Communicating State Transition Systems
for
Fine-Grained Concurrent Resources

Aleksandar Nanevski Ruy Ley-Wild llya Sergey = German Delbianco

| dea =2 LOGICBLOX

HOPE 2013

Reasoning about
shared-memory concurrency

How to model
shared-memory concurrency

Two views at
shared-memory concurrency

Coarse-Grained Concurrency

Locks (or CCRs) are given
as a primitive for synchronization.

Fine-Grained Concurrency

Synchronization is implemented via
atomic Read-Modify-Write commands.

Two powerful tools
for reasoning

Concurrent Separation Logic
O'Hearn [CONCUR'07], Brookes [CONCUR'04]

Rely Guarantee Reasoning
Jones [TOPLAS'83]

The essence of CSL

The essence of CSL

® The protocol for interference is fixed:
Conditional Critical Regions with Resource Invariants

The essence of CSL

® The protocol for interference is fixed:
Conditional Critical Regions with Resource Invariants

® |nterference doesn’t matter: CCR handle it

Iyr: 1+ {p}ciq}
I'+{p=1I}resourcerinc{qg I}

RESOURCECSL

Ir: 1+ {p}ciqg}

r{p resource r in ¢ {g @

RESOURCECSL

“resource creation”

I ,F {p}clq}

I'+{p=1I}resourcerinc{qx* I}

RESOURCECSL

I'+1{p1}c1{q1} I'+1{p2} c2 {q2}
I't{p1 *= patct |l e2 g1 * g2}

PARCSL

All interference
is handled here

s

(DF (p1yeilqry (DF {p2) 2 {q2)
(DF {p1 = pa)er || e2 {q1 * q2)

PARCSL

The essence of R/G

The essence of R/G

® One can define arbitrary protocols
for process interference via Guarantee relation.

The essence of R/G

® One can define arbitrary protocols
for process interference via Guarantee relation.

® |nterference matters!
Atomic operations should be given
specifications stable wrt Rely relation.

“Forking/shuffling”
parallel composition

RV G,,G1 + {p}c1 g1} RV G1,Gy + {p} g}
R,GiVGyr{p}cllexigr Agal

PARRG

“Forking/shuffling”
parallel composition

RV Gz,l- {p}c1 g1} RV Gl" {p} e g2} b
R,GiVGyr{p}cllexigr Agal

ARRG

“Forking/shuffling”
parallel composition

RVGYGi+tpieitat RVG)Gor Wi}
R,G1 vV Gy +{ptcillcaiq A ga}

ARRG

Taking the best of two worlds

Our Approach

Fine-Grained Resources

Resources

Fine-Grained

Resources State Invariants

Fine-Grained

Resources State Invariants

Fine-Grained Transitions

Resources State Invariants

Fine-Grained Transitions
Composition

Forking/shuffling

Resources State Invariants

Fine-Grained Transitions

Composition Communication

Forking/shuffling

Resources State Invariants

Fine-Grained Transitions
Composition Communication

Forking/shuffling Subjectivity

State Transition Systems

Communication

Subjectivity

State Transition Systems

Communication

Subjectivity

(Ley-Wild and Nanevski, POPL 201 3)

Subjective
Communicating
State- [ransition Systems

Concurroids

Concurroid States

L 10

Concurroid States

(] [0

H/—/
Self

Concurroid States

(L 1D

S—— S—
Self Other

Concurroid States

(L [

N —— —— N——
Self Shared Other

Concurroid States

(L [

N —— —— N——
Self Shared Other

® Self - owned by me

Concurroid States

(L [

N —— —— N——
Self Shared Other

® Self - owned by me

® (Other - owned by all others

Concurroid States

N —— —— N——
Self Shared Other

® Self - owned by me

® (Other - owned by all others

® Shared - owned by the resource

Concurroid States

N —— —— N——
Self Shared Other

Self - owned by me

Other - owned by all others

Shared - owned by the resource

Self and Other are elements of
a Partial Commutative Monoid (PCM): (S, 0, @).

Building a concurroid
for Ticketed Lock

”M uﬁ?"‘ Witk
¥

i”i‘ﬂi‘f‘; b

m MW fitii

Reference Implementation

lock = { unlock =
x 1= DRAW; IESR owé-
while (!TRY(x)) SKIP;) —
}
DRAW = { return FETCH AND INCREMENT (next); }
TRY (n) = { return (n == owner); }
INCR_OWN = { owner := owner + 1; }

Ticketed Lock States

owner — M7

‘g —» (a’87 tS) ZeXt e (a’07 tO)
(b}

Ticketed Lock States

owner —» N *

‘g —» (a’87 tS) ZeXt e (a’07 tO)
(b}

® s, A, - auxiliaries controlled by self/other

Ticketed Lock States

owner +» 71 *
next — no x

® s, A, - auxiliaries controlled by self/other

® [- tickets, owned by self

Ticketed Lock States

owner +» 71 *
next — no x

® s, A, - auxiliaries controlled by self/other
® [- tickets, owned by self

® [, - tickets, owned by other threads

Ticketed Lock States

owner +» 71 *
next — no x

ds, Ao - auxiliaries controlled by self/other
[s - tickets, owned by self
[o - tickets, owned by other threads

b - administrative flag to indicate locking

Ticketed Lock States

oOwner —» mni *
next — no x

ds, Ao - auxiliaries controlled by self/other
[s - tickets, owned by self

[o - tickets, owned by other threads

b - administrative flag to indicate locking

¢ - label to identify this particular instance of TLock concurroid

Ticketed Lock Invariant

Ticketed Lock Invariant

owner —» MNnq*
g — Z—»@,ts) Zextlﬁng % (ao,to) /\
(b)

Ticketed Lock Invariant

owner — mj *
S = g—»@ﬂfs) Zext%nz " (a'07t0) /\
(b)

All dispensed tickets
ts Dto=1{n | n1 <n < ng}| A

Ticketed Lock Invariant

owner — mj *
S = g—»@sats) Zext%nz " (a'07t0) /\
(b)

All dispensed tickets
ts Dto=1{n | n1 <n < ng}| A

Ticketed Lock Invariant

owner — mj *
S = g—»@ﬂfs) Zext%nz " (a'07t0) /\
(b)

All dispensed tickets
ts Dto=1{n | n1 <n < ng}| A

Locked
(n1 € (ts ®t,) N b=true A h=emp)|V

Ticketed Lock Invariant

owner — mj *
S = g—»@ﬂfs) Zext%nz " (a'07t0) /\
(b)

All dispensed tickets
ts Dto=1{n | n1 <n < ng}| A

Locked
(n1 € (ts ®t,) N b=true A h=emp)|V

if ny <n2 then n, € (tsdt,) N b="false N I(as D a,)h

else ny=ny N b=false A I(as D a,)h

Ticketed Lock Invariant

owner — mj *
S = g—»@ﬂfs) Zext%nz " (a'07t0) /\
(b)

All dispensed tickets
ts Dto=1{n | n1 <n < ng}| A

Locked
(n1 € (ts ®t,) N b=true A h=emp)|V

if ny <n2 then n, € (tsdt,) N b="false N I(as D a,)h

else |ny=ny N b="false N I(as D a,)h

Unlocked

Ticketed Lock Invariant

owner — mj *
S = g—»@ﬂfs) Zextan " (a'07t0) /\
(b)

All dispensed tickets
ts Dto=1{n | n1 <n < ng}| A

Locked

(n1 € (ts ®t,) N b=true A h=emp)
Transit

if ny <n2 then |ny € (tsDt,) N b="false N I(as D a,)h

else |ny=ny N b="false N I(as D a,)h

Unlocked

Transitions

Internal Transitions

Internal Transitions

Intuition:
drawing a ticket from the dispenser

Internal Transitions

Intuition:
drawing a ticket from the dispenser

owner —» 11 *
(a57 ts) next — 19 (am to)

(b

Internal Transitions

Intuition:
drawing a ticket from the dispenser

owner —» 11 *
(a57 ts) next — 19 (am to)

owner r» 1nq X
next — no + 1 %k

(as,ts U {ng}) (o, to)
h Y,
(b)

Internal Transitions

Intuition:
drawing a ticket from the dispenser

owner — 71 *

(as,ts) |75 7EI | (ao,to)

owner 11 X
(o, to)

Internal Transitions

Intuition:
drawing a ticket from the dispenser

owner — 71 *

next — no x (&0 to)
9

owner r» 1nq X
next — no + 1 %k

(o, to)

Communication

Intuition:

Channels with different polarity

Intuition:

Channels with different polarity

Implementation:

Acquire/Release transitions
(communication is via heap ownership transfer)

Acquire Transitions

Intuition.
the lock obtains back ownership over the heap
and increments the service counter (owner)

Acquire Transitions

Intuition.
the lock obtains back ownership over the heap
and increments the service counter (owner)

owner r— 17 *
next — no x
emp

(true)

owner — nq + 1k
next — no %

(false)

Acquire Transitions

Intuition.
the lock obtains back ownership over the heap
and increments the service counter (owner)

owner — 71 x
next — no x

(true)

owner — nq + 1k
next — no %

(false)

Acquire Transitions

Intuition.
the lock obtains back ownership over the heap
and increments the service counter (owner)

owner — 71 x
next — no x

(true)

owner l%*

next — No %

(false)

Release Transitions

Intuition:
the lock gave up ownership over the heap

Release Transitions

Intuition:
the lock gave up ownership over the heap

owner - 7 *
next — 19 x

(false)

owner > 11 *
next — no x

(true)

Release Transitions

Intuition:
the lock gave up ownership over the heap

owner — 1q x
next — 19 x

(false)

owner > 11 *
next — no x

(true)

Release Transitions

Intuition:
the lock gave up ownership over the heap

owner > 11 *
next — no x

(true)

Transitions don’t change the other part!

Transitions don’t change the other part!

Transitions = Guarantee

Transposing the Concurroid

owner > 71 x
next > Nno

Transposing the Concurroid

owner > 71 x
next > Nno

Transposing the Concurroid

owner > 71 x
next > Nno

Transitions of transposed = Rely

Transposing the Concurroid

owner > 71 x
next > Nno

Transitions of transposed = Rely

reminiscent to tokens by Turon et al. [POPL |3, ICFP’ | 3]

Composing Concurroids

Intuition:
Connect communication channels with right polarity

Intuition:
Connect communication channels with right polarity

- =D

Intuition:
Connect communication channels with right polarity

. (T
rezc/ WN Cer) &/ \:d

® Some channels might be left loose

® Same channels might be connected several times

® Some channels might be shut down

Entanglement Operators

M, X, X,X...

Connect two concurroids by connecting
some of their acquire/release transitions.

Entanglement Operators

M, X, X,X...

Connect two concurroids by connecting
some of their acquire/release transitions.

Connected A/R transitions become
internal for the entanglement.

Useful Entanglement Operators

X -"apart’, doesn’t connect channels,
leaves all loose.

X| - connects all channels pair-wise,
shuts channels of the right operand,
leaves left one’s loose

Useful Entanglement Operators

X -"apart’, doesn’t connect channels,
leaves all loose.

X| - connects all channels pair-wise,
shuts channels of the right operand,
leaves left one’s loose

Lemma: U X (Vi X V2)= (U X Vi) X V)

Programming
with
Concurroids

Transitions are not yet
commands!

Transitions are not yet
commands!

They only describe
some correct behavior.

Atomic Actions

Defined as subsets of internal transitions
Specify the result

Operational meaning:
READ, WRITE, SKIP and various RMW-commands

Synchronize ownership transfer and
manipulation with auxiliaries

Recap: TLock Implementation

lock = {
X = DRAW;
while (!TRY(x)) SKIP;

}

unlock = {
INCR OWN;

}

Recap: TLock Implementation

lock = {

while (YTRY(x)) SKIP;

}

unlock =
INCR OWN;

}

TRY (n1) Action Specification

TRY (n1) Action Specification

TRY(n1)(s, s, res) =

TRY (n1) Action Specification

TRY(n1)(s, s, res) =

S:p%@s

hg D é—»@u{mb

if (n1 — 7”L/1)

then /S/ — D > |hoh

ownean’l*

next — no x (CL t)

h orto) | A\
(b)

OWner —» nq *
next — no x
rue

)

\[(CLS ® ao)h A res = true

else s’ = s A res = false

/

TRY (n1) Action Specification

TRY(n1)(s, s, res) =

I(as ® a,)h A res=true

else s’ = s A res = false

TRY (n1) Action Specification

TRY(n1)(s, s, res) =

S:p%@s

if (m — 7”L/1)

then /5’ =5 %{e&@

h9 D é—»@u{mb

owner n’l *
next — no x (am to) /\
®

OWner —» nq *
next — no x
rue

)

\[(CLS ® ao)h A res = true

else s’ = s A res = false

/

TRY (n1) Action Specification

TRY(n1)(s, s, res) =

ownean’l*
S = p%@s h; @gﬁ?@n)e}(tl_)n?;; (a’07tD/\

If (n1 — n'l)
then(s’ :p%@@ @@H o %@A

\[(CLS ® ao)h A res = true

else s’ = s A res = false

VWVWhat about modular
reasoning?

DRAW:

"

X DRAW:

X =" A\

Z —» @U {TLl})

"

X DRAW:

X =" A\

Z —» @U {TLl})

lock = {

14 —»@,ts))

X := DRAW;
X =" A\

while (!TRY(x)) SKIP;

2

"

\

QNN
!
()
-
&
~
»
~—

X := DRAW;

X =" A\
4 +@U {n1}))

while (!TRY(x)) SKIP;

Defined in

D

Context Weakening!

Injection Rule

{p}Clg} @ U r stable under V
{p=r}iinjecty C{g*r} @ UnWV

INJECT

where M = [X], X], [X,X...

Injection Rule

{p}Clg} @ U r stable under V
{p (7} injecty C{g{r} @ UnV

INJECT

where M = [X], X], [X,X...

\ Z—»@,ts))
X

while (!TRY(x)) SKIP;

lock = {

14 —»@,ts))

X :=iﬂﬂ€€tp(DRAW);
X="n1 N

while (!TRY(x)) SKIP;

.

_/\

\

lock =

_/\

D %%() D Z—»@,ts)

X :=iﬂﬂ€€tp(DRAW);
X =" A\

p'**(}%s ... :) @}é»Q:Zumg

while (!TRY(x)) SKIP;

lock =

_/\

X :=iﬂﬁ6€tp(DRAW);

A\
@ Z %@U {nl})

while (!TRY(x)) SKIP;

Creating and disposing
concurroids

Creating and disposing
resources

CSL Resource Rule

Ir: 1+ {p}ciq}
I'+{p=1I}resourcerinc{qg 1}

RESOURCECSL

CSL Resource Rule

I,r: 1+ {p}ciqg) RESOURCECSL
v {p @ resource rin ¢ {q @

CSL Resource Rule

FF WP} g}

I'+{p=1I}resourcerinc{qg 1}

RESOURCECSL

Allocating a Ticketed Lock

with tlock(owner, next, body) = {
owner := 0;

next := 0;

h’ld@ COh(tlock ¢ (owner,next)),(ag,D) {

body;

Allocating a Ticketed Lock

with tlock(owner, next, body) = {
owner := 0;

next := 0;

{

hl[/de COh(tlock E(owner,next)) > (a'S 7®)

body;

} Scoped concurroid creation/disposal

hide coh (s10ck {

¢ (owner,next)),(ags,D)

body;

_/\

/)
owner —» (0 k
p —> next — 0 hO 0
h * h,
\

the COh(tlock

{

¢ (owner,next)),(ags,D)

body;

'\

()
owner —» (0 k

p — next — (0 =k ho ’
\ h * hs

Concurroid spec

hide {

COh(tlock ¢ (owner,next)),(ag,?)

body;

'\

/)

owner — 0 *k

p —> next — (0 h >
O

\ h * h,

/

. Initial “self”
Concurroid spec I
auxXiliaries

the coh (tlock £ (owner,next)) , {

body;

the coh (tlock £(owner,next))

\

y

pﬁ%

'\

owner — (0 *
next — 0 %

h * hg

D

Concurroid spec

/

Initial “self”

auxiliaries

)

~(

) D f—»@satS)

body;

(false)

(Lé:>

the coh (tlock £(owner,next))

\

y

pﬁ%

'\

owner — (0 *
next — 0 %

h * hg

D

Concurroid spec

/

Initial “self”

auxiliaries

)

~(

) D f—»@satS)

body;

(false)

(Lé:>

the coh (tlock £(owner,next))

\

y

pﬁ%

'\

owner — (0 *
next — 0 %

h * hg

D

Concurroid spec

/

Initial “self”

auxiliaries

)

p+<hs

hQ D ¢ %@S,ts)

body;

owner — (0 *
next — 0 *k

h (false)

(Lé:>

the coh (tlock £(owner,next))

\

y

pﬁ%

'\

owner — (0 *
next — 0 %

h * hg

D

Concurroid spec

/

Initial “self”

auxiliaries

)

p+<hs

h; D ¢ +@s»ts>

body;

owner — (0 *
next — 0 *

h (false)

(Lé:>

y

'\

the coh (tlock £(owner,next))

pﬁ%

owner — (0 *
next — 0 %

h * hg

Concurroid spec

/

Initial “self”

auxiliaries

)

h; B 0| (as,ts)

owner — (0 *
next — 0 *

h (false)

owner » Nnixk
next — no x

B (b)

R T T—)

/G

'\

pﬁ%

owner — (0 %k
next — 0 3k

h * h,

ho | ¢

Concurroid spec

/

Initial “self”

auxiliaries

{

)@ Z—»Gsa

owner — (0 *
next — 0 *

h (false)

)@ K%st s

owner — nq >|<
next — n/2
p 7 W h

owner — Nixk
next = N9 xk

h ()

Only One Basic
Concurroid

S CED

Parallel Composition

r11Ciiqi @ U P2t Colge} @ U
P1@pr}Cr || Calqr ®qr) @ U

PAR

Parallel Composition

{p1}Ciiq1} @. {p2} C2{qo} @.
(p1®p2} C1 || C2{q1 ® g2} @(U)

AR

“Fork-shuffling” is handled by subjectivity: R/G are encoded by U.

Not discussed today

® A concurroid for CAS-based lock

® A concurroid model for readers/writers
® Allocation

® Non-scoped locks

® Soundness theorem and its proof

® Abstract predicates (yes, we can do it, too)

Implementation

Implementation in Coq (metatheory, logic, proofs):
shallow embedding into the CIC

Higher-orderness and abstraction for free

Reasoning in HT T-style:
specifications are monadic types

Some automation is done for splitting the state
among concurroids

CAS-lock and Ticketed lock are fully implemented

To take away

To take away

Goal I: Model fine-grained concurrent
resources with arbitrary protocols

To take away

Goal I: Model fine-grained concurrent
resources with arbitrary protocols

Goal 2: Combine simplicity and modularity of

Concurrent Separation Logic with the power of
Rely-Guarantee reasoning

To take away

Goal I: Model fine-grained concurrent
resources with arbitrary protocols

Goal 2: Combine simplicity and modularity of

Concurrent Separation Logic with the power of
Rely-Guarantee reasoning

Proposal:

Concurroids

“fine-grained resources”

To take away

Goal I: Model fine-grained concurrent
resources with arbitrary protocols

Goal 2: Combine simplicity and modularity of

Concurrent Separation Logic with the power of
Rely-Guarantee reasoning

Proposal: e State Transition Systems

Concurroids e Communication

“fine-grained resources”

® Subjectivity

To take away

Goal I: Model fine-grained concurrent
resources with arbitrary protocols

Goal 2: Combine simplicity and modularity of

Concurrent Separation Logic with the power of
Rely-Guarantee reasoning

Proposal: e State Transition Systems

Concurroids e Communication

“fine-grained resources” e Subi .
ubjectivity
Thanks!

Backup Slides

Taking the best of two worlds

CSL + FG protocols RG + Resource composition
® CSL + Permissions ® Separate Assume-Guarantee (SAGL)
Bornat et al. [POPL'05] Feng et al. [ESOP'07]
® Auxiliaries for FG ® RGSep
Parkinson et al. [POPL'07] Vafeiadis and Parkinson [CONCUR'07]
® Storable locks ® Llocal RG
Gotsman et al. [APLAS'07] Feng [POPL'09]
® Concurrent Abstract Predicates (CAP) ® Deny-Guarantee
Dindsdale-Young et al. [ECOOP'| 0] Dods et al. [ESOP'09]
® Higher-Order CAP ¢

Svendsen et al. [ESOP'| 3]

® |mpredicative CAP
Svendsen and Birkedal [HOPE'| 3]

RI(lock) £ x — (as ® ao)

lock;

as := as + 1;

unlock;

unlock;

def

RI(lock) £ x — (as ® ao)

{ as|_> O ’ ao'_’ n}
lock; lock;
X = x + 1; X = X + 1;
ds <= ds + l; ds <= ds + 1;

unlock; unlock;

def

RI(lock) £ x — (as ® ao)

{asHO'l'o, aoHn}

lock; lock;
X :=x + 1; X = xXx + 1;
dAs - as+ l; dsg = as+ 1;

unlock; unlock;

def

RI(lock) £ x — (as ® ao)

{asHO'l'o, ao'_’n}

{asHo, ao|—>n+0}

lock; lock;
X :=x + 1; X = xXx + 1;
dAs - as+ l; dsg = as+ 1;

unlock; unlock;

def

RI(lock) £ x — (as ® ao)

{asHO'l'o, aOHn}

{asHo,aoHn"'O} {asHo,aoHn+0}
lock; lock;
X :=x + 1; X = xXx + 1;
dAs - as+ l; dsg = as+ 1;

unlock; unlock;

def

RI(lock) £ x — (as ® ao)

{asHO'l'o, aOHn}

{ as~» 0, ap» n + 0} { as~» 0, ap» n + 0}
lock; lock;
X = X + 1; X = xXx + 1;
as := as + 1; as := as + 1;
unlock; unlock;
{ as~» 1, ao~ ni }

def

RI(lock) £ x — (as ® ao)

{asHO'l'o, aOHn}

{ as~» 0, ap» n + 0} { as~» 0, ap» n + 0}
lock; lock;
X = X + 1; X = xXx + 1;
as := as + 1; as := as + 1;
unlock; unlock;
{ as~» 1, ao~ ni } { as~» 1, ao~ nz2 }

def

RI(lock) £ x — (as ® ao)

{asHO'l'o, aOHn}

{ as~» 0, ap» n + 0} { as~» 0, ap» n + 0}
lock; lock;
X = X + 1; X = xXx + 1;
as := as + 1; as := as + 1;
unlock; unlock;
{ as~» 1, ao~ ni } { as~» 1, ao~ nz2 }

{ as~» 1 + 1, I3n’, ao~» n’', ni=n + 1, no=n’" + 1

def

RI(lock) £ x — (as ® ao)

{asHO'l'o, aOHn}

{ as~» 0, ap» n + 0} { as~» 0, ap» n + 0}
lock; lock;
X = X + 1; X = x + 1;
as := as + 1; as := as + 1;
unlock; unlock;
{ as~» 1, ao~ ni } { as~» 1, ao~ nz2 }

{ as» 2, ao» -}

Verifying Programs
with
Atomic Actions

Taming Stability

TRY (n) Action Specification

TRY(n1)(s, s, res) =

N
|
fw
!
>
Va)
.

owner ’n,/1 *
D { —» | (as,ts U{n}) ;LleXt ~ n2<;> (ao,t0) A\

owner —» mq *
then S/ — D > |h:®h h;@g—»@U{m}) gren};tHW *
(true)

I(as ® a,)h A res=true

else s’ = s A res = false

TRY (n) Action Specification

TRY(n1)(s, s, res) =

N
|
fw
!
>
Va)
.

owner ’n,/l *
D { —» | (as,ts U{n}) ;LleXt ~ n2<;> (ao,t0) A\

owner —» mq *
then S/ — D > |h:®h h;@é—»@wm}) E;itHn2 *
(true)

I(as ® a,)h A res=true

else s’ = s A res = false

| Not stable! |

Stable Hoare-style Rule for TRY (n)

TRY(TLl)

Stable Hoare-style Rule for TRY (n)

(owner — nj *
S = p—»(hs h; D 0 — | (as;ts U{n}) ;LleXtHnQ " (@0, to)
(b)
\

TRY(TLl)

N

I\

/

Stable Hoare-style Rule for TRY (n)

(owner — nj *
S = p—»(hs h; D 0 — | (as;ts U{n}) ;LleXtHnQ " (@0, to)
(b)
\

I\

TRY(nl)
if (n1=n})
then Elh/ n27 / OWner —» 71 * \
8 = D —>|hs®h) ¥ —»Qu{m} gr?]}étHné * (ao,t’o) /\
(true)
I(as ®ao)h A res=true A coh(s) /
else (In. n,nl, t. 0 K, a,t, \

ownerlﬁn1
\s’:p—»(s Q@Eﬁ@u{mn I;;;XtH”z /*> (a O,D Acoh(s")
b

Stable Hoare-style Rule for TRY (n)

(owner —) *
S = p—>»| hy h; D ¢ —|(as,ts U{n1}) ;LleXt ~ n2< *> (Go,to)
b

A

TRY(n1)
) @ﬁ@{“} o (ot A
(true)
)h A res = true A coh(s’))

ownerr%n1 \
next — n/ /
TR (al,t)) Acoh(s')
Wy)

On the role of hiding

® Subjective state allows one to give
a lower bound to the joint contribution:

“I know what is my contribution.”

® Hiding (or scoping) allows one to provide
an upper bound for the contribution:

“When everyone is done, we can the auxiliaries are summed up.”

Some General Coherence Properties

® Heap-consistency:

hself @D hother &, hshared |S deﬁned

® Self-other consistency:

(as, ts) @D (ao, to) is defined

® Fork-join consistency:

m(@@g gD) = COh(CS g()@@)

Internal Transition Properties

® Coherence-consistency: int(s;, s2) = coh(s1) A coh(s2)

® Reflexivity

® Heap footprint preservation:
int(si, s2) = dom(heap(s;)) = dom(heap(s2))

® Self-locality: int(s;, s2) = other(s;) = other(s>)

® Fork-join consistency:

1t (CS Q’CQ go)
= int (@ QD, gs@9g .. QD)

Acquire/Release Properties

® Coherence-consistency:

acq(si, s2) = coh(si) A coh(s?)
® Self-locality:
acq(si, s2) = other(s:) = other(s>)

® Fork-join consistency

Readers-VVriters

1k, — b, *
r{ — | (m%, Ng)| count s n x (m., N,) count — n
hy
h,, *
wl HéCs’ lkw ibw (mrg}’a@) h

+(Ng® Ny, h,) = (Ng®N,=n) AN (Ny®N, =0 => h, =emp)

Ay

Iw(afs S o, hw)

Readers-VVriters

1k, — b, *
count — n X

