Programming and Proving
with
Distributead Protocols

James R. Wilcox

llya Sergey

Zachary latlock

orotocol P = @

e |nvariants: /nv(so) A Vv sS’, InUS) A transfer (P, s, s") = In\s’)

o Liveness: O(Q(state of n1) = o(R(state of n2)))

* Refinement: P ("implementation”) = P’ ("specification”)

Veritied Distributed Systems

» Invariants el ‘“_\
* Liveness \/ b i
* Refinement \/

hOldS((I), S, """1) —
holds(transfer(®),

v/
) EventML Library D Nuprl\)

Library

Simulator

aaaaaaaaaaa

ec er pable
: code TP - evaluator 2
NN SN] | -evaluator 3
rogra abilit .
e a
gorrect-by-construction
N synthesizer
code synthesizer ogica
ranslator
i

Message

system

CHALLENGES
AHEAD

Asynchronous updates e |[nvariants
Message reordering Liveness
Packet loss * Refinement
Node crashes » Composition

(aka Reusabillity)
Network partitions

Reconfiguration

Byzantine faults

Composition in Distributed Systems

* Modular program veritication let f x = send x to h;
r & receive from h
return r
in (f 42) + (f 239)

ll

ll

e |nter-Protocol Dependencies ‘2@
—

Composition: A way
to make proofs harder
(Lamport, 1997)

When distracting language features are
removed and the underlying mathematics is
revealed, compositional reasoning Is seen to
be of little use.

‘mathematics” ‘language features”

00 P} e{@)

orecondition postcondition

f the Initial state satisfies P, then, after ¢
terminates, the final state satisties Q.

Working example:
Cloud Compute System

Cloud Compute

21

OO

Cloud Compute: Server

Cloud Compute: Server

while True:
(from, n) <- recv
send (n, factors(n)) to from

Cloud Compute: Server

Cloud Compute: Client

Cloud Compute: Client

send 21 to server
(, ans) <- recv from server

assert ans == {3, /}

Protocols

Protocols

--

lllllllllllllllllllll

Protocols @O

State:

abstract state of each node +
all ever sent messages

Transitions:
allowed sends and recelves

Cloud Compute State

‘Message Soup”

LOCAL STATE

- B ~ \ ~ A
NODES L (s, argsi) | L (s, argsz) j {((cf; 2;8;))}
_ J L J ~

DISTRIBUTED STATE OF THE PROTOCOL CC

Send-Transitions

7s | Requires (m, to) Ensures

ncC A to€S A
sreq | n+— rs A m = (Req, args) A | n+ (to, args) W rs
args € dom(f)

necS A flargs) =v A
STesp| n +— (to, args) W rs A ni+—rs
m = (Resp, v, args)

Send Tran8|t|ons

sreq ((Req, args1), s

Send-Transitions

Ts | Requires (m, to) Ensures

neC AN to€ S A

sreq | n+— rs A m = (Req, args) A |1+ (to, args) W rs

args € dom(f)

ncS A flargs) =v A
sresp| n +— (to, args) W rs A n > TS
m = (Resp, v, args)

Recelve- [ransitions

7 | Requires (m, from) Ensures
rreq | S 8n sk > (from, args) U rs
m = (Req, args)
neC &
rresp | no— (from, args) U rs & n > rs

m = (Resp, ans, args)

Recelve-ransitions

Requires (m, from)

ncS&n— rs&
m = (Req, args)
neC &
rresp | n+— (from, args) U rs & n > TS
m = (Resp, ans, args)

Ensures

n +— (from, args) U rs

rreq ((Req, argsi), c1)

Recelve-ransitions

7. | Requires (m, from) Ensures

necS&n— rs&&

rreq | (Req. args) n +— (from, args) U rs
neC &

rresp | nw— (from, args) U rs & n > TS
m = (Resp, ans, args)

{ (s, args+) | i} { (c1, argss) |

Composition in Distributed Systems

 Modular Program Veritication let £ x = send x to h;
r & receive from h
return r
in (f 42) + (f 239)

. Horizontal System Decomposition @/R\Q

ll

* |nter-Protocol Dependencies g i%
—

From Protocols to Hoare Specs

- (P} ¢ {Q)

From Protocols to Hoare Specs

trE P = Pre-

@iﬁ%}k{ } sendrm totd h {

Don't know I applicablel
(e.g,args = [U])

letrec server loop =

(from, args) < blocking receive());
let ans = |factor(args)| in
send.» ((Resp, ans, args), from);

server loop()
in server loop()

Send-transitions

7s | Requires (m, to) Ensures

neC AN to€ S A (a)
sreq | n — rs A m = (Req, args)| A | n = (to, args) W rs
args € dom(f)(c)

neS A flargs) =v A
sTesp| n +— (to, args) W rs A n+— rs
m = (Resp, v, args)

Recelve-transitions

7r | Requires (m, from) Ensures

nesS&n— rs &

rre n — (fjrom, args) d rs
! m = (Req, args))(b) Y 95)
neC &
rresp | n — (from, args) W rs & nrrs

m = (Resp, ans, args)

Inductive Invariant lnv,

Invy(S) £ vm € s.MS, m = <from, to, -, (Req, args)>
= args € dom(factor)

A rule for Invariant Strengthening

Invi(s) 2 vm € s.MS, m = <from, to, -, (Req, args)>
= args € dom(factor)

[(0 — PpwW, H) - c: {P}{Q} I is inductive wrt. Py T = Vs, this s = I(s)

L; (¢ —(Withinv(Py, D)W W, H) + ¢: {P ATHQ AT}

\

A "protocol combinator”

Invy(s) £ vm € s.MS, m = <from, to, -, (Req, args)>
= args € dom(factor)

Withlnv(CC, Inv;)

/

CCli - letrec server loop =
(from, args) ¢« blocking receive();
let ans = factor(args) in
sends.s» ((Resp, ans, args), from);
server loop()
in server loop()

{ this /s a server A 3rs, this » 1S}
{ False }

Vlore Implementations
for Cheap

A Batching Server

letrec receive_batch (k : nat) = letrec send_batch (7s : [(Node, [nat])]) =
if k=LK +1 if rs = (from, args) :: rs’
then fargs < receive_req (); then let v = f(args) in
rest <— receive_batch k’; send|sresp, £]((Resp, v, args), from);
return fargs :: rest send_batch rs’
else return | | else return ()

letrec batch_server (bsize : nat) =
reqs <— receive_batch bsize; send_batch(reqs); batch_server bsize

CC|1 I batch server(5) :

{ this is a server A 3rs, this » rs |
{ False }

A Memoising Server

letrec memo_server (mmap : map) -

(from, args) <— receive_req ();

let ans = lookup mmap in

if ans # | then send|sresp, £|((Resp, ans, args), from);

memo._server mmap

else let ans = f(args) in
send|sresp, £](m, (Resp, ans, args));
let mmap’ = update(mmap, args, ans) in
memo_server mmap’

CCl{ - memo server({})

{ this /s a server A ars, this » 1S}
{ False !

A Client Implementation

CCli - fun compute factor (arg, serv) =
send;., ((Req, args), serv);
r < receive resp();
return r -

{ serv IS a server A
arg € dom(factor) A

this » @ }

{ res = factor(arg) A this » @ |

Cannot conclude res = factor(args).

CCli - receive resp():

[this - {(serv, arg)}}
[<serv, this, », (Resp, res, arg)b € MS A

this— O |

Send-transitions

7s | Requires (m, to) Ensures
neC A to€S A
sreq | n— rs A m = (Req, args) A | n > (to, args) W rs
args € dom(f)
STESP n +— 1S
Recelve-transitions
7r | Requires (m, from) Ensures
rreq | T © S & nirs & n — (from, args) W rs
m = (Req, args)
neC &
rresp | no— (from, args) W rs & nt— s
m =|(Resp, ans, args)| (¢)

Inductive Invariant Invs

Invy(s) 2 vm € s.MS, m = <-, -, -, (Resp, ans, args)>
= factor(args) = ans)

Invy(S) £ vm € s.MS, m = <-, -, -, (Resp, ans, args)>
= factor(args) = ans)

Withlnv(CCl4, Invs)

/

CClo + fun compute factor serv) =

send;.; ((Req, args), serv);
r & receive resp();
return r

{ serv IS a server A
arg € dom(factor) A

this » @ |

{lres = factor(arg) A this » @}

Composition in Distributed Systems

 Modular Program Verification

/ Protocol-aware logic +
Rule for inductive invariants

o Horizontal System Decomposition

* |nter-Protocol Dependencies

let £ x = send x to h;
r &« receive from h

return r
in (f 42) + (£ 239)

Horizontal System Decomposition

{s | s = S1}

send(msqg) ;
(doStuff();) 11

|— {s | s = 82}
m <- receive(c);
(doMoreStuff();) T2

{s | s = S3}

{s | s = S1}

send(msqg) ;
(doStuff();) 1
S2}

m <- receive(c);
(doMoreStuff() ;) T2

{s | s = S3}

{s | s

doOtherStuff();
{s | s = 83}

{s | s = S1 ® Ts}

send(msqg) ;
(doStuff();) T“

{s | s = S2 ® Ts}

(m <- receive(c);) T2

doMoreStuff();
{s | s = S3® Ts}

(doOtherStuff() 3) T3
{s | s = S3® T}

A Delegating Server

CCli@ CClz |-

letrec delegating server (n’: Node) =
(from, args) ¢+ blocking receive();
let ans = |compute factor(args)) in
sends.s» ((Resp, ans, args), from);
delegating server (n')

in delegating server(server)

Composition in Distributed Systems

» Modular Program Verification et b x s osend X to L
return r
/ Protocol-aware logic + e e
Rule for inductive invariants
foo x ; bar y

ll

* Horizontal System Decomposition E | E
/ Framing wrt. a protocol @ éi?

ll

* |nter-Protocol Dependencies

{True}

— r < compute_factor(n);

CloudComp + Inv {r - factor(n)}

{True}

— r < compute_factor(n);

pS ¢+ query server(s)
CloudComp + Inv
\r = factor(n)}

{True}

— r < compute_factor(n);

pS <« query server(s)

CloudComp + Inv
{r = factor(n) A this ¢ pPS}

D

CloudComp + Inv QueryService

(CCI) (QS) {True}

r < compute factor(n);

psS « query server(s)

{r = factor(n) A this ¢ pPS}

Why adequate wrt. CCI/

‘restricted by’

lll
lll
< .

*
III
ll

CloudComp + Inv (CCl) QueryService (QS)

0

‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII.

| ogical HOOKS

‘II..

W

(CCl)

EEEEEEEEEEEEEEEEEEEEEEEEEEER"®

A

CCl, QS, tr]\IM, Scci, Sgs
ire QS A
[r 1s send-response-to-enquiry A
M = PEermMs(Scci

lll

.
--

G[CCI, QS, 1]

r < compute factor(n);

psS < query server(s)

{r = factor(n) A this ¢ pPS}

{True}
I— r < compute_factor(n);

ir = factor(n)}

(CCl)
/\
... . Mrue)
XL |— ps ¢+ query server(s)
—0 | {this ¢ ps}

O e A A B A A A A A A A R A A E A A AN A M AR E AR G[CC', QS, tr]

HOOKS and Framing

lll
.

et teaarassneeereeeseaasEeerEeassssEEeereeasaasnEeereseasasnnees G[CCL QS,]

 Hooks allow to reuse complex protocol invariants for server
(dependable) components (e.qg., CCl);

 Hook Footprint (e.g., CCIl) determines necessary server protocol
that cannot be “framed out’;

 Can be more fine-grained. consider specific transitions.

Composition in Distributed Systems

* Modular Program Veritication tet £x = send x to b;
return r B
/ Protocol-aware logic + n (£ 82) ¥ (£ 259)
Rule for inductive invariants
foo x ; bar y

ll

* Horizontal System Decomposition E | :
/ Framing wrt. a protocol é@? i)@g

ll

* |nter-Protocol Dependencies

/ Send-Hooks/Hook Footprint

DISEL.
Distributed Separation Logic

G0 H{P e {Q)

https://github.com/DistributedComponents/disel

Cloud Compute + Variations;

Two-Phase Commit; Protocol, Invariants, Clients;
Simple Blockchain Consensus protocol;

Lease-based lock and distributed resource (WIP);

Extraction and trusted shim implementation,

o lake Away

Compositional Reasoning about Distributed Systems B

e Separation ot Programs and Protocols: Program Logics

G- e (@
o Separation of Invariant Proofs: Framing Q/R\{) @ O/R\O

o Separation of Inter-Protocol Dependencies: Hooks

Plenty of aspects to address in the future:
node crashes, reconfiguration, byzantine faults, protocol updates,
authentication, per-node concurrency, dynamic network topologies,

integrating automation tools, (lvy, TLA+, CVC4)... Thanks!

Backup Slides

How IS It different from
(Multiparty) Session Types”?

e Session types do not describe the state of nodes;
 No way to express global system invariants (e.g., cConsensus);

e Limited support for horizontal system composition.

How Is It different from
proving program refinement?

* Qur logic establishes a version of refinement
by means of “programming with linearization points”;

* Protocol transitions (send/receive) — observable LPs.

* |[nformation hiding by means of abstract predicates.

Verification Etfforts

Protocol Invariants

System Correctness

Verification Etforts

Protocol- .
mplementation I\/Iodular slgeleleclyy Horizontal p.r.otocol
. verification composition
modularity
lronkleet Yes Sort of No
Veral No No No
PSync No No No
EventML No No No

Protocol Framing with HOOKS

FRAME N
W Ece: {P}HQ}
NotHooked(W, H) R is C-stable

W w (C, H) Ilzc:{P*R}{Q*R}

BIND
LETREC

W E e : {PHQAvres: T} Dox:T,f: WV :T.{PHQ}H; W |ILC{P}{Q}

Tz:T:W F [z/resles : {QV{R} z ¢ FV(R)
W -z c1;c2 : {PHR}

W - letrec flx:T)=c:Ve.T. {P}HQ}

SENDWRAP RECEIVEWRAP
P,Q are W-stable W = (C,H) 71s€ C(¥).T;s P, Q are W-stable W = (C, H)
Sent(7s,4,n,m,to, H) C (P, Q) Received(T, L,C) C (P, Q)
;W F send|rs, £](m, to) : {P}{Q} ;W F recv[T, L](m, to) : { PH{Q}
READ FRAME N
P, Q are W-stable W = (C, H) W E ce: {PHQ}
(this s Av € dom(s(£)(n)),this s Ares = s(£)(n)(v)) C (P, Q) NotHooked(W, H) R is C-stable
W - ready(v) : {P}HQ} W (C, H) - ¢ {Px RHQ* R}

I (0 — Py w W, H) - c: {PHQ} I is inductive wrt. Py T £ Vs, this s = I(s)
T'; (£ — Withlnv(Pp, DWW, H) F ¢: {P ATHQ AT}

WITHINV

Network Semantics

W= (C,HY WEs £ cdom(C) P,=C@) (MS,d) = st {n to } C dom(d)

Ts € Pp.Ts Ts.pre(n, to, m ,d) HooksOk(W, 15,4, s,n, m, to) MS" = MS W (n, to, o, (Ts.tag, m)) g
END

s ~w s[l— (MS',d[n — 1s.step(to, m,d(n))])]

W=(C,H) WEs ¢ € dom(C) P =C(¥) (MS, d) = s(£) T € P15 MS = MS’ " wm
m = (from,n, o, (17r.tag,m)) {from,n} C dom(d) 7r.pre(m,d(n)) MS" = MS" @ (from,n, e, (1,.tag, m))

_ RECV
s ~w sl (MS"”,d[nw— 7r.step(m,d(n))])]

Component Defs/Specs | Impl | Proofs | Build
Calculator (§2)

protocol (§2.1)

INV1 (§2.3) 239 - 243 | 4.8

INV2 (§2.4)

simple_server (§2.3)

batch_server (§2.4) 192 43 153 8.6

memo_server (§2.4)

compute (§2.4) 120 24 99 4.8

deleg_server (§2.4) /5 / 49 2.4

Two-Phase Commit (§4.1-§4.3)

protocol (§4.1) 465 - 231 3.9
coordinator (§4.2) 236 35 440 20
participant (§4.2) 163 24 198 11
TPCInv (§4.3) 997 - 2113 | 36
Query/TPC (§4.4)
protocol 169 - 115 2.1
qguerying procedures 326 18 707 22
run_and_query /6 5 89 2.6

