
Communicating State Transition Systems
for

Fine-Grained Concurrent Resources

Aleksandar Nanevski Ruy Ley-Wild Ilya Sergey Germán Delbianco

HOPE 2013

biennial report
2008-09

madrid institute
for advanced studies

memoria software v3.qxd 13/8/10 10:48 Página 1

Reasoning about
shared-memory concurrency

How to model
shared-memory concurrency

Two views at
shared-memory concurrency

Coarse-Grained Concurrency

Locks (or CCRs) are given
as a primitive for synchronization.

Fine-Grained Concurrency

Synchronization is implemented via
atomic Read-Modify-Write commands.

Two powerful tools
for reasoning

Concurrent Separation Logic

Rely Guarantee Reasoning

O'Hearn [CONCUR'07], Brookes [CONCUR'04]

Jones [TOPLAS'83]

The essence of CSL

The essence of CSL

• The protocol for interference is fixed:
Conditional Critical Regions with Resource Invariants

The essence of CSL

• The protocol for interference is fixed:
Conditional Critical Regions with Resource Invariants

• Interference doesn’t matter: CCR handle it

Communicating Transition Systems for Fine-Grained

Concurrent Resources

Aleksandar Nanevski1, Ruy Ley-Wild2, Ilya Sergey1, and Germán Andrés Delbianco1

1 IMDEA Software Institute
{aleks.nanevski, ilya.sergey, german.delbianco}@imdea.org

2 Logicblox
ruy.leywild@logicblox.com

1 Introduction

There are two main styles of program logics for reasoning about shared-memory con-
currency, customarily divided according to the supported kind of granularity of inter-
ference between concurrent programs.

The main representative of logics for coarse-grained concurrency, where interfer-
ence is confined to critical section, is Concurrent Separation Logic (CSL) [?,?]. CSL
employs the ideas of shared resources and associated resource invariants [?], to abstract
the interference between threads. Resource r is a chunk of shared state, and a resource
invariant I is a predicate over states, which holds of r whenever all threads are outside
the critical section. By mutual exclusion, when a thread enters a critical section for r,
it acquires ownership and hence exclusive access to r’s state. The thread may mutate
the shared state and violate the invariant I, but it must restore I before releasing r and
leaving the critical section, as given by the following CSL rule [?].

� ` {(p ⇤ I) ^ b} c {q ⇤ I}
�, r : I ` {p} with r when b do c {q}

SECTIONCSL

� is a context of currently existing resources. A private heap of a thread may be pro-
moted into a shared resource in a scoped manner by the folowing rule.

�, r : I ` {p} c {q}
� ` {p ⇤ I} resource r in c {q ⇤ I}

RESOURCECSL

As inteference is handled by �, the rule for parallel composition assumes that forked
threads don’t share any state beyond that of the resources in �, and may divide the
private state of the parent thread disjointly among the children.

� ` {p1} c1 {q1} � ` {p2} c2 {q2}
� ` {p1 ⇤ p2} c1 k c2 {q1 ⇤ q2}

PARCSL

The main representative of logics for fine-grained concurrency, where interference
may occur between any two memory operations, is Rely/Guarantee (RG) [?]. In RG, the

Communicating Transition Systems for Fine-Grained

Concurrent Resources

Aleksandar Nanevski1, Ruy Ley-Wild2, Ilya Sergey1, and Germán Andrés Delbianco1

1 IMDEA Software Institute
{aleks.nanevski, ilya.sergey, german.delbianco}@imdea.org

2 Logicblox
ruy.leywild@logicblox.com

1 Introduction

There are two main styles of program logics for reasoning about shared-memory con-
currency, customarily divided according to the supported kind of granularity of inter-
ference between concurrent programs.

The main representative of logics for coarse-grained concurrency, where interfer-
ence is confined to critical section, is Concurrent Separation Logic (CSL) [?,?]. CSL
employs the ideas of shared resources and associated resource invariants [?], to abstract
the interference between threads. Resource r is a chunk of shared state, and a resource
invariant I is a predicate over states, which holds of r whenever all threads are outside
the critical section. By mutual exclusion, when a thread enters a critical section for r,
it acquires ownership and hence exclusive access to r’s state. The thread may mutate
the shared state and violate the invariant I, but it must restore I before releasing r and
leaving the critical section, as given by the following CSL rule [?].

� ` {(p ⇤ I) ^ b} c {q ⇤ I}
�, r : I ` {p} with r when b do c {q}

SECTIONCSL

� is a context of currently existing resources. A private heap of a thread may be pro-
moted into a shared resource in a scoped manner by the folowing rule.

�, r : I ` {p} c {q}
� ` {p ⇤ I} resource r in c {q ⇤ I}

RESOURCECSL

As inteference is handled by �, the rule for parallel composition assumes that forked
threads don’t share any state beyond that of the resources in �, and may divide the
private state of the parent thread disjointly among the children.

� ` {p1} c1 {q1} � ` {p2} c2 {q2}
� ` {p1 ⇤ p2} c1 k c2 {q1 ⇤ q2}

PARCSL

The main representative of logics for fine-grained concurrency, where interference
may occur between any two memory operations, is Rely/Guarantee (RG) [?]. In RG, the

“resource creation”

Communicating Transition Systems for Fine-Grained

Concurrent Resources

Aleksandar Nanevski1, Ruy Ley-Wild2, Ilya Sergey1, and Germán Andrés Delbianco1

1 IMDEA Software Institute
{aleks.nanevski, ilya.sergey, german.delbianco}@imdea.org

2 Logicblox
ruy.leywild@logicblox.com

1 Introduction

There are two main styles of program logics for reasoning about shared-memory con-
currency, customarily divided according to the supported kind of granularity of inter-
ference between concurrent programs.

The main representative of logics for coarse-grained concurrency, where interfer-
ence is confined to critical section, is Concurrent Separation Logic (CSL) [?,?]. CSL
employs the ideas of shared resources and associated resource invariants [?], to abstract
the interference between threads. Resource r is a chunk of shared state, and a resource
invariant I is a predicate over states, which holds of r whenever all threads are outside
the critical section. By mutual exclusion, when a thread enters a critical section for r,
it acquires ownership and hence exclusive access to r’s state. The thread may mutate
the shared state and violate the invariant I, but it must restore I before releasing r and
leaving the critical section, as given by the following CSL rule [?].

� ` {(p ⇤ I) ^ b} c {q ⇤ I}
�, r : I ` {p} with r when b do c {q}

SECTIONCSL

� is a context of currently existing resources. A private heap of a thread may be pro-
moted into a shared resource in a scoped manner by the folowing rule.

�, r : I ` {p} c {q}
� ` {p ⇤ I} resource r in c {q ⇤ I}

RESOURCECSL

As inteference is handled by �, the rule for parallel composition assumes that forked
threads don’t share any state beyond that of the resources in �, and may divide the
private state of the parent thread disjointly among the children.

� ` {p1} c1 {q1} � ` {p2} c2 {q2}
� ` {p1 ⇤ p2} c1 k c2 {q1 ⇤ q2}

PARCSL

The main representative of logics for fine-grained concurrency, where interference
may occur between any two memory operations, is Rely/Guarantee (RG) [?]. In RG, the

Communicating Transition Systems for Fine-Grained

Concurrent Resources

Aleksandar Nanevski1, Ruy Ley-Wild2, Ilya Sergey1, and Germán Andrés Delbianco1

1 IMDEA Software Institute
{aleks.nanevski, ilya.sergey, german.delbianco}@imdea.org

2 Logicblox
ruy.leywild@logicblox.com

1 Introduction

There are two main styles of program logics for reasoning about shared-memory con-
currency, customarily divided according to the supported kind of granularity of inter-
ference between concurrent programs.

The main representative of logics for coarse-grained concurrency, where interfer-
ence is confined to critical section, is Concurrent Separation Logic (CSL) [?,?]. CSL
employs the ideas of shared resources and associated resource invariants [?], to abstract
the interference between threads. Resource r is a chunk of shared state, and a resource
invariant I is a predicate over states, which holds of r whenever all threads are outside
the critical section. By mutual exclusion, when a thread enters a critical section for r,
it acquires ownership and hence exclusive access to r’s state. The thread may mutate
the shared state and violate the invariant I, but it must restore I before releasing r and
leaving the critical section, as given by the following CSL rule [?].

� ` {(p ⇤ I) ^ b} c {q ⇤ I}
�, r : I ` {p} with r when b do c {q}

SECTIONCSL

� is a context of currently existing resources. A private heap of a thread may be pro-
moted into a shared resource in a scoped manner by the folowing rule.

�, r : I ` {p} c {q}
� ` {p ⇤ I} resource r in c {q ⇤ I}

RESOURCECSL

As inteference is handled by �, the rule for parallel composition assumes that forked
threads don’t share any state beyond that of the resources in �, and may divide the
private state of the parent thread disjointly among the children.

� ` {p1} c1 {q1} � ` {p2} c2 {q2}
� ` {p1 ⇤ p2} c1 k c2 {q1 ⇤ q2}

PARCSL

The main representative of logics for fine-grained concurrency, where interference
may occur between any two memory operations, is Rely/Guarantee (RG) [?]. In RG, the

Communicating Transition Systems for Fine-Grained

Concurrent Resources

Aleksandar Nanevski1, Ruy Ley-Wild2, Ilya Sergey1, and Germán Andrés Delbianco1

1 IMDEA Software Institute
{aleks.nanevski, ilya.sergey, german.delbianco}@imdea.org

2 Logicblox
ruy.leywild@logicblox.com

1 Introduction

There are two main styles of program logics for reasoning about shared-memory con-
currency, customarily divided according to the supported kind of granularity of inter-
ference between concurrent programs.

The main representative of logics for coarse-grained concurrency, where interfer-
ence is confined to critical section, is Concurrent Separation Logic (CSL) [?,?]. CSL
employs the ideas of shared resources and associated resource invariants [?], to abstract
the interference between threads. Resource r is a chunk of shared state, and a resource
invariant I is a predicate over states, which holds of r whenever all threads are outside
the critical section. By mutual exclusion, when a thread enters a critical section for r,
it acquires ownership and hence exclusive access to r’s state. The thread may mutate
the shared state and violate the invariant I, but it must restore I before releasing r and
leaving the critical section, as given by the following CSL rule [?].

� ` {(p ⇤ I) ^ b} c {q ⇤ I}
�, r : I ` {p} with r when b do c {q}

SECTIONCSL

� is a context of currently existing resources. A private heap of a thread may be pro-
moted into a shared resource in a scoped manner by the folowing rule.

�, r : I ` {p} c {q}
� ` {p ⇤ I} resource r in c {q ⇤ I}

RESOURCECSL

As inteference is handled by �, the rule for parallel composition assumes that forked
threads don’t share any state beyond that of the resources in �, and may divide the
private state of the parent thread disjointly among the children.

� ` {p1} c1 {q1} � ` {p2} c2 {q2}
� ` {p1 ⇤ p2} c1 k c2 {q1 ⇤ q2}

PARCSL

The main representative of logics for fine-grained concurrency, where interference
may occur between any two memory operations, is Rely/Guarantee (RG) [?]. In RG, the

All interference
is handled here

The essence of R/G

The essence of R/G

• One can define arbitrary protocols
for process interference via Guarantee relation.

The essence of R/G

• One can define arbitrary protocols
for process interference via Guarantee relation.

• Interference matters!
Atomic operations should be given
specifications stable wrt Rely relation.

interaction between threads is directly specified by the rule for parallel composition.3

R _G2,G1 ` {p} c1 {q1} R _G1,G2 ` {p} c2 {q2}
R,G1 _G2 ` {p} c1 k c2 {q1 ^ q2}

PARRG

The rely transition R and guarantee transitions G1 and G2 are relations on states. A
rely specifies the thread’s expectations of state transitions made by its environment.
A guarantee specifies the state transitions made by the thread itself. The disjunctive
combinations of R and G’s in the rule captures the idea we call forking shuffle, whereby
upon forking, the thread c1 becomes part of the environment for c2 and vice-versa.

RG is more general than CSL because transitions can encode arbitrary protocols
on shared state, whereas CSL is specialized to a fixed mutual exclusion protocol on
critical sections. But, CSL is more compositional in manipulating resources. Where a
CSL resource invariant specifies the behavior of an individual chunk of shared state,
the transitions in RG treat the whole state as shared. The related work on Local Rely-
Guarantee [?] has made the first steps in improving RG in this respect.

Instead of improving on RG, in this paper we propose that attaining the best of
both reasoning styles can be achieved by generalizing CSL with a novel notion of fine-
grained resource. A fine-grained resource is specified by a resource invariant, as in CSL,
but it also adds transitions between states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant essentially specifies the state space. We
identify a number of properties that an STS has to satisfy to specify a fine-grained
resource, and refer to such STSs as concurroids. We refer to our generalization as Fine-
grained CSL (FCSL).

There are two main ideas that we build on in FCSL: subjectivity [?] and commu-
nication. Subjectivity means that each state of a concurroid STS describes not only
the shared resource, but also two abstractions of it that represent the views of the state
by the transitioning thread, and by its environment, respectively. In such a setting, we
will be able to encode the idea of the forking shuffle at the level of state, rather than
by disjoining transitions. Hence, the FCSL rule for parallel composition will be in the
compositional style of PARCSL, with a somewhat generalized notion of ⇤ [?], rather
than in the monolithic style of PARRG.

Concurroids are communicating STSs; in addition to internal transitions between
states, they contain external transitions, which may be though of as “wires” dangling
towards the outside. Concurroids can be entangled, i.e., composed by means of in-
terconnecting their dangling wires, where the interconnections serve to transfer heap
ownership between concurroids. Entangling concurroids generalizes adding a resource
to the context � in RESOURCECSL. FCSL provides a specific inference rule INJECT
which generalizes the corresponding notion of context weakening, and allows that ver-
ifications carried out wrt. a concurroid U can be lifted to an entanglement U oV . FCSL
also provides an inference rule HIDE for creating a resource out of private state in a
scoped manner, thus generalizing RESOURCECSL.

We illustrate FCSL by a few examples showing how to implement the coarse-
grained resource management of CSL by fine-grained resources of FCSL. The re-
sources are fine-grained because they expose a lock on which threads can explicitly

3 In the presence of heaps, the rule is more complicated [?,?], but we elide the issue here.

2

“Forking/shuffling”
parallel composition

interaction between threads is directly specified by the rule for parallel composition.3

R _G2,G1 ` {p} c1 {q1} R _G1,G2 ` {p} c2 {q2}
R,G1 _G2 ` {p} c1 k c2 {q1 ^ q2}

PARRG

The rely transition R and guarantee transitions G1 and G2 are relations on states. A
rely specifies the thread’s expectations of state transitions made by its environment.
A guarantee specifies the state transitions made by the thread itself. The disjunctive
combinations of R and G’s in the rule captures the idea we call forking shuffle, whereby
upon forking, the thread c1 becomes part of the environment for c2 and vice-versa.

RG is more general than CSL because transitions can encode arbitrary protocols
on shared state, whereas CSL is specialized to a fixed mutual exclusion protocol on
critical sections. But, CSL is more compositional in manipulating resources. Where a
CSL resource invariant specifies the behavior of an individual chunk of shared state,
the transitions in RG treat the whole state as shared. The related work on Local Rely-
Guarantee [?] has made the first steps in improving RG in this respect.

Instead of improving on RG, in this paper we propose that attaining the best of
both reasoning styles can be achieved by generalizing CSL with a novel notion of fine-
grained resource. A fine-grained resource is specified by a resource invariant, as in CSL,
but it also adds transitions between states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant essentially specifies the state space. We
identify a number of properties that an STS has to satisfy to specify a fine-grained
resource, and refer to such STSs as concurroids. We refer to our generalization as Fine-
grained CSL (FCSL).

There are two main ideas that we build on in FCSL: subjectivity [?] and commu-
nication. Subjectivity means that each state of a concurroid STS describes not only
the shared resource, but also two abstractions of it that represent the views of the state
by the transitioning thread, and by its environment, respectively. In such a setting, we
will be able to encode the idea of the forking shuffle at the level of state, rather than
by disjoining transitions. Hence, the FCSL rule for parallel composition will be in the
compositional style of PARCSL, with a somewhat generalized notion of ⇤ [?], rather
than in the monolithic style of PARRG.

Concurroids are communicating STSs; in addition to internal transitions between
states, they contain external transitions, which may be though of as “wires” dangling
towards the outside. Concurroids can be entangled, i.e., composed by means of in-
terconnecting their dangling wires, where the interconnections serve to transfer heap
ownership between concurroids. Entangling concurroids generalizes adding a resource
to the context � in RESOURCECSL. FCSL provides a specific inference rule INJECT
which generalizes the corresponding notion of context weakening, and allows that ver-
ifications carried out wrt. a concurroid U can be lifted to an entanglement U oV . FCSL
also provides an inference rule HIDE for creating a resource out of private state in a
scoped manner, thus generalizing RESOURCECSL.

We illustrate FCSL by a few examples showing how to implement the coarse-
grained resource management of CSL by fine-grained resources of FCSL. The re-
sources are fine-grained because they expose a lock on which threads can explicitly

3 In the presence of heaps, the rule is more complicated [?,?], but we elide the issue here.

2

interaction between threads is directly specified by the rule for parallel composition.3

R _G2,G1 ` {p} c1 {q1} R _G1,G2 ` {p} c2 {q2}
R,G1 _G2 ` {p} c1 k c2 {q1 ^ q2}

PARRG

The rely transition R and guarantee transitions G1 and G2 are relations on states. A
rely specifies the thread’s expectations of state transitions made by its environment.
A guarantee specifies the state transitions made by the thread itself. The disjunctive
combinations of R and G’s in the rule captures the idea we call forking shuffle, whereby
upon forking, the thread c1 becomes part of the environment for c2 and vice-versa.

RG is more general than CSL because transitions can encode arbitrary protocols
on shared state, whereas CSL is specialized to a fixed mutual exclusion protocol on
critical sections. But, CSL is more compositional in manipulating resources. Where a
CSL resource invariant specifies the behavior of an individual chunk of shared state,
the transitions in RG treat the whole state as shared. The related work on Local Rely-
Guarantee [?] has made the first steps in improving RG in this respect.

Instead of improving on RG, in this paper we propose that attaining the best of
both reasoning styles can be achieved by generalizing CSL with a novel notion of fine-
grained resource. A fine-grained resource is specified by a resource invariant, as in CSL,
but it also adds transitions between states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant essentially specifies the state space. We
identify a number of properties that an STS has to satisfy to specify a fine-grained
resource, and refer to such STSs as concurroids. We refer to our generalization as Fine-
grained CSL (FCSL).

There are two main ideas that we build on in FCSL: subjectivity [?] and commu-
nication. Subjectivity means that each state of a concurroid STS describes not only
the shared resource, but also two abstractions of it that represent the views of the state
by the transitioning thread, and by its environment, respectively. In such a setting, we
will be able to encode the idea of the forking shuffle at the level of state, rather than
by disjoining transitions. Hence, the FCSL rule for parallel composition will be in the
compositional style of PARCSL, with a somewhat generalized notion of ⇤ [?], rather
than in the monolithic style of PARRG.

Concurroids are communicating STSs; in addition to internal transitions between
states, they contain external transitions, which may be though of as “wires” dangling
towards the outside. Concurroids can be entangled, i.e., composed by means of in-
terconnecting their dangling wires, where the interconnections serve to transfer heap
ownership between concurroids. Entangling concurroids generalizes adding a resource
to the context � in RESOURCECSL. FCSL provides a specific inference rule INJECT
which generalizes the corresponding notion of context weakening, and allows that ver-
ifications carried out wrt. a concurroid U can be lifted to an entanglement U oV . FCSL
also provides an inference rule HIDE for creating a resource out of private state in a
scoped manner, thus generalizing RESOURCECSL.

We illustrate FCSL by a few examples showing how to implement the coarse-
grained resource management of CSL by fine-grained resources of FCSL. The re-
sources are fine-grained because they expose a lock on which threads can explicitly

3 In the presence of heaps, the rule is more complicated [?,?], but we elide the issue here.

2

interaction between threads is directly specified by the rule for parallel composition.3

R _G2,G1 ` {p} c1 {q1} R _G1,G2 ` {p} c2 {q2}
R,G1 _G2 ` {p} c1 k c2 {q1 ^ q2}

PARRG

The rely transition R and guarantee transitions G1 and G2 are relations on states. A
rely specifies the thread’s expectations of state transitions made by its environment.
A guarantee specifies the state transitions made by the thread itself. The disjunctive
combinations of R and G’s in the rule captures the idea we call forking shuffle, whereby
upon forking, the thread c1 becomes part of the environment for c2 and vice-versa.

RG is more general than CSL because transitions can encode arbitrary protocols
on shared state, whereas CSL is specialized to a fixed mutual exclusion protocol on
critical sections. But, CSL is more compositional in manipulating resources. Where a
CSL resource invariant specifies the behavior of an individual chunk of shared state,
the transitions in RG treat the whole state as shared. The related work on Local Rely-
Guarantee [?] has made the first steps in improving RG in this respect.

Instead of improving on RG, in this paper we propose that attaining the best of
both reasoning styles can be achieved by generalizing CSL with a novel notion of fine-
grained resource. A fine-grained resource is specified by a resource invariant, as in CSL,
but it also adds transitions between states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant essentially specifies the state space. We
identify a number of properties that an STS has to satisfy to specify a fine-grained
resource, and refer to such STSs as concurroids. We refer to our generalization as Fine-
grained CSL (FCSL).

There are two main ideas that we build on in FCSL: subjectivity [?] and commu-
nication. Subjectivity means that each state of a concurroid STS describes not only
the shared resource, but also two abstractions of it that represent the views of the state
by the transitioning thread, and by its environment, respectively. In such a setting, we
will be able to encode the idea of the forking shuffle at the level of state, rather than
by disjoining transitions. Hence, the FCSL rule for parallel composition will be in the
compositional style of PARCSL, with a somewhat generalized notion of ⇤ [?], rather
than in the monolithic style of PARRG.

Concurroids are communicating STSs; in addition to internal transitions between
states, they contain external transitions, which may be though of as “wires” dangling
towards the outside. Concurroids can be entangled, i.e., composed by means of in-
terconnecting their dangling wires, where the interconnections serve to transfer heap
ownership between concurroids. Entangling concurroids generalizes adding a resource
to the context � in RESOURCECSL. FCSL provides a specific inference rule INJECT
which generalizes the corresponding notion of context weakening, and allows that ver-
ifications carried out wrt. a concurroid U can be lifted to an entanglement U oV . FCSL
also provides an inference rule HIDE for creating a resource out of private state in a
scoped manner, thus generalizing RESOURCECSL.

We illustrate FCSL by a few examples showing how to implement the coarse-
grained resource management of CSL by fine-grained resources of FCSL. The re-
sources are fine-grained because they expose a lock on which threads can explicitly

3 In the presence of heaps, the rule is more complicated [?,?], but we elide the issue here.

2

“Forking/shuffling”
parallel composition

interaction between threads is directly specified by the rule for parallel composition.3

R _G2,G1 ` {p} c1 {q1} R _G1,G2 ` {p} c2 {q2}
R,G1 _G2 ` {p} c1 k c2 {q1 ^ q2}

PARRG

The rely transition R and guarantee transitions G1 and G2 are relations on states. A
rely specifies the thread’s expectations of state transitions made by its environment.
A guarantee specifies the state transitions made by the thread itself. The disjunctive
combinations of R and G’s in the rule captures the idea we call forking shuffle, whereby
upon forking, the thread c1 becomes part of the environment for c2 and vice-versa.

RG is more general than CSL because transitions can encode arbitrary protocols
on shared state, whereas CSL is specialized to a fixed mutual exclusion protocol on
critical sections. But, CSL is more compositional in manipulating resources. Where a
CSL resource invariant specifies the behavior of an individual chunk of shared state,
the transitions in RG treat the whole state as shared. The related work on Local Rely-
Guarantee [?] has made the first steps in improving RG in this respect.

Instead of improving on RG, in this paper we propose that attaining the best of
both reasoning styles can be achieved by generalizing CSL with a novel notion of fine-
grained resource. A fine-grained resource is specified by a resource invariant, as in CSL,
but it also adds transitions between states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant essentially specifies the state space. We
identify a number of properties that an STS has to satisfy to specify a fine-grained
resource, and refer to such STSs as concurroids. We refer to our generalization as Fine-
grained CSL (FCSL).

There are two main ideas that we build on in FCSL: subjectivity [?] and commu-
nication. Subjectivity means that each state of a concurroid STS describes not only
the shared resource, but also two abstractions of it that represent the views of the state
by the transitioning thread, and by its environment, respectively. In such a setting, we
will be able to encode the idea of the forking shuffle at the level of state, rather than
by disjoining transitions. Hence, the FCSL rule for parallel composition will be in the
compositional style of PARCSL, with a somewhat generalized notion of ⇤ [?], rather
than in the monolithic style of PARRG.

Concurroids are communicating STSs; in addition to internal transitions between
states, they contain external transitions, which may be though of as “wires” dangling
towards the outside. Concurroids can be entangled, i.e., composed by means of in-
terconnecting their dangling wires, where the interconnections serve to transfer heap
ownership between concurroids. Entangling concurroids generalizes adding a resource
to the context � in RESOURCECSL. FCSL provides a specific inference rule INJECT
which generalizes the corresponding notion of context weakening, and allows that ver-
ifications carried out wrt. a concurroid U can be lifted to an entanglement U oV . FCSL
also provides an inference rule HIDE for creating a resource out of private state in a
scoped manner, thus generalizing RESOURCECSL.

We illustrate FCSL by a few examples showing how to implement the coarse-
grained resource management of CSL by fine-grained resources of FCSL. The re-
sources are fine-grained because they expose a lock on which threads can explicitly

3 In the presence of heaps, the rule is more complicated [?,?], but we elide the issue here.

2

interaction between threads is directly specified by the rule for parallel composition.3

R _G2,G1 ` {p} c1 {q1} R _G1,G2 ` {p} c2 {q2}
R,G1 _G2 ` {p} c1 k c2 {q1 ^ q2}

PARRG

The rely transition R and guarantee transitions G1 and G2 are relations on states. A
rely specifies the thread’s expectations of state transitions made by its environment.
A guarantee specifies the state transitions made by the thread itself. The disjunctive
combinations of R and G’s in the rule captures the idea we call forking shuffle, whereby
upon forking, the thread c1 becomes part of the environment for c2 and vice-versa.

RG is more general than CSL because transitions can encode arbitrary protocols
on shared state, whereas CSL is specialized to a fixed mutual exclusion protocol on
critical sections. But, CSL is more compositional in manipulating resources. Where a
CSL resource invariant specifies the behavior of an individual chunk of shared state,
the transitions in RG treat the whole state as shared. The related work on Local Rely-
Guarantee [?] has made the first steps in improving RG in this respect.

Instead of improving on RG, in this paper we propose that attaining the best of
both reasoning styles can be achieved by generalizing CSL with a novel notion of fine-
grained resource. A fine-grained resource is specified by a resource invariant, as in CSL,
but it also adds transitions between states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant essentially specifies the state space. We
identify a number of properties that an STS has to satisfy to specify a fine-grained
resource, and refer to such STSs as concurroids. We refer to our generalization as Fine-
grained CSL (FCSL).

There are two main ideas that we build on in FCSL: subjectivity [?] and commu-
nication. Subjectivity means that each state of a concurroid STS describes not only
the shared resource, but also two abstractions of it that represent the views of the state
by the transitioning thread, and by its environment, respectively. In such a setting, we
will be able to encode the idea of the forking shuffle at the level of state, rather than
by disjoining transitions. Hence, the FCSL rule for parallel composition will be in the
compositional style of PARCSL, with a somewhat generalized notion of ⇤ [?], rather
than in the monolithic style of PARRG.

Concurroids are communicating STSs; in addition to internal transitions between
states, they contain external transitions, which may be though of as “wires” dangling
towards the outside. Concurroids can be entangled, i.e., composed by means of in-
terconnecting their dangling wires, where the interconnections serve to transfer heap
ownership between concurroids. Entangling concurroids generalizes adding a resource
to the context � in RESOURCECSL. FCSL provides a specific inference rule INJECT
which generalizes the corresponding notion of context weakening, and allows that ver-
ifications carried out wrt. a concurroid U can be lifted to an entanglement U oV . FCSL
also provides an inference rule HIDE for creating a resource out of private state in a
scoped manner, thus generalizing RESOURCECSL.

We illustrate FCSL by a few examples showing how to implement the coarse-
grained resource management of CSL by fine-grained resources of FCSL. The re-
sources are fine-grained because they expose a lock on which threads can explicitly

3 In the presence of heaps, the rule is more complicated [?,?], but we elide the issue here.

2

interaction between threads is directly specified by the rule for parallel composition.3

R _G2,G1 ` {p} c1 {q1} R _G1,G2 ` {p} c2 {q2}
R,G1 _G2 ` {p} c1 k c2 {q1 ^ q2}

PARRG

The rely transition R and guarantee transitions G1 and G2 are relations on states. A
rely specifies the thread’s expectations of state transitions made by its environment.
A guarantee specifies the state transitions made by the thread itself. The disjunctive
combinations of R and G’s in the rule captures the idea we call forking shuffle, whereby
upon forking, the thread c1 becomes part of the environment for c2 and vice-versa.

RG is more general than CSL because transitions can encode arbitrary protocols
on shared state, whereas CSL is specialized to a fixed mutual exclusion protocol on
critical sections. But, CSL is more compositional in manipulating resources. Where a
CSL resource invariant specifies the behavior of an individual chunk of shared state,
the transitions in RG treat the whole state as shared. The related work on Local Rely-
Guarantee [?] has made the first steps in improving RG in this respect.

Instead of improving on RG, in this paper we propose that attaining the best of
both reasoning styles can be achieved by generalizing CSL with a novel notion of fine-
grained resource. A fine-grained resource is specified by a resource invariant, as in CSL,
but it also adds transitions between states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant essentially specifies the state space. We
identify a number of properties that an STS has to satisfy to specify a fine-grained
resource, and refer to such STSs as concurroids. We refer to our generalization as Fine-
grained CSL (FCSL).

There are two main ideas that we build on in FCSL: subjectivity [?] and commu-
nication. Subjectivity means that each state of a concurroid STS describes not only
the shared resource, but also two abstractions of it that represent the views of the state
by the transitioning thread, and by its environment, respectively. In such a setting, we
will be able to encode the idea of the forking shuffle at the level of state, rather than
by disjoining transitions. Hence, the FCSL rule for parallel composition will be in the
compositional style of PARCSL, with a somewhat generalized notion of ⇤ [?], rather
than in the monolithic style of PARRG.

Concurroids are communicating STSs; in addition to internal transitions between
states, they contain external transitions, which may be though of as “wires” dangling
towards the outside. Concurroids can be entangled, i.e., composed by means of in-
terconnecting their dangling wires, where the interconnections serve to transfer heap
ownership between concurroids. Entangling concurroids generalizes adding a resource
to the context � in RESOURCECSL. FCSL provides a specific inference rule INJECT
which generalizes the corresponding notion of context weakening, and allows that ver-
ifications carried out wrt. a concurroid U can be lifted to an entanglement U oV . FCSL
also provides an inference rule HIDE for creating a resource out of private state in a
scoped manner, thus generalizing RESOURCECSL.

We illustrate FCSL by a few examples showing how to implement the coarse-
grained resource management of CSL by fine-grained resources of FCSL. The re-
sources are fine-grained because they expose a lock on which threads can explicitly

3 In the presence of heaps, the rule is more complicated [?,?], but we elide the issue here.

2

“Forking/shuffling”
parallel composition

interaction between threads is directly specified by the rule for parallel composition.3

R _G2,G1 ` {p} c1 {q1} R _G1,G2 ` {p} c2 {q2}
R,G1 _G2 ` {p} c1 k c2 {q1 ^ q2}

PARRG

The rely transition R and guarantee transitions G1 and G2 are relations on states. A
rely specifies the thread’s expectations of state transitions made by its environment.
A guarantee specifies the state transitions made by the thread itself. The disjunctive
combinations of R and G’s in the rule captures the idea we call forking shuffle, whereby
upon forking, the thread c1 becomes part of the environment for c2 and vice-versa.

RG is more general than CSL because transitions can encode arbitrary protocols
on shared state, whereas CSL is specialized to a fixed mutual exclusion protocol on
critical sections. But, CSL is more compositional in manipulating resources. Where a
CSL resource invariant specifies the behavior of an individual chunk of shared state,
the transitions in RG treat the whole state as shared. The related work on Local Rely-
Guarantee [?] has made the first steps in improving RG in this respect.

Instead of improving on RG, in this paper we propose that attaining the best of
both reasoning styles can be achieved by generalizing CSL with a novel notion of fine-
grained resource. A fine-grained resource is specified by a resource invariant, as in CSL,
but it also adds transitions between states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant essentially specifies the state space. We
identify a number of properties that an STS has to satisfy to specify a fine-grained
resource, and refer to such STSs as concurroids. We refer to our generalization as Fine-
grained CSL (FCSL).

There are two main ideas that we build on in FCSL: subjectivity [?] and commu-
nication. Subjectivity means that each state of a concurroid STS describes not only
the shared resource, but also two abstractions of it that represent the views of the state
by the transitioning thread, and by its environment, respectively. In such a setting, we
will be able to encode the idea of the forking shuffle at the level of state, rather than
by disjoining transitions. Hence, the FCSL rule for parallel composition will be in the
compositional style of PARCSL, with a somewhat generalized notion of ⇤ [?], rather
than in the monolithic style of PARRG.

Concurroids are communicating STSs; in addition to internal transitions between
states, they contain external transitions, which may be though of as “wires” dangling
towards the outside. Concurroids can be entangled, i.e., composed by means of in-
terconnecting their dangling wires, where the interconnections serve to transfer heap
ownership between concurroids. Entangling concurroids generalizes adding a resource
to the context � in RESOURCECSL. FCSL provides a specific inference rule INJECT
which generalizes the corresponding notion of context weakening, and allows that ver-
ifications carried out wrt. a concurroid U can be lifted to an entanglement U oV . FCSL
also provides an inference rule HIDE for creating a resource out of private state in a
scoped manner, thus generalizing RESOURCECSL.

We illustrate FCSL by a few examples showing how to implement the coarse-
grained resource management of CSL by fine-grained resources of FCSL. The re-
sources are fine-grained because they expose a lock on which threads can explicitly

3 In the presence of heaps, the rule is more complicated [?,?], but we elide the issue here.

2

interaction between threads is directly specified by the rule for parallel composition.3

R _G2,G1 ` {p} c1 {q1} R _G1,G2 ` {p} c2 {q2}
R,G1 _G2 ` {p} c1 k c2 {q1 ^ q2}

PARRG

The rely transition R and guarantee transitions G1 and G2 are relations on states. A
rely specifies the thread’s expectations of state transitions made by its environment.
A guarantee specifies the state transitions made by the thread itself. The disjunctive
combinations of R and G’s in the rule captures the idea we call forking shuffle, whereby
upon forking, the thread c1 becomes part of the environment for c2 and vice-versa.

RG is more general than CSL because transitions can encode arbitrary protocols
on shared state, whereas CSL is specialized to a fixed mutual exclusion protocol on
critical sections. But, CSL is more compositional in manipulating resources. Where a
CSL resource invariant specifies the behavior of an individual chunk of shared state,
the transitions in RG treat the whole state as shared. The related work on Local Rely-
Guarantee [?] has made the first steps in improving RG in this respect.

Instead of improving on RG, in this paper we propose that attaining the best of
both reasoning styles can be achieved by generalizing CSL with a novel notion of fine-
grained resource. A fine-grained resource is specified by a resource invariant, as in CSL,
but it also adds transitions between states. Thus, it is best viewed as a state transition
system (STS), where the resource invariant essentially specifies the state space. We
identify a number of properties that an STS has to satisfy to specify a fine-grained
resource, and refer to such STSs as concurroids. We refer to our generalization as Fine-
grained CSL (FCSL).

There are two main ideas that we build on in FCSL: subjectivity [?] and commu-
nication. Subjectivity means that each state of a concurroid STS describes not only
the shared resource, but also two abstractions of it that represent the views of the state
by the transitioning thread, and by its environment, respectively. In such a setting, we
will be able to encode the idea of the forking shuffle at the level of state, rather than
by disjoining transitions. Hence, the FCSL rule for parallel composition will be in the
compositional style of PARCSL, with a somewhat generalized notion of ⇤ [?], rather
than in the monolithic style of PARRG.

Concurroids are communicating STSs; in addition to internal transitions between
states, they contain external transitions, which may be though of as “wires” dangling
towards the outside. Concurroids can be entangled, i.e., composed by means of in-
terconnecting their dangling wires, where the interconnections serve to transfer heap
ownership between concurroids. Entangling concurroids generalizes adding a resource
to the context � in RESOURCECSL. FCSL provides a specific inference rule INJECT
which generalizes the corresponding notion of context weakening, and allows that ver-
ifications carried out wrt. a concurroid U can be lifted to an entanglement U oV . FCSL
also provides an inference rule HIDE for creating a resource out of private state in a
scoped manner, thus generalizing RESOURCECSL.

We illustrate FCSL by a few examples showing how to implement the coarse-
grained resource management of CSL by fine-grained resources of FCSL. The re-
sources are fine-grained because they expose a lock on which threads can explicitly

3 In the presence of heaps, the rule is more complicated [?,?], but we elide the issue here.

2

Taking the best of two worlds

Our Approach

ResourcesFine-Grained

Resources

Fine-Grained

Resources State Invariants

Fine-Grained

Resources State Invariants

Fine-Grained Transitions

Resources State Invariants

Fine-Grained Transitions

Composition

Forking/shuffling

Resources State Invariants

Fine-Grained Transitions

Composition Communication

Forking/shuffling

Resources State Invariants

Fine-Grained Transitions

Composition Communication

Forking/shuffling Subjectivity

Subjectivity

Communication

SystemsState Transition

(Ley-Wild and Nanevski, POPL 2013)

Subjectivity

Communication

SystemsState Transition

Subjective
Communicating

State-Transition Systems

Concurroids

Concurroid States

| {z }
Self

Concurroid States

| {z }| {z }
Self Other

Concurroid States

| {z } | {z }| {z }
Self OtherShared

Concurroid States

| {z } | {z }| {z }
Self OtherShared

• Self - owned by me

Concurroid States

| {z } | {z }| {z }
Self OtherShared

• Self - owned by me

• Other - owned by all others

Concurroid States

| {z } | {z }| {z }
Self OtherShared

• Self - owned by me

• Other - owned by all others

• Shared - owned by the resource

Concurroid States

| {z } | {z }| {z }
Self OtherShared

• Self - owned by me

• Other - owned by all others

• Shared - owned by the resource

• Self and Other are elements of
a Partial Commutative Monoid (PCM): (S, 0, ⊕).

Concurroid States

Building a concurroid
for Ticketed Lock

n1

n2

n1

n2

n1

n1 n < n2

n2

n1

n1 n < n2
owner

n2

n1

n1 n < n2
owner

next

lock = {
 x := DRAW;
 while (!TRY(x)) SKIP;
}

unlock = {
 INCR_OWN;
}

DRAW = { return FETCH_AND_INCREMENT(next); }
TRY(n) = { return (n == owner); }
INCR_OWN = { owner := owner + 1; }

Reference Implementation

Ticketed Lock States

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Ticketed Lock States

• as, ao - auxiliaries controlled by self/other

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Ticketed Lock States

• as, ao - auxiliaries controlled by self/other

• ts - tickets, owned by self

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Ticketed Lock States

• as, ao - auxiliaries controlled by self/other

• ts - tickets, owned by self

• to - tickets, owned by other threads

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Ticketed Lock States

• as, ao - auxiliaries controlled by self/other

• ts - tickets, owned by self

• to - tickets, owned by other threads

• b - administrative flag to indicate locking

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Ticketed Lock States

• as, ao - auxiliaries controlled by self/other

• ts - tickets, owned by self

• to - tickets, owned by other threads

• b - administrative flag to indicate locking

• l - label to identify this particular instance of TLock concurroid

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Ticketed Lock Invariant

Ticketed Lock Invariant

s = ^(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Ticketed Lock Invariant

t
s

� t
o

= {n | n1 n < n2} ^

s = ^(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi
All dispensed tickets

Ticketed Lock Invariant

t
s

� t
o

= {n | n1 n < n2} ^
0

BB@

1

CCA

s = ^(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi
All dispensed tickets

Ticketed Lock Invariant

t
s

� t
o

= {n | n1 n < n2} ^

_
0

BB@

1

CCA

Locked

s = ^

(n1 2 (t
s

� t
o

) ^ b = true ^ h = emp)

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi
All dispensed tickets

Ticketed Lock Invariant

t
s

� t
o

= {n | n1 n < n2} ^

_

if n1 < n2 then n1 2 (t
s

� t
o

) ^ b = false ^ I(a
s

� a
o

)h

else n1 = n2 ^ b = false ^ I(a
s

� a
o

)h

0

BB@

1

CCA

Locked

s = ^

(n1 2 (t
s

� t
o

) ^ b = true ^ h = emp)

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi
All dispensed tickets

Ticketed Lock Invariant

t
s

� t
o

= {n | n1 n < n2} ^

_

if n1 < n2 then n1 2 (t
s

� t
o

) ^ b = false ^ I(a
s

� a
o

)h

else n1 = n2 ^ b = false ^ I(a
s

� a
o

)h

0

BB@

1

CCA

Locked

Unlocked

s = ^

(n1 2 (t
s

� t
o

) ^ b = true ^ h = emp)

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi
All dispensed tickets

Ticketed Lock Invariant

t
s

� t
o

= {n | n1 n < n2} ^

_

if n1 < n2 then n1 2 (t
s

� t
o

) ^ b = false ^ I(a
s

� a
o

)h

else n1 = n2 ^ b = false ^ I(a
s

� a
o

)h

0

BB@

1

CCA

Locked

Unlocked

Transit

s = ^

(n1 2 (t
s

� t
o

) ^ b = true ^ h = emp)

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi
All dispensed tickets

Transitions

Internal Transitions

Internal Transitions
Intuition:
drawing a ticket from the dispenser

Internal Transitions

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Intuition:
drawing a ticket from the dispenser

(a
o

, t
o

)` ⇣
hbi

owner 7! n1

h

⇤
⇤next 7! n2 + 1

(as, ts [{n2})

Internal Transitions

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Intuition:
drawing a ticket from the dispenser

+int

(a
o

, t
o

)` ⇣
hbi

owner 7! n1

h

⇤
⇤next 7! n2 + 1

(as, ts [{n2})

Internal Transitions

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Intuition:
drawing a ticket from the dispenser

+int

(a
o

, t
o

)` ⇣
hbi

owner 7! n1

h

⇤
⇤next 7! n2 + 1

(as, ts [{n2})

Internal Transitions

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Intuition:
drawing a ticket from the dispenser

+int

Communication

Intuition:
Channels with different polarity

Intuition:
Channels with different polarity

Implementation:

Acquire/Release transitions
(communication is via heap ownership transfer)

Acquire Transitions
Intuition:
the lock obtains back ownership over the heap
and increments the service counter (owner)

(a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ emp

htruei

(as, ts [{n1})

(a
o

, t
o

)
⇤
⇤` ⇣ h

hfalsei

next 7! n2(as, ts)

owner 7! n1 + 1

Acquire Transitions
Intuition:
the lock obtains back ownership over the heap
and increments the service counter (owner)

+acqh1

(a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ emp

htruei

(as, ts [{n1})

(a
o

, t
o

)
⇤
⇤` ⇣ h

hfalsei

next 7! n2(as, ts)

owner 7! n1 + 1

Acquire Transitions
Intuition:
the lock obtains back ownership over the heap
and increments the service counter (owner)

+acqh1

(a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ emp

htruei

(as, ts [{n1})

(a
o

, t
o

)
⇤
⇤` ⇣ h

hfalsei

next 7! n2(as, ts)

owner 7! n1 + 1

Acquire Transitions
Intuition:
the lock obtains back ownership over the heap
and increments the service counter (owner)

+acqh1

Release Transitions
Intuition:
the lock gave up ownership over the heap

(a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ emp

htruei

(as, ts [{n1})

(a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

(as, ts [{n1})
hfalsei

Release Transitions
Intuition:
the lock gave up ownership over the heap

+relh1

(a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ emp

htruei

(as, ts [{n1})

(a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

(as, ts [{n1})
hfalsei

Release Transitions
Intuition:
the lock gave up ownership over the heap

+relh1

(a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ emp

htruei

(as, ts [{n1})

(a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

(as, ts [{n1})
hfalsei

Release Transitions
Intuition:
the lock gave up ownership over the heap

+relh1

Transitions don’t change the other part!

Transitions don’t change the other part!

Transitions = Guarantee

Transposing the Concurroid

(as, ts) (a
o

, t
o

)

owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Transposing the Concurroid

(as, ts)(a
o

, t
o

)
owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Transposing the Concurroid

(as, ts)(a
o

, t
o

)
owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Transitions of transposed = Rely

Transposing the Concurroid

(as, ts)(a
o

, t
o

)
owner 7! n1

next 7! n2

⇤
⇤` ⇣ h

hbi

Transitions of transposed = Rely

reminiscent to tokens by Turon et al. [POPL’13, ICFP’13]

Composing Concurroids

Intuition:
Connect communication channels with right polarity

` ⇣p ⇣

Intuition:
Connect communication channels with right polarity

` ⇣p ⇣

Intuition:
Connect communication channels with right polarity

acq

acq

acq
acq rel

rel

rel

rel

• Some channels might be left loose

• Same channels might be connected several times

• Some channels might be shut down

Entanglement Operators

⋈, ⋊, ⋉,×...

Connect two concurroids by connecting
some of their acquire/release transitions.

Entanglement Operators

⋈, ⋊, ⋉,×...

Connect two concurroids by connecting
some of their acquire/release transitions.

Connected A/R transitions become
internal for the entanglement.

- “apart”, doesn’t connect channels,
 leaves all loose.

×

Useful Entanglement Operators

- connects all channels pair-wise,
 shuts channels of the right operand,
 leaves left one’s loose

⋊

- “apart”, doesn’t connect channels,
 leaves all loose.

×

Useful Entanglement Operators

- connects all channels pair-wise,
 shuts channels of the right operand,
 leaves left one’s loose

⋊

Lemma: U ⋊ (V1 × V2) = (U ⋊ V1) ⋊ V2

Programming
with

Concurroids

Transitions are not yet
commands!

Transitions are not yet
commands!

They only describe
some correct behavior.

Atomic Actions

• Defined as subsets of internal transitions

• Specify the result

• Operational meaning:
READ, WRITE, SKIP and various RMW-commands

• Synchronize ownership transfer and
manipulation with auxiliaries

Recap: TLock Implementation

lock = {
 x := DRAW;
 while (!TRY(x)) SKIP;
}

unlock = {
 INCR_OWN;
}

Recap: TLock Implementation

lock = {
 x := DRAW;
 while (!TRY(x)) SKIP;
}

unlock = {
 INCR_OWN;
}

TRY(n1) Action Specification

TRY(n1) Action Specification

TRY(n1)(s, s
0, res) ,

s =

0

BBBBBBBB@

1

CCCCCCCCA

^

TRY(n1) Action Specification

(a
o

, t
o

)next 7! n2

⇤
⇤` ⇣ h

(as, ts [{n1})
owner 7! n0

1

hbi
p ⇣ hs h

o

�

if
then

else

(n1 = n0
1)

s0 = s

s0 = p ⇣ h
o

hs � h � (a
o

, t
o

)
next 7! n2

⇤
⇤` ⇣ emp(as, ts [{n1})

htruei

owner 7! n1

^

I(a
s

� a
o

)h

0

BB@

1

CCA

TRY(n1)(s, s
0, res) ,

^ res = true

^ res = false

s =

0

BBBBBBBB@

1

CCCCCCCCA

^

TRY(n1) Action Specification

(a
o

, t
o

)next 7! n2

⇤
⇤` ⇣ h

(as, ts [{n1})
owner 7! n0

1

hbi
p ⇣ hs h

o

�

if
then

else

(n1 = n0
1)

s0 = s

s0 = p ⇣ h
o

hs � h � (a
o

, t
o

)
next 7! n2

⇤
⇤` ⇣ emp(as, ts [{n1})

htruei

owner 7! n1

^

I(a
s

� a
o

)h

0

BB@

1

CCA

TRY(n1)(s, s
0, res) ,

^ res = true

^ res = false

s =

0

BBBBBBBB@

1

CCCCCCCCA

^

TRY(n1) Action Specification

(a
o

, t
o

)next 7! n2

⇤
⇤` ⇣ h

(as, ts [{n1})
owner 7! n0

1

hbi
p ⇣ hs h

o

�

if
then

else

(n1 = n0
1)

s0 = s

s0 = p ⇣ h
o

hs � h � (a
o

, t
o

)
next 7! n2

⇤
⇤` ⇣ emp(as, ts [{n1})

htruei

owner 7! n1

^

I(a
s

� a
o

)h

0

BB@

1

CCA

TRY(n1)(s, s
0, res) ,

^ res = true

^ res = false

s =

0

BBBBBBBB@

1

CCCCCCCCA

^

TRY(n1) Action Specification

(a
o

, t
o

)next 7! n2

⇤
⇤` ⇣ h

(as, ts [{n1})
owner 7! n0

1

hbi
p ⇣ hs h

o

�

if
then

else

(n1 = n0
1)

s0 = s

s0 = p ⇣ h
o

hs � h � (a
o

, t
o

)
next 7! n2

⇤
⇤` ⇣ emp(as, ts [{n1})

htruei

owner 7! n1

^

I(a
s

� a
o

)h

0

BB@

1

CCA

TRY(n1)(s, s
0, res) ,

^ res = true

^ res = false

What about modular
reasoning?

x := DRAW;

x := DRAW;

8
>><

>>:

8
>><

>>:

9
>>=

>>;

9
>>=

>>;
` ⇣ (as, ts)

x = n1 ^

` ⇣ (as, ts [{n1})

x := DRAW;

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;

` ⇣ (as, ts)

x = n1 ^

` ⇣ (as, ts [{n1})

lock = {

 while (!TRY(x)) SKIP;

}

x := DRAW;

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;

` ⇣ (as, ts)

x = n1 ^

` ⇣ (as, ts [{n1})

lock = {

 while (!TRY(x)) SKIP;

}

x := DRAW;

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;

| {z }

Defined in

` ⇣p ⇣ �

` ⇣ (as, ts)

x = n1 ^

` ⇣ (as, ts [{n1})

Context Weakening!

Injection Rule

be different in the two threads, but the way to access it in assertions and proofs is the
same. This is in contrast to a proof with classical auxiliary state [?], where the threads
have to name their auxiliary variables differently, thus preventing the reuse of the same
verification of incr in parallel composition [?].

(AN: Should I include here a comment on relation of subjectivity to RG? I think that’s prob-
ably best left for related work.)X

Injection The PAR rule requires that the composed programs share the same concur-
roid U, which describes the totality of their resources. If the programs use different
concurroids, they first have to be brought into a common entanglement, via the rule
INJECT.

{p}C {q}@ U r stable under V

{p ⇤ r} injectV C {q ⇤ r}@ U o V
INJECT

If C is verified wrt. a small concurroid U, it can be injected (i.e. coerced) into a larger
concurroid U o V . Reading the rule bottom-up, it says that we can ignore V , as V’s
transitions can’t influence C’s state. C’s state may be influenced by communication
between V and U, but this is already accounted for in the non-internal transitions of U.
In programs, we use the explicit coercion injectV to describe the change of “type” from
U to U o V .

When verifying C against U, we should only use the part of the state containing
labels relevant for U. The connective ⇤ splits the assertions into two portions containing
disjoint labels. By convention, p and q describe labels related to U, as they appear in
the premise in a Hoare triple with the concurroid U. The side condition on the stability
of r, implies that r uses only the labels of V .

Stability of r means that r remains valid no matter which transitions the other thread
takes over the portion of the states descibed by the labels of V . We will define stabil-
ity formally in Section ??, but here illustrate by example how stability factors in the
implementation and verification of incr.

The atomic commands for reading and writing to a pointer x have specification
relative to the concurroid P for private state.

{priv
s7! x � v} read x {priv

s7! x � v ^ r = v}@P
{priv

s7! x � �} write x v {priv
s7! x � v}@P

The commands for acquiring and releasing lock have specifications relative to the con-
curroid CSLlock = P o Llock, because they exchange ownership of the protected pointer
x between P and Llock.

{priv
s7! empty ⇤ lock

s7! (⇠⇠⇠Own, aS)}
acquire

{9aO.priv
s7! x � aS + aO ⇤ (lock

s7! (Own, aS) ^ lock
o7! (�, aO))}@CSLlock

{priv
s7! x � �(aS) + aO ⇤ (lock

s7! (Own, aS) ^ lock
o7! (�, aO))}

release�
{priv

s7! empty ⇤ lock
s7! (⇠⇠⇠Own,�(aS))}@CSLlock

8

⧓

where ⧓ = ⋈, ⋊, ⋉,×...

Injection Rule

be different in the two threads, but the way to access it in assertions and proofs is the
same. This is in contrast to a proof with classical auxiliary state [?], where the threads
have to name their auxiliary variables differently, thus preventing the reuse of the same
verification of incr in parallel composition [?].

(AN: Should I include here a comment on relation of subjectivity to RG? I think that’s prob-
ably best left for related work.)X

Injection The PAR rule requires that the composed programs share the same concur-
roid U, which describes the totality of their resources. If the programs use different
concurroids, they first have to be brought into a common entanglement, via the rule
INJECT.

{p}C {q}@ U r stable under V

{p ⇤ r} injectV C {q ⇤ r}@ U o V
INJECT

If C is verified wrt. a small concurroid U, it can be injected (i.e. coerced) into a larger
concurroid U o V . Reading the rule bottom-up, it says that we can ignore V , as V’s
transitions can’t influence C’s state. C’s state may be influenced by communication
between V and U, but this is already accounted for in the non-internal transitions of U.
In programs, we use the explicit coercion injectV to describe the change of “type” from
U to U o V .

When verifying C against U, we should only use the part of the state containing
labels relevant for U. The connective ⇤ splits the assertions into two portions containing
disjoint labels. By convention, p and q describe labels related to U, as they appear in
the premise in a Hoare triple with the concurroid U. The side condition on the stability
of r, implies that r uses only the labels of V .

Stability of r means that r remains valid no matter which transitions the other thread
takes over the portion of the states descibed by the labels of V . We will define stabil-
ity formally in Section ??, but here illustrate by example how stability factors in the
implementation and verification of incr.

The atomic commands for reading and writing to a pointer x have specification
relative to the concurroid P for private state.

{priv
s7! x � v} read x {priv

s7! x � v ^ r = v}@P
{priv

s7! x � �} write x v {priv
s7! x � v}@P

The commands for acquiring and releasing lock have specifications relative to the con-
curroid CSLlock = P o Llock, because they exchange ownership of the protected pointer
x between P and Llock.

{priv
s7! empty ⇤ lock

s7! (⇠⇠⇠Own, aS)}
acquire

{9aO.priv
s7! x � aS + aO ⇤ (lock

s7! (Own, aS) ^ lock
o7! (�, aO))}@CSLlock

{priv
s7! x � �(aS) + aO ⇤ (lock

s7! (Own, aS) ^ lock
o7! (�, aO))}

release�
{priv

s7! empty ⇤ lock
s7! (⇠⇠⇠Own,�(aS))}@CSLlock

8

⧓

where ⧓ = ⋈, ⋊, ⋉,×...

lock = {

 while (!TRY(x)) SKIP;

}

` ⇣ (as, ts)

` ⇣ (as, ts [{n1})

x :=

8
>><

>>:

8
>><

>>:

9
>>=

>>;

9
>>=

>>;

DRAW ;
x = n1 ^

lock = {

 while (!TRY(x)) SKIP;

}

` ⇣ (as, ts)

` ⇣ (as, ts [{n1})

x :=

8
>><

>>:

8
>><

>>:

9
>>=

>>;

9
>>=

>>;

DRAW ;injectp ()
x = n1 ^

lock = {

 while (!TRY(x)) SKIP;

}

` ⇣ (as, ts)

` ⇣ (as, ts [{n1})

x :=

8
>><

>>:

8
>><

>>:

9
>>=

>>;

9
>>=

>>;

�

�

DRAW ;injectp ()
x = n1 ^

p ⇣ hs

p ⇣ hs

lock = {

 while (!TRY(x)) SKIP;

}

` ⇣ (as, ts)

` ⇣ (as, ts [{n1})

x :=

8
>><

>>:

8
>><

>>:

9
>>=

>>;

9
>>=

>>;

�

�

r

r

DRAW ;injectp ()
x = n1 ^

p ⇣ hs

p ⇣ hs

Creating and disposing
concurroids

Creating and disposing
resources

CSL Resource Rule

Communicating Transition Systems for Fine-Grained

Concurrent Resources

Aleksandar Nanevski1, Ruy Ley-Wild2, Ilya Sergey1, and Germán Andrés Delbianco1

1 IMDEA Software Institute
{aleks.nanevski, ilya.sergey, german.delbianco}@imdea.org

2 Logicblox
ruy.leywild@logicblox.com

1 Introduction

There are two main styles of program logics for reasoning about shared-memory con-
currency, customarily divided according to the supported kind of granularity of inter-
ference between concurrent programs.

The main representative of logics for coarse-grained concurrency, where interfer-
ence is confined to critical section, is Concurrent Separation Logic (CSL) [?,?]. CSL
employs the ideas of shared resources and associated resource invariants [?], to abstract
the interference between threads. Resource r is a chunk of shared state, and a resource
invariant I is a predicate over states, which holds of r whenever all threads are outside
the critical section. By mutual exclusion, when a thread enters a critical section for r,
it acquires ownership and hence exclusive access to r’s state. The thread may mutate
the shared state and violate the invariant I, but it must restore I before releasing r and
leaving the critical section, as given by the following CSL rule [?].

� ` {(p ⇤ I) ^ b} c {q ⇤ I}
�, r : I ` {p} with r when b do c {q}

SECTIONCSL

� is a context of currently existing resources. A private heap of a thread may be pro-
moted into a shared resource in a scoped manner by the folowing rule.

�, r : I ` {p} c {q}
� ` {p ⇤ I} resource r in c {q ⇤ I}

RESOURCECSL

As inteference is handled by �, the rule for parallel composition assumes that forked
threads don’t share any state beyond that of the resources in �, and may divide the
private state of the parent thread disjointly among the children.

� ` {p1} c1 {q1} � ` {p2} c2 {q2}
� ` {p1 ⇤ p2} c1 k c2 {q1 ⇤ q2}

PARCSL

The main representative of logics for fine-grained concurrency, where interference
may occur between any two memory operations, is Rely/Guarantee (RG) [?]. In RG, the

CSL Resource Rule

Communicating Transition Systems for Fine-Grained

Concurrent Resources

Aleksandar Nanevski1, Ruy Ley-Wild2, Ilya Sergey1, and Germán Andrés Delbianco1

1 IMDEA Software Institute
{aleks.nanevski, ilya.sergey, german.delbianco}@imdea.org

2 Logicblox
ruy.leywild@logicblox.com

1 Introduction

There are two main styles of program logics for reasoning about shared-memory con-
currency, customarily divided according to the supported kind of granularity of inter-
ference between concurrent programs.

The main representative of logics for coarse-grained concurrency, where interfer-
ence is confined to critical section, is Concurrent Separation Logic (CSL) [?,?]. CSL
employs the ideas of shared resources and associated resource invariants [?], to abstract
the interference between threads. Resource r is a chunk of shared state, and a resource
invariant I is a predicate over states, which holds of r whenever all threads are outside
the critical section. By mutual exclusion, when a thread enters a critical section for r,
it acquires ownership and hence exclusive access to r’s state. The thread may mutate
the shared state and violate the invariant I, but it must restore I before releasing r and
leaving the critical section, as given by the following CSL rule [?].

� ` {(p ⇤ I) ^ b} c {q ⇤ I}
�, r : I ` {p} with r when b do c {q}

SECTIONCSL

� is a context of currently existing resources. A private heap of a thread may be pro-
moted into a shared resource in a scoped manner by the folowing rule.

�, r : I ` {p} c {q}
� ` {p ⇤ I} resource r in c {q ⇤ I}

RESOURCECSL

As inteference is handled by �, the rule for parallel composition assumes that forked
threads don’t share any state beyond that of the resources in �, and may divide the
private state of the parent thread disjointly among the children.

� ` {p1} c1 {q1} � ` {p2} c2 {q2}
� ` {p1 ⇤ p2} c1 k c2 {q1 ⇤ q2}

PARCSL

The main representative of logics for fine-grained concurrency, where interference
may occur between any two memory operations, is Rely/Guarantee (RG) [?]. In RG, the

CSL Resource Rule

Communicating Transition Systems for Fine-Grained

Concurrent Resources

Aleksandar Nanevski1, Ruy Ley-Wild2, Ilya Sergey1, and Germán Andrés Delbianco1

1 IMDEA Software Institute
{aleks.nanevski, ilya.sergey, german.delbianco}@imdea.org

2 Logicblox
ruy.leywild@logicblox.com

1 Introduction

There are two main styles of program logics for reasoning about shared-memory con-
currency, customarily divided according to the supported kind of granularity of inter-
ference between concurrent programs.

The main representative of logics for coarse-grained concurrency, where interfer-
ence is confined to critical section, is Concurrent Separation Logic (CSL) [?,?]. CSL
employs the ideas of shared resources and associated resource invariants [?], to abstract
the interference between threads. Resource r is a chunk of shared state, and a resource
invariant I is a predicate over states, which holds of r whenever all threads are outside
the critical section. By mutual exclusion, when a thread enters a critical section for r,
it acquires ownership and hence exclusive access to r’s state. The thread may mutate
the shared state and violate the invariant I, but it must restore I before releasing r and
leaving the critical section, as given by the following CSL rule [?].

� ` {(p ⇤ I) ^ b} c {q ⇤ I}
�, r : I ` {p} with r when b do c {q}

SECTIONCSL

� is a context of currently existing resources. A private heap of a thread may be pro-
moted into a shared resource in a scoped manner by the folowing rule.

�, r : I ` {p} c {q}
� ` {p ⇤ I} resource r in c {q ⇤ I}

RESOURCECSL

As inteference is handled by �, the rule for parallel composition assumes that forked
threads don’t share any state beyond that of the resources in �, and may divide the
private state of the parent thread disjointly among the children.

� ` {p1} c1 {q1} � ` {p2} c2 {q2}
� ` {p1 ⇤ p2} c1 k c2 {q1 ⇤ q2}

PARCSL

The main representative of logics for fine-grained concurrency, where interference
may occur between any two memory operations, is Rely/Guarantee (RG) [?]. In RG, the

Allocating a Ticketed Lock

(owner, next) = {

}

owner := 0;

next := 0;

with_tlock , body

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;

Allocating a Ticketed Lock

(owner, next) = {

}

owner := 0;

next := 0;

with_tlock , body

Scoped concurroid creation/disposal

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;

p ⇣ h
o

hsh

⇤
⇤

⇤

owner 7! 0
next 7! 0

8
>><

>>:

9
>>=

>>;

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;

p ⇣ h
o

hsh

⇤
⇤

⇤

owner 7! 0
next 7! 0

Concurroid spec

8
>><

>>:

9
>>=

>>;

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;

p ⇣ h
o

hsh

⇤
⇤

⇤

owner 7! 0
next 7! 0

Concurroid spec Initial “self”
auxiliaries

8
>><

>>:

9
>>=

>>;

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;

p ⇣ h
o

hsh

⇤
⇤

⇤

owner 7! 0
next 7! 0

Concurroid spec Initial “self”
auxiliaries

�

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;
` ⇣

hfalsei
(as, ts) (1, ;)p ⇣

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;

p ⇣ h
o

hsh

⇤
⇤

⇤

owner 7! 0
next 7! 0

Concurroid spec Initial “self”
auxiliaries

�

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;
` ⇣

hfalsei
(as, ts) (1, ;)p ⇣

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;

p ⇣ h
o

hsh

⇤
⇤

⇤

owner 7! 0
next 7! 0

Concurroid spec Initial “self”
auxiliaries

�

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;
` ⇣

hfalsei
(as, ts) (1, ;)p ⇣

owner 7! 0

h
next 7! 0hs h

o

⇤
⇤

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;

p ⇣ h
o

hsh

⇤
⇤

⇤

owner 7! 0
next 7! 0

Concurroid spec Initial “self”
auxiliaries

�

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;
` ⇣

hfalsei
(as, ts) (1, ;)

⇤
⇤

owner 7! 0

h
next 7! 0p ⇣ hs h

o

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;

p ⇣ h
o

hsh

⇤
⇤

⇤

owner 7! 0
next 7! 0

Concurroid spec Initial “self”
auxiliaries

�

p ⇣ h0
o

h0
s �

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;
next 7! n2` ⇣

hbi

owner 7! n1

h0 (1, ;)
⇤
⇤(a0s, t

0
s)

` ⇣
hfalsei

(as, ts) (1, ;)
⇤
⇤

owner 7! 0

h
next 7! 0p ⇣ hs h

o

hide
coh

(tlock `(owner,next)),(as,;)
{

}

body;

p ⇣ h
o

hsh

⇤
⇤

⇤

owner 7! 0
next 7! 0

Concurroid spec Initial “self”
auxiliaries

�

p ⇣ h0
o

h0
s �

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;

8
>><

>>:

9
>>=

>>;

next 7! n2` ⇣
hbi

owner 7! n1

h0 (1, ;)
⇤
⇤(a0s, t

0
s)

p ⇣ ⇤⇤
⇤

next 7! n2

h0 h0
s

owner 7! n1

h0
o

` ⇣
hfalsei

(as, ts) (1, ;)
⇤
⇤

owner 7! 0

h
next 7! 0p ⇣ hs h

o

Only One Basic
Concurroid

p ⇣ hs h
o

Parallel Composition

– A list of inference rules should be in the abstract. Probably just discuss the always
predicate a bit, if at all. The point is just to have a theorem somewhere.

—-
In the terminology of Rely-Guarantee logics [?], transitions are guarantee relations.

When we need to express the steps of the other thread, and thus obtain a rely relation,
we simply transpose the self and other components of the states. Thus, concurroids may
be seen as a formalism for building up rely and guarantee relations in a structured way.

Concurroids are composed by entanglement. An entanglement of two concurroids
U and V interconnects (all or some of) the dually polarized transitions of U and V , while
adjoining their individual state spaces, to obtain a new concurroid in which the exchange
of heap ownership between U and V is internal. Obviously, there may be many different
ways to entangle concurroids, depending on which transitions of U and V are chosen
for interconnection, and which ones are left “dangling” for interconnection by future
entanglements. The sets of interconnected and dangling transitions may overlap as we
may interconnect some transitions, but also leave their copies dangling.

Some interconnection patterns are more common than others, so we introduce spe-
cial notation for them. We denote by U o V the concurroid which interconnects each
transition of U with each of V , leaving the transitions of U dangling, but shutting those
of V . Symmetrically for U n V . We denote by U] V the concurroid in which no
transitions are interconnected, and all are left dangling.

Reasoning principles There are three rules in SCTS that allow for compositional rea-
soning along the various combinations of space, agency and time axes.

We first present the rule for parallel composition of threads; thus, it covers compo-
sitionality along the agency axis.

{p1}C1 {q1}@ U {p2}C2 {q2}@ U

{p1 ~ p2}C1 k C2 {q1 ~ q2}@ U
PAR

The 4-tuple {p}C {q}@ U is a Hoare-style specification expressing that the program C
has a precondition p, postcondition q, under transitions allowed by the concurroid U.

The rule uses subjective separating conjunction ~ [?] to split the state of C1 k C2
into two. In contrast to separation logic, the split doesn’t divide the state by labels into
label-disjoint halves. The subdivisions contain the same labels, but the contents of the
self and other portions differs. For example, as an illustration, ~ satisfies the following
equivalences over heaps and lock ownerships.

(priv
s7! hS ·[hO ^ priv

o7! h) () (priv
s7! hS ^ priv

o7! hO ·[h) ~ (priv
s7! hO ^ priv

o7! hS ·[h)
(lock

s7! mS •mO ^ lock
o7! m) () (lock

s7! mS ^ lock
o7! mO • m) ~ (lock

s7! mO ^ lock
o7! mS • m)

The parallel composition starts with a self component priv
s7! hS ·[hO in case of heaps

(lock
s7! (mS • mO) in case of locks). When the parent thread forks two child threads,

the parent’s self component splits between the children, while the children’s other
component are implicitly induced to preserve coherence. Thus, left childs self view
if priv

s7! hS (lock
s7! mS for locks), and other view is priv

o7! hO ·[h (lock
o7! mO • m

13

Parallel Composition

– A list of inference rules should be in the abstract. Probably just discuss the always
predicate a bit, if at all. The point is just to have a theorem somewhere.

—-
In the terminology of Rely-Guarantee logics [?], transitions are guarantee relations.

When we need to express the steps of the other thread, and thus obtain a rely relation,
we simply transpose the self and other components of the states. Thus, concurroids may
be seen as a formalism for building up rely and guarantee relations in a structured way.

Concurroids are composed by entanglement. An entanglement of two concurroids
U and V interconnects (all or some of) the dually polarized transitions of U and V , while
adjoining their individual state spaces, to obtain a new concurroid in which the exchange
of heap ownership between U and V is internal. Obviously, there may be many different
ways to entangle concurroids, depending on which transitions of U and V are chosen
for interconnection, and which ones are left “dangling” for interconnection by future
entanglements. The sets of interconnected and dangling transitions may overlap as we
may interconnect some transitions, but also leave their copies dangling.

Some interconnection patterns are more common than others, so we introduce spe-
cial notation for them. We denote by U o V the concurroid which interconnects each
transition of U with each of V , leaving the transitions of U dangling, but shutting those
of V . Symmetrically for U n V . We denote by U] V the concurroid in which no
transitions are interconnected, and all are left dangling.

Reasoning principles There are three rules in SCTS that allow for compositional rea-
soning along the various combinations of space, agency and time axes.

We first present the rule for parallel composition of threads; thus, it covers compo-
sitionality along the agency axis.

{p1}C1 {q1}@ U {p2}C2 {q2}@ U

{p1 ~ p2}C1 k C2 {q1 ~ q2}@ U
PAR

The 4-tuple {p}C {q}@ U is a Hoare-style specification expressing that the program C
has a precondition p, postcondition q, under transitions allowed by the concurroid U.

The rule uses subjective separating conjunction ~ [?] to split the state of C1 k C2
into two. In contrast to separation logic, the split doesn’t divide the state by labels into
label-disjoint halves. The subdivisions contain the same labels, but the contents of the
self and other portions differs. For example, as an illustration, ~ satisfies the following
equivalences over heaps and lock ownerships.

(priv
s7! hS ·[hO ^ priv

o7! h) () (priv
s7! hS ^ priv

o7! hO ·[h) ~ (priv
s7! hO ^ priv

o7! hS ·[h)
(lock

s7! mS •mO ^ lock
o7! m) () (lock

s7! mS ^ lock
o7! mO • m) ~ (lock

s7! mO ^ lock
o7! mS • m)

The parallel composition starts with a self component priv
s7! hS ·[hO in case of heaps

(lock
s7! (mS • mO) in case of locks). When the parent thread forks two child threads,

the parent’s self component splits between the children, while the children’s other
component are implicitly induced to preserve coherence. Thus, left childs self view
if priv

s7! hS (lock
s7! mS for locks), and other view is priv

o7! hO ·[h (lock
o7! mO • m

13

“Fork-shuffling” is handled by subjectivity: R/G are encoded by U.

Not discussed today

• A concurroid for CAS-based lock

• A concurroid model for readers/writers

• Allocation

• Non-scoped locks

• Soundness theorem and its proof

• Abstract predicates (yes, we can do it, too)

Implementation

• Implementation in Coq (metatheory, logic, proofs):
shallow embedding into the CIC

• Higher-orderness and abstraction for free

• Reasoning in HTT-style:
specifications are monadic types

• Some automation is done for splitting the state
among concurroids

• CAS-lock and Ticketed lock are fully implemented

To take away

To take away
Goal 1: Model fine-grained concurrent
resources with arbitrary protocols

To take away
Goal 1: Model fine-grained concurrent
resources with arbitrary protocols

Goal 2: Combine simplicity and modularity of
Concurrent Separation Logic with the power of
Rely-Guarantee reasoning

To take away

Concurroids

Goal 1: Model fine-grained concurrent
resources with arbitrary protocols

Goal 2: Combine simplicity and modularity of
Concurrent Separation Logic with the power of
Rely-Guarantee reasoning

Proposal:

“fine-grained resources”

To take away

Concurroids

Goal 1: Model fine-grained concurrent
resources with arbitrary protocols

Goal 2: Combine simplicity and modularity of
Concurrent Separation Logic with the power of
Rely-Guarantee reasoning

• State Transition Systems

• Communication

• Subjectivity

8
>><

>>:

Proposal:

“fine-grained resources”

To take away

Concurroids

Goal 1: Model fine-grained concurrent
resources with arbitrary protocols

Goal 2: Combine simplicity and modularity of
Concurrent Separation Logic with the power of
Rely-Guarantee reasoning

• State Transition Systems

• Communication

• Subjectivity

8
>><

>>:
Thanks!

Proposal:

“fine-grained resources”

Backup Slides

CSL + FG protocols

• CSL + Permissions
Bornat et al. [POPL'05]

• Auxiliaries for FG
Parkinson et al. [POPL'07]

• Storable locks
Gotsman et al. [APLAS'07]

• Concurrent Abstract Predicates (CAP)
Dindsdale-Young et al. [ECOOP'10]

• Higher-Order CAP
Svendsen et al. [ESOP'13]

• Impredicative CAP
Svendsen and Birkedal [HOPE'13]

• ...

RG + Resource composition

• Separate Assume-Guarantee (SAGL)
Feng et al. [ESOP'07]

• RGSep
Vafeiadis and Parkinson [CONCUR'07]

• Local RG
Feng [POPL'09]

• Deny-Guarantee
Dods et al. [ESOP'09]

• ...

Taking the best of two worlds

��������

��������

lock;

unlock;

x := x + 1;

as := as + 1;

lock;

unlock;

x := x + 1;

as := as + 1;

(as ⊕ ao)RI(lock) ≝ x ↦

��������

��������

lock;

unlock;

x := x + 1;

as := as + 1;

lock;

unlock;

x := x + 1;

as := as + 1;

(as ⊕ ao)RI(lock) ≝ x ↦

{ as ↦ , ao ↦ n } 0

��������

��������

lock;

unlock;

x := x + 1;

as := as + 1;

lock;

unlock;

x := x + 1;

as := as + 1;

(as ⊕ ao)RI(lock) ≝ x ↦

{ as ↦ , ao ↦ n } 0 0+

��������

��������

lock;

unlock;

x := x + 1;

as := as + 1;

lock;

unlock;

x := x + 1;

as := as + 1;

(as ⊕ ao)RI(lock) ≝ x ↦

{ as ↦ , ao ↦ n } 0 0+

{ as ↦ 0, ao ↦ n + 0 }

��������

��������

lock;

unlock;

x := x + 1;

as := as + 1;

lock;

unlock;

x := x + 1;

as := as + 1;

(as ⊕ ao)RI(lock) ≝ x ↦

{ as ↦ , ao ↦ n } 0 0+

{ as ↦ 0, ao ↦ n + 0 } { as ↦ 0, ao ↦ n + 0 }

��������

��������

lock;

unlock;

x := x + 1;

as := as + 1;

lock;

unlock;

x := x + 1;

as := as + 1;

(as ⊕ ao)RI(lock) ≝ x ↦

{ as ↦ , ao ↦ n } 0 0+

{ as ↦ 0, ao ↦ n + 0 } { as ↦ 0, ao ↦ n + 0 }

{ as ↦ 1, ao ↦ n1 }

��������

��������

lock;

unlock;

x := x + 1;

as := as + 1;

lock;

unlock;

x := x + 1;

as := as + 1;

(as ⊕ ao)RI(lock) ≝ x ↦

{ as ↦ , ao ↦ n } 0 0+

{ as ↦ 0, ao ↦ n + 0 } { as ↦ 0, ao ↦ n + 0 }

{ as ↦ 1, ao ↦ n1 } { as ↦ 1, ao ↦ n2 }

��������

��������

lock;

unlock;

x := x + 1;

as := as + 1;

lock;

unlock;

x := x + 1;

as := as + 1;

(as ⊕ ao)RI(lock) ≝ x ↦

{ as ↦ , ao ↦ n } 0 0+

{ as ↦ 0, ao ↦ n + 0 } { as ↦ 0, ao ↦ n + 0 }

{ as ↦ 1, ao ↦ n1 } { as ↦ 1, ao ↦ n2 }

{ as ↦ 1 + 1, ∃n’, ao ↦ n’, n1 = n + 1, n2 = n’ + 1 }

��������

��������

lock;

unlock;

x := x + 1;

as := as + 1;

lock;

unlock;

x := x + 1;

as := as + 1;

(as ⊕ ao)RI(lock) ≝ x ↦

{ as ↦ , ao ↦ n } 0 0+

{ as ↦ 0, ao ↦ n + 0 } { as ↦ 0, ao ↦ n + 0 }

{ as ↦ 1, ao ↦ n1 } { as ↦ 1, ao ↦ n2 }

{ as ↦ 2, ao ↦ - }

Verifying Programs
with

Atomic Actions

Taming Stability

s =

0

BBBBBBBB@

1

CCCCCCCCA

^

TRY(n) Action Specification

(a
o

, t
o

)next 7! n2

⇤
⇤` ⇣ h

(as, ts [{n1})
owner 7! n0

1

hbi
p ⇣ hs h

o

�

if
then

else

(n1 = n0
1)

s0 = s

s0 = p ⇣ h
o

hs � h � (a
o

, t
o

)
next 7! n2

⇤
⇤` ⇣ emp(as, ts [{n1})

htruei

owner 7! n1

^

I(a
s

� a
o

)h

0

BB@

1

CCA
^ res = true

^ res = false

TRY(n1)(s, s
0, res) ,

s =

0

BBBBBBBB@

1

CCCCCCCCA

^

TRY(n) Action Specification

(a
o

, t
o

)next 7! n2

⇤
⇤` ⇣ h

(as, ts [{n1})
owner 7! n0

1

hbi
p ⇣ hs h

o

�

if
then

else

(n1 = n0
1)

s0 = s

s0 = p ⇣ h
o

hs � h � (a
o

, t
o

)
next 7! n2

⇤
⇤` ⇣ emp(as, ts [{n1})

htruei

owner 7! n1

^

I(a
s

� a
o

)h

0

BB@

1

CCA

Not stable!

^ res = true

^ res = false

TRY(n1)(s, s
0, res) ,

Stable Hoare-style Rule for TRY(n)

TRY(n1)

Stable Hoare-style Rule for TRY(n)

s = (a
o

, t
o

)next 7! n2

⇤
⇤` ⇣ h

(as, ts [{n1})
owner 7! n0

1

hbi
p ⇣ hs h

o

�

8
>><

>>:

9
>>=

>>;

TRY(n1)

Stable Hoare-style Rule for TRY(n)

s = (a
o

, t
o

)next 7! n2

⇤
⇤` ⇣ h

(as, ts [{n1})
owner 7! n0

1

hbi
p ⇣ hs h

o

�

8
>><

>>:

9
>>=

>>;

if

then

else

(n1 = n0
1)

s0 = � ^
I(a

s

� a
o

)h

9h0
o

, n0
2, t

0
o

, ⇤
⇤` ⇣ emp(as, ts [{n1})

htruei

owner 7! n1
next 7! n0

2 (a
o

, t0
o

)p ⇣ hs � h h0
o

0

BB@

1

CCA

TRY(n1)

9h0
o

, n0
1, n

0
2, t

0
o

, b0, h0, a0
o

, t0
o

,

p ⇣ h0
o

hss0 =

^ res = true ^ coh(s0)

�
⇤
⇤` ⇣ (as, ts [{n1})

owner 7! n0
1

hb0ih0
next 7! n0

2 (a0
o

, t0
o

) ^coh(s0)

1

CCA

0

BB@

8
>><

>>:

9
>>=

>>;

Stable Hoare-style Rule for TRY(n)

s = (a
o

, t
o

)next 7! n2

⇤
⇤` ⇣ h

(as, ts [{n1})
owner 7! n0

1

hbi
p ⇣ hs h

o

�

8
>><

>>:

9
>>=

>>;

if

then

else

(n1 = n0
1)

s0 = � ^
I(a

s

� a
o

)h

9h0
o

, n0
2, t

0
o

, ⇤
⇤` ⇣ emp(as, ts [{n1})

htruei

owner 7! n1
next 7! n0

2 (a
o

, t0
o

)p ⇣ hs � h h0
o

0

BB@

1

CCA

TRY(n1)

9h0
o

, n0
1, n

0
2, t

0
o

, b0, h0, a0
o

, t0
o

,

p ⇣ h0
o

hss0 =

^ res = true ^ coh(s0)

�
⇤
⇤` ⇣ (as, ts [{n1})

owner 7! n0
1

hb0ih0
next 7! n0

2 (a0
o

, t0
o

) ^coh(s0)

1

CCA

0

BB@

8
>><

>>:

9
>>=

>>;

• Subjective state allows one to give
a lower bound to the joint contribution:

 “I know what is my contribution.”

• Hiding (or scoping) allows one to provide
an upper bound for the contribution:

“When everyone is done, we can the auxiliaries are summed up. ”

On the role of hiding

Some General Coherence Properties

• Heap-consistency:

hself ⊕ hother ⊕ hshared is defined

• Self-other consistency:

(as, ts) ⊕ (ao, to) is defined

• Fork-join consistency:

...gs ⊕ g go ...gs go ⊕ g ⟺ cohcoh
◆◆✓ ✓

...

◆
int

✓

, ...g0sgs g
o

� g g
o

� g

Internal Transition Properties
• Coherence-consistency: int(s1, s2) ⇒ coh(s1) ∧ coh(s2)

• Reflexivity

• Heap footprint preservation:
int(s1, s2) ⇒ dom(heap(s1)) = dom(heap(s2))

• Self-locality: int(s1, s2) ⇒ other(s1) = other(s2)

• Fork-join consistency:

...

◆
int

✓

, ... g
o

g
o

gs � g g0s � g⇒

Acquire/Release Properties

• Coherence-consistency:

acq(s1, s2) ⇒ coh(s1) ∧ coh(s2)

• Self-locality:

acq(s1, s2) ⇒ other(s1) = other(s2)

• Fork-join consistency

rl ⇣

wl ⇣ ⇤
lkw 7! bw

lkr 7! br ⇤
count 7! n⇤

(mw
s , as) (mw

o

, a
o

)

(mr

o

, N
o

)(mr
s, Ns)

Readers-Writers

h

count 7! n

h
hw

hr

I
r

(N
s

�N
o

, h
r

) , (N
s

�N
o

= n) ^ (N
s

�N
o

= 0 =) h
r

= emp)

I
w

(a
s

� a
o

, h
w

) , . . .

rl ⇣

wl ⇣ ⇤
lkw 7! bw

lkr 7! br ⇤
count 7! n⇤

(mw
s , as) (mw

o

, a
o

)

(mr

o

, N
o

)(mr
s, Ns)

Readers-Writers

h

count 7! n

h
hw

hr

I
r

(N
s

�N
o

, h
r

) , (N
s

�N
o

= n) ^ (N
s

�N
o

= 0 =) h
r

= emp)

I
w

(a
s

� a
o

, h
w

) , . . .

