
James R. Wilcox Zach Tatlock Ilya Sergey

Programming Language Abstractions for
Modularly Verified Distributed Systems

{P} c {Q}`

Distributed Systems

Distributed Infrastructure

Distributed Applications

Verified Distributed Systems

Verified Distributed Systems

Verified Distributed Infrastructure

Verified Distributed Infrastructure

-Cert

Veri-

Iron

Wow

Verified Distributed Applications

Verified Distributed Applications

-Cert

Veri-

Iron

Wow

Verified Distributed Applications

-Cert

Veri-

Iron

Wow

Challenging to verify apps in terms of infra.
 verify clients by starting over!

Indicates deeper problems with composition
 one node’s client is another’s server!

Verified Distributed Applications

-Cert

Veri-

Iron

Wow

Challenging to verify apps in terms of infra.
 verify clients by starting over!
Indicates deeper problems with composition
 one node’s client is another’s server!

(Make it possible to) verify clients
 verify clients without starting over!

Will also enable more general composition

Composition: A way
to make proofs harder

Composition: A way
to make proofs harder

When distracting language issues are
removed and the underlying mathematics is
revealed, compositional reasoning is seen to
be of little use.

Approach

`{P} c {Q}

Distributed Hoare Type Theory

Distributed Interactions
Servers and Clients

Optimizations

Combining Services

Horizons

gcc -O3

Cloud Compute

SC

21

Cloud Compute

Cloud Compute

Cloud Compute
while True:
 (from, n) <- recv
 send (n, factors(n)) to from

: Server

Cloud Compute
while True:
 (from, n) <- recv
 send (n, factors(n)) to from

: Server

Traditional specification:
 messages from server have correct factors

Proved by finding an invariant of the system

Cloud Compute: Server

Cloud Compute: Client

Cloud Compute: Client
send 21 to server
(_, ans) <- recv
assert ans == {3, 7}

Cloud Compute: Client
send 21 to server
(_, ans) <- recv
assert ans == {3, 7}

Expand system to include clients

Need to reason about client-server interaction
 introduce protocol

Protocols

Protocols

Protocols

Protocols make it possible to verify clients!

Protocols

Protocols

State:
abstract state of each node

Protocols

State:

Transitions:

abstract state of each node

allowed sends and receives

Cloud Compute Protocol

State:

Transitions:

Cloud Compute Protocol

State:

Transitions:

permissions: Set<Msg>

Cloud Compute Protocol

Send Req

Recv Req

Send Resp

Recv Resp

State:

Transitions:

permissions: Set<Msg>

Cloud Compute: Protocol

Send Req

Recv Req

Send Resp

Recv Resp

State:

Transitions:

perm: Set<Msg>
Effect: add (from, n) to perm

Recv Request n

Cloud Compute: Protocol

Send Req

Recv Req

Send Resp

Recv Resp

State:

Transitions:

perm: Set<Msg>

Effect:
removes (n,to) from perm

Send Response (n,l)

Requires:
l == factors(n)

(n,to) in perm

Cloud Compute: Protocol

Send Req

Recv Req

Send Resp

Recv Resp

State:

Transitions:

perm: Set<Msg>
Recv Response l

Ensures:
l == factors(n)

(n,to) in perm

Cloud Compute: Protocol

Send Req

Recv Req

Send Resp

Recv Resp

State:

Transitions:

permissions: Set<Msg>

Cloud Compute: Protocol

Send Req

Recv Req

Send Resp

Recv Resp

State:

Transitions:

permissions: Set<Msg>Protocols make it possible to verify clients!

From Protocols to Types

`{P} c {Q}

From Protocols to Types

`{P} { }tsent ()m h,send m to h

From Protocols to Types

` send m to ht{P} { }tsent ()m h,

From Protocols to Types

` send m to ht

t 2

{P} { }tsent ()m h,

From Protocols to Types

` send m to ht

t 2

{P} { }tsent ()m h,

P) Pre t

From Protocols to Types

` send m to ht

t 2

{P} { }tsent ()m h,

P) Pre t

Cloud Compute: Client
send 21 to server
(_, ans) <- recv
assert ans == {3, 7}

Cloud Compute: Client
send 21 to server
(_, ans) <- recv
assert ans == {3, 7}

recv ensures correct factors

Cloud Compute: More Clients
send 21 to server1
send 35 to server2
(_, ans1) <- recv
(_, ans2) <- recv
assert ans1 ans2 == {3, 5, 7}[

Cloud Compute: More Clients
send 21 to server1
send 35 to server2
(_, ans1) <- recv
(_, ans2) <- recv
assert ans1 ans2 == {3, 5, 7}[

Same protocol enables verification

Cloud Compute: More Clients
send 21 to server1
send 35 to server2
(_, ans1) <- recv
(_, ans2) <- recv
assert ans1 ans2 == {3, 5, 7}[

Same protocol enables verification

Cloud Compute
while True:
 (from, n) <- recv
 send (n, factors(n)) to from

: Server

Cloud Compute
while True:
 (from, n) <- recv
 send (n, factors(n)) to from

: Server

Precondition on send requires correct factors

Cloud Compute
cache = {} 
while True:
 (from, n) <- recv
 ans = if n cache then cache[n]
 else factors(n)
 cache[n] = ans
 send (n, ans) to from

: More Servers

2

Cloud Compute
cache = {} 
while True:
 (from, n) <- recv
 ans = if n cache then cache[n]
 else factors(n)
 cache[n] = ans
 send (n, ans) to from

: More Servers

2

Still follows protocol!

Cloud Compute
while True:
 (from, n) <- recv
 send n to backend
 (_, ans) <- recv
 send (n, ans) to from

: More Servers

Cloud Compute
while True:
 (from, n) <- recv
 send n to backend
 (_, ans) <- recv
 send (n, ans) to from

: More Servers
Still follows protocol!

Cloud Compute
while True:
 (from, n) <- recv
 send n to backend
 (_, ans) <- recv
 send (n, ans) to from

: More Servers
Still follows protocol!

One node’s client is another’s server!

Any combination of transitions follows protocol
Well-typed programs don’t go wrong!

Horizons

Adding other effects

Sophisticated protocol composition
e.g. computation uses separate database

e.g. mutable heap, threads, failure…

Fault tolerance
what do Verdi’s VSTs look like here?

Verified Distributed Applications

Verified Distributed Applications

-Cert

Veri-

Iron

Wow

Verified Distributed Applications

-Cert

Veri-

Iron

Wow

Challenging to verify apps in terms of infra.
 verify clients by starting over!

Indicates deeper problems with composition
 one node’s client is another’s server!

Verified Distributed Applications

-Cert

Veri-

Iron

Wow

Challenging to verify apps in terms of infra.
 verify clients by starting over!
Indicates deeper problems with composition
 one node’s client is another’s server!

Protocols make it possible to verify clients
 reason about client-server interaction
Also enable more general composition

Any combination of transitions follows protocol
Well-typed programs don’t go wrong!

Verified Distributed Applications

-Cert

Veri-

Iron

Wow

Protocols make it possible to verify clients
 reason about client-server interaction
Also enable more general composition

Any combination of transitions follows protocol
Well-typed programs don’t go wrong!

Verified Distributed Applications

-Cert

Veri-

Iron

Wow

Composition is hard
 but important for infrastructure

Achieve with types
 syntactic theory of composition

Protocols make it possible to verify clients
 reason about client-server interaction
Also enable more general composition

Any combination of transitions follows protocol
Well-typed programs don’t go wrong!

