints with help from the dominator relation [146]. In his approach,

each dominator tree captures unique ownership. Trees are connected by specific edges
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that capture responsibility, i.e., transfer of ownership. The profiling-based technique

aggregate these structures, and use thresholds to identify important aggregates. The

notion of ownership graph summarizes responsibility, and backbone equivalence

aggregates patterns within trees, generating concise summaries of heap usage. The

ultimate goal of this work is to understand where excessive memory usage occurs in

large programs.

Dietl and Müller, in the first in the series of works towards a practical solution

of the inference of Universe types [44], present results on runtime universe type

inference [70]. As universe types require a comparatively lower annotation overhead,

mapping of inference results to static annotations is easier than for the system Wren

considered. The inference algorithm is, however, quite in the spirit of Wren’s thesis:

first a combined representation of the object store is built; then its dominator tree

is constructed; finally, conflicts between the information obtained by analyzing the

inferred dominator tree and the actual constraints of the type system are resolved

by “flattening” the dominance trees and via a procedure the authors refer to as

“harmonization”. The resulting annotations deliver a correct typing of the program

with respect to the target type system [44].

Static Approaches

One of the first attempts at providing ownership type inference was taken by Aldrich

et al. [7]. In their system, the programmer needed only provide a small amount of

annotations to indicate the intent that some parts of the program be encapsulated, and

the rest of alias annotations were inferred. The approach was not entirely satisfactory,

so subsequent work used more sophisticated analysis techniques, including variations

of classic formulations of points-to or escape analysis, as well as incorporating

elements of may- and must- abstractions [68, 112].

For instance, Moelius and Souter [147] employ a variation of an escape analysis [21]

to infer ownership annotations. Their algorithm allows borrowed references to be

returned from methods and assigned to object fields. No assumptions on ownership

parameterization is made, and consequently the algorithm results in a large number of

parameters.

For the same problem, Milanova and Liu [142] employ an Andersen-style points-to

analysis [9] as part of static algorithm to infer ownership and universe annotations

according to two different ownership protocols: owners-as-dominators and owners-

as-modifiers. Both analyses are based on a context-insensitive points-to analysis,

therefore they do not distinguish between different allocation and call sites. However,

thanks to some Java-related heuristics, their technique handles some idiomatic

cases, and good precision is thereby obtained. Their proof of correctness of the
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Aspect
Gradual Ownership Ownership

Types Type Inference

Straightforward correspondence
yes no

to the original type system

Modular yes no

Effective debugging
yes no

of type checking

Well-typedness implies
no yes

full static safety

Minimal amount
required optional

of annotations

No runtime overhead optional yes

Figure 10.1: Comparison of Gradual Ownership Types and Ownership Type Inference

by Huang and Milanova [104].

constructed dominance abstraction is present, although it does not rely on the abstract

interpretation-like nature of the points-to analysis.

Later, Milanova and Vitek presented a static inference algorithm for ownership

annotations for the owners-as-dominators invariant based on a static dominance

inference algorithm [143]. The approach computes approximations of the object

graphs using an enhanced global context-insensitive points-to analysis. The candidate

ownership annotation are computed based on an approximated dominance tree, which

is built based on a variation of must-point-to information. The approach does

not provide any guarantee that the inferred annotations comply with the original

ownership types system. In subsequent work employing the dominance inference

algorithm, Huang and Milanova use the original type checker in order to verify the

correctness of the inferred ownership annotations [104]. As our work is quite in the

spirit of the results by Huang and Milanova, we provide a comparison of different

aspects of Gradual Ownership Types and Ownership Type Inference in the table in

Figure 10.1.

Inferring ownership as a property

In this section, we also mention several static analysis-based approaches that do not

deliver type annotations directly as a result of inference, but extract encapsulation

properties similar to those ensured by ownership type systems.
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Geilmann and Poetzsch-Heffter [92] developed a modular abstract interpretation-

based analysis to check simple (i.e., non-hierarchical) confinement properties in Java-

like programs. This work employs a box model [168] instead of dominator trees. The

approach is targeted to substitute modular type-checking by modular static analysis,

requiring a significantly smaller amount of annotations: only class declarations and

allocation sites need to be annotated. The analysis then takes the implementation of

a class, considered as an encapsulated box, and executes it together with its most-

general client. The most-general client is an abstraction of all possible clients which

is used to create all possible traces through the box. If execution succeeds, the box

never exposes any confined object, irrespective of the program that uses the box. The

approach is based on formulating ownership as a semantic property of the program

and the subsequent construction of the abstraction of the abstract semantics in the

Cousot and Cousot’s style [40, 41]. However, the complexity boundary of the derived

analysis is unclear.

A general variation of a points-to analysis-based algorithm to infer ownership and

uniqueness is presented by Ma and Foster [131]. The algorithm combines constraint-

based intraprocedural and interprocedural analyses. The collected information about

encapsulation properties is not however mapped to a type system. No correctness

proof of the analysis is provided.

Interactive inference

Currently, interactive approaches, which require a small amount of interaction with

the user when inferring ownership annotations, are one of the most promising

directions in the solution of the ownership type inference problem.

Dietl et al. [69] presented a static analysis to infer Universe Types [44] according to

the user-specified intentions, by solving a set of generated constraints. The first part

of the technique is responsible for the generation of equations, based on the program

semantics and the rules of the original type system. Constraints of the Universe Type

system are encoded as a boolean satisfiability problem. The constraint-based analysis

presented is close to traditional control-flow analyses via abstract interpretation. Once

constraints are generated and solved, the second part of the approach comes to action

in order to tune the result of the inference: users can indicate a preference for certain

typings by adjusting the heuristics or by supplying partial annotations for the program.

It has been empirically demonstrated that the NP-completeness of the constraint

solving, reduced to the SAT problem, does not cause significant overhead on real-life

problems as compared with other static approaches [104, 143, 147].

Two lines of research towards ownership type inference, via points-to analysis and

via constraint solving, were unified in the work of Huang et al. [103]. The resulted

framework implements checking and inference for two systems: Universe Types and
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Ownership Types. As in prior work [69], the programmer can influence the inference

by adding partial annotations to the program. In order to deliver the best solution of

the inference, the authors formulate the optimality property with respect to introduced

ordering on ownership annotations and user-provided input. The underlying analysis

is implemented as a Kleene iteration of a monotonic transfer function, based on the

program’s small-step collecting semantics. The user-provided annotations are taken

into account, whereas missing ones are initialized with the bottom element of the

appropriate lattice.



Chapter 11

Conclusion and Future Work

11.1 Summary of Contributions

Introducing ownership types into real-life programs is a long-standing problem. The

main causes are the verbosity of the formalism and its rigidity for some applications.

In order to address these issues, in this work we applied the notion of gradual types

to ownership type systems and the owners-as-dominators invariant for a Java-like

language to seamlessly combine static and dynamic invariant checks. Our proposal

distinguishes between the declarative part of the pluggable type system and helper

annotations that can be omitted at the cost of dynamic checks. The developed

framework has been formalized and proven to be correct. We implemented Gradual

Ownership Types as an extension of an existing Java compiler and evaluated it on a

well-studied codebase. With this work we also bring the notion of gradual types to the

nominal type systems with additional structural properties, such as object ownership.

The resulting approach enables the incremental migration from unannotated code to

the code that uses ownership annotations and thereby preserves the invariant according

to the programmer’s intention. In addition, we believe that this work is a step towards

the possible generalization of the idea of gradual types to pluggable type annotations

in Java-like languages.

11.2 Future work

In the future work, we are going to investigate in detail type-theoretical aspects of

gradual ownership types, focusing mainly on the role of dependent owners. We are
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also going to explore the marriage of gradual types and static analyses for ownership

inference and provide IDE support for the presented framework.

11.2.1 Gradual ownership types in higher-order languages

Although the ownership policy can be thought a specific kind of contract, which

are widely used in some programming languages as a mechanism to ensure extra

properties of data dynamically [83, 135], our calculus of gradual ownership types

lacks the explicit notion of blame labels [5, 207]. However, the presence of dependent

owners in our calculus partially remedies this lack, allowing the efficient tracking of

origins of violation of invariants when a dynamic check fails. The usage of dependent

owners for debugging ownership violations is a subject of a further investigation.

Also, in the future work we are going to extend the notion of gradual ownership types

for higher-order languages in the spirit of Krishnaswami and Aldrich [119], unifying

the notion of dependent owners and blame labels.

11.2.2 Gradual ownership types meet static analysis

It is tempting to use ownership annotations when performing static analysis of a

program, for instance, for inferring may points-to invariants. Even a limited form

of ownership annotations makes it possible to infer non-trivial properties of a global

program heap topology using a simple instrumentation of a traditional store-based

points-to analysis for object-oriented languages [185], making it possible to detect

statically memory leaks and regions for safe garbage collection [29].

In their recent work on modular static analysis Tobin-Hochstadt and Van Horn propose

the idea of using contracts as symbolic values to provide extra information for the

static analysis about code whose implementation is missing (e.g., libraries) [203].

We believe, that using similar approach, even partial ownership annotations can be

employed to leverage the points-to analysis via disjointness reasoning [33].

Moreover, by incorporating even a simple intraprocedural data-flow analysis into the

framework of gradual ownership types, a fair amount of dynamic checks would be

avoided. A variation of this optimization is discussed in Chapter 9 (Section 9.1.3).

We leave a detailed investigation of the interplay between gradual ownership types

and static analyses for future work.
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11.2.3 IDE support

The current Gradual Ownership Framework for Java 1.4 has been implemented using

the JastAddJ framework [74], which makes us believe that the adoption of our

extended type system and a translating compiler is feasible with no big effort. In

future work, we plan to provide JastAdd-based IDE support to help the migration from

ownership-unaware code to fully owner-annotated code. Our belief is supported by

recent results employing Reference Attribute Grammars [73] as formal specifications

for generating basic functionality of a language-specific integrated development

environment [193], namely, static error highlighting and reference resolution.

In the case of our framework, it should be possible to reuse the logic of the translating

compiler for emitting error messages every time a type checking error has occurred

and warning messages when the equality of owners cannot be proved statically,

providing a programmer with good level of assistance when adding missing ownership

annotations to the code.





Concluding Words

In this dissertation we focused on two problems concerning type systems in

programming languages.

In the first research track, we presented a motivation to employ operational formalisms

to define algorithms for type checking, arguing that such an operational view on

type checking procedures gives a solid basis for better understanding and debugging

of type systems in practice. As two main examples, we considered a reduction

semantics for type checking and type checking in the form of an abstract machine.

The problem we addressed in this part of the work is a proof of correspondence

between different type-checking semantics. Thinking of the semantics in terms of

the corresponding interpreters, we have applied a program transformation tool-chain,

known as functional correspondence, in order to inter-derive formalisms, rather than

construct them from scratch and then prove the corresponding equivalence theorems.

As a main result of this work, we have provided a methodology to build families of

type checkers equivalent by construction.

In the second part of the work, we focused on the problem of verbosity of annotations

and the rigidity of static restrictions in advanced type systems for object-oriented

languages. We have taken a type system ensuring a strong encapsulation property

in a Java-like language and described a way in which it can be made gradual, i.e.,

incorporating both static and dynamic checks and giving a freedom to the programmer

to choose between them. Our approach provides a tradeoff between the annotation

burden and the performance drawback dynamic invariant checking.

We believe that together the two parts of our work make steps towards developing

approaches to ensure desired properties of programs, abstracting over property-

checking algorithms and type annotation policies.
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Appendix A

PLT Redex Implementation
of Type Checking Semantics

In this appendix, we provide the full implementation of both operational semantics

for type checking: the reduction one and the one in the form of SEC machine

(Section 1.1). Both semantics are implemented in the PLT Redex framework [79].

The implementations are directly executable and were used to generate the figures in

Chapter 1, Section 1.1. The code is also available from GitHub:

http://github.com/ilyasergey/typechecker-transformations

A.1 An Implementation of Type Checking with

Reductions

plt-redex/type-reduction.rkt

#lang racket

(require redex)

;; Syntax

(define-language λrt
; Expressions

[e n x (λ (x τ) e) (e e) (-> τ e) num]

; Numbers

[n number]
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; Contexts

[T (T e) (τ T) (-> τ T) hole]

; Types

[τ num (-> τ τ)]
; Variables

[x variable-not-otherwise-mentioned])

;; Contractions

(define t-red

(reduction-relation

λrt
(--> (in-hole T n)

(in-hole T num)

"[tc-const]")

(--> (in-hole T (λ (x τ) e))

(in-hole T (-> τ (subst (x τ) e)))

"[tc-lam]")

(--> (in-hole T ((-> τ_1 τ_2) τ_1))
(in-hole T τ_2)
"[tc-τβ]")))

;; Substitution does not need to be capture-avoiding

;; in the case of λrt since variable and type names are

;; in different semantic spaces

(define-metafunction λrt
subst : (x any) any -> any

;; 1. x_1 bound, so don’t continue in lambda body

[(subst (x_1 any_1) (λ (x_1 τ_1) any_2))

(λ (x_1 τ_1) any_2)]

;; 1. replace x_1 with e_1

[(subst( x_1 any_1) x_1) any_1]

;; 2. x_1 and x_2 are different, so don’t replace

[(subst (x_1 any_1) x_2) x_2]

;; the last cases cover all other expressions

[(subst (x_1 any_1) (any_2 ...))

((subst (x_1 any_1) any_2) ...)]

[(subst (x_1 any_1) any_2) any_2])

;; type? : hybrid-expression -> boolean

;; A predicate to check if is a type

(define type? (redex-match λrt τ))

;; single-step? : expression -> boolean

(define (single-step? e)

(= (length (apply-reduction-relation t-red e)) 1))

;; General well-formedness predicate

(define (is-ok? e)

(or (type? e) (single-step? e)))
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Examples

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define example-wt

(term (λ (y (-> num (-> num num)))

(λ (x num) (y x)))))

(define example-ill

(term (λ (x (-> num num))

(λ (y num) ((x y)

(λ (z num) (x z)))))))

Figure 1.2 from Section 1.1 was obtained by executing the following command after

the file type-reduction.rkt was loaded:

;; Generate Figure 1.2

(traces t-red example-ill #:pred is-ok?)

A.2 Implementation of Type-Checking via the SEC
Machine

plt-redex/type-sec-machine.rkt

#lang racket

(require redex)

;; Syntax

(define-language λsec
; Expressions

(e n x (λ (x τ) e) (e e))

; Numbers

(n number)

; Types

(τ num (-> τ τ))
; Environments

(E ((x τ) ...))

; Variables

(x variable-not-otherwise-mentioned)

; Result stacks

(S (τ S) nil)

; Control elements

(c e (Lam τ S) (Fun e) (Arg τ_1 τ_2))
; Control stacks

(C (c C) nil)

; States

(ξ (S E C)))
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;; Small-step abstract machine

(define t-sec

(reduction-relation

λsec #:domain ξ
(--> (S E (n C))

((num S) E C)

"[num]")

(--> (S E (x C))

(((env-lookup E x) S) E C)

"[var]")

(--> (S E ((λ (x τ) e) C))

(nil (env-extend E (x τ)) (e ((Lam τ S) C)))

"[lam]")

(--> (S E ((e_1 e_2) C))

(S E (e_1 ((Fun e_2) C)))

"[app]")

(--> ((τ_2 S) E ((Lam τ_1 S_1) C))

(((-> τ_1 τ_2) S_1) E C)

"[t-lam]")

(--> (((-> τ_1 τ_2) S) E ((Fun e_2) C))

(((-> τ_1 τ_2) S) E (e_2 ((Arg τ_1 τ_2) C)))

"[t-fun]")

(--> ((τ_1 (any S)) E ((Arg τ_1 τ_2) C))

((τ_2 S) E C)

"[t-arg]")))

;; Environment lookup

(define-metafunction λsec
env-lookup : E x -> τ
[(env-lookup ((x τ) (x_1 τ_1) ...) x) τ]
[(env-lookup ((x_1 τ_1) (x_2 τ_2) ...) x)

(env-lookup ((x_2 τ_2) ...) x)])

;; Environment extension

(define-metafunction λsec
env-extend : E (x τ) -> E

[(env-extend ((x_1 τ_1) ...) (x τ))
((x τ) (x_1 τ_1) ...)])

;; Inject expression into a machine state

(define-metafunction λsec
inject : e -> ξ
[(inject e) (nil () (e nil))])

;; single-step? : expression -> boolean

(define (single-step? s)

(= (length (apply-reduction-relation t-sec s)) 1))

;; final-state? : state -> boolean

(define (final-state? ξ)
(eq? ’nil (caddr ξ)))
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;; General well-formedness predicate

(define (is-ok? ξ)
(or (final-state? ξ) (single-step? ξ)))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; Examples

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(define example-wt

(term (inject (λ (y (-> num (-> num num)))

(λ (x num) (y x))))))

(define example-ill

(term (λ (x (-> num num))

(λ (y num) ((x y)

(λ (z num) (x z)))))))

Figure 1.3 from Section 1.1 was obtained by executing the following command after

the file type-sec-machine.rkt was loaded:

;; Generate Figure 1.3

(traces t-sec example-ill #:pred is-ok?)





Appendix B

Initial Function Definitions of
Chapter 3

This appendix provides a detailed overview of some missing functions from the

implementation of the original reduction semantics for type checking. The code in

this appendix is a starting point for transformations described in Chapter 3 The full

code of derivations is available at GitHub:

http://github.com/ilyasergey/typechecker-transformations

B.1 Plain Syntax Implementation

This section describes elements of the syntax of the traditional λ-calculus. The abstract

syntax for λH includes integer literals, identifiers, lambda-abstractions, applications

as well as “hybrid” elements such as numeric types and arrows τ→ e. Types are either

numeric types or arrow types. The special value T_ERROR s is used for typing errors;

it cannot be a constituent of any other type. Typing environments TEnv represent

bindings of identifiers to types, which are values in the hybrid language.
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syntax.sml

structure Syn =

struct

datatype typ = T_NUM

| T_ARR of typ * typ

| T_ERROR of string

datatype term = LIT of int

| IDE of string

| LAM of string * typ * term

| APP of term * term

end

structure TEnv =

struct

type ’a gamma = (string * ’a) list

val empty = []

fun extend (x, t, gamma) = (x, t) :: gamma

fun lookup (x, gamma)

= let fun search []

= NONE

| search ((x’, t) :: gamma)

= if x = x’ then SOME t else search gamma

in search gamma

end

end

B.2 Hybrid Syntax Implementation

We introduce closures into the hybrid language in order to represent the environment-

based reduction system. A closure can either be a number, a ground closure pairing

a term and an environment, a combination of closures, a closure for a hybrid arrow

expression, or a closure for a value arrow element, namely an arrow type. A value

in the hybrid language is either an integer or a function type. Environments bind

identifiers to values.
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hsyntax.sml

(* Hybrid syntax *)

structure HSyn =

struct

open Syn TEnv

datatype hterm = H_LIT of int

| H_IDE of string

| H_LAM of string * typ * hterm

| H_APP of hterm * hterm

| H_TARR of typ * hterm

| H_TNUM

datatype closure = CLO_NUM

| CLO_GND of hterm * bindings

| CLO_APP of closure * closure

| CLO_ARR of typ * closure

| CLO_ARR_TYPE of typ

withtype bindings = typ TEnv.gamma

datatype hctx = CTX_MT

| CTX_FUN of hctx * closure

| CTX_ARG of typ * hctx

| CTX_ARR of typ * hctx

end

B.3 Implementation of the Reduction Semantics

for Type Checking

This section provides full implementation of the original reduction semantics for type

checking operating with elements of both plain and hybrid syntax.

reductions.sml

use "syntax.sml";

use "hsyntax.sml";

structure TypeCheck_Reduct =

struct

open HSyn TEnv

fun type_to_closure T_NUM

= CLO_NUM

| type_to_closure (v as T_ARR (t1, t2))

= CLO_ARR_TYPE v

fun term_to_hterm (IDE s)
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= H_IDE s

| term_to_hterm (LAM (x, t, e))

= H_LAM (x, t, term_to_hterm(e))

| term_to_hterm (LIT i)

= H_LIT i

| term_to_hterm (APP (e1, e2))

= H_APP (term_to_hterm e1, term_to_hterm e2)

datatype potential_redex = PR_NUM

| PR_LAM of string * typ * hterm * bindings

| PR_APP of typ * typ

| PR_ARR of typ * typ

| PR_IDE of string * bindings

| PR_PROP of hterm * hterm * bindings

datatype contractum_or_error = CONTRACTUM of closure

| ERROR of string

(* contract : potential_redex -> contractum_or_error *)

fun contract PR_NUM

= CONTRACTUM CLO_NUM

| contract (PR_ARR (t1, t2))

= CONTRACTUM (type_to_closure (T_ARR (t1, t2)))

| contract (PR_IDE (x, bs))

= (case TEnv.lookup (x, bs)

of NONE => ERROR "undeclared identifier"

| (SOME v) => CONTRACTUM (type_to_closure v))

| contract (PR_LAM (x, t, e, bs))

= CONTRACTUM (CLO_GND (H_TARR (t, e), TEnv.extend (x, t, bs)))

| contract (PR_APP (T_ARR (t1, t2), v))

= if t1 = v

then CONTRACTUM (type_to_closure t2)

else ERROR "parameter type mismatch"

| contract (PR_PROP (t0, t1, bs))

= CONTRACTUM (CLO_APP (CLO_GND (t0, bs), CLO_GND (t1, bs)))

| contract (PR_APP (t1, t2))

= ERROR "non-function application"

datatype type_or_decomposition = VAL of typ

| DEC of potential_redex * hctx

(* decompose_closure : closure * hctx -> type_or_decomposition *)

fun decompose_closure (CLO_NUM , C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_ARR_TYPE v, C)

= decompose_context (C, v)

| decompose_closure (CLO_GND (H_LIT n, bs), C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_GND (H_IDE x, bs), C)

= DEC (PR_IDE (x, bs), C)

| decompose_closure (CLO_GND (H_LAM (x, t, e), bs), C)

= DEC (PR_LAM (x, t, e, bs), C)

| decompose_closure (CLO_GND (H_APP (t0, t1), bs), C)
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= DEC (PR_PROP (t0, t1, bs), C)

| decompose_closure (CLO_GND (H_TNUM , bs), C)

= decompose_context (C, T_NUM)

| decompose_closure (CLO_GND (H_TARR (t, e), bs), C)

= decompose_closure (CLO_GND (e, bs),

CTX_ARR (t, C))

| decompose_closure (CLO_APP (c0, c1), C)

= decompose_closure (c0, CTX_FUN (C, c1))

| decompose_closure (CLO_ARR (v, c), C)

= decompose_closure (c, CTX_ARR (v, C))

(* decompose_context : hctx * typ -> type_or_decomposition *)

and decompose_context (CTX_MT , v)

= VAL v

| decompose_context (CTX_FUN (C, c1), v0)

= decompose_closure (c1, CTX_ARG (v0, C))

| decompose_context (CTX_ARG (v0, C), v1)

= DEC (PR_APP (v0, v1), C)

| decompose_context (CTX_ARR (v0, C), v1)

= DEC (PR_ARR (v0, v1), C)

(* decompose : closure -> type_or_decomposition *)

fun decompose c

= decompose_closure (c, CTX_MT)

(* recompose : hctx * closure -> closure *)

fun recompose (CTX_MT , c)

= c

| recompose (CTX_FUN (C, c1), c0)

= recompose (C, CLO_APP (c0, c1))

| recompose (CTX_ARG (v0, C), c1)

= recompose (C, CLO_APP (type_to_closure v0, c1))

| recompose (CTX_ARR (v0, C), c1)

= recompose (C, CLO_ARR (v0, c1))

datatype result = RESULT of typ

| WRONG of string

(* iterate : type_or_decomposition -> result *)

fun iterate (VAL v)

= RESULT v

| iterate (DEC (pr, C))

= (case contract pr

of (CONTRACTUM c’)

=> iterate (decompose (recompose (C, c’)))

| (ERROR s)

=> WRONG s)

(* normalize : term -> result *)

fun normalize t

= iterate (decompose (CLO_GND (term_to_hterm t, TEnv.empty)))

(* type_check : term -> typ *)
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fun type_check t

= case normalize t

of (RESULT v)

=> v

| WRONG s

=> T_ERROR s

end



Appendix C

Proofs from Chapter 8

Unlike proofs in pure mathematics, proofs in computer

science are usually tedious, inelegant and are worth

something only because of their existence.

GREGORY MORRISETT

In this appendix, we provide detailed proofs of main statements about type-based

compilation from the language JO? to the language JO+
? (Section C.1) and type safety

properties of the languages JO?/JO+
? (Section C.2).

C.1 Proofs about compilation (Section 8.2)

In this section, we provide proofs of main lemmas from Section 8.2, relating well-

typed programs in the calculus of gradual ownership types JO? and appropriate

translations: type cast and boundary check insertions. Theorem 8.2.12, a corollary

of these lemmas, establishes one of the main result of this work: well-typed programs

with gradual types are always translated to well-typed programs with inserted checks.

Lemma C.1.1 (
C
 is ⊢C -sound (Lemma 8.2.6)). If E ⊢ e

C
 e′ : s then E ⊢C e′ : s.

Proof. The proof is by induction on the cast insertion derivation, i.e., the “depth”

of the processed expression. The base of induction is trivial, since the expressions

consisting from only one variable are not affected by the translation, and their typing

rules in ⊢C are similar to the rules of ⊢. The same reasoning is applied to the
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expressions of the kind let x = b in e, where either b = new c〈ri∈1..n〉 for some

c, or b = null, or b = y. f for some y, f , because the translation
C
 does not change

these expressions and type rules in ⊢ and ⊢C are similar. Only two kinds of expressions

we need to consider are field updates and method calls.

Case (C-UPD). Assume

E ⊢ let x = (z. f = y) in e1
C
 CE〈s,σz(t)〉(let x = (z. f = y) in e2) : s′

1. By assumption, obtain

(a) E ⊢ z : c〈σ〉

(b) F c( f ) = t

(c) E ⊢ y : s

(d) E ⊢ s. σz(t)

(e) E,x : fill(x,σz(t)) ⊢ e1
C
 e2 : s′

2. By the definition of C (Figure 8.9), we consider two cases

(a) E ⊢ s⊳σz(t), then C is an identity function and the typing rule (T-UPD’)

is directly applicable, so the further proof is trivial.

(b) E ⊢ s ⋪ σz(t), then

CE〈s,σz(t)〉(let y′ = (z. f = y) in e2)
≡ let y′ = 〈σz(t)〉y in (let x = (z. f = y′) in e2).

3. By induction hypothesis and (1:e), obtain E,x : fill(x,σz(t)) ⊢
C e2 : s′.

4. By the rule (T-CAST), (1:c), (1:d), obtain E ⊢C 〈σz(t)〉y : σz(t).

5. Assuming E ′ = E,y′ : fill(y′,σz(t)), by (T-UPD’), obtain E ⊢C (z. f = y′) : σz(t).

6. By (T-LET), (3) and (5), obtain E ′ ⊢C let x = (z. f = y′) in e2 : s′.

7. By (T-LET), (4) and (6), obtain E ⊢C let y′ = 〈σz(t)〉y in let x = (z. f = y′) in e2 : s′,

which concludes the proof for this case. Note that the environment E ′ has turned

to E thank to the explicit introduction of the variable y′ in the resulting let-

expression.

Case (C-CALL). Assume

E ⊢ let x = z.m(y) in e1
C
 CE〈s,σz(t)〉(let x = z.m(y) in e2) : s′

1. By assumption, obtain
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(a) E ⊢ z : c〈σ〉

(b) M T c(m) = (y′′, t→ t ′)

(c) E ⊢ y : s

(d) E ⊢ s. σz(t)

(e) σ′ ≡ σ⊎{y′′ 7→ y}

(f) E,x : fill(x,σ′z(t
′)) ⊢ e1

C
 e2 : s′

2. By the definition of C (Figure 8.9), we consider two cases

(a) E ⊢ s⊳σz(t), then C is an identity function and the typing rule (T-CALL’)

is directly applicable, so the further proof is trivial.

(b) E ⊢ s ⋪ σz(t), then

CE〈s,σz(t)〉(let y′= z.m(y) in e2)≡ let y′= 〈σz(t)〉y in let x = z.m(y′) in e2

3. By induction hypothesis and (1:e), obtain E,x : fill(x,σ′z(t
′)) ⊢C e2 : s′.

4. By the rule (T-CAST), (1:c), (1:d), obtain E ⊢C 〈σz(t)〉y : σz(t).

5. Assuming E ′ = E,y′ : fill(y′,σz(t)), by (T-CALL’), obtain E ′ ⊢C z.m(y′) : σ′z(t
′).

6. By (T-LET), (3) and (5), obtain E ′ ⊢C let x = z.m(y′) in e2 : s′.

7. By (T-LET), (4) and (6), obtain E ⊢C let y′ = 〈σz(t)〉y in let x = z.m(y′) in e2 : s′,

which concludes the proof for this case.

Corollary C.1.2 (
C
 is ⊢C -sound for methods (Corollary 8.2.7)). If E ⊢ t ′ m(t y) {e}

C
 

t ′ m(t y) {e′} then E ⊢C t ′ m(t y) {e′}

Proof. Assume

E ⊢ t ′ m(t y) {e}
C
 t ′ m(t y) {F [CE〈s, t

′〉(z)]}, where

(i) E ⊢ e : s

(ii) E ⊢ s. t ′

(iii) E,y : fill(y, t) ⊢ e
C
 e′ : s

(iv) e′ = F [z]

We will prove an auxiliary statement:
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Proposition C.1.3. If E ⊢ s. t ′, e′ = F [z] and E ⊢C e′ : s then E ⊢C F [CE〈s, t
′〉(z)] : s′

such that either E ⊢ s′ = t ′ or E ⊢ s′ = s and E ⊢ s⊳ t ′.

Proof. The proof is by induction on the depth of the reduction context F .

Case (F ≡ [ ] (Induction base)). By assumption, e′ = z

1. By the definition of C (Figure 8.9), we consider two cases

(a) E ⊢ s⊳ t ′, then C is an identity function and the typing rule (T-CALL’) is

directly applicable, so the further proof is trivial, as we have E ⊢ s′ = s.

(b) E ⊢ s ⋪ t ′, then CE〈s, t
′〉(z)≡ let z′ = 〈t ′〉z in z′

2. By (T-CAST), (T-LET) and (1:b), obtain E ⊢C let z′ = 〈t ′〉z in z′ : t ′. Equiva-

lently, E ⊢C F [CE〈s, t
′〉(z)] : t ′ and E ⊢ s′ = t ′.

Case (F ≡ let x = b in F ′). The reasoning is by induction hypothesis.

1. By assumption E ⊢C F [z] : s, where F [z] = e′.

2. By (T-LET), obtain

(a) E ⊢C b : t for some t

(b) E ′ ⊢C F ′[z] : s, where E ′ = E,x : fill(x, t)

3. By induction hypothesis and (2:b), obtain

(a) E ′ ⊢C F ′[CE ′〈s, t
′〉(z)] : s′ for some s′

(b) E ′ ⊢ s′ = t ′ or E ′ ⊢ s′ = s ∧ E ′ ⊢ s⊳ t ′

4. Since E ⊢C e′ : s implies E ⊢ s, we may conclude that there is no occurrences of

the variable x as an owner parameter in the type s (but there might be some

xc.i, which is handled by the rule (OWN-DEPENDENT)). There are also no

occurrences of x in t, so we can reduce E ′ to E and both types will remain

well-formed in E and so will s′.

5. By (T-LET) and (3:a), obtain E ⊢C let x = b in F ′[CE〈s, t
′〉(z)] : s′

6. By (3:a), (3:b) and (4), obtain

(a) E ⊢C F [CE〈s, t
′〉(z)] : s′

(b) E ⊢ s′ = t ′ or E ′ ⊢ s′ = s ∧ E ⊢ s⊳ t ′
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The proof of the enclosing corollary follows straightforwardly from the proved

proposition via initial assumptions of (()c-method) and the rule for well-formed

methods (METHOD’).

Lemma C.1.4 (
B
 is ⊢C

B
-sound (Lemma 8.2.9)). If E ⊢ e′

B
 e′′ : s then E ⊢C

B
e′′ : s.

Proof. The proof is by induction on the boundary check insertion derivation. The

only one kind of expressions that should be considered is those that contain field

assignment as an underlying statement, i.e. let x = (z. f = y) in e. By the definition

of B (Figure 8.9), there are two possible cases: when the owner of a type t is specified

or not. In the first case, B is just an identity translation, and the transition from (T-

UPD’) to (T-UPD”) is straightforward. Otherwise, the statement z. f = y is replaced by

z. f ← y, and the rule (T-CHECK) is applied for typing.

Corollary C.1.5 (
B
 is ⊢C

B
-sound for methods (Corollary 8.2.10)). If E ⊢ t ′ m(t y) {e}

C
 

t ′ m(t y) {e′} then E ⊢C t ′ m(t y) {e′}

Proof. The proof is the similar to the one of Corollary C.1.2.

C.2 Proofs about Type Safety and Invariant Preser-
vation (Section 8.4)

This section provides proofs for the main results of the Chapter 8: subject reduction

and OAD preservation theorems from Section 8.4 (Theorems 8.4.6 and 8.4.7

respectively). The employed techniques are standard. We also provide an amount

of binding remarks to indicate the general flow of results and reasonings.

Remark C.2.1. In the statement of Theorem 8.4.6 we assume all ownership

arguments of involved types t, s etc. to be actual (see Figure 8.2), i.e., some heap

locations or world. When reasoning about typings in the presence of local typing

binding environments we exploit the equalities, provided by the rules (IN-BIND1),

(IN-BIND2) and (IN-BIND3). Proposition C.2.2 and Corollary C.2.3 formalize this

observation. The statement of Lemma C.2.7 brings the same equivalence to the type

instantiation relation (⋉).

Proposition C.2.2. If E ,E;B ⊢ t for some t = c〈pi∈1..n〉 and dom(E) = dom(B) then

there exists t ′ = c〈qi∈1..n〉, such that E ,E;B ⊢ t = t ′ and for all i, qi =? or actual(qi).

Proof. The proof is by the fact that E ,E;B ⊢ ⋄. The type t ′ is constructed via the rules

(IN-BIND*).
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Corollary C.2.3. If E ,E;B ⊢ t for some t and dom(E) = dom(B) then there exists t ′,

such that E ,E;B ⊢ t = t ′ and E ⊢ t ′.

Proof. The type t ′ is the one built in Proposition C.2.2. Since the structure of the type

t ′ does not contain any components but actual owners or ?, the environments E and

B do not contribute to its structural properties, so can be excluded from the ultimate

typing judgement.

In the course of the following proofs it is important to distinguish with syntactic

types, possibly having unknown owners as their constituents, and “unequivocal” types,

where unknown owners are eliminated by replacing them either with known, formal

or dependent owners. We formalize this distinction by the following definition:

Definition C.2.4. The type t = c〈pi∈1..n〉 is unequivocal iff ∀i ∈ 1..n, pi 6= ?.

We will also refer to non-unknown owners as to unequivocal ones.

Remark C.2.5. The useful property of the typing relations ⊢ and, consequently, ⊢C
B

and 
 is that the resulting type, assigned to an expression (but not a statement!) is a

unequivocal type.

We formalize this observation as a following lemma:

Lemma C.2.6. If E;B R e : t for some e and R ∈ {⊢,⊢C ,⊢C
B
} then t is unequivocal.

Proof. On the structure of typing rules and the definition of the helper function fill.

The following lemma states an important fact about the type instantiation as a

bounding chain between syntactic and run-time types.

Lemma C.2.7 (Type instantiation).

E ,E;B ⊢ t

E ⊢ H

H;B ⊢ t ⋉ t ′



 ⇒ E ,E;B ⊢ t = t ′

Proof. The proof is by Definition 8.3.1. Two types t and t ′ are equal, if under provided

assumptions on variables, types and owners E ,E;B, one can prove the equality of

owner constituents of t and t ′ respectively. Assume t = c〈pi∈1..n〉 and t ′ = c〈qi∈1..n〉.
Let us consider all possible kinds of pi in t.

Case (pi = xc. j). H(B(x)) = 〈t, . . .〉 and k j = owner j(t ↑ c). Then from E ,E;B ⊢ t via

(BINDING-VALUE) and (OWN-DEPENDENT) it follows that E ,E;B ⊢ x : c〈σ〉. Using

the rule (IN-BIND3), obtain E ,E;B ⊢ xc. j = k j;
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Case (pi is actual). The proof is by identity;

Case (pi is concrete). pi is either an ownership parameter or a term variable. These

cases are handled by the rules (IN-BIND1) and (IN-BIND2) respectively;

Case (pi = ?). The proof of equality is trivial since then pi = qi = ?.

The following Lemmas C.2.8 and C.2.9 establish the relation between the types of

fields and methods in the types related by subtyping, in terms of owner substitutions.

Lemma C.2.8. If s≤ s′ for some s = c〈σ〉 and s′ = d〈σ′〉 and f ∈ dom(F c)∩dom(Fd)
then σ(F c( f )) = σ′(Fd( f )).

Proof. Straightforward by the definition of the subtyping relation (Figure 8.4) and the

rule (CLASS) (Figure 8.6).

Lemma C.2.9. If s ≤ s′ for some s = c〈σ〉 and s′ = d〈σ′〉 and m ∈ dom(M T c)∩
dom(M T d) then σ(M T c(m)) = σ′(M T d(m)).

Proof. Straightforward by the definition of the subtyping relation (Figure 8.4) and the

rule (CLASS) (Figure 8.6).

Lemma C.2.10 related types assigned to variables and their corresponding runtime

values’ types in the presence of the binding environment and a heap.

Lemma C.2.10. If B(y) = ι, E ,E;B ⊢ y : s′, E ⊢ H, H(ι) = 〈s, . . .〉 then E ,E;B ⊢
s≤ s′

Proof. The statement of the lemma is an inversion of the rule (BINDING-VALUE) and

applying the equivalence due to the rule (IN-BIND3), since y = ι ∈ B (Figure 8.11).

Lemma C.2.11 characterizes the behaviour of the helper function fill, defining the way

it replaces unknown owners “?” by dependent owners, so the “residuals” of the type

are equivalent

Lemma C.2.11. If E ,E;B ⊢ c〈σ〉, x /∈ dom(E)∪dom(B) and c〈σ′〉= fill(x, t) then

E ,E;B ⊢ c〈σ′⊎{xc. j 7→ u j}〉= c〈σ⊎{? j 7→ u j}〉

for some E ,E;B ⊢ u j, where ? j is j-th component of the substitution σ (an unknown

owner).
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Proof. By the definition of fill.

Lemma C.2.12 relates the relations ⊳ and subtype via the helper relation t ↑ c.

Lemma C.2.12. If E ,E;B ⊢ s⊳ c〈σ〉 then E ,E;B ⊢ s≤ c〈σ⊎{? j 7→ owner j(s ↑ c)}〉,
where ? j is j-th component of the substitution σ (an unknown owner).

Proof. By the definitions of ⊳ and ↑.

In order to prove the type safety, we need some machinery to deal with the relation

≺ and handle it during managing type substitutions, so the rule (G-TYPE) would be

respected. The following concept is essential for the further proofs.

Definition C.2.13 (Monotonic owner substitution). An owner substitution σ =
{αi 7→ ri}i∈1..n is monotonic in the typing environment E if E ⊢ αi ≺ α j ⇒ E ⊢
σ(αi)≺ σ(α j)

Lemma C.2.14 (Composition is monotonic). If σ1 and σ2 are both monotonic in a

well-formed E and im(σ1)⊆ dom(σ2) then σ2 ◦σ1 is also monotonic in E.

Proof. The proof is straightforward by contradiction and the transitivity of ≺.

Lemma C.2.15 (Type comparison and substitutions). If E;B ⊢ s⊳ t, all unequivocal

owner constituents of t are actual and σ is a monotonic substitution in E then E;B ⊢
σ(s)⊳σ(t).

Proof. The proof is by contradiction and the definition of ⊳ since all components of

s and t involved into ⊳ computations are affected by σ simultaneously and the typing

environment E is well-formed.

Finally, we have all ingredients to prove the subject reduction theorem.

Theorem C.2.16 (Subject reduction in JO+
? (Theorem 8.4.6)). If e ∈ Expr in JO+

? ,

S = 〈H,B,e,K〉, E ;E 
 S for some well-formed E ;E and S ⇒ S ′ then E ′;E
′

 S ′ for

some well-formed E ′,E
′

such that E ′≫ E and E։ E
′
.

Proof. By case analysis on the transition rules (Figures 8.10).

Case (E-LKP). Assume

〈H,B,let x = y. f in e,K〉 ⇒ 〈H,B[x 7→ v],e,K〉.

1. By (T-STATE) and (TC-MT) or (TC-CALL) depending on K,
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(a) E ⊢ H

(b) E ,E0;B ⊢C
B

let x = y. f in e : s for some unequivocal type s

2. By (T-LET) and (1:b),

(a) E ,E0;B ⊢C
B

y. f : t for some type t

(b) E ,E0,x : fill(x, t);B ⊢C
B

e : s

3. By (T-LKP) and (2:a),

(a) E ,E0;B ⊢C
B

y : c〈σ〉

(b) F c( f ) = t ′

(c) σy(t
′) = t

4. Assume B(y) = ι, otherwise the rest of the proof is trivial. It follows from (1:a),

(3:a) and Lemma C.2.10 that

(a) H(ι) = 〈d〈σ′〉, f 7→ v f∈dom(Fd)〉

(b) E ,E0;B ⊢ d〈σ′〉 ≤ c〈σ〉

5. By Lemma C.2.8, obtain E ,E0;B ⊢ σ(F c( f )) = σ′(Fd( f ))

6. By (4), (5) and (IN-BIND2), obtain E ,E0;B ⊢ σ′ι(Fd( f )) = σy(F c( f )) = t

7. By (1:a), (HEAP) and (HEAP-OBJECT), obtain

(a) E ; /0 ⊢ v f : s′

(b) E ; /0 ⊢ s′⊳σ′ι(Fd( f ))

8. By (7:a) and (6) obtain E ,E0;B ⊢ s′⊳ t

9. By Lemma C.2.11 obtain E ,E0;B ⊢ s′ ≤ s′′ where c′〈σ′′〉 = fill(x, t) and s′′ =

c′〈σ′′⊎{xc′. j 7→ owner j(s
′ ↑ c′)}〉.

10. Applying (BINDING-VALUE) to (9) and assuming B′= B,x= v f and E ′0 = E0,x :

fill(x, t), obtain

(a) E ,E ′0;B′ ⊢ ⋄

(b) E։ E
′
= E ′0 :: tail(E)

(c) E ;E
′
;B′ 
 〈e,K〉

11. By (10) via (T-STATE), obtain E ;E
′

 〈H,B[x 7→ v],e,K〉, which concludes the

proof for this case.
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Case (E-NEW). Assume

〈H,B,let x = new c〈ri∈1..n〉 in e,K〉 ⇒ 〈H ′,B[x 7→ ι],e,K〉,

where ι is some fresh address in H and H ′≡H⊎ι 7→ 〈c〈B(ri∈1..n)〉, f 7→ null f∈dom(F c)〉

1. By (T-STATE) and (TC-MT) or (TC-CALL) depending on K,

(a) E ⊢ H

(b) E ,E0;B ⊢C
B

let x = new c〈ri∈1..n〉 in e : s for some unequivocal type s

2. By (T-LET) and (1:b), since fill(x,c〈ri∈1..n〉)≡ c〈ri∈1..n〉

(a) E ,E0;B ⊢C
B

new c〈ri∈1..n〉 : c〈ri∈1..n〉

(b) E ,E0,x : c〈ri∈1..n〉;B ⊢C
B

e : s

3. By (T-NEW), E ,E0;B ⊢ c〈ri∈1..n〉, which implies E ,E0;B ⊢ r1 ≺ ri for all i ∈
1..n by (G-TYPE).

4. By assumption, ri ∈ dom(B) for all i ∈ 1..n, we also have

(a) E ,E0;B ⊢ ⋄, and therefore

(b) E ,E0;B ⊢ B(ri) = ri ∀i ∈ 1..n

(c) E ,E0;B ⊢ c〈B(ri∈1..n)〉

5. Assume

E
′ = E ,(ι : c〈B(ri∈1..n)〉),(ι≺ B(r1)).

By Definition 8.1.1, the rule (T-NULL)

(a) Ĥ ′⇒ E ′

(b) E ′; /0 ⊢ v f : s f E
′ ⊢ s⊳σι(F c( f )) for some type s f for all f ∈ dom(F c)

6. By (HEAP-OBJECT), (HEAP), (4:c), (5), obtain

(a) E ′ ⊢ H ′

7. As E ′ was defined, obtain

(a) E ′,E0,x : c〈ri∈1..n〉;B ⊢ ι : c〈ri∈1..n〉

(b) E ′,E0,x : c〈ri∈1..n〉;B ⊢ x : c〈ri∈1..n〉

(c) x /∈ dom(B)

8. From (7:a), (7:b) and (7:c), via (BINDING-VALUE), conclude E ′,E ′0;B′ ⊢ ⋄,
where E ′0 = E0,x : c〈ri∈1..n〉 and B′ = B[x 7→ ι].
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9. From (8), (6:a) and (1:b), via (T-STATE), conclude

(a) E ′,E ′0 :: tail(E) 
 〈H ′,B′,e,K〉

(b) E։ E ′0 :: tail(E)

(c) E ′≫ E

(d) E ′ is well-formed since E is well-formed.

10. By (9) via (T-STATE), obtain E ′;E
′

 〈H ′,B[x 7→ ι],e,K〉, which concludes the

proof for this case.

Case (E-UPD). Assume 〈H,B,let x = (y. f = y′) in e,K〉⇒ 〈H ′,B[x 7→ v],e,K〉where

B(y) = ι, B(y′) = v, o = H(ι) = 〈d〈σ′〉, f 7→ v f∈dom(F c)〉 and H ′ ≡ H ⊎ ι 7→ o[ f 7→ v].
We consider v 6= null, otherwise the proof is trivial vial the rule (T-NULL).

1. By (T-STATE) and (TC-MT) or (TC-CALL) depending on K,

(a) E ⊢ H

(b) E ,E0;B ⊢C
B

let x = (y. f = y′) in e : s for some unequivocal type s

2. By (T-LET) and (1:b),

(a) E ,E0;B ⊢C
B

y. f = y′ : t for some type t

(b) E ,E0,x : fill(x, t);B ⊢C
B

e : s

3. By (2:a) and (T-UPD”)

(a) E ,E0;B ⊢ y : c〈σ〉

(b) σy(F c( f )) = t

(c) E ,E0;B ⊢ y′ : s′

(d) E ,E0;B ⊢ s′⊳ t

4. By (3:a) and the assumptions of the case via Lemma C.2.10, obtain E ,E0;B ⊢
d〈σ′〉 ≤ c〈σ〉

5. By Lemma C.2.8, obtain E ,E0;B ⊢ σ(F c( f )) = σ′(Fd( f ))

6. By (4), (5) and (IN-BIND2), obtain E ,E0;B ⊢ σ′ι(Fd( f )) = σy(F c( f )) = t

7. Considering B(y′) = v via (BINDING-VALUE), obtain

(a) E ⊢ v : s′′

(b) E ,E0;B ⊢ s′′ ≤ s′ since y′ = v ∈ B

8. By (7:b), (3:d), obtain E ,E0;B ⊢ s′′⊳ t and t = σ′ι(Fd( f )).
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9. Via (7:a), (8), (HEAP) and (HEAP-OBJECT), obtain E ⊢ s′′⊳σ′ι(Fd( f )),
therefore E ⊢ H ′

10. By (9) ands Lemma C.2.11 obtain E ,E0;B ⊢ s′′ ≤ s′′′ where c′〈σ′′〉 = fill(x, t)

and s′′′ = c′〈σ′′⊎{xc′. j 7→ owner j(s
′′ ↑ c′)}〉.

11. Applying (BINDING-VALUE) to (10) and assuming B′=B,x= v and E ′0 =E0,x :

fill(x, t), obtain

(a) E ;E ′0;B′ ⊢ ⋄

(b) E։ E
′
= E ′0 :: tail(E)

(c) E ;E
′
;B′ 
 〈e,K〉

12. By (11) via (T-STATE), obtain E ;E
′

 〈H ′,B[x 7→ v],e,K〉, which concludes the

proof for this case.

Case (E-CALL). Assume

〈H,B,let x : (t,σ) = y.m(y′) in e,K〉 ⇒ 〈H,B′,e′,call(x : (t,σ),e,B,K)〉.

1. By assumptions of the case, obtain

(a) B(y) = ι

(b) B(y′) = v

(c) H(ι) = 〈d〈σ′〉, . . .〉

(d) M d(m) = (x′,e′,σ∗) where σ∗ = {αi 7→ ri∈1..n}

(e) B′ = {αi 7→ σ#(αi)i∈1..n,this 7→ ι,x′ 7→ v} where σ# = (σ∗ ◦σ′)

2. By (T-STATE) and (TC-MT) or (TC-CALL) depending on K,

(a) E ⊢ H

(b) E ,E0;B ⊢C
B

let x : (t,σ) = y.m(y′) in e : s for some unequivocal type s

3. By (T-LET), (T-CALL’) and (1:b),

(a) E ,E0;B ⊢ y : c〈σ′′〉

(b) E ,E0;B ⊢ y′ : s′

(c) M T c(m) = (x′, t ′′→ t ′)

(d) E ,E0;B ⊢ s′⊳σ′′y (t
′′)

(e) σ′′′ ≡ σ′′⊎{x′ 7→ y′}

(f) E ,E0;B ⊢C
B

y.m(y′) : σ′′′y (t
′) for some type t ′
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(g) E ,E0,x : fill(x,σ′′′y (t
′));B ⊢C

B
e : s

4. Put t ≡ t ′ and σ = σ′′′y , where t,σ are from the assumptions of the case.

5. Without loss of generality, assume that the method m is defined in the body of

the class c. Otherwise the reasoning is by induction of the height of method

lookup and Lemma C.2.14.

6. By the rules (T-METHOD’) and (CLASS) for method m, obtain

(a) E ′ ⊢C
B

e′ : s′′

(b) E ⊢ s′′⊳ t ′

where E ≡ this : c〈αi∈1..n〉,α1 ≺ world,(α1 ≺ αi)i∈2..n, E ′ ≡ E,x′ : fill(x′, t ′′)
and αi∈1..n are owner parameters of the class c. By (5) we assume these are same

αi as in (1:e). It is important to notice, that σ is monotonic in E ,E0,E;B (in the

assumption that dom(E0)∩dom(E ′) = /0, which can be achieved by renaming).

7. By (3:a), (1:a), (1:c), (2:a) via Lemma C.2.10, obtain E ,E0;B ⊢ d〈σ′〉 ≤ c〈σ′′〉.

8. By Lemma C.2.9, obtain E ,E0;B ⊢ σ′′(M T c(m)) = σ′(M T d(m))

9. By assumption (5), obtain E ,E0;B ⊢ c〈σ′′〉= c〈σ#〉

10. Considering B(y′) = v via (BINDING-VALUE), obtain

(a) E ⊢ v : s′′′

(b) E ,E0;B ⊢ s′′′ ≤ s′ since y′ = v ∈ B

11. By (10:b), (3:d), obtain E ,E0;B ⊢ s′′′⊳σ′′ι (t
′′).

12. It follows from the rule (CLASS), (1:d), (1:e), (2:a) via Lemma C.2.14 that σ#

is monotonic in E ,E ′, Ẽ, where Ẽ is an environment from the rule (CLASS)

for the class d. Considering σ# as a black-box mapping (i.e., excluding the

intermediate mapping when defining σ# as a composition), we may drop Ẽ and

obtain σ# monotonic in E ,E ′.

13. One can see, that the environment E ′ is well-formed. Our goal now is to show

that E ,E ′;B′ ⊢ ⋄. We will do it by adding bindings inductively starting from

the empty binding environment via ad-hoc“updating” operation (:=), until we

obtain required B′

(a) E ,E ′;{Bnew := /0} ⊢ ⋄ by (BINDING-EMPTY)

(b) E ,E ′;
{

Bnew := Bold,(α1 = σ#(α1))
}
⊢⋄ by (BINDING-OWNER) and mono-

tonicity of σ# in E ,E ′
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(c) E ,E ′;
{

Bnew := Bold,(αi = σ#(αi)i∈2..n)
}
⊢ ⋄ by (BINDING-OWNER) and

monotonicity of σ# in E ,E ′

(d) E ,E ′;{Bnew := Bold,(this = ι)} ⊢ ⋄ by (BINDING-VALUE), since E ⊢
ι : d〈σ′〉, by (7) and (8) E ;Bold ⊢ d〈σ′〉 ≤ c〈σ#〉, E ;Bold ⊢ c〈α1∈1..n〉= c〈σ#〉
and all components of codomain of σ′ and σ# are actual, i.e., their

equalities do not depend on local environments.

(e) E ,E ′;{Bnew := Bold,(x
′ = v)} ⊢ ⋄ by (9), (11) and (BINDING-VALUE)

using Lemma C.2.11.

14. Finally, we obtain

(a) E ;E ′;B′ ⊢ ⋄ by (13)

(b) E ;E ′;B′ ⊢C
B

e′ : s′′ by (6:a)

(c) E ;E ′;B′ ⊢ s′′⊳ t by (6:b) and (4)

(d) (E ,E0,B ⊢ σ(r) = k)⇔ (E ,E ′,B′ ⊢ r = k) ∀r ∈ dom(σ) by construction

of σ

(e) E ,E0,x : fill(x,σ(t));B 
 〈e,K〉 by (3:g) and (4)

15. From (14) via (TC-CALL) conclude

(a) E։ E
′
= E ′ :: E

(b) E ;E
′
;B′ 
 〈e′,call(x : (t,σ, ,)e,B,K)〉

16. From (15) via (T-STATE), obtain E ;E
′

 〈H,B′,e′,call(x : (t,σ),e,B,K)〉,

which concludes the proof for this case.

Case (E-RETURN). Assume

〈H,B,y,call(x : (t,σ),e,B′,K)〉 ⇒ 〈H,B′[x 7→ B(y)],e,K〉.

1. By the rules (T-STATE) and (TC-CALL) for the assumptions, obtain:

(a) E ⊢ H

(b) E ,E0;B ⊢C
B

y : s

(c) E ,E0;B ⊢ s⊳ t

(d) E ,E1,(x : fill(x,σ(t)));E;B′ 
 〈e′,K〉

2. Let us consider the case when b(y) = v 6= null, otherwise the proof is trivial.

By (1:a) and (1:b), obtain

(a) E ⊢ v : s′
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(b) E ,E0;B ⊢ s′ ≤ s

3. Because of the presence of B in the premise of (2:b) there are different

representations of the type s′ thanks to equalities provided by the rules (IN-

BIND*). Let us chose s′′ such that

(a) E ,E0;B ⊢ s′′ = s′

(b) ∀ri ∈ owners(s′′). ri =

{
r′ if r′ ∈ dom(σ)
k for some actual owner k otherwise

(c) We have E ,E0;B ⊢ s′′⊳ t as a corollary of (3:a), (3:b) and (1:c)

In words, all owner constituents of s′′ are either transformed by σ or are actual.

4. Without loss of generality, assume that dom(E0)∩ dom(E1) = /0 (this can be

reached by α-renaming). This implies, according to well-formedness of typing-

environment pairs, that dom(B) ∩ dom(B′) = /0 as well. One can see that

E ,E0,E1;B,B′ ⊢ s′′⊳ t.

5. The monotonicity of σ has been shown in the case (E-CALL), step 6. By

Lemma C.2.15 and (4), obtain E ,E0,E1;B,B′ ⊢ σ(s′′)⊳σ(t).

6. Since no more ri ∈ dom(σ) is mentioned in the statement from (5), we can drop

E0 and B from the premise of the statement: E ,E1;B′ ⊢ σ(s′′)⊳σ(t).

7. Applying the property of σ that (E ,E0,B⊢ r = k)⇔ (E ,E1,B
′ ⊢σ(r) = k) ∀r∈

dom(σ) (from (TC-CALL)), we can “switch” back from σ(s′′) to s′ (recall, that

all ownership arguments of s′ are actual, i.e., some k).

8. By (7), obtain E ,E1;B′ ⊢ s′⊳σ(t)

9. By (8) and Lemma C.2.11 obtain E ,E1;B′ ⊢ s′ ≤ s′′′ where c′〈σ′〉= fill(x,σ(t))

and s′′′ = c′〈σ′⊎{xc′. j 7→ owner j(s
′ ↑ c′)}〉.

10. Applying (BINDING-VALUE) to (9) and assuming B′′ = B,x = v and E ′1 = E1,x :

fill(x,σ(t)), obtain

(a) E ,E ′1;B′′ ⊢ ⋄

(b) E0 :: E1 :: E։ E
′
= E ′1 :: E

(c) E ;E
′
;B′′ 
 〈e,K〉

11. From (10) via (T-STATE), obtain E ;E
′

 〈H,B′′,e,K〉, which concludes the

proof for this case.

Case (E-CAST1). Assume 〈H,B,let x = 〈t〉y in e,K〉⇒ 〈H,B[x 7→ B(y)],e,K〉where

B(y) = v. We consider v 6= null, otherwise the proof is trivial vial the rule (T-NULL).
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1. By (T-STATE) and (TC-MT) or (TC-CALL) depending on K,

(a) E ⊢ H

(b) E ,E0;B ⊢C
B

let x = 〈t〉y in e : s for some unequivocal type s

2. By (T-LET) and (1:b),

(a) E ,E0;B ⊢C
B
〈t〉y : t ′ for some type t ′

(b) E ,E0,x : fill(x, t);B ⊢C
B

e : s

3. By (T-CAST) and (2:a),

(a) E ,E0;B ⊢ y : s′

(b) E ,E0;B ⊢ t

(c) E ,E0;B ⊢ s′ . t

(d) E ,E0;B ⊢ t ′ = t

4. By assumptions we have H;B ⊢ cast(t,y) that implies the following statements

via the rule (CAST-CHECK):

(a) H;B ⊢ t ⋉ t ′′

(b) H(v) = 〈s, . . .〉 for some s′′ = d〈σ′〉

(c) Ĥ ⊢ s′′⊳ t ′′

5. By (1:a), (3:b), (4:a) and Lemma C.2.7, obtain

(a) E ,E0;B ⊢ t = t ′′

(b) E ,E0;B ⊢ s′′⊳ t

6. By (5:b) ands Lemma C.2.11 obtain E ,E0;B ⊢ s′′ ≤ s′′′ where c′〈σ′′〉= fill(x, t)

and s′′′ = c′〈σ′′⊎{xc′. j 7→ owner j(s
′′ ↑ c′)}〉.

7. Applying (BINDING-VALUE) to (6) and assuming B′ = B,x = v and E ′0 = E0,x :

fill(x, t), obtain

(a) E ;E ′0;B′ ⊢ ⋄

(b) E։ E
′
= E ′0 :: tail(E)

(c) E ;E
′
;B′ 
 〈e,K〉

8. From (7) via (T-STATE), obtain E ;E
′

 〈H,B[x 7→ B(y)],e,K〉, which concludes

the proof for this case.

Case (E-CAST2). The proof is trivial by the rules (T-STATE) and (TC-FAIL).
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Case (E-BOUNDARY1). The proof is similar to the case (E-UPD).

Case (E-BOUNDARY2). The proof is trivial by the rules (T-STATE) and (TC-FAIL).

Case (E-FINAL). Assume 〈H,B,y,mt〉 ⇒ 〈H,B,B(y),mt〉. The proof of this case

follows immediately from the rules (T-STATE), (TC-MT) and the rule (BINDING-

VALUE) considering that E ,E :: nil;B ⊢ ⋄ for some environments E and E.

Now, we are ready to prove the last crucial theorem about the calculus of gradual

ownership types: the OAD preservation in JO+
? .

Theorem C.2.17 (OAD preservation in JO+
? (Theorem 8.4.7)). If e ∈ Expr in JO+

? ,

S = 〈H,B,e,K〉, E ;E 
 S , OAD(H) and S ⇒ S ′ for some S ′ = 〈H ′, , , 〉 then

OAD(H ′).

Proof. By case analysis on the transition relation S ⇒ S ′. In fact, there are only three

transitions in the operational semantics of JO+
? that can affect the OAD invariant: (E-

NEW), (E-UPD), and (E-BOUNDARY1). We consider all of them separately.

Case (E-NEW). According to the transition rule, H ′ ≡ H ⊎ ι 7→ o. All fields of the

newly allocated object o point to null. No fields of any object point to ι so far. So we

have OAD(H ′).

Case (E-UPD). By the assumption of the theorem, we have

E ;E 
 〈H,B,let z = (x. f = y) in e,K〉.

Assume B(x) 6= null and B(y) 6= null, otherwise the proof is trivial.

1. By (T-STATE) and then (TC-CALL) or (TC-MT) depending on k for the

hypothesis, by premises we obtain via (T-LET).

(a) E ,E0;B ⊢C
B

x. f = y : t for some type t

(b) E ⊢ H

2. By (T-UPD”) for (1:a) and the premises, obtain

(a) E ,E0;B ⊢ x : c〈σ〉

(b) F c( f ) = t ′

(c) E ,E0;B ⊢ y : s

(d) E ,E0;B ⊢ s⊳σx(t
′)



198 PROOFS FROM CHAPTER 8

(e) E ,E0;B ⊢ specified(σx(t
′))

(f) t = σx(t
′)

3. From (2:d) and (2:e) via Definition 8.2.5 obtain owner(s) is unequivocal.

4. By (2:c), (3) and (BINDING-VALUE), assuming v = B(y) and o = owner(H(v)),
obtain E ,E0;B ⊢ o = owner(s). Moreover, by (2:d), (2:f) and (3), E ,E0;B ⊢
o = owner(t)

5. Inverting subsequently (HEAP) and (HEAP-OBJECT) for (1:b) and (2:a), we

obtain

(a) E ; /0 ⊢ c〈σ〉

(b) E ; /0 ⊢ ι≺ owner(c〈σ〉) where ι = B(x)

6. Since all owners in the codomain of σ are actual, we invert the rule (G-TYPE)

for (5:a) to obtain

(a) ∀k ∈ owners(c〈σ〉). E ; /0 ⊢ owner(c〈σ〉)≺ k

7. By (2:a), (2:b), since o is actual via the rule (CLASS) obtain o ∈ owners(c〈σ〉).

8. From (5:a), (5:b) and (7), conclude E ; /0 ⊢ ι≺ o.

9. There are no other changes during the step from H to H ′, so for other fields of

the object H(ι) the proof is by identity.

10. By Definition 8.1.1 of heap flattening Ĥ = Ĥ ′.

11. Invert the rule (HEAP) for E and H ′ by type preservation (E ⊢H ′) via (8), since

H ′⇒ E , obtain Ĥ ′; /0⊢ ι≺ o, which matches the definition of the OAD invariant

(Definition 8.1.2) and concludes the proof for this case.

Case (E-BOUNDARY1). Invert the rule (BOUNDARY-CHECK) for the updated object

referred by x at the heap location ι. It matches exactly the definition of the OAD
invariant (Definition 8.1.2).
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hybrid language, 8, 55, 176

initial state, 135

Java Collection Framework, 148

JCF, see Java Collection Framework

JO+
? , 120

JO?, 108

lambda

calculus, 21, 31, 75

dropping, 44

lifting, 43

lightweight

fission, 42

fusion, 42, 62

Liskov substitution principle, 146

manifest ownership, 144

natural semantics, see big-step operational

semantics

nested owners, 112



INDEX 201

NPE, null-pointer error state, 135

OAD, see owners-as-dominators

OAD preservation in JO+
? , 135, 197

operational semantics, 21

of JO+
? , 128

owner, helper function, 111

owner substitution, 110

monotonic, 188

owners, helper function, 111

owners-as-dominators, 97, 114

ownership

deep, 97

inference, 157

shallow, 97

types, 97

primary owner, 99

recursive descent, 30, 51, 75

redex, 24, 57

reduction

context, 8, 24, 55

semantics, 23, 177

strategy, 8, 55

refocusing, 61

refunctionalization, 41, 68

relation

⇓, 22

⇒t , 73

⇒CEK, 28

E ⊢ t⊳ t ′, more defined than, 121

7→β, 24, 25

7→t , 53

⇒SECD, 27

E ;E;B 
 〈e,K〉, 133

E;B ⊢C b : t, 123

E ⊢C t ′ m(t y){e}, 123

E;B ⊢C
B

b : t, 123

E;B ⊢ ⋄, 133

E;B ⊢ b : t, 117

E;B ⊢ e : t, 117

E;B ⊢ p = p′, 133

E;B ⊢ p. p′, 112

E;B ⊢ p≺ p′, 112

E;B ⊢ p, 112

E;B ⊢ t . t ′, 113

E;B ⊢ p ∼ p′, 113

E;B ⊢ t ≤ t ′, 113

E;B ⊢ t ∼ t ′, 113

E;B ⊢ t, 113

E ⊢ P;e, 118

E ⊢ t ′ m(t y){e}, 117

H;B ⊢ t ⋉ t ′, type instantiation, 129

E ⊢ H, 134

E ⊢ ι 7→ o : t, 134

⊢ c, 118

E ;E 
 〈H,B,e,K〉, 134

restricted visibility, 118

result stack, 27

extraction, 44, 46, 77

rewriting logic semantics (RLS), 91

rule

(B-UPD), 125

(BINDING-EMPTY), 133

(BINDING-OWNER), 133

(BINDING-VALUE), 131, 133

(BOUNDARY-CHECK), 128

(C-CALL), 125

(C-METHOD), 125

(C-UPD), 125

(CAST-CHECK), 128

(CLASS-OBJECT), 118

(CLASS), 118

(CON-LEFT), 113

(CON-REFL), 113

(CON-RIGHT), 113

(CON-TYPE), 113

(E-BOUNDARY1), 128

(E-BOUNDARY2), 128

(E-CALL), 128

(E-CAST1), 128

(E-CAST2), 128

(E-FINAL), 128

(E-LKP), 128
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(E-NEW), 128

(E-RETURN), 128

(E-UPD), 128

(G-TYPE), 113

(GRAD-SUB), 113

(HEAP-OBJECT), 134

(HEAP), 134

(IN-BIND1), 133

(IN-BIND2), 133

(IN-BIND3), 133

(IN-ENV), 112

(IN-REFL), 112

(IN-TRANS), 112

(IN-VAR), 112

(METHOD’), 123

(METHOD), 117

(OWN-?), 112

(OWN-DEPENDENT), 112

(OWN-IN), 112

(OWN-VAR), 112

(OWN-WORLD), 112

(PROGRAM), 118

(SUB-CLASS), 113

(SUB-INCL), 112

(SUB-LEFT), 112

(SUB-REFL), 113

(SUB-RIGHT), 112

(SUB-TRANS), 113

(SUB-WORLD), 112

(T-CALL’), 123

(T-CALL), 117

(T-CAST), 123

(T-CHECK), 123

(T-LET), 117

(T-LKP), 117

(T-NEW), 117

(T-NULL), 117

(T-STATE), 134

(T-UPD”), 123

(T-UPD’), 123

(T-UPD), 117

(T-VAL), 117

(T-VAR), 117

(TC-CALL), 133

(TC-FAIL), 133

(TC-MT), 133

run-time owners, 110

small-step operational semantics, 23

specified, helper function, 122

SSA, see static single assignment

static single assignment, 35

structural operational semantics, see small-

step operational semantics

subject reduction in JO+
? , 134, 188

subtyping

consistent, 113

nominal, 113

tail call, 33

optimization, 33

terminal transition system, see big-step

operational semantics

trampoline style, 42

type

cast, 101, 119

cast insertion, 124

instantiation, 129, 186

safety in JO?, 136

soundness, 23

typing environment, 56, 75

undefined, helper function, 111

unequivocal

owner, 186

type, 186

unknown owner, 102

well-formed

continuation, 133

environment-binding pair, 133

heap, 134

object, 134

owner, 112

state, 134
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type, 113

typing environment, 111

well-typed

class, 118

computation (under ⊢), 117

computation (under ⊢C ), 123

computation (under ⊢C
B

), 123

expression, 117

method (under ⊢), 117

method (under ⊢C ), 123

program, 118
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logic approach to type inference. In Recent Trends in Algebraic Development

Techniques, volume 5486 of Lecture Notes in Computer Science, pages 135–

151. Springer, 2009. Revised Selected Papers from the 19th International

Workshop on Algebraic Development Techniques (WADT’08). Cited on

page 91.

[76] Erik Ernst, Klaus Ostermann, and William R. Cook. A virtual class calculus. In

Simon Peyton Jones, editor, POPL ’06: Proceedings of the 33rd annual ACM

SIGPLAN-SIGACT symposium on Principles of programming languages, pages

270–282, Charleston, South Carolina, January 2006. Cited on page 23.

[77] Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-

null types in an object-oriented language. In OOPSLA ’03: Proceedings of



214 BIBLIOGRAPHY

the 18th ACM SIGPLAN conference on Object-oriented programming, systems,

languages, and applications, pages 302–312, Anaheim, California, USA, 2003.

Cited on pages 96 and 135.

[78] Matthias Felleisen. The theory and practice of first-class prompts. In Jeanne

Ferrante and P. Mager, editors, POPL ’88: Proceedings of the Fifteenth Annual

ACM Symposium on Principles of programming languages, pages 180–190,

San Diego, CA, USA, January 1988. Cited on page 37.

[79] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics

Engineering with PLT Redex, 1st edition. The MIT Press, August 2009. Cited

on pages 9, 11, 25, 26, 33, 55, 91, 127, 169, and 218.

[80] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD

machine, and the λ-calculus. In Martin Wirsing, editor, Formal Description

of Programming Concepts III, pages 193–217. Elsevier Science Publishers B.V.

(North-Holland), Amsterdam, 1986. Cited on pages 11, 28, 68, and 80.

[81] Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories

of sequential control and state. Theoretical Computer Science, 103(2):235–271,

1992. Cited on page 24.

[82] Darrell Ferguson and Dwight Deugo. Call with Current Continuation Patterns.

Technical report, School of Computer Science, Carleton University, 2001. Cited

on page 36.

[83] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-order

functions. In Simon Peyton Jones, editor, Proceedings of the Seventh ACM

SIGPLAN International Conference on Functional Programming (ICFP’02),

pages 48–59, Pittsburgh, Pennsylvania, September 2002. Cited on pages 157

and 164.

[84] Adam Fischbach and John Hannan. Specification and correctness of lambda

lifting. Journal of Functional Programming, 13(3):509–543, 2003. Cited on

page 43.

[85] Michael J. Fischer. Lambda-calculus schemata. In Carolyn L. Talcott, editor,

Special issue on continuations (Part I), Lisp and Symbolic Computation, Vol. 6,

Nos. 3/4, pages 259–288, 1993. Earlier version available in the proceedings

of an ACM Conference on Proving Assertions about Programs, SIGPLAN

Notices, Vol. 7, No. 1, January 1972. Cited on page 38.

[86] Cormac Flanagan. Hybrid type checking. In Simon Peyton Jones,

editor, POPL ’06: Proceedings of the 33rd annual ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 245–256,

Charleston, South Carolina, January 2006. Cited on pages 96 and 156.



BIBLIOGRAPHY 215

[87] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The

essence of compiling with continuations. In David W. Wall, editor, Proceedings

of the ACM SIGPLAN 1993 Conference on Programming Languages Design

and Implementation, pages 237–247, Albuquerque, New Mexico, June 1993.

Cited on pages 35, 39, and 110.

[88] Matthew Flatt, Gang Yu, Robert Bruce Findler, and Matthias Felleisen.

Adding delimited and composable control to a production programming

environment. In Norman Ramsey, editor, Proceedings of the 12th ACM

SIGPLAN International Conference on Functional Programming (ICFP’07),

pages 165–176, Freiburg, Germany, October 2007. Cited on page 38.

[89] Matthew Fluet and Stephen Weeks. Contification using dominators. In

Xavier Leroy, editor, Proceedings of the Sixth ACM SIGPLAN International

Conference on Functional Programming (ICFP’01), pages 2–13, Firenze, Italy,

September 2001. Cited on pages 35 and 44.

[90] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns: elements of reusable object-oriented software. Addison-Wesley

Professional, 1995. Cited on page 148.

[91] Steven E. Ganz, Daniel P. Friedman, and Mitchell Wand. Trampolined style. In
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• Dave Clarke, Johan Östlund, Ilya Sergey and Tobias Wrigstad. Ownership

Types: A Survey. In Dave Clarke, James Noble and Tobias Wrigstad, editors,

Aliasing in Object-Oriented Programming. To appear.

Technical Reports

• Ilya Sergey and Dave Clarke. A correspondence between type checking via

reduction and type checking via evaluation. Accompanying code overview.

CW Reports, volume CW617, 20 pages, Department of Computer Science, KU

Leuven. January 2012. Leuven, Belgium.

• Ilya Sergey, Jan Midtgaard and Dave Clarke. Dominance Analysis via

Ownership Types and Abstract Interpretation. CW Reports, volume CW615 23

pages, Department of Computer Science, KU Leuven. December 2011. Leuven,

Belgium.



LIST OF PUBLICATIONS 233

• Ilya Sergey and Dave Clarke. Gradual Ownership Types. CW Reports, volume

CW613, 43 pages, Department of Computer Science, KU Leuven. December

2011. Leuven, Belgium.

• Ilya Sergey, Peter Gromov and Dave Clarke. Scripting an IDE for EDSL

awareness. CW Reports, volume CW608, 9 pages, Department of Computer

Science, KU Leuven. July 2011. Leuven, Belgium.

• Ilya Sergey, Dave Clarke and Alexander Podkhalyuzin. Automatic refactorings

for Scala programs. CW Reports, volume CW577, 6 pages, Department of

Computer Science, KU Leuven. April 2010. Leuven, Belgium.

Other Manuscripts

• Ilya Sergey. Implementation of Gradual Ownership Types for Java using

Attribute Grammars (in Russian, Реализация гибридных типов владения

в Java посредством атрибутных грамматик). In Andrey Terekhov,

Dmitry Boulytchev, editors, Software Engineering, issue 6, pages 49–79, Saint

Petersburg State University publishing, 2011.

• Ilya Sergey and Andrey Barabanov. Extraction of musical notation from

musical signal (in Russian, Получение нотной записи одноголосного

музыкального сигнала). In Phonetical Lyceum, issue 4, Faculty of Philology

and Arts, Saint Petersburg State University publishing, 2009.

• Ilya Sergey. Implementation of JVM-based languages support in IntelliJ IDEA.

In International Workshop Workshop on Multiparadigm Programming with

Object-Oriented Languages (MPOOL 2008). July 2008. Paphos, Cyprus.







Arenberg Doctoral School of Science, Engineering & Technology

Faculty of Engineering

Department of Computer Science

Scientific Computing Group

Celestijnenlaan 200A, box 2402

B-3001 Heverlee


	Abstract
	Acknowledgements
	Contents
	List of Figures
	Introductory Words
	I Inter-Derivable Semantics of Type Checking
	Introduction and Problem Statement
	Type Checking as Program Semantics
	Reduction semantics for stepping through the type checking
	Abstract machine for context exploration and error recovery

	The Problem: Too Many Theorems to Prove
	The Method: the Functional Correspondence to the Rescue
	Main Contributions
	Notes on the Implementation
	Outline

	Background
	Program Semantics and Abstract Machines
	Denotational semantics
	Axiomatic semantics
	Operational semantics
	Abstract register machines
	Computational look on operational semantics

	Elements of Functional Programming
	The lambda calculus
	Key concepts of functional programming
	Closures
	Tail calls and tail-call optimization
	Continuation-passing style
	Control operators in higher-order languages

	Transformations of Functional Programs
	CPS transformation
	Direct-style transformation
	Defunctionalization
	Refunctionalization
	Deforestation
	Lightweight fusion
	Trampoline style and trampoline transform
	Lambda lifting
	Closure conversion
	Lambda dropping
	Contification
	Other transformations

	Pulling it All Together: Inter-Deriving Semantics for Fibonacci Numbers

	From Type Checking via Reduction to Type Checking via Evaluation
	Starting Point: a Hybrid Language for Type Checking
	Chapter outline

	Method Overview
	A Reduction-Based Type Checker
	Reduction-based hybrid term normalization
	Abstract syntax of H: closures and values
	Notion of contraction
	Reduction strategy
	Reduction-based normalization

	From Reduction-Based to Compositional Type Checker
	Refocusing 
	Inlining the contraction function
	Lightweight fusion: from small-step to big-step abstract machine
	Compressing corridor transitions
	Renaming transition functions and flattening configurations
	Removing hybrid artifacts and switching domains
	Refunctionalization 
	Back to direct style 


	From Type Checking via Evaluation to Type Checking with an Abstract Machine
	Type-Checking Abstract Machines
	Chapter outline

	Method Overview
	Initial Setting: Type Checking via Recursive Descent
	Terms and types
	Type checking procedure
	Representation of typing errors

	From Recursive Descent to SEC Machine
	Extracting a result stack
	CPS transformation
	Defunctionalization
	Extracting the environment as a parameter
	Adding an explicit control stack
	From a big-step to a small-step SEC machine


	Related Work and Applications
	Related work
	Applications

	Conclusion and Future Work
	Summary of Contributions
	Future work
	Handling type system evolution
	Incorporating term substitutions
	Relation to attribute grammars
	Application of functional correspondence to other semantic formalisms
	Mechanization of transformations



	II A Gradual Type System for Object Ownership
	Introduction and Problem Statement
	The Problem: Making Ownership Types Practical
	The Method: Gradual Types
	Intuition behind Gradual Ownership Types
	Gradual ownership types: a programmer's view
	Gradual ownership types: a semanticist's view

	Main Contributions
	Outline

	A Calculus of Gradual Ownership Types
	The language JO?
	Syntax
	Typing environments and owners
	OAD invariant, formally
	Type consistency and subtyping
	Expression, method and class typing

	Type-directed translation: the language JO+?
	OAD invariant violations, revisited
	Syntax of JO+?
	Helper relations and program typing in JO+?
	Type-directed program translation

	Operational semantics of JO+?
	Type safety
	Typing dynamic environments
	Subject reduction
	OAD invariant preservation
	Static type safety of JO?


	Implementation and Evaluation
	Implementation
	Program transformation
	Implementing ownership parameters
	Implementing dependent owners
	Implementing casts and boundary checks
	Supporting inner classes via manifest ownership
	Gradual ownership types and inheritance
	Current limitations

	Experience

	Discussion and Related Work
	Discussion
	Alternative ownership disciplines
	Required annotations and default conventions
	Treatment of libraries
	Implementing boundary checks

	Related Work
	Gradual types and contracts
	Dynamic ownership
	Existential types for ownership
	Ownership inference


	Conclusion and Future Work
	Summary of Contributions
	Future work
	Gradual ownership types in higher-order languages
	Gradual ownership types meet static analysis
	IDE support



	Concluding Words
	PLT Redex Implementation of Type Checking Semantics
	An Implementation of Type Checking with Reductions
	Implementation of Type-Checking via the SEC Machine

	Initial Function Definitions of Chapter 3
	Plain Syntax Implementation
	Hybrid Syntax Implementation
	Implementation of the Reduction Semantics for Type Checking

	Proofs from Chapter 8
	Proofs about compilation (Section 8.2)
	Proofs about Type Safety and Invariant Preservation (Section 8.4)

	Index
	Bibliography
	Curriculum Vitæ

