Communicating State Transition Systems
for
Fine-Grained Concurrent Resources

Aleks Nanevski Ruy Ley-Wild llya Sergey @ German Delbianco

| dea -2 LOGICBLOX

ESOP 2014

Good programs
are compositional

Reasoning about programs
should be
compositional

Reasoning about
concurrent programs

should be
compositional

Reasoning about
concurrent programs
combines reasoning about
resources and threads

Adding more resources

Pr C {Q}

Adding more resources

R 1P} C {Q}

Adding more resources

R—{P} C {Qj
R + S - {P * AJC{Q = A

Adding more resources

R =1{P} C {Q}
R Q) {P * AJC{Q * A}

Adding more resources

R =P} C {Qj
R *F {P *@}C{Q *

Adding more resources

R 1P} C {Q}
R @+ {P AFC{Q <A

R and S don’t overlap at adll.

Adding more resources

R 1P} C {Q}
R @+ {P AFC{Q <A

R and S don’t overlap at adll.

“frame rule”

Adding more resources

R+ {P} C {Q}
R xS I {227} C {277}

R and S don't overlap at each moment.

Adding more resources
R 1P} C {Q;
RxS {22} C {1}

R and S don't overlap at each moment.

Cannot reuse the proof of R—{P}C{Q}.

Forking more threads

Pr C {Q}

Forking more threads

Pr C {Q}
Pr C {Q}

Forking more threads

C || C

Forking more threads

{Fr(P)}
C || C

J(Q)]

Forking more threads

{Fr(P)}
C || C

J(Q)]

Forking more threads
{ o (P)}
C || C {P} C {Q}
J(Q);

Forking more threads

1 xy2(P);
cllcllc

2(Q)}

Forking more threads

1 xy2(P);
cllcllc

2(Q)}

Cannot reuse the proof for C || C

Two dimensions of scalability

Two dimensions of scalability

Number of
resources

Structure and
number of
threads

This work

A model for
compositional reasoning
about shared-memory concurrency

(in both dimensions)

Shared Memory

Shared Memory

Thread interference

Disjoint Regions in Shared Memory

Critical Regions of Shared Memory

a.k.a Coarse-Grained Concurrency

Critical Regions of Shared Memory

a.k.a Coarse-Grained Concurrency

Critical Regions with Ownership Transfer
a.k.a Coarse-Grained Concurrency

-
PUS s

Concurrent Separation Logic
O'Hearn [CONCUR'04], Brookes [CONCUR'04]

Critical Regions with Ownership Transfer
a.k.a Coarse-Grained Concurrency

-
PUS s

Critical Regions with Ownership Transfer
a.k.a Coarse-Grained Concurrency

-
PUS s

Critical Regions with Ownership Transfer

a.k.a Coarse-Grained Concurrency

Critical Regions with Ownership Transfer

a.k.a Coarse-Grained Concurrency

® Critical Regions — State Transition Systems (Locked, Unlocked);

DinsdaleYoung-al:ECOOP’10, O’Hearn-al:PODC’ 10, Turon-al:POPL |3, Turon-al:ICFP’| 3,
Svendsen-al:ESOP’| 3, Svendsen-Birkedal:ESOP’14, daRochaPinto-al:ECOOP’14...

Critical Regions with Ownership Transfer

a.k.a Coarse-Grained Concurrency

® Critical Regions — State Transition Systems (Locked, Unlocked);

DinsdaleYoung-al:ECOOP’10, O’Hearn-al:PODC’ 10, Turon-al:POPL |3, Turon-al:ICFP’| 3,
Svendsen-al:ESOP’| 3, Svendsen-Birkedal:ESOP’14, daRochaPinto-al:ECOOP’14...

® Ownership Transfer is a way to think of “somewhat overlapping” resources;

Critical Regions with Ownership Transfer

a.k.a Coarse-Grained Concurrency

® Critical Regions — State Transition Systems (Locked, Unlocked);

DinsdaleYoung-al:ECOOP’10, O’Hearn-al:PODC’ 10, Turon-al:POPL |3, Turon-al:ICFP’| 3,
Svendsen-al:ESOP’| 3, Svendsen-Birkedal:ESOP’14, daRochaPinto-al:ECOOP’14...

® Ownership Transfer is a way to think of “somewhat overlapping” resources;

® Ownership Transfer — Communication between resources.
[This work]

Two dimensions of scalability

Number of
resources

Structure and
number of
threads

Two dimensions of scalability

Number of
resources

Ownership

transfer Structure and

number of
threads

Two dimensions of scalability

Number of
resources

Structure and
Communication number of
threads

Two dimensions of scalability

Number of
resources

Structure and
Communication number of
threads

77

Resources with Arbitrary Transitions

a.k.a Fine-Grained Concurrency

Resources with Arbitrary Transitions

a.k.a Fine-Grained Concurrency

Resources with Arbitrary Transitions

a.k.a Fine-Grained Concurrency

Need to decide what each thread is allowed to do!

Subjective Specifications for Arbitrary Transitions

Subjective Specifications for Arbitrary Transitions

Transitions allowed to myself

r‘ /N (Guarantee)
Y/

C 2

[&
bvd()

Subjective Specifications for Arbitrary Transitions

Transitions allowed to the others Transitions allowed to myself

(Rely) f‘ (Guarantee)
~ Y
Lb v/ <

Subjective Specifications for Arbitrary Transitions
Rely-Guarantee Reasoning, Jones [TOPLASS83]

Transitions allowed to the others Transitions allowed to myself

(Rely) P (Guarantee)
07N
i P,
A\ <

self(1)

‘ self(2)

Transitions allowed to self(1)

self(1)

myself

‘ self(2)

A

/N
() myself
self(1) self(2)
> \\

allowed to self(2)

RVGG)r pherlar) RVGIGFiplerlaa)
R,G1V Gyt ipicrllcaigqr Ago}

ARRG

R V|Gy G C R V|G, Gy + C
LFp)enla)) GLGriperla)
R,G V Gy +-ip}cr |l caigi A g2l

“Forking shuffle”

Reasoning about State

Auxiliary State

Hansen [CompSurv’73], Lauer[PhD’73], Owicki-Gries[CACM’76]

Auxiliary State

Hansen [CompSurv’73], Lauer[PhD’73], Owicki-Gries[CACM’76]

Real state (heap)

Auxiliary State

Hansen [CompSurv’73], Lauer[PhD’73], Owicki-Gries[CACM’76]

Real state (heap) Ghost (auxiliary) state

Subjective Auxiliary State

Subjective Concurrent Separation Logic,
LeyWild-Nanevski [POPL | 3]

Subjective Auxiliary State

Subjective Concurrent Separation Logic,
LeyWild-Nanevski [POPL | 3]

State that belongs to self

Subjective Auxiliary State

Subjective Concurrent Separation Logic,

State that belongs LeyWild-Nanevski [POPL’ | 3]
to the others

State that belongs to self

Subjective Auxiliary State

Subjective Concurrent Separation Logic,

State that belongs LeyWild-Nanevski [POPL’ | 3]
to the others

State that belongs to self

Self and Other states are elements of a Partial Commutative Monoid (PCM): (S, 0, ®).

Auxiliary State Split

@)

Auxiliary State Split

myself

self(1) self(2)

myself

self(1) self(2)

Ghost state that belongs to self(1)

myself

self(1) self(2)

Ghost state that belongs to self(1)

myself

self(1) self(2)

Ghost state that belongs to self(2)

myself

self(1) self(2)

Ghost state that belongs to self(2)

Subjective State for

Fine-Grained Concurrency
[This work]

Subjective State for

Fine-Grained Concurrency
[This work]

s
C A"}

Auxiliary State Split determines

Allowed Transitions
[This work]

Auxiliary State Split determines

Allowed Transitions
[This work]

Transitions allowed to the others

(Rely) —————ou—y

\ Transitions allowed to myself
/ (Guarantee)

A

%/

Subjective specifications

Subjective specifications

Prove for self,
abstract over the others

Two dimensions of scalability

Number of
resources

Communication
Structure and

number of
227 threads

Two dimensions of scalability

Number of
resources

Communication
Structure and

number of

Self/Other view threads

on ghost resources

The Model

The Model

Communicating
Subjective
State- Transition Systems

Concurroids

Concurroid States

L 10

Concurroid States

10

N———
Self

Concurroid States

1D

S———r N—
Self Other

Concurroid States

L [

N—— —— ——— N——
Self Shared Other

Concurroid States

N—— —— ——— N——
Self Shared Other

® Self - (possibly ghost) state controlled by me;

® Other - (possibly ghost) state controlled by all others;

® Shared - state that belongs to the resource;

® Self and Other states are elements of a PCM.

Building a concurroid
for Ticketed Lock

SERVING No.

SERVING No.

:
Z
O
.
>
[+ 4
[SS
I

:
Z
O
.
>
[+ 4
[SS
I

:
Z
O
.
>
[+ 4
[SS
I

Reference Implementation

lock = {
x := DRAW(): unlock = { .
while (!TRY(x)) SKIP; INCR_OWN()
) t
DRAW () = { return FETCH AND INCREMENT (next); }
TRY (n) = { return (n == owner); }
INCR OWN() = { owner := owner + 1; }

Ticketed Lock States

owner — 1q
V — (CLS, ts) zext e (CLO, to)

(b

Ticketed Lock States

owner —» 17 *
next — no x

® a5, d, - parameter ghost state controlled by self/other;

Ticketed Lock States

owner —» 17 *
next — no x

® a5, d, - parameter ghost state controlled by self/other;

® [[, - tickets, owned by self/other;

Ticketed Lock States

owner —» 17 *
next — no x

® a5, d, - parameter ghost state controlled by self/other;

® [[, - tickets, owned by self/other;

® /i - a heap protected by the lock, subject of ownership transfer;

Ticketed Lock States

owner —» 17 *
next — no x

ds, do - parameter ghost state controlled by self/other;
Is, 1o - tickets, owned by self/other;
/1 - a heap protected by the lock, subject of ownership transfer;

b - administrative flag to indicate locking;

Ticketed Lock States

owner — 1q

@_» next — N9 *
h

(b

ds, Ao - parameter ghost state controlled by self/other;

Is, 1o - tickets, owned by self/other;
/1 - a heap protected by the lock, subject of ownership transfer;
b - administrative flag to indicate locking;

¢ - label to identify this particular instance of TLock concurroid.

Ticketed Lock Invariant

Ticketed Lock Invariant

owner —» ni *
S = g —» @7t8) ZeXt AL (afovto) /\
(b)

Ticketed Lock Invariant

owner —» ni *
S = g —» @7t8) ZeXt AL (afovto) /\
(b)

All dispensed tickets
ts Dto=1{n | n1 <n < ng}| A

Ticketed Lock Invariant

owner —» ni *
S = € —» @7t8) ZeXt AL (afovto) /\
(b)

All dispensed tickets
ts Dto=1{n | n1 <n < ng}| A

Locked
(n1 € (ts®t,) N b=true A h=emp)|V

Ticketed Lock Invariant

owner —» ni *
S = € —» @7t8) ZeXt AL (afovto) /\
(b)

AII dispensed tickets
ts D1, —{n|n1<n<n2}

Locked

(n1 € (tsDt,) N b=true A h=-emp)

if ny <n2 then ny, € (tsdt,) N b="false N I(as D a,)h

else |ny=ny N b="false A I(as D a,)h

Unlocked

Ticketed Lock Invariant

owner —» 1q *
g — K—» (as,ts) zextr—>n2 %
(b)

(ao, tD N\

ts Dto ={n | n1 <n <ng}| A

(n1 € (ts ®t,) N b=true A h =emp)

if n1 <n2 then |ny € (ts D t,)

AII dispensed tickets

Locked

About to be served

A b=false A I(as D a,)h

else |ny=ny N b="false A I(as D a,)h

Unlocked

Transitions

Internal Transitions

Intuition:
drawing a ticket from the dispenser

owner - 11 *
next — no *

owner — nq x
next — no + 1 %k

owner > nq *

next *

h

owner - 11 *
next — no *

owner — nq x
next — no + 1 %k

Communication

Communication

Acquire/Release transitions
(communication is via heap ownership transfer)

Release Transitions

Intuition:
the lock gives up ownership over the heap

owner r 711 *
next — no x

(false)

owner ~ 17 *
next — no x

(true)

owner r 711 *
next — no x

(false)

owner ~ 17 *
next — no x

(true)

owner ~ 17 *
next — no x

(true)

Acquire Transitions

Intuition.
the lock obtains back ownership over the heap
and increments the service counter (owner)

owner —» 77 %
next — 19 x

(true)

owner — nq + 1k
next — no %

(false)

owner —» 77 %
next — 19 x

owner —» 77 %
next — 19 x

(true)

owner — nq + 1k
next — no %

(false)

owner —» 77 %
next — 19 x

Transitions never change the other part!

Transitions never change the other part!

Transitions = Guarantee

Transposing the Concurroid

owner — 71 *
next — 1o x

Transposing the Concurroid

owner — 71 *
next — 1o x

Transposing the Concurroid

owner — 71 *
next — 1o x

Transitions of transposed = Rely

Composing Concurroids

Intuition.
Connect communication channels with right polarity

Intuition.
Connect communication channels with right polarity

- =D

Intuition.
Connect communication channels with right polarity

() rel acq
(DT
'rey QCCN M acq/ \;@l

® Some channels might be left loose

® Some channels might be shut down

® Same channels might be connected several times

Entanglement Operators
M, X, X,X...

Connect two concurroids by connecting
some of their acquire/release transitions.

Entanglement Operators
M, X, X,X...

Connect two concurroids by connecting
some of their acquire/release transitions.

Connected A/R transitions become
internal for the entanglement.

Programming
with
Concurroids

Transitions are not yet
commands!

Transitions are not yet
commands!

They are just specifications of
some correct behavior of a resource.

Concurroid-Aware Actions

® Decorate machine commands
with concurroid’s internal transitions;

® Specify the result;

® Operational meaning:
READ, WRITE, SKIP and various RMW-commandes;

® All other command connectives are standard.

Recap: TLock Implementation

lock {
X = DRAW();
while (!TRY(x)) SKIP;

}

unlock = {
INCR OWN();

}

Recap: TLock Implementation

lock = {

while 4 YTRY(x)) SKIP;

} /
Atomic actions instrumented with the transition logic

INCR OWN();

}

Scaling along the
two dimensions:

Proof Rules

Scaling along X:

Parallel Composition

r11Ciiq @ U P2 Colge} @ U
p1emCi || Colg1 ®qr} @ U

where & accounts for adapting self/other view

PAR

Scaling along X:

Parallel Composition

(P} Ciig} @U) {p2) Ca i) @.
(P1® P2} C1 || C2{q1 ® g2} @(U)

where & accounts for adapting self/other view

More resources

More threads

Scaling along Y: Injection

{p}Clq} @ U r stable under V
{p*r}injectv Clgxr} @ U=V

INJECT

Scaling along Y: Injection

{p}Clq} @ U r stable under V
{p {7} injecty C{gH{r) @ U=V

More resources

INJECT

More threads

Not discussed in this talk

® Scoped creation/disposal of concurroids (see the paper)
® A concurroid for a spin-lock (see the paper)

® A concurroid model for readers/writers (talk to me)

® Abstract predicates (yes, we can do it, too) (see the TR)
® Denotational semantics of trees-of-traces (see the TR)

® Soundness of the logic (check the TR or the Coq code)

Implementation

Implementation in Coq: metatheory, logic, proofs;
Shallow embedding into the CIC (~15 KLOC);
Higher-orderness and abstraction for free;

Reasoning in HT T-style: Hoare specifications are types;

Some automation is done for splitting the state among
concurroids;

Spin-lock and Ticketed lock are fully implemented.

To take away

® State Transition Systems are expressive
behavioural specifications of shared resources;

® Self/Other Dichotomy is omnipresent when reasoning
about shared-memory concurrency (composing N threads);

® Communication is a way to describe state ownership
transfer between resources (composing N resources).

To take away

® State Transition Systems are expressive
behavioural specifications of shared resources;

® Self/Other Dichotomy is omnipresent when reasoning
about shared-memory concurrency (composing N threads);

® Communication is a way to describe state ownership
transfer between resources (composing N resources).

Concurroids unify these concepts in one data structure.

To take away

® State Transition Systems are expressive
behavioural specifications of shared resources;

® Self/Other Dichotomy is omnipresent when reasoning
about shared-memory concurrency (composing N threads);

® Communication is a way to describe state ownership
transfer between resources (composing N resources).

Concurroids unify these concepts in one data structure.

FOO,

¥

Thanks!

Q&A Slides

How the subjective split is defined!?

wEp®g 1tt validw, and w. s = 51 U 5,5, and
[s1|w.J|Sow.olEpand[s,|w.J|siow.0] Eg

How the subjective split is defined!?

wkEp®qg 1tt valid w, and w. s = 51 U 5,, and

w.j|szow.0 :pandw.j|slow.0 = g

“Forking shuffle” for the self/other components.

VWhy do you need
the explicit other?

VWhy do you need
the explicit other?

Some programs are easier to specify and verify using the other:

® E.g., in the lock module the other doesn’t change if the lock is locked by self.

Some programs are much easier to specify via the other:

® Typically, optimistic, non-effectful programs (e.g., stack’s contains(x)).

other makes the dudlity between Rely and Guarantee explicit

® and,in fact, the form of other is already present in R/G (it’s just Rely)

It’s already in the model, so why not use it when it comes in handy?

Can’t | just infer the other from some
global/self knowledge?

Can’t | just infer the other from some
global/self knowledge?

You can try.:)

But then you need to define your “global™
to subtract the self from.

With other you don’t need to subtract.

Can’t we just use Tokens or
Fractional Permissions instead of other?

Can’t we just use Tokens or
Fractional Permissions instead of other?

Yes, you can.

Since both tokens and FP are just instances of
PCM, you can, probably, instantiate
self/other with any of them.

Can’t we just use Tokens or
Fractional Permissions instead of other?

Yes, you can.

Since both tokens and FP are just instances of
PCM, you can, probably, instantiate
self/other with any of them.

But why bother? :)

Aren’t self/other just about ownership?

Aren’t self/other just about ownership?

No, they are not.

Aren’t self/other just about ownership?

No, they are not.

® Ownership assumes a holistic “preservation law” —
everything is created in advance and owned by someone;

Aren’t self/other just about ownership?

No, they are not.

® Ownership assumes a holistic “preservation law” —
everything is created in advance and owned by someone;

® Consider a Ticketed Lock example with ownership:
® we need to account for all currently used tickets;
® we need to account for all disposed tickets;
® we need to account for all not yet dispensed tickets;

® |n our case we don’t bother about the last two.

Aren’t self/other just about ownership?

No, they are not.

® Ownership assumes a holistic “preservation law” —
everything is created in advance and owned by someone;

® Consider a Ticketed Lock example with ownership:
® we need to account for all currently used tickets;
® we need to account for all disposed tickets;
® we need to account for all not yet dispensed tickets;

® |n our case we don’t bother about the last two.

Self/other dichotomy delivers more local reasoning =

proofs are simpler!

Can you extract the verified program
from your Coq implementation and run it?

Can you extract the verified program
from your Coq implementation and run it?

Yes and no.

Can you extract the verified program
from your Coq implementation and run it?

Yes and no.

® |mperative programs are composed and verified
(i.e., type-checked) by means of Cogq;

® They cannot be run by means of Gallina’s operational semantics;

® The reason for that is the necessity to reason about while-loops
and potentially diverging programs;

® Think of our programs as of monadic values, which are composed,
but not run yet.

Isn’t other just about framing!?

Isn’t other just about framing!?

Yes, in some sense it is.
But just along just one axis of scalability.

|) More threads
working with a resource

Isn’t other just about framing?

Yes, in some sense it is.
But just along just one axis of scalability.

More threads
working with a resource

Other complements self for a particular resource.

VVhy do you have two
framing rules?

I'F{plc:A{qgl@U r stable under V
I'{p=xr}injectc: A{g+rj@U =V

INJECT

iP11Ciiqi} @ U (P2} Criqr} @ U
P1®@p}Ci | Calgir ®qr} @ U

PAR

VVhy do you have two
framing rules?

I'{p}lc:A{q}@U r stable under V
I'-{p=r}injectc: A{g*r}@U =V

INJECT

Framing with respect to the other resource V.

ir1tCiigit @ U (P2} Coigp}t @ U
P1®@p}Ci | Calgir ®qr} @ U

PAR

VVhy do you have two
framing rules?

I'{p}lc:A{q}@U r stable under V
I'{p=xr}injectc: A{g+rj@U =V

INJECT

Framing with respect to the other resource V.

ir1tCiigit @ U (P2} Coigp}t @ U
P1®@p}Ci | Calgir ®qr} @ U

PAR

Framing — particular case of parallel composition
on the same resource U.

“Framing” rules in CSL

O'Hearn [CONCUR'04]

11 = {Q} C {R} Resource context
;11«12 {Q} C {R} weakening

M 1-4{Q1} ¢1 {R1} T;I+-{Q2} C2 {R2}
DI -{Q1xQ2} C1||C2 {R1xR2}

Parallel composition

“Framing” rules in RGSep

Vafeiadis-Parkinson [CONCUR’07/]

RCR p=yp
FCsat (p, R,G',¢) G"CG ¢ =q Rely/Guarantee
- O sat (p, R, G, q) weakening

- O sat (p1, RU G2, Gr, 1)
- Cysat (p2, RU G, G, o) Parallel composition

= (C1]|Cy) sat (p1 * p2, R, G1 U Ga, q1 * q2)

Related VWork

[Owicki-Gries:CACM76] - reasoning about parallel composition is not compositional; subjectivity
fixes that;

[OHearn:CONCURO4] - only one type of resources - critical sections;
we allow one to define arbitrary resources;

[Feng-al:ESOPO07,Vafeiadis-Parkinson:CONCURO7] - framing over Rely/Guarantee, but only one
shared resource: we allow multiple ones;

[Feng:POPLO9Y] - introduced local Rely/Guarantee; we improve on it by introducing
a subjective state and explicitly identifying resources as STS, hence dialysing Guarantee and Rely;

[DinsdaleYoung-al:ECOOPI0] - first introduced concurred protocols;
we avoid heavy use of permissions (for resources, actions, regions etc.) - self-state defines what a thread is
allowed to do with a resource;

[Krishnaswami-al:ICFP 2] - superficially substructural types; that work doesn’t target concurrency;

[DinsdaleYoung-al:POPLI 3] - general framework for concurrency logic;
we present a particular logic, not clear whether it’s an instance of Views;

[Turon-al:POPLI 3,ICFP13] - CaReSL and reasoning about contextual refinement;
we don’t address CR, our PCM-based selflother generalise Turon’s tokens; we compose resources by
communication;

[Svendsen-al:ESOP | 3,ESOP14] - use much richer semantic domain,
we are avoiding fractional permissions, using communication instead of view-shifts.

Is entanglement associative!

Is entanglement associative!

Sort of.

Is entanglement associative!

Sort of.

X -"apart’,doesn’t connect channels,
leaves all loose.

X| - connects all channels pair-wise,
shuts channels of the right operand,
leaves left one’s loose

Lemma: U X (Vi X V2)= (U X Vi) X V)

Backup Slides

Subjective proofs

RI(lock) = x » (as @ ao)

lock; lock;
X = x + 1; X = x + 1;
as = as + 1; as := as + 1;

unlock; unlock;

Subjective proofs

RI(lock) = x » (as @ ao)

{ asl_) 0 ’ aol_) n}
lock; lock;
X = xXx + 1; X = xXx + 1;
as = as + 1; as := as + 1;

unlock; unlock;

Subjective proofs

RI(lock) = x » (as @ ao)

{asHO'I'O, aOHn}

lock; lock;
X = x + 1; X = x + 1;
as = as + 1; as := as + 1;

unlock; unlock;

Subjective proofs

RI(lock) = x » (as @ ao)

{asHO'I'O, aoHn}

{ as~» 0, ao~» n + 0}
lock;

X = xXx + 1;

as := as + 1;

unlock;

lock;
X = x + 1;

ds «— as'l'].;

unlock;

Subjective proofs

RI(lock) = x » (as @ ao)

{asHO'I'O, aoHn}

{ as~» 0, ao~» n + 0}
lock;

X = xXx + 1;

as := as + 1;

unlock;

{asHo,aoHn+0}
lock;

X = x + 1;

ds «— as'l'].;

unlock;

Subjective proofs

RI(lock) = x » (as @ ao)

{asHO'I'O, aOHn}

{ as~» 0, ao~» n + 0}
lock;

X = xXx + 1;

as := as + 1;
unlock;

{ as~» 1, ao~ ni }

{asHo,aoHn+0}
lock;

X = x + 1;

ds «— as'l'].;

unlock;

Subjective proofs

RI(lock) = x » (as @ ao)

{as")O'l'o, aOHn}

{ as~» 0, ac~» n + 0} { as~» 0, ao~» n + 0}
lock; lock;
X = X + 1; X = X + 1;
as = as + 1; as := as + 1;
unlock; unlock;
{ as~» 1, ao~ ni } { as~» 1, ao~ n2 }

Subjective proofs

Q.

ef

RI(1ock)

X »(as @ ao)

{ as»0+0, ac~ n}

{ as~» 0, ao~» n + 0}

lock;
X = X + 1;
as := as + 1;
unlock;

{as|—)1, do P nl}

{as'—)1+1, Hn’,

o~ n’,

{ as~» 0, aoc~» n + 0}
lock;

X = x + 1;
as = as + 1;
unlock;

{ asl_) l, ao|—) nz }

nn=n+ 1, np=n’" +1 }

Subjective proofs

RI(lock) = x » (as @ ao)

{as")O'l'o, aOHn}

{ as~» 0, ao~» n + 0} { as~» 0, ao~» n + 0}
lock; lock;
X = X + 1; X = X + 1;
as = as + 1; as := as + 1;
unlock; unlock;
{ as~» 1, ao~ ni } { as~» 1, ao~ n2 }

Creating and disposing
concurroids

Creating and disposing
resources

CSL Resource Rule

O'Hearn [CONCUR'04]

Ir:1+{p}ciq}
I'+{p=1I}resourcerinc{qg 1}

RESOURCECSL

CSL Resource Rule

O'Hearn [CONCUR'04]

Ir: 1+ {p}ciqg) RESOURCECSL
r'+{p @ resource rin ¢ {g @

CSL Resource Rule

O'Hearn [CONCUR'04]

FF WP} g}

I'+{p=1I}resourcerinc{qg 1}

RESOURCECSL

Allocating a Ticketed Lock

with tlock(owner, next, body) = {
owner := 0;

next := 0;

h’ld@ COh(tlock ¢ (owner,next)),(ag,D) {

body;

Allocating a Ticketed Lock

with tlock(owner, next, body) = {
owner := 0;

next := 0;

{

hl[/de COh(tlock E(owner,next)) > (a'S 7®)

body;

} Scoped concurroid creation/disposal

hide coh (s10ck {

¢ (owner,next)),(ags,D)

body;

_/\

r \
owner — (0 k
p%} next — 0 * hO b
h *x h,
\

the COh(tlock

{

¢ (owner,next)),(ags,D)

body;

_/\

r \
owner — 0 *

p —> next — 0 hO >
\ h * hs

Concurroid spec

hide {

COh(tlock E(owner,next)) : (CLS ,@)

body;

_/\

) \
owner — (0 k
p —> next — 0 * hO >
\ h *x h,

/

. Initial “self”
Concurroid spec I
auxiliaries

the coh (tlock £ (owner,next)) , {

body;

the coh (tlock £(owner,next))

\

y

p%%

_/\

owner — (0 *
next — 0 x

h * hg

D

Concurroid spec

/

Initial “self”

auxiliaries

)

~(

) 4 f—»@satS)

body;

(false)

(Lé:>

the coh (tlock £(owner,next))

\

y

p%%

_/\

owner — (0 *
next — 0 x

h * hg

D

Concurroid spec

/

Initial “self”

auxiliaries

)

~(

) 4 f—»@satS)

body;

(false)

(Lé:>

the coh (tlock £(owner,next))

\

y

p%%

_/\

owner — (0 *
next — 0 x

h * hg

D

Concurroid spec

/

Initial “self”

auxiliaries

)

p_»<hs

hg D ¢ +@s»ts>

body;

owner +—> () *
next — (0 X

h (false)

(Lé:>

the coh (tlock £(owner,next))

\

y

p%%

_/\

owner — (0 *
next — 0 x

h * hg

D

Concurroid spec

/

Initial “self”

auxiliaries

)

p+<hs

h; D ¢ +@s»ts>

body;

owner — (0 *
next — 0 *

h (false)

(Lé:>

)
owner — (0 *

p% next — 0 k
| h * hg

_/\

Concurroid spec

the coh (tlock £ (owner,next))

/

)

Initial “self”

auxiliaries

)

' p | h, h;% (| (as:ts)

owner — (0 *
next — 0 *

h (false)

owner — Nixk
next — no *x

B (b)

R T T—)

/NG

_/\

p%&

owner — (0 %k
next — (0 >k

h * h,

ho | ¢

Concurroid spec

/

Initial “self”
auxiliaries

{
Coh (t1ock ¢(omer next))((as,0)

)@ Z—»Gsa

owner — (0 *
next — 0 *

(false)

ownerl—>n1>|<
t—n
nex /2
p 7 hx h

)@ E_»Gsa s

owner — Nixk
next = N9 xk

h (b)

Only One Basic
Concurroid

SCHD

Only One Basic
Concurroid

A concurroid of “private heaps”.

Framing with respect to
concurroids.

\ Z—»@,ts))
X

while (!TRY(x)) SKIP;

lock = {

()

14 —»@,ts)) >

\ y

X := DRAW;
X =N /\

while (!TRY(x)) SKIP;

/N

-~

Defined in

D

Context Weakening!

Injection Rule

{p}C{qg} @ U r stable under V
{p=xr}iinjecty C{g=r} @ UMYV

INJECT

where M = [X], X], [X,X...

Injection Rule

iptClqt @ U
{p {7} injecty C{g {1} @ UMV

INJECT

where M = [X], X], [X,X...

\ Z—»@,ts))
X

while (!TRY(x)) SKIP;

lock = {

14 —»@,ts))

x :=1nject (DRAW);
X =N A\

while (!TRY(x)) SKIP;

y

N\

\

p

lock =

N\

p %() @ f—»@,ts)

X 1= z’njectp (DRAW);
X =N A\

(]) e

while (!TRY(x)) SKIP;

lock = {

2/

@ 6%@7158)

r X 1= injectp(DRAW);

while (!TRY(x)) SKIP;

On the role of hiding

® Subjective state allows one to give
a lower bound to the joint contribution:

“I know what is my contribution.”

® Hiding (or scoping) allows one to provide
an upper bound for the contribution:

“When everyone is done, we can the auxiliaries are summed up.”

TRY (n1) Action Specification

TRY (n1) Action Specification

TRY(n1)(s, s, res) =

TRY (n1) Action Specification

TRY(n1)(s, s, res) =

ownerl—>n’1*
S — pﬁé(hs h9 a Z—»@U{m}) 2GXM”Q<*> (CLo,tD A
b

if (’fll — n’l)

owner —» mqp *
then /S/ =p — @@h h;@ / —»@U{m}) o e (aO,ID/\
(true)

\[(CLS ® a,)h A res = true

else s’ = s A res = false

TRY (n1) Action Specification

TRY(n1)(s, s, res) =

I(as ® a,)h A res=true

else s’ = s A res = false

TRY (n1) Action Specification

TRY(n1)(s, s, res) =

ownerl—>n’1>l<
S =P hs h; Dl — (as,tSU{nl})l oKL M2 (CLO,tO)
((o™ |)
if (n1 — n’l)

owner —» mqp *
then /S/ — P %Q@@ h;@g_»@U{m}) gﬁitwng % (CLO,D/\
(true)

\[(CLS ® a,)h A res = true

else s’ = s A res = false

TRY (n1) Action Specification

TRY(n1)(s, s, res) =

ownerl—>n'1*
S=DP Hé(h:s h; @ 14 _»,Chn)eXt |_>n2<;<> (amtD /\

if (n1 — n’l)
then(s’ :pﬁ»@@ @@H Lo <a0,tDA

\[(CLS ® a,)h A res = true

else s’ = s A res = false

Readers-VVriters

1k, — b, *
Tl —> (mZ,NS) count — n k (mg’ o) count — n
h
h.. x
wl _»CS’ lkwibw (mg'sa0) |1

+(Ng® Ny, h,) = (Ng®N,=n) A (Ny® N,=0 => h, = emp)

Ay

Iw(as D o, hw)

Readers-VVriters

1k, — b, *
count — n Xk

