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Challenging to verify apps in terms of infra. 
    verify clients by starting over!
Indicates deeper problems with composition 
    one node’s client is another’s server!

(Make it possible to) verify clients 
    verify clients without starting over!

Will also enable more general composition 
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Composition: A way 
to make proofs harder

When distracting language issues are 
removed and the underlying mathematics is 
revealed, compositional reasoning is seen to 
be of little use. 
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Distributed Interactions
Servers and Clients

Optimizations

Combining Services

Horizons
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Cloud Compute
while True: 
  (from, n) <- recv 
  send (n, factors(n)) to from

: Server

Traditional specification: 
    messages from server have correct factors 

Proved by finding an invariant of the system
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Cloud Compute: Client
send 21 to server 
(_, ans) <- recv 
assert ans == {3, 7}

Expand system to include clients 

Need to reason about client-server interaction 
    introduce protocol
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Protocols

State:

Transitions:

abstract state of each node

allowed sends and receives 
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Cloud Compute: Protocol

Send Req

Recv Req

Send Resp

Recv Resp

State:

Transitions:

permissions: Set<Msg>Protocols make it possible to verify clients!
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Cloud Compute: Client
send 21 to server 
(_, ans) <- recv 
assert ans == {3, 7}

recv ensures correct factors
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Cloud Compute
while True: 
  (from, n) <- recv 
  send (n, factors(n)) to from

: Server

Precondition on send requires correct factors
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Cloud Compute
while True: 
  (from, n) <- recv 
  send n to backend 
  (_, ans) <- recv 
  send (n, ans) to from

: More Servers
Still follows protocol!

One node’s client is another’s server!

Any combination of transitions follows protocol
Well-typed programs don’t go wrong!



Horizons

Adding other effects

Sophisticated protocol composition
e.g. computation uses separate database

e.g. mutable heap, threads, failure…

Fault tolerance
what do Verdi’s VSTs look like here?
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Composition is hard 
    but important for infrastructure

Achieve with types 
    syntactic theory of composition

Protocols make it possible to verify clients 
    reason about client-server interaction
Also enable more general composition

Any combination of transitions follows protocol
Well-typed programs don’t go wrong!


