Communicating State Transition Systems for Fine-Grained Concurrent Resources

Reasoning about shared-memory concurrency

How to model shared-memory concurrency

Two views at shared-memory concurrency

Coarse-Grained Concurrency

Locks (or CCRs) are given as a primitive for synchronization.

Fine-Grained Concurrency

Synchronization is implemented via atomic *Read-Modify-Write* commands.

Two powerful tools for reasoning

Concurrent Separation Logic

O'Hearn [CONCUR'07], Brookes [CONCUR'04]

Rely Guarantee Reasoning Jones [TOPLAS'83]

The essence of CSL

The essence of CSL

• The protocol for interference is <u>fixed</u>: Conditional Critical Regions with Resource Invariants

The essence of CSL

- The protocol for interference is <u>fixed</u>: Conditional Critical Regions with Resource Invariants
- Interference doesn't matter: CCR handle it

$$\frac{\Gamma, r : I \vdash \{p\} c \{q\}}{\Gamma \vdash \{p * I\} \text{ resource } r \text{ in } c \{q * I\}} \text{ ResourceCSL}$$

$$\Gamma, r : I \vdash \{p\} c \{q\}$$

$$\overline{\Gamma \vdash \{p * I\} \text{ resource } r \text{ in } c \{q * I\}} \text{ ResourceCSL}$$

"resource creation" $\Gamma, r: I \vdash \{p\} \ c \ \{q\}$ $\Gamma \vdash \{p * I\}$ resource r in $c \ \{q * I\}$ RESOURCECSL

$\frac{\Gamma \vdash \{p_1\} c_1 \{q_1\}}{\Gamma \vdash \{p_2\} c_1 \{q_2\}} = \frac{\Gamma \vdash \{p_1\} c_1 \{q_1\}}{\Gamma \vdash \{p_1 * p_2\} c_1 \| c_2 \{q_1 * q_2\}} = PARCSL$

The essence of R/G

The essence of R/G

• One can define <u>arbitrary protocols</u> for process interference via *Guarantee relation*.

The essence of R/G

- One can define <u>arbitrary protocols</u> for process interference via *Guarantee relation*.
- Interference matters!
 Atomic operations should be given specifications <u>stable</u> wrt Rely relation.

"Forking/shuffling" parallel composition

 $\frac{R \lor G_2, G_1 \vdash \{p\} c_1 \{q_1\}}{R, G_1 \lor G_2 \vdash \{p\} c_1 \parallel c_2 \{q_1 \land q_2\}} PARRG$

"Forking/shuffling" parallel composition

$$\frac{R \lor G_2, G_1 \vdash \{p\} c_1 \{q_1\}}{R, G_1 \lor G_2 \vdash \{p\} c_1 \{q_2\}} = R \lor G_1, G_2 \vdash \{p\} c_2 \{q_2\}}{R, G_1 \lor G_2 \vdash \{p\} c_1 \parallel c_2 \{q_1 \land q_2\}}$$
PARRG

"Forking/shuffling" parallel composition

Taking the best of two worlds

Our Approach

Fine-Grained Resources

Resources

Fine-Grained

Resources

State Invariants

Fine-Grained

Resources

State Invariants

Fine-Grained Transitions

Resources S

State Invariants

Fine-Grained Transitions

Composition

Forking/shuffling

Resources State Invariants

Fine-Grained Transitions

Composition

Communication

Forking/shuffling

State Invariants Resources

Fine-Grained Transitions

Communication Composition

Forking/shuffling Subjectivity

State Transition Systems

Communication

Subjectivity

State Transition Systems

Communication

(Ley-Wild and Nanevski, POPL 2013)

Subjective Communicating State-Transition Systems Concurroids

Concurroid States

Concurroid States

• Self - owned by <u>me</u>

- Self owned by <u>me</u>
- Other owned by <u>all others</u>

- Self owned by <u>me</u>
- Other owned by <u>all others</u>
- Shared owned by the resource

- Self owned by <u>me</u>
- Other owned by <u>all others</u>
- Shared owned by the resource
- Self and Other are elements of a Partial Commutative Monoid (PCM): (S, 0, ⊕).

Building a concurroid for Ticketed Lock

owner $n_1 \leq n < n_2$

owner $n_1 \leq n < n_2$

Reference Implementation

lock = {
 x := DRAW;
 while (!TRY(x)) SKIP;
}

unlock = {
 INCR OWN;

DRAW	=	{	return	<pre>FETCH_AND_INCREMENT(next);</pre>	}
TRY(n)	=	{	return	(n == owner); }	
INCR_OWN	=	{	owner :	= owner + 1; }	

}

• a_s, a_o - auxiliaries controlled by self/other

- a_s, a_o auxiliaries controlled by self/other
- t_s tickets, owned by self

- a_s, a_o auxiliaries controlled by self/other
- t_s tickets, owned by self
- t_o tickets, owned by other threads

- a_s, a_o auxiliaries controlled by self/other
- t_s tickets, owned by self
- t_o tickets, owned by other threads
- *b* administrative flag to indicate locking

- a_s , a_o auxiliaries controlled by self/other
- t_s tickets, owned by self
- t_o tickets, owned by other threads
- *b* administrative flag to indicate locking
- ℓ label to identify *this* particular instance of TLock concurroid

$$s = \ell woheadrightarrow egin{aligned} \operatorname{owner} & \mapsto & n_1 st \ \operatorname{next} & \mapsto & n_2 st \ h & \langle b
angle \end{aligned} egin{aligned} \operatorname{owner} & \mapsto & n_1 st \ \operatorname{next} & \mapsto & n_2 st \ h & \langle b
angle \end{aligned}$$

$$s = \ell \rightarrow (a_s, t_s) | \begin{array}{c} \stackrel{\text{owner}}{\underset{n \in \mathsf{xt}}{\underset{n \in \mathsf{xt}}}{\underset{n \in \mathsf{xt}}}{\underset{n \in \mathsf{xt}}}{\underset{n \in \mathsf{xt}}{\underset{n \in \mathsf{xt}}}}}}}}}}}}}}}}}}} } n \\$$

$$s = \ell \xrightarrow{\longrightarrow} (a_s, t_s) \begin{bmatrix} \operatorname{owner} \mapsto n_1 * \\ \operatorname{next} \mapsto n_2 * \\ h \\ \langle b \rangle \end{bmatrix} (a_o, t_o) \land$$
$$t_s \oplus t_o = \{n \mid n_1 \le n < n_2\} \xrightarrow{\text{All dispensed tickets}} \land$$

$$s = \ell \rightarrow (a_{s}, t_{s}) | \stackrel{\text{owner} \mapsto n_{1}*}{\underset{h}{\text{next} \mapsto n_{2} *}{\underset{b}{\text{h}}}} (a_{o}, t_{o}) \land \land \\ t_{s} \oplus t_{o} = \{n \mid n_{1} \leq n < n_{2}\} \land \qquad \text{All dispensed tickets} \\ \begin{pmatrix} (n_{1} \in (t_{s} \oplus t_{o}) \land b = \textbf{true} \land h = \textbf{emp}) \lor \\ \text{if } n_{1} < n^{2} \quad \textbf{then} \quad n_{1} \in (t_{s} \oplus t_{o}) \land b = \textbf{false} \land I(a_{s} \oplus a_{o})h \\ \textbf{else} \quad n_{1} = n_{2} \land b = \textbf{false} \land I(a_{s} \oplus a_{o})h \end{pmatrix} \land \\ \text{Unlocked} \end{cases}$$

Unlocked

Transitions

Intuition:

Intuition:

$$\ell \rightarrow (a_s, t_s) \begin{vmatrix} \text{owner} \mapsto n_1 * \\ \text{next} \mapsto n_2 * \\ h \\ \langle b \rangle \end{vmatrix} (a_o, t_o)$$

Intuition:

Intuition:

Intuition:

Communication

Intuition:

Channels with different polarity
Channels with different polarity

Implementation:

Acquire/Release transitions (communication is via heap ownership transfer)

Intuition:

Intuition:

Intuition:

Intuition:

Intuition:

Intuition:

Intuition:

Intuition:

Transitions don't change the other part!

Transitions don't change the other part!

Transitions of transposed = <u>Rely</u>

Transitions of transposed = <u>Rely</u>

reminiscent to tokens by Turon et al. [POPL'13, ICFP'13]

Composing Concurroids

Connect communication channels with right polarity

Connect communication channels with right polarity

Connect communication channels with right polarity

- Some channels might be left loose
- Same channels might be connected several times
- Some channels might be shut down

Entanglement Operators

 $\bowtie, \rtimes, \Join, \times, \cdots$

Connect two concurroids by connecting some of their acquire/release transitions.

Entanglement Operators

 $\bowtie, \varkappa, \Join, \times$...

Connect two concurroids by connecting some of their acquire/release transitions.

Connected A/R transitions become *internal* for the entanglement.

Useful Entanglement Operators

- "apart", doesn't connect channels, leaves all loose.
- \boldsymbol{X}
- connects all channels pair-wise, shuts channels of the right operand, leaves left one's loose

Useful Entanglement Operators

- "apart", doesn't connect channels, leaves all loose.
- connects all channels pair-wise,
 shuts channels of the right operand,
 leaves left one's loose

 $\underline{\text{Lemma:}} U \rtimes (V_1 \times V_2) = (U \rtimes V_1) \rtimes V_2$

Programming with Concurroids

Transitions are not yet commands!

Transitions are not yet commands!

They only describe some correct behavior.

Atomic Actions

- Defined as subsets of internal transitions
- Specify the result
- Operational meaning: READ, WRITE, SKIP and various RMW-commands
- Synchronize ownership transfer and manipulation with auxiliaries

Recap: TLock Implementation

```
lock = {
    x := DRAW;
    while (!TRY(x)) SKIP;
}
```

```
unlock = {
    INCR_OWN;
}
```

Recap: TLock Implementation

$$s = p \twoheadrightarrow \underbrace{h_s}_{h_o} \oplus \ell \twoheadrightarrow \underbrace{(a_s, t_s \cup \{n_1\})}_{\substack{next \mapsto n_2 \ * \\ h \ \langle b \rangle}} \underbrace{(a_o, t_o)}_{(a_o, t_o)} \land$$
if $(n_1 = n'_1)$
then $\begin{pmatrix} s' = p \twoheadrightarrow h_s \oplus h \ h_o \end{pmatrix} \oplus \ell \twoheadrightarrow \underbrace{(a_s, t_s \cup \{n_1\})}_{\substack{next \mapsto n_2 \ * \\ emp \ \langle true \rangle}} \underbrace{(a_o, t_o)}_{\langle true \rangle} \land$
else $s' = s \land res = false$

$$s = p \twoheadrightarrow \underbrace{h_s}_{h_o} \oplus \ell \twoheadrightarrow \underbrace{(a_s, t_s \cup \{n_1\})}_{\substack{next \mapsto n_2 \\ next \mapsto n_2 \\ k \\ l}} \underbrace{(a_o, t_o)}_{\langle b \rangle} \land$$

if $(n_1 = n'_1)$
then $\begin{pmatrix} s' = p \twoheadrightarrow \underbrace{h_s \\ h_o \\ s \\ l} \end{pmatrix}_{h_o} \oplus \ell \twoheadrightarrow \underbrace{(a_s, t_s \cup \{n_1\})}_{\substack{next \mapsto n_2 \\ next \mapsto n_2 \\ k \\ k \\ l} \underbrace{(a_o, t_o)}_{\langle true \rangle} \land$
else $s' = s \land res = false$

$$s = p \twoheadrightarrow \underbrace{h_s}_{h_o} \oplus \ell \twoheadrightarrow \underbrace{(a_s \underbrace{t_s \cup \{n_1\}}_{n \in \mathbb{N}} \underbrace{h_s \oplus h_o}_{n \in \mathbb{N}} \oplus \ell \twoheadrightarrow \underbrace{(a_s \underbrace{t_s \cup \{n_1\}}_{n \in \mathbb{N}} \underbrace{h_s \oplus h_o}_{n \in \mathbb{N}} \oplus \ell \implies \underbrace{(a_o, t_o)}_{l \in \mathbb{N}} \wedge \ell \xrightarrow{(a_o, t_o)}_{n \in \mathbb{N}} \wedge \ell \xrightarrow{(a_o$$

What about modular reasoning?
$$x := DRAW;$$

while (!TRY(x)) SKIP;

Context Weakening!

Injection Rule

$$\frac{\{p\} C \{q\} @ U \qquad r \text{ stable under } V}{\{p * r\} \text{ inject}_V C \{q * r\} @ U \bowtie V} \text{ INJECT}$$

where
$$M = \boxtimes, \rtimes, \boxtimes, \times, \times$$
...

Injection Rule

$$\frac{\{p\} C \{q\} @ U \qquad (r \text{ stable under } V)}{\{p * r\} \text{ inject}_V C \{q * r\} @ U \bowtie V}$$
INJECT

where
$$M = \boxtimes, \rtimes, \boxtimes, \times, \times$$
...

while (!TRY(x)) SKIP;

while (!TRY(x)) SKIP;

while (!TRY(x)) SKIP;

while (!TRY(x)) SKIP;

Creating and disposing concurroids

Creating and disposing resources

CSL Resource Rule

$$\frac{\Gamma, r : I \vdash \{p\} c \{q\}}{\Gamma \vdash \{p * I\} \text{ resource } r \text{ in } c \{q * I\}} \text{ ResourceCSL}$$

CSL Resource Rule

$$\frac{\Gamma, r: I \vdash \{p\} c \{q\}}{\Gamma \vdash \{p \ in c \{q \ in c \{q \ in c \}\}} RESOURCECSL$$

CSL Resource Rule

$$\frac{\Gamma[r:I] \vdash \{p\} c \{q\}}{\Gamma \vdash \{p * I\} \text{ resource } r \text{ in } c \{q * I\}} \text{ ResourceCSL}$$

Allocating a Ticketed Lock

with_tlock(owner, next, body) = {
owner := 0;
next := 0;
 $hide_{coh_{(tlock \ \ell(owner, next)),(a_s, \emptyset)}}$ {

body;

Allocating a Ticketed Lock

```
with tlock(owner, next, body) = {
 owner := 0;
 next := 0;
 hide_{coh_{({\rm tlock}\ \ell({\rm owner},{\rm next})),(a_{\mathcal{S}},\emptyset)}}{\tt K}
       body;
```

Scoped concurroid creation/disposal

$hide_{coh_{(tlock \ \ell(owner,next)),(a_s,\emptyset)}}$ {

body;

$$\left\{ p \xrightarrow{\mathsf{owner} \mapsto 0 \ast \\ \mathsf{next} \mapsto 0 \ast \\ h \ast h_s } \right\}$$

 $hide_{coh_{(tlock \ \ell(owner,next)),(a_s,\emptyset)}}$ {

body;

body;

body;

Only One Basic Concurroid

Parallel Composition

 $\frac{\{p_1\}C_1\{q_1\} @ U \qquad \{p_2\}C_2\{q_2\} @ U}{\{p_1 \circledast p_2\}C_1 \parallel C_2\{q_1 \circledast q_2\} @ U} \text{ PAR}$

Parallel Composition

"Fork-shuffling" is handled by subjectivity: R/G are encoded by U_{\cdot}

Not discussed today

- A concurroid for CAS-based lock
- A concurroid model for readers/writers
- Allocation
- Non-scoped locks
- Soundness theorem and its proof
- Abstract predicates (yes, we can do it, too)

Implementation

- Implementation in Coq (metatheory, logic, proofs): shallow embedding into the CIC
- Higher-orderness and abstraction for free
- Reasoning in HTT-style: specifications are monadic types
- Some automation is done for splitting the state among concurroids
- CAS-lock and Ticketed lock are fully implemented

Goal I: Model fine-grained concurrent resources with arbitrary protocols
Goal I: Model fine-grained concurrent resources with arbitrary protocols

Goal 2: Combine simplicity and modularity of Concurrent Separation Logic with the power of Rely-Guarantee reasoning

Goal I: Model fine-grained concurrent resources with arbitrary protocols

Goal 2: Combine simplicity and modularity of Concurrent Separation Logic with the power of Rely-Guarantee reasoning

Proposal:

Concurroids

"fine-grained resources"

Goal I: Model fine-grained concurrent resources with arbitrary protocols

Goal 2: Combine simplicity and modularity of Concurrent Separation Logic with the power of **Rely-Guarantee reasoning**

Proposal:

"fine-grained resources"

- State Transition Systems
 Concurroids
 "fine-grained resources"
 Subjectivity

Goal I: Model fine-grained concurrent resources with arbitrary protocols

Goal 2: Combine simplicity and modularity of Concurrent Separation Logic with the power of **Rely-Guarantee reasoning**

Proposal:

- Concurroids
 "fine-grained resources"
 State Transition Systems
 Communication
 Subjectivity

Thanks!

Backup Slides

Taking the best of two worlds

CSL + FG protocols

- CSL + Permissions
 Bornat et al. [POPL'05]
- Auxiliaries for FG Parkinson et al. [POPL'07]
- Storable locks Gotsman et al. [APLAS'07]
- Concurrent Abstract Predicates (CAP) Dindsdale-Young et al. [ECOOP'10]
- Higher-Order CAP
 Svendsen et al. [ESOP'13]
- Impredicative CAP
 Svendsen and Birkedal [HOPE'13]

RG + Resource composition

- Separate Assume-Guarantee (SAGL)
 Feng et al. [ESOP'07]
- RGSep Vafeiadis and Parkinson [CONCUR'07]
- Local RG
 Feng [POPL'09]
- Deny-Guarantee
 Dods et al. [ESOP'09]

$RI(lock) \stackrel{\text{def}}{=} \mathbf{x} \mapsto (\mathbf{a_s} \oplus \mathbf{a_o})$

lock; x := x + 1; as := as + 1; unlock;
lock; lock; x := x + 1; as := as + 1; unlock;

$RI(lock) \stackrel{\text{def}}{=} \mathbf{x} \mapsto (\mathbf{a_s} \oplus \mathbf{a_o})$

 $\{ a_s \mapsto 0 , a_o \mapsto n \}$

lock; x := x + 1; a_s := a_s + 1; unlock;lock; lock; x := x + 1; a_s := a_s + 1; unlock;

$RI(lock) \stackrel{\text{\tiny def}}{=} \mathbf{x} \mapsto (\mathbf{a_s} \oplus \mathbf{a_o})$

 $\{ a_s \mapsto 0 + 0 , a_o \mapsto n \}$

lock; x := x + 1; a_s := a_s + 1; unlock;
lock; lock; x := x + 1 a_s := a_s + 1; unlock;

$RI(lock) \stackrel{\text{\tiny def}}{=} \mathbf{x}$	$\mapsto (a_s \oplus a_o)$	
$\{ a_s \mapsto 0 + 0 , a_o \mapsto n \}$		
$\{ a_s \mapsto 0, a_o \mapsto n + 0 \}$		
lock;	lock;	
x := x + 1;	x := x + 1;	
a _s := a _s + 1;	a _s := a _s + 1;	
unlock;	unlock;	

$RI(lock) \stackrel{\text{\tiny def}}{=} \mathbf{x} \mapsto (\mathbf{a_s} \oplus \mathbf{a_o})$		
$\{ a_s \mapsto 0 + 0 \ , a_o \mapsto n \}$		
{ $a_s \mapsto 0, a_o \mapsto n + 0$ } lock;	$ \{ a_s \mapsto 0, a_o \mapsto n + 0 \} $ lock;	
x := x + 1;	x := x + 1;	
a _s := a _s + 1;	a _s := a _s + 1;	
unlock;	unlock;	

$RI(lock) \stackrel{\text{\tiny def}}{=} x$	$\mathbf{a} \mapsto (\mathbf{a}_{\mathbf{s}} \oplus \mathbf{a}_{\mathbf{o}})$	
$\{ a_s \mapsto 0 + 0 , a_o \mapsto n \}$		
$ \{ a_s \mapsto 0, a_o \mapsto n + 0 \} $ lock;	$ \{ a_s \mapsto 0, a_o \mapsto n + 0 \} $ lock;	
x := x + 1;	x := x + 1;	
$a_s := a_s + 1;$ unlock;	$a_s := a_s + 1;$ unlock;	
{ $a_s \mapsto 1$, $a_o \mapsto n_1$ }		

 $RI(lock) \stackrel{\text{det}}{=} \mathbf{x} \mapsto (\mathbf{a}_{s} \oplus \mathbf{a}_{o})$ $\{ a_s \mapsto 0 + 0 , a_o \mapsto n \}$ $\{ a_s \mapsto 0, a_o \mapsto n + 0 \}$ $\{a_s \mapsto 0, a_o \mapsto n + 0\}$ lock; lock; x := x + 1; $\|$ x := x + 1; $a_s := a_s + 1;$ $a_s := a_s + 1;$ unlock; unlock; $\{a_s \mapsto 1, a_o \mapsto n_2\}$ $\{ a_s \mapsto 1, a_o \mapsto n_1 \}$

 $RI(lock) \stackrel{\text{\tiny det}}{=} \mathbf{x} \mapsto (\mathbf{a}_{s} \oplus \mathbf{a}_{o})$ $\{ a_s \mapsto \mathbf{0} + \mathbf{0} , a_o \mapsto \mathbf{n} \}$ $\{ a_s \mapsto 0, a_o \mapsto n + 0 \}$ $\{ a_s \mapsto 0, a_o \mapsto n + 0 \}$ lock; lock; x := x + 1; || x := x + 1;**a**_s := **a**_s + 1; **a**_s := **a**_s + 1; unlock; unlock; $\{ a_s \mapsto 1, a_o \mapsto n_1 \}$ $\{ a_s \mapsto 1, a_o \mapsto n_2 \}$ $\{a_s \mapsto 1 + 1, \exists n', a_o \mapsto n', n_1 = n + 1, n_2 = n' + 1\}$

 $RI(lock) \stackrel{\text{\tiny def}}{=} \mathbf{x} \mapsto (\mathbf{a}_{s} \oplus \mathbf{a}_{o})$ $\{ a_s \mapsto \mathbf{0} + \mathbf{0} , a_o \mapsto \mathbf{n} \}$ $\{ a_s \mapsto 0, a_o \mapsto n + 0 \}$ $\{ a_s \mapsto 0, a_o \mapsto n + 0 \}$ lock; lock; x := x + 1; $\|$ x := x + 1; $a_s := a_s + 1;$ $a_s := a_s + 1;$ unlock; unlock; $\{ a_s \mapsto 1, a_o \mapsto n_2 \}$ $\{ a_s \mapsto 1, a_o \mapsto n_1 \}$ $\{a_s \mapsto 2, a_o \mapsto -\}$

Verifying Programs with Atomic Actions

Taming Stability

TRY (n) Action Specification

 $\operatorname{TRY}(n_1)(s, s', \operatorname{res}) \triangleq$

TRY (n) Action Specification

 $\operatorname{TRY}(n_1)(s, s', \operatorname{res}) \triangleq$

$$\begin{cases} s = p \twoheadrightarrow (h_s \land h_o) \oplus \ell \twoheadrightarrow (a_s, t_s \cup \{n_1\}) & \stackrel{\text{owner} \mapsto n'_1 *}{\underset{h \\ \text{next} \mapsto n_2 *}{\underset{h \\ (b)}{\text{next} \mapsto n'_2 *}} \\ h & (b) \end{cases} (a_o, t_o) \end{cases}$$

$$if \quad (n_1 = n'_1)$$

$$then \begin{pmatrix} \exists h'_o, n'_2, t'_o, & & & \\ s' = p \twoheadrightarrow (h_s \oplus h \land h'_o) \oplus \ell \twoheadrightarrow (a_s, t_s \cup \{n_1\}) & \stackrel{\text{owner} \mapsto n_1 *}{\underset{emp}{\text{next} \mapsto n'_2 *}} \\ I(a_s \oplus a_o)h \land \text{res} = true \land coh(s') \end{cases}$$

$$else \begin{pmatrix} \exists h'_o, n'_1, n'_2, t'_o, b', h', a'_o, t'_o, & & \\ s' = p \twoheadrightarrow (h_s \land h'_o) \oplus \ell \twoheadrightarrow (a_s, t_s \cup \{n_1\}) & \stackrel{\text{owner} \mapsto n'_1 *}{\underset{emp}{\text{next} \mapsto n'_2 *}} \\ h' & (b') \end{pmatrix} (a'_o, t'_o) \land coh(s') \end{pmatrix}$$

$$\begin{cases} s = p \twoheadrightarrow \begin{pmatrix} h_s & h_o \end{pmatrix} \oplus \ell \twoheadrightarrow \begin{pmatrix} (a_s, t_s \cup \{n_1\}) & \text{owner} \mapsto n'_1 * \\ next \mapsto n_2 * \\ h & \langle b \rangle \end{pmatrix} (a_o, t_o) \end{cases}$$

$$IRY(n_1)$$

$$\text{if } (n_1 = n'_1)$$

$$\text{then } \exists h'_o, n'_2, t'_o, \\ s' = p \twoheadrightarrow \begin{pmatrix} h_s \oplus h & h'_o \end{pmatrix} \oplus \ell \twoheadrightarrow \begin{pmatrix} (a_s, t_s \cup \{n_1\}) & \text{owner} \mapsto n'_1 * \\ next \mapsto n'_2 * \\ enp & (true) \end{pmatrix}} (a_o, t'_o) \land (true)$$

$$I(a_s \oplus a_o)h \land \text{res} = \text{true } \land coh(s')$$

$$\text{else } \exists h'_o, n'_1, n'_2, t'_o, b', h', a'_o, t'_o, \\ s' = p \twoheadrightarrow \begin{pmatrix} h_s & h'_o \end{pmatrix} \oplus \ell \twoheadrightarrow (a_s, t_s \cup \{n_1\}) & \text{owner} \mapsto n'_1 * \\ next \mapsto n'_2 * \\ h' & \langle b' \rangle \end{pmatrix} (a'_o, t'_o) \land coh(s')$$

On the role of hiding

 Subjective state allows one to give a lower bound to the joint contribution:

"I know what is my contribution."

 Hiding (or scoping) allows one to provide an <u>upper bound</u> for the contribution:

"When everyone is done, we can the auxiliaries are summed up."

Some General Coherence Properties

• Heap-consistency:

 $h_{self} \oplus h_{other} \oplus h_{shared}$ is defined

- Self-other consistency: $(a_s, t_s) \oplus (a_o, t_o)$ is defined
- Fork-join consistency:

Internal Transition Properties

- Coherence-consistency: $int(s_1, s_2) \Rightarrow coh(s_1) \wedge coh(s_2)$
- Reflexivity
- Heap footprint preservation: $int(s_1, s_2) \Rightarrow dom(heap(s_1)) = dom(heap(s_2))$
- Self-locality: $int(s_1, s_2) \Rightarrow other(s_1) = other(s_2)$
- Fork-join consistency:

Acquire/Release Properties

• Coherence-consistency:

 $acq(s_1, s_2) \Rightarrow coh(s_1) \wedge coh(s_2)$

• Self-locality:

 $acq(s_1, s_2) \Rightarrow other(s_1) = other(s_2)$

• Fork-join consistency

Readers-Writers

 $I_r(N_s \oplus N_o, h_r) \triangleq (N_s \oplus N_o = n) \land (N_s \oplus N_o = 0 \implies h_r = \mathsf{emp})$ $I_w(a_s \oplus a_o, h_w) \triangleq \dots$

Readers-Writers

