Modular, Higher-Order Cardinality Analysis
In
Theory and Practice

llya Serge Dimitrios Vytiniotis Simon Peyton |ones
) gey Y Y

I dea Microsoft Research

POPL 2014

A story of
three program optimisations

Optimisation |

f1, £2 :: [Int] -> Int Which function is
Better

\ better to run?
fl xs = let ys =

in squash (\n. sum (map (+ n) ys))

N —— ——

if invoked more than once by squash

/f2 xs = squash (\n. sum (map (+ n) (w)

—#
Better if invoked at most once by squash

How many times
a function is called?

(call cardinality)

Optimisation 2

“worker-wrapper” split

f x = case x of (p,q) -> <cbody>

Optimisation 2

“worker-wrapper” split

“wrapper”, usually inlined on-site

N

f x = case x of (p,q@) -> fw p q

fw p q = <cbody>

“worker”

Optimisation 2

“worker-wrapper” split

What if g is never used in <cbody>!

/

f x = case x of (p,q) -> fw p

fw p = <cbody>

Don’t have to pass g to fw!

Which parts of

a data structure are
certainly not used!?

(absence)

Optimisation 3

smart memoization

f :: Int -> Int -> Int
f x c=31if x > 0O then else
1if x == 0 then O else

AN

Will be used exactly once:
no need to memoize!

Which parts

of a data structure
are used no more than once!

(thunk cardinality)

Cardinality Analysis

» Call cardinality
- Absence

* Thunk cardinality

Usage demands

(how a value is used)

call demand
Usage demands d == |Cd)|| U@, d)| U

Cardinality demands dl = Al nxd

Usage cardinalities n = 1w

tuple demand

Usage demands d == Ccad)||Udl,d)|| U

Cardinality demands dl = Al nxd

Usage cardinalities n = 1w

general demand
Usage demands i w= C(d)| Udf,d) U]

Cardinality demands dl = Al nxd

Usage cardinalities n = 1w

Usage demands d == C"d)|U(d,d)|U

absent value

Cardinality demands dt = \ nxd

Usage cardinalities n = 1w

Usage demands d == CYd)|Ud,d)| U

used at most n times
Cardinality demands dl == A \

Usage cardinalities n = 1w

Usage lypes

(how a function uses its arguments)

wurblel :: % C’w(Cl(U)) 5 @

wurblel a g = g 2@+ g 3@

wurblel :: wxU —|C¥(CHU))|— o
wurblel a g =2 a +3 a

wurble?2 :: % Cl(Cw(U)) 5 e

wurble2 a g = sum (map (g(a) [1..1000])

wurble?2 :: wxU C’l(C“’(U)) 5 e

wurble2 a g = sum (map a) [1..1000])

f :: 1xU(1xU,A) — e

f x = case x of (p, q) > p + 1

Usage type
depends on a usage context!

(result demand determines argument demands)

Backwards Analysis

Infers demand type basing on a context

PHel d= (T;p)

PHrel d= (1;p)

P - signature environment, maps some of free variables of e to their
demand signatures (i.e., keeps some contextual information)

d - usage demand, describes the degree to which e is evaluated
T - demand type, usages that e places on its arguments

¢ - fv-usage, usages that e places on its free variables

e = A\x . case z of (p,q) — (p, f True)

e = Ar . case ¢ of (p,q) — (p,

e > B\L C%U)é(l*(](w*[],fl)%.;}

—_—

T ¥

Each function is a
backwards demand transformer
it transforms a context demand to
argument demands and fv-demands.

We cannot compute best argument demands
for all contexts:
need to approximate.

Demand Lattice

T wxlU

1*U w*U w*UA\

/

1xU (A, wxCHU)) 1*U(w*U A)
N\ pd W*C”(U(,
1+xU(A, A) /

Each function is
a monotone backwards demand transformer.

Exploiting demand monotonicity

Argument demands

T =z=wsU ... kU @----oooeeeccccccccao

* *
da,]_ e o dan
1 1
Ao, ... dy @--ecemmeeenness

oo ® L
dl d* d2 Context demand

Analysis-based annotations

PP el d= (1;p)

Elaboration

P eld= (T;p) ~~ e

» let-bindings in e are annotated with m € {0, 1, ®}

to indicate how often the let binding is evaluated;

- Each Lambda A"x .e; in e carries an annotation n € {1, ®}
to indicate how often the lambda is called.

e let f=Xz.\y. z Truein fpq | CYU)
= (o;{p > 1xC'(U),q = A})

A

let f = Mz My, z True in f p ¢

Soundness

Restricted
operational

semantics
(makes sure that the annotations are respected)

Annotating
cardinality
analysis

produces well-typed
brograms

N

Type and effect

annotated programs
do not get stuck

system

N\

brogress and preservation

N

Restricted
operational
semantics

Cardinality-enabled
optimisations

|. Let-in floating optimisation

mi

let 2 = e; in (let f = Az . e in e)

@zggin letf = @E e in ey)

— letf—/(DL Jet z = e in e) in es.

for any my, mg and z ¢ F'V (e2).

Improvement [heorem |

Let-in floating
does not increase the number
of execution steps.

2. Smart execution

Optimised CBN Machine

Sestoft:JFP97

<H1,61,Sl> 7 .. > <Hn7envsn>

- I-annotated bindings are not memoised,;

* (-annotated bindings are skipped.

Improvement Theorem 2

Optimising semantics
works faster on elaborated expressions
and produces coherent results.

Implementation
and
Evaluation

The analysis and optimisations are implemented

in Glasgow Haskell Compiler (GHC v/.8 and newer):
http://github.com/ghc/ghc

Added 250 LOC to 140 KLOC compiler;
Runs simultaneously with the strictness analyser;

Evaluated on
nofib benchmark suite,

various hackage libraries,

the Benchmark Game programs,
GHC itself.

http://github.com/ghc/ghc

Results on nofib

Program Synt. A\ Synt. Thnk" || RT Thnk'
anna 4.0% 7.2% 2.9%
bspt 5.0% 15.4% 1.5%
cacheprof 7.6% 11.9% 3.1%
calendar 5.7% 0.0% 0.2%
constraints 2.0% 3.2% 4.5%
... and 72 more programs

Arithmetic mean 10.3% 12.6% 5.5%

* as linked and run with libraries

Results on nofib

Program ' Allocs Runtime
b No hack Hack
anna -2.1% -0.2% +0.1% -0.0%
bspt -2.2% -0.0% -0.0% +0.0%
cacheprof -7.9% -0.6% -6.1% -5.0%
calendar -9.2% +0.2% -0.0% -0.0%
constraints -0.9% -0.0% -1.2% -0.2%
... and 72 more programs
Min -95.5% | -10.9% -28.2% | -12.1%
Max +3.5% | +0.5% +1.8% | +2.8%
Geometric mean

The hack (due to A. Gill): hardcode argument cardinalities for
build, foldr and runsST.

Compiling with optimised GHC
* We compiled GHC itself with cardinality optimisations;

- Then we measured improvement in compilation runtimes.

Program LOC GHC Alloc A GHC RT A
No hack | Hack | No hack | Hack
anna 5740 -1.6% | -1.5% -0.8% | -0.4%
cacheprof || 1600 -1.7% | -0.4% 2.3% | -1.8%
fluid 1579 -1.9% | -1.9% -2.8% | -1.6%
gamteb 1933 -0.5% | -0.1% -0.5% | -0.1%
parser 2379 -0.7% | -0.2% -2.6% | -0.6%
veritas 4674 -1.49% | -0.3% -4.5% | -4.1%

To take away

- Cardinality analysis is simple to design and understand:
it’s all about usage demands and demand transformers;

* |t is cheap to implement: we added only 250 LOC to GHC;

* |t is conservative, which makes it fast and modular;

» Call demands make it higher-order, so the analysis can infer demands
on higher-order function arguments;

» It is reasonably efficient: optimised GHC compiles up to 4% faster.

Thanks!

