
Programming and Proving 
with  

Distributed Protocols

James R. Wilcox  
Zachary Tatlock

Ilya Sergey

n1 n2

n3

protocol P =

• Invariants: Inv(s0) ⋀ ∀ s s′, Inv(s) ⋀ transfer (P, s, s′) ⇒ Inv(s′)

• Liveness: (Q(state of n1) ⇒ ◇(R(state of n2)))

• Refinement: P (“implementation”) ⪯ P′ (“specification”)

Verified Distributed Systems

• Invariants
• Liveness
• Refinement

PSync

• Invariants

• Liveness

• Refinement

• Asynchronous updates

• Message reordering

• Packet loss

• Node crashes

• Network partitions

• Reconfiguration

• Byzantine faults

• Composition 
(aka Reusability)

Composition in Distributed Systems
let f x = send x to h;
 r ← receive_from h
 return r
in (f 42) + (f 239)

foo x bar y;

⇒

• Modular program verification  
 
 

• Horizontal System Decomposition 
 
 

• Inter-Protocol Dependencies

Composition: A way
to make proofs harder

 (Lamport, 1997)

When distracting language features are
removed and the underlying mathematics is
revealed, compositional reasoning is seen to
be of little use.

`{P} c {Q}

“language features”“mathematics”

If the initial state satisfies P, then, after c
terminates, the final state satisfies Q.

precondition postcondition

Working Example:
Cloud Compute System

Cloud Compute

SC

21

Cloud Compute: Server

Cloud Compute

while True:
 (from, n) <- recv
 send (n, factors(n)) to from

: Server

Cloud Compute: Server

Cloud Compute: Client

Cloud Compute: Client

send 21 to server
(_, ans) <- recv from server
assert ans == {3, 7}

Protocols

Protocols

Protocols

State:

Transitions:

abstract state of each node + 
all ever sent messages

allowed sends and receives

c1

c2

s

(Req, args1)

(R
eq

, a
rg

s 2)

(Req, args3)

(Re
sp,

 f (
args1),

args1)

(Resp, f (args2), args2)

(R
es
p,

 f (
arg

s3),
 ar

gs3)

Cloud Compute State

{ (s, args1) } { (s, args2) } { (c1, args1),  
 (c2, args2) }

sc2c1

“Message Soup”“Shared”
State

Local Statez }| {
Nodes

Distributed State of the Protocol CC

Send-Transitions Programming and Proving with Distributed Protocols • 1:5

Send-transitions Receive-transitions

⌧s Requires (m, to) Ensures

sreq
n 2 C ^ to 2 S ^
n 7! rs ^ m = (Req, args) ^
args 2 dom(f)

n 7! (to, args)] rs

sresp
n 2 S ^ f(args) = v ^
n 7! (to, args)] rs ^
m = (Resp, v, args)

n 7! rs

⌧r Requires (m, from) Ensures

rreq n 2 S && n 7! rs &&
m = (Req, args)

n 7! (from, args)] rs

rresp
n 2 C &&
n 7! (from, args)] rs &&
m = (Resp, ans, args)

n 7! rs

Fig. 2. Send- and receive-transitions of the distributed calculator protocol with respect to a node n.

message being sent/received, recipient/sender (to/from), and the protocol-specific state of a node. For
the calculator, the state for node n is a multiset of outstanding requests rs, denoted as n 7! rs.

Protocol transitions synchronize the exchange of messages with changes in a node’s state. Preconditions
in send-transitions specify requirements that must be satisfied by the local state of node n for it to send
message m to recipient to and postconditions specify how n’s state must be updated afterward. For
example, the sreq transition can be taken by a client node n to send a request message (Req, args) to
server to where args 2 dom(f) and, after sending, n has added (to, args) to its state. Preconditions in
receive-transitions specify requirements that must be satisfied by the local state of node n for it to receive
message m from sender from and postconditions specify how n’s state must be updated. For example,
the rreq transition can be taken by a server node n to receive a request message (Req, args) from node
from where, after receiving, n has added (from, args) to its state.

Notice that preconditions in send-transition can be arbitrary predicates, while the precondition of
receive-transitions must be decidable (which we emphasize by using boolean conjunction && instead of
propositional ^). This is because a program’s decision to send a message is active and corresponds to
calling the low-level send primitive (described later in this section); the system implementer must prove
such preconditions to use the transition. In contrast, receiving messages is passive and corresponds
to using the low-level recv primitive (also described later in this section) that will react to any valid
message. A message m sent to node n should trigger the corresponding receive transition only if n’s
state along with the message satisfies the transition’s precondition. In order to choose such a transition
unambiguously, we require that each incoming message tag (e.g., Req and Resp) uniquely identifies a
receive-transition that should be run. Combined with the decidability of receive-transition preconditions,
this allows Disel systems to automatically decide whether a transition can be executed.

As definition, the calculator protocol prohibits several unwelcome behaviors. For instance, a server
cannot send a response without a client first requesting it, since (A) servers only send messages via the
sresp transition, (B) sresp requires (to, args) to be in the multiset of outstanding requests at the server,
and (C) (to, args) can only be added to the set of outstanding requests once it has been received from a
client. Also note that the precondition of sreq requires that when a client sends a request to a server
to compute f(args), args 2 dom(f). Similarly, the precondition of sresp requires that when a server
responds to a client request for args, it may only send the correct result f(args).

The protocol also leaves several details up to the implementation. For example, the sresp transition
allows a server to respond to any outstanding request, not necessarily the least recently received. This
flexibility allows for diverse implementation strategies and enables the implementation I of a component
to evolve without requiring updates to other components which only assume that I satisfies its protocol.

This state-space and transitions defines the calculator protocol C. Protocols are basic specification
units in Disel, and, as we will soon see, a single program can “span” several protocols. Thus, we will
annotate each protocol instance with a unique label `i (e.g., C`1 , C`2).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Programming and Proving with Distributed Protocols • 1:5

Send-transitions Receive-transitions

⌧s Requires (m, to) Ensures

sreq
n 2 C ^ to 2 S ^
n 7! rs ^ m = (Req, args) ^
args 2 dom(f)

n 7! (to, args)] rs

sresp
n 2 S ^ f(args) = v ^
n 7! (to, args)] rs ^
m = (Resp, v, args)

n 7! rs

⌧r Requires (m, from) Ensures

rreq n 2 S && n 7! rs &&
m = (Req, args)

n 7! (from, args)] rs

rresp
n 2 C &&
n 7! (from, args)] rs &&
m = (Resp, ans, args)

n 7! rs

Fig. 2. Send- and receive-transitions of the distributed calculator protocol with respect to a node n.

message being sent/received, recipient/sender (to/from), and the protocol-specific state of a node. For
the calculator, the state for node n is a multiset of outstanding requests rs, denoted as n 7! rs.

Protocol transitions synchronize the exchange of messages with changes in a node’s state. Preconditions
in send-transitions specify requirements that must be satisfied by the local state of node n for it to send
message m to recipient to and postconditions specify how n’s state must be updated afterward. For
example, the sreq transition can be taken by a client node n to send a request message (Req, args) to
server to where args 2 dom(f) and, after sending, n has added (to, args) to its state. Preconditions in
receive-transitions specify requirements that must be satisfied by the local state of node n for it to receive
message m from sender from and postconditions specify how n’s state must be updated. For example,
the rreq transition can be taken by a server node n to receive a request message (Req, args) from node
from where, after receiving, n has added (from, args) to its state.

Notice that preconditions in send-transition can be arbitrary predicates, while the precondition of
receive-transitions must be decidable (which we emphasize by using boolean conjunction && instead of
propositional ^). This is because a program’s decision to send a message is active and corresponds to
calling the low-level send primitive (described later in this section); the system implementer must prove
such preconditions to use the transition. In contrast, receiving messages is passive and corresponds
to using the low-level recv primitive (also described later in this section) that will react to any valid
message. A message m sent to node n should trigger the corresponding receive transition only if n’s
state along with the message satisfies the transition’s precondition. In order to choose such a transition
unambiguously, we require that each incoming message tag (e.g., Req and Resp) uniquely identifies a
receive-transition that should be run. Combined with the decidability of receive-transition preconditions,
this allows Disel systems to automatically decide whether a transition can be executed.

As definition, the calculator protocol prohibits several unwelcome behaviors. For instance, a server
cannot send a response without a client first requesting it, since (A) servers only send messages via the
sresp transition, (B) sresp requires (to, args) to be in the multiset of outstanding requests at the server,
and (C) (to, args) can only be added to the set of outstanding requests once it has been received from a
client. Also note that the precondition of sreq requires that when a client sends a request to a server
to compute f(args), args 2 dom(f). Similarly, the precondition of sresp requires that when a server
responds to a client request for args, it may only send the correct result f(args).

The protocol also leaves several details up to the implementation. For example, the sresp transition
allows a server to respond to any outstanding request, not necessarily the least recently received. This
flexibility allows for diverse implementation strategies and enables the implementation I of a component
to evolve without requiring updates to other components which only assume that I satisfies its protocol.

This state-space and transitions defines the calculator protocol C. Protocols are basic specification
units in Disel, and, as we will soon see, a single program can “span” several protocols. Thus, we will
annotate each protocol instance with a unique label `i (e.g., C`1 , C`2).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

{ } { } { }

sc2c1

Send-Transitions

sreq ((Req, args1), s)

{ (s, args1) } { } { }

sc2

Send-Transitions

[(Req, args1), from: c1, to: s]

c1

Programming and Proving with Distributed Protocols • 1:5

Send-transitions Receive-transitions

⌧s Requires (m, to) Ensures

sreq
n 2 C ^ to 2 S ^
n 7! rs ^ m = (Req, args) ^
args 2 dom(f)

n 7! (to, args)] rs

sresp
n 2 S ^ f(args) = v ^
n 7! (to, args)] rs ^
m = (Resp, v, args)

n 7! rs

⌧r Requires (m, from) Ensures

rreq n 2 S && n 7! rs &&
m = (Req, args)

n 7! (from, args)] rs

rresp
n 2 C &&
n 7! (from, args)] rs &&
m = (Resp, ans, args)

n 7! rs

Fig. 2. Send- and receive-transitions of the distributed calculator protocol with respect to a node n.

message being sent/received, recipient/sender (to/from), and the protocol-specific state of a node. For
the calculator, the state for node n is a multiset of outstanding requests rs, denoted as n 7! rs.

Protocol transitions synchronize the exchange of messages with changes in a node’s state. Preconditions
in send-transitions specify requirements that must be satisfied by the local state of node n for it to send
message m to recipient to and postconditions specify how n’s state must be updated afterward. For
example, the sreq transition can be taken by a client node n to send a request message (Req, args) to
server to where args 2 dom(f) and, after sending, n has added (to, args) to its state. Preconditions in
receive-transitions specify requirements that must be satisfied by the local state of node n for it to receive
message m from sender from and postconditions specify how n’s state must be updated. For example,
the rreq transition can be taken by a server node n to receive a request message (Req, args) from node
from where, after receiving, n has added (from, args) to its state.

Notice that preconditions in send-transition can be arbitrary predicates, while the precondition of
receive-transitions must be decidable (which we emphasize by using boolean conjunction && instead of
propositional ^). This is because a program’s decision to send a message is active and corresponds to
calling the low-level send primitive (described later in this section); the system implementer must prove
such preconditions to use the transition. In contrast, receiving messages is passive and corresponds
to using the low-level recv primitive (also described later in this section) that will react to any valid
message. A message m sent to node n should trigger the corresponding receive transition only if n’s
state along with the message satisfies the transition’s precondition. In order to choose such a transition
unambiguously, we require that each incoming message tag (e.g., Req and Resp) uniquely identifies a
receive-transition that should be run. Combined with the decidability of receive-transition preconditions,
this allows Disel systems to automatically decide whether a transition can be executed.

As definition, the calculator protocol prohibits several unwelcome behaviors. For instance, a server
cannot send a response without a client first requesting it, since (A) servers only send messages via the
sresp transition, (B) sresp requires (to, args) to be in the multiset of outstanding requests at the server,
and (C) (to, args) can only be added to the set of outstanding requests once it has been received from a
client. Also note that the precondition of sreq requires that when a client sends a request to a server
to compute f(args), args 2 dom(f). Similarly, the precondition of sresp requires that when a server
responds to a client request for args, it may only send the correct result f(args).

The protocol also leaves several details up to the implementation. For example, the sresp transition
allows a server to respond to any outstanding request, not necessarily the least recently received. This
flexibility allows for diverse implementation strategies and enables the implementation I of a component
to evolve without requiring updates to other components which only assume that I satisfies its protocol.

This state-space and transitions defines the calculator protocol C. Protocols are basic specification
units in Disel, and, as we will soon see, a single program can “span” several protocols. Thus, we will
annotate each protocol instance with a unique label `i (e.g., C`1 , C`2).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Receive-Transitions

• An extraction mechanism and a trusted shim implemen-
tation, allowing one to run programs written in DISEL on
multiple physical nodes;

• A series of case studies implemented and verified in
DISEL, including the Two-Phase Commit protocol (2PC);

• A report on evaluating DISEL with respect to the proof
overhead and discussion on extraction of executable code.

2. Overview
In this section we illustrate the DISEL methodology for spec-
ifying, implementing, and verifying distributed systems by
developing a simple distributed calculator. DISEL systems
are composed of concurrently running nodes that communi-
cate asynchronously by exchanging messages, which, as in
real networks, can be reordered and dropped. In the calcula-
tor system, each node n is either a client (written n 2 C) or
a server (n 2 S), and the system is parameterized over some
expensive partial function f with domain dom(f). Given ar-
guments args 2 dom(f), a client can send a request to a
server, which will respond with f(x).

Figure 1 depicts an example execution for the calculator
system with one server S and two clients, C1 and C2. The
clients send arguments args to the server which responds
with f(args). Note that requests and responses may not be
received in the order they are sent due to network reordering,
and the server may service requests in any order (e.g., due
to implementation details such as differing priorities among
requests). However, the system should satisfy weak causality
constraints, e.g., a client C should only receive a response
f(args) if C had previously made a request for args .

In the remainder of this section we show how DISEL en-
ables developers to specify the abstract calculator protocol,
implement both server and client nodes that follow the proto-
col, and prove key invariants for reasoning about the system.

2.1 Defining a Calculator Protocol
A protocol in DISEL provides a high-level specification of
the interface between distributed system components. As
with traditional program specifications, DISEL protocols
serve to separate concerns: implementations can refine de-
tails not specified by the protocol (e.g., the order in which
to respond to client requests), invariants of the protocol can
be proven separately (e.g., showing that calculator responses
contain correct answers), and interactions between compo-
nents within a larger system can be reasoned about in terms
of their protocols rather than their implementations. Follow-
ing the tradition established by Lamport [28, 30], DISEL
protocols are defined as state-transition systems.

Figure 2 depicts the state-transition system for the cal-
culator example with two send-transitions (upper table) and
two receive-transition (lower table). Each transition is named
in the left column and its pre- and postconditions are given as
assertions in the center and right columns respectively. These
assertions are phrased in terms of the message being sent/re-
ceived and the protocol-specific state of nodes in the system.

C1

C2

S

(Req, args1)

(R
eq

, a
rg

s 2)

(Req, args3)

(Re
sp,

 f (
args1),

args1)

(Resp, f (args2), args2)

(R
es
p,

 f (
arg

s3),
 ar

gs3)

Figure 1. A communication scenario between a server and
two client nodes in a distributed calculator system.

Send-transitions
⌧S Requires (m, to) Ensures

sreq

n 2 C ^ to 2 S ^ n 7! rs ^
m = (Req, args) ^ args 2 dom(f)

n 7! (to, args) [rs

sresp

n 2 S ^ n 7! (to, args) [rs ^
m = (Resp, ans, args) ^ f(args) = v

n 7! rs

Receive-transitions
⌧r Requires (m, from) Ensures

rreq

n 2 S && n 7! rs &&
m = (Req, args)

n 7! (from, args) [rs

rresp

n 2 C &&
n 7! (from, args) [rs &&
m = (Resp, ans, args)

n 7! rs

Figure 2. Transitions of the protocol wrt. a node n.

For the calculator, the protocol-specific state for node n is a
multiset of outstanding requests rs , denoted as n 7! rs .

Protocol transitions synchronize the exchange of mes-
sages with changes in a node’s state. Preconditions in send-
transitions specify requirements that must be satisfied by the
local state of node n for it to send message m to recipient
to and postconditions specify how n’s state must be updated
afterward. For example, the sreq transition can be taken by a
client node n to send a request message (Req, args) to server
to where args 2 dom(f) and, after sending, n has added
(to, args) to its state. Preconditions in receive-transitions
specify requirements that must be satisfied by the local state
of node n for it to receive message m from sender from and
postconditions specify how n’s state must be updated. For
example, the rreq transition can be taken by a server node
n to receive a request message (Req, args) from node from

where, after receiving, n has added (from, args) to its state.
Notice that preconditions in send-transition can be arbi-

trary predicates, while the precondition of receive-transitions
must be decidable (which we emphasize by using boolean
conjunction && instead of propositional ^). This is because
a program’s decision to send a message is active and cor-
responds to calling the low-level send primitive (described
later in this section); the system implementer must prove
such preconditions to use the transition. In contrast, receiv-

Programming and Proving with Distributed Protocols 3 2016/11/19

{ } { }

sc2c1

rreq ((Req, args1), c1)

Receive-Transitions

• An extraction mechanism and a trusted shim implemen-
tation, allowing one to run programs written in DISEL on
multiple physical nodes;

• A series of case studies implemented and verified in
DISEL, including the Two-Phase Commit protocol (2PC);

• A report on evaluating DISEL with respect to the proof
overhead and discussion on extraction of executable code.

2. Overview
In this section we illustrate the DISEL methodology for spec-
ifying, implementing, and verifying distributed systems by
developing a simple distributed calculator. DISEL systems
are composed of concurrently running nodes that communi-
cate asynchronously by exchanging messages, which, as in
real networks, can be reordered and dropped. In the calcula-
tor system, each node n is either a client (written n 2 C) or
a server (n 2 S), and the system is parameterized over some
expensive partial function f with domain dom(f). Given ar-
guments args 2 dom(f), a client can send a request to a
server, which will respond with f(x).

Figure 1 depicts an example execution for the calculator
system with one server S and two clients, C1 and C2. The
clients send arguments args to the server which responds
with f(args). Note that requests and responses may not be
received in the order they are sent due to network reordering,
and the server may service requests in any order (e.g., due
to implementation details such as differing priorities among
requests). However, the system should satisfy weak causality
constraints, e.g., a client C should only receive a response
f(args) if C had previously made a request for args .

In the remainder of this section we show how DISEL en-
ables developers to specify the abstract calculator protocol,
implement both server and client nodes that follow the proto-
col, and prove key invariants for reasoning about the system.

2.1 Defining a Calculator Protocol
A protocol in DISEL provides a high-level specification of
the interface between distributed system components. As
with traditional program specifications, DISEL protocols
serve to separate concerns: implementations can refine de-
tails not specified by the protocol (e.g., the order in which
to respond to client requests), invariants of the protocol can
be proven separately (e.g., showing that calculator responses
contain correct answers), and interactions between compo-
nents within a larger system can be reasoned about in terms
of their protocols rather than their implementations. Follow-
ing the tradition established by Lamport [28, 30], DISEL
protocols are defined as state-transition systems.

Figure 2 depicts the state-transition system for the cal-
culator example with two send-transitions (upper table) and
two receive-transition (lower table). Each transition is named
in the left column and its pre- and postconditions are given as
assertions in the center and right columns respectively. These
assertions are phrased in terms of the message being sent/re-
ceived and the protocol-specific state of nodes in the system.

C1

C2

S

(Req, args1)

(R
eq

, a
rg

s 2)

(Req, args3)

(Re
sp,

 f (
args1),

args1)

(Resp, f (args2), args2)

(R
es
p,

 f (
arg

s3),
 ar

gs3)

Figure 1. A communication scenario between a server and
two client nodes in a distributed calculator system.

Send-transitions
⌧S Requires (m, to) Ensures

sreq

n 2 C ^ to 2 S ^ n 7! rs ^
m = (Req, args) ^ args 2 dom(f)

n 7! (to, args) [rs

sresp

n 2 S ^ n 7! (to, args) [rs ^
m = (Resp, ans, args) ^ f(args) = v

n 7! rs

Receive-transitions
⌧r Requires (m, from) Ensures

rreq

n 2 S && n 7! rs &&
m = (Req, args)

n 7! (from, args) [rs

rresp

n 2 C &&
n 7! (from, args) [rs &&
m = (Resp, ans, args)

n 7! rs

Figure 2. Transitions of the protocol wrt. a node n.

For the calculator, the protocol-specific state for node n is a
multiset of outstanding requests rs , denoted as n 7! rs .

Protocol transitions synchronize the exchange of mes-
sages with changes in a node’s state. Preconditions in send-
transitions specify requirements that must be satisfied by the
local state of node n for it to send message m to recipient
to and postconditions specify how n’s state must be updated
afterward. For example, the sreq transition can be taken by a
client node n to send a request message (Req, args) to server
to where args 2 dom(f) and, after sending, n has added
(to, args) to its state. Preconditions in receive-transitions
specify requirements that must be satisfied by the local state
of node n for it to receive message m from sender from and
postconditions specify how n’s state must be updated. For
example, the rreq transition can be taken by a server node
n to receive a request message (Req, args) from node from

where, after receiving, n has added (from, args) to its state.
Notice that preconditions in send-transition can be arbi-

trary predicates, while the precondition of receive-transitions
must be decidable (which we emphasize by using boolean
conjunction && instead of propositional ^). This is because
a program’s decision to send a message is active and cor-
responds to calling the low-level send primitive (described
later in this section); the system implementer must prove
such preconditions to use the transition. In contrast, receiv-

Programming and Proving with Distributed Protocols 3 2016/11/19

{ (s, args1) }

[(Req, args1), from: c1, to: s]

{ } { (c1, args1) }

sc2c1

Receive-Transitions

• An extraction mechanism and a trusted shim implemen-
tation, allowing one to run programs written in DISEL on
multiple physical nodes;

• A series of case studies implemented and verified in
DISEL, including the Two-Phase Commit protocol (2PC);

• A report on evaluating DISEL with respect to the proof
overhead and discussion on extraction of executable code.

2. Overview
In this section we illustrate the DISEL methodology for spec-
ifying, implementing, and verifying distributed systems by
developing a simple distributed calculator. DISEL systems
are composed of concurrently running nodes that communi-
cate asynchronously by exchanging messages, which, as in
real networks, can be reordered and dropped. In the calcula-
tor system, each node n is either a client (written n 2 C) or
a server (n 2 S), and the system is parameterized over some
expensive partial function f with domain dom(f). Given ar-
guments args 2 dom(f), a client can send a request to a
server, which will respond with f(x).

Figure 1 depicts an example execution for the calculator
system with one server S and two clients, C1 and C2. The
clients send arguments args to the server which responds
with f(args). Note that requests and responses may not be
received in the order they are sent due to network reordering,
and the server may service requests in any order (e.g., due
to implementation details such as differing priorities among
requests). However, the system should satisfy weak causality
constraints, e.g., a client C should only receive a response
f(args) if C had previously made a request for args .

In the remainder of this section we show how DISEL en-
ables developers to specify the abstract calculator protocol,
implement both server and client nodes that follow the proto-
col, and prove key invariants for reasoning about the system.

2.1 Defining a Calculator Protocol
A protocol in DISEL provides a high-level specification of
the interface between distributed system components. As
with traditional program specifications, DISEL protocols
serve to separate concerns: implementations can refine de-
tails not specified by the protocol (e.g., the order in which
to respond to client requests), invariants of the protocol can
be proven separately (e.g., showing that calculator responses
contain correct answers), and interactions between compo-
nents within a larger system can be reasoned about in terms
of their protocols rather than their implementations. Follow-
ing the tradition established by Lamport [28, 30], DISEL
protocols are defined as state-transition systems.

Figure 2 depicts the state-transition system for the cal-
culator example with two send-transitions (upper table) and
two receive-transition (lower table). Each transition is named
in the left column and its pre- and postconditions are given as
assertions in the center and right columns respectively. These
assertions are phrased in terms of the message being sent/re-
ceived and the protocol-specific state of nodes in the system.

C1

C2

S

(Req, args1)

(R
eq

, a
rg

s 2)

(Req, args3)

(Re
sp,

 f (
args1),

args1)

(Resp, f (args2), args2)

(R
es
p,

 f (
arg

s3),
 ar

gs3)

Figure 1. A communication scenario between a server and
two client nodes in a distributed calculator system.

Send-transitions
⌧S Requires (m, to) Ensures

sreq

n 2 C ^ to 2 S ^ n 7! rs ^
m = (Req, args) ^ args 2 dom(f)

n 7! (to, args) [rs

sresp

n 2 S ^ n 7! (to, args) [rs ^
m = (Resp, ans, args) ^ f(args) = v

n 7! rs

Receive-transitions
⌧r Requires (m, from) Ensures

rreq

n 2 S && n 7! rs &&
m = (Req, args)

n 7! (from, args) [rs

rresp

n 2 C &&
n 7! (from, args) [rs &&
m = (Resp, ans, args)

n 7! rs

Figure 2. Transitions of the protocol wrt. a node n.

For the calculator, the protocol-specific state for node n is a
multiset of outstanding requests rs , denoted as n 7! rs .

Protocol transitions synchronize the exchange of mes-
sages with changes in a node’s state. Preconditions in send-
transitions specify requirements that must be satisfied by the
local state of node n for it to send message m to recipient
to and postconditions specify how n’s state must be updated
afterward. For example, the sreq transition can be taken by a
client node n to send a request message (Req, args) to server
to where args 2 dom(f) and, after sending, n has added
(to, args) to its state. Preconditions in receive-transitions
specify requirements that must be satisfied by the local state
of node n for it to receive message m from sender from and
postconditions specify how n’s state must be updated. For
example, the rreq transition can be taken by a server node
n to receive a request message (Req, args) from node from

where, after receiving, n has added (from, args) to its state.
Notice that preconditions in send-transition can be arbi-

trary predicates, while the precondition of receive-transitions
must be decidable (which we emphasize by using boolean
conjunction && instead of propositional ^). This is because
a program’s decision to send a message is active and cor-
responds to calling the low-level send primitive (described
later in this section); the system implementer must prove
such preconditions to use the transition. In contrast, receiv-

Programming and Proving with Distributed Protocols 3 2016/11/19

{ (s, args1) }

[(Req, args1), from: c1, to: s]

• Modular Program Verification  
 
 

• Horizontal System Decomposition  
 
 

• Inter-Protocol Dependencies

Composition in Distributed Systems
let f x = send x to h;
 r ← receive_from h
 return r
in (f 42) + (f 239)

foo x bar y;

⇒

`{P} c {Q}

From Protocols to Hoare Specs

From Protocols to Hoare Specs

` send m to htr

tr 2

{P} { }trsent ()m h,

P) Pre tr

send m to h

letrec server_loop _ =
 (from, args) ← blocking_receive();
 let ans = factor(args) in
 sendsresp ((Resp, ans, args), from);
 server_loop()
in server_loop()

Don’t know if applicable! 
(e.g., args = [0])

Programming and Proving with Distributed Protocols • 1:5

Send-transitions Receive-transitions

⌧s Requires (m, to) Ensures

sreq
n 2 C ^ to 2 S ^
n 7! rs ^ m = (Req, args) ^
args 2 dom(f)

n 7! (to, args)] rs

sresp
n 2 S ^ f(args) = v ^
n 7! (to, args)] rs ^
m = (Resp, v, args)

n 7! rs

⌧r Requires (m, from) Ensures

rreq n 2 S && n 7! rs &&
m = (Req, args)

n 7! (from, args)] rs

rresp
n 2 C &&
n 7! (from, args)] rs &&
m = (Resp, ans, args)

n 7! rs

Fig. 2. Send- and receive-transitions of the distributed calculator protocol with respect to a node n.

message being sent/received, recipient/sender (to/from), and the protocol-specific state of a node. For
the calculator, the state for node n is a multiset of outstanding requests rs, denoted as n 7! rs.

Protocol transitions synchronize the exchange of messages with changes in a node’s state. Preconditions
in send-transitions specify requirements that must be satisfied by the local state of node n for it to send
message m to recipient to and postconditions specify how n’s state must be updated afterward. For
example, the sreq transition can be taken by a client node n to send a request message (Req, args) to
server to where args 2 dom(f) and, after sending, n has added (to, args) to its state. Preconditions in
receive-transitions specify requirements that must be satisfied by the local state of node n for it to receive
message m from sender from and postconditions specify how n’s state must be updated. For example,
the rreq transition can be taken by a server node n to receive a request message (Req, args) from node
from where, after receiving, n has added (from, args) to its state.

Notice that preconditions in send-transition can be arbitrary predicates, while the precondition of
receive-transitions must be decidable (which we emphasize by using boolean conjunction && instead of
propositional ^). This is because a program’s decision to send a message is active and corresponds to
calling the low-level send primitive (described later in this section); the system implementer must prove
such preconditions to use the transition. In contrast, receiving messages is passive and corresponds
to using the low-level recv primitive (also described later in this section) that will react to any valid
message. A message m sent to node n should trigger the corresponding receive transition only if n’s
state along with the message satisfies the transition’s precondition. In order to choose such a transition
unambiguously, we require that each incoming message tag (e.g., Req and Resp) uniquely identifies a
receive-transition that should be run. Combined with the decidability of receive-transition preconditions,
this allows Disel systems to automatically decide whether a transition can be executed.

As definition, the calculator protocol prohibits several unwelcome behaviors. For instance, a server
cannot send a response without a client first requesting it, since (A) servers only send messages via the
sresp transition, (B) sresp requires (to, args) to be in the multiset of outstanding requests at the server,
and (C) (to, args) can only be added to the set of outstanding requests once it has been received from a
client. Also note that the precondition of sreq requires that when a client sends a request to a server
to compute f(args), args 2 dom(f). Similarly, the precondition of sresp requires that when a server
responds to a client request for args, it may only send the correct result f(args).

The protocol also leaves several details up to the implementation. For example, the sresp transition
allows a server to respond to any outstanding request, not necessarily the least recently received. This
flexibility allows for diverse implementation strategies and enables the implementation I of a component
to evolve without requiring updates to other components which only assume that I satisfies its protocol.

This state-space and transitions defines the calculator protocol C. Protocols are basic specification
units in Disel, and, as we will soon see, a single program can “span” several protocols. Thus, we will
annotate each protocol instance with a unique label `i (e.g., C`1 , C`2).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

(a)

(b)

(c)

Programming and Proving with Distributed Protocols • 1:5

Send-transitions Receive-transitions

⌧s Requires (m, to) Ensures

sreq
n 2 C ^ to 2 S ^
n 7! rs ^ m = (Req, args) ^
args 2 dom(f)

n 7! (to, args)] rs

sresp
n 2 S ^ f(args) = v ^
n 7! (to, args)] rs ^
m = (Resp, v, args)

n 7! rs

⌧r Requires (m, from) Ensures

rreq n 2 S && n 7! rs &&
m = (Req, args)

n 7! (from, args)] rs

rresp
n 2 C &&
n 7! (from, args)] rs &&
m = (Resp, ans, args)

n 7! rs

Fig. 2. Send- and receive-transitions of the distributed calculator protocol with respect to a node n.

message being sent/received, recipient/sender (to/from), and the protocol-specific state of a node. For
the calculator, the state for node n is a multiset of outstanding requests rs, denoted as n 7! rs.

Protocol transitions synchronize the exchange of messages with changes in a node’s state. Preconditions
in send-transitions specify requirements that must be satisfied by the local state of node n for it to send
message m to recipient to and postconditions specify how n’s state must be updated afterward. For
example, the sreq transition can be taken by a client node n to send a request message (Req, args) to
server to where args 2 dom(f) and, after sending, n has added (to, args) to its state. Preconditions in
receive-transitions specify requirements that must be satisfied by the local state of node n for it to receive
message m from sender from and postconditions specify how n’s state must be updated. For example,
the rreq transition can be taken by a server node n to receive a request message (Req, args) from node
from where, after receiving, n has added (from, args) to its state.

Notice that preconditions in send-transition can be arbitrary predicates, while the precondition of
receive-transitions must be decidable (which we emphasize by using boolean conjunction && instead of
propositional ^). This is because a program’s decision to send a message is active and corresponds to
calling the low-level send primitive (described later in this section); the system implementer must prove
such preconditions to use the transition. In contrast, receiving messages is passive and corresponds
to using the low-level recv primitive (also described later in this section) that will react to any valid
message. A message m sent to node n should trigger the corresponding receive transition only if n’s
state along with the message satisfies the transition’s precondition. In order to choose such a transition
unambiguously, we require that each incoming message tag (e.g., Req and Resp) uniquely identifies a
receive-transition that should be run. Combined with the decidability of receive-transition preconditions,
this allows Disel systems to automatically decide whether a transition can be executed.

As definition, the calculator protocol prohibits several unwelcome behaviors. For instance, a server
cannot send a response without a client first requesting it, since (A) servers only send messages via the
sresp transition, (B) sresp requires (to, args) to be in the multiset of outstanding requests at the server,
and (C) (to, args) can only be added to the set of outstanding requests once it has been received from a
client. Also note that the precondition of sreq requires that when a client sends a request to a server
to compute f(args), args 2 dom(f). Similarly, the precondition of sresp requires that when a server
responds to a client request for args, it may only send the correct result f(args).

The protocol also leaves several details up to the implementation. For example, the sresp transition
allows a server to respond to any outstanding request, not necessarily the least recently received. This
flexibility allows for diverse implementation strategies and enables the implementation I of a component
to evolve without requiring updates to other components which only assume that I satisfies its protocol.

This state-space and transitions defines the calculator protocol C. Protocols are basic specification
units in Disel, and, as we will soon see, a single program can “span” several protocols. Thus, we will
annotate each protocol instance with a unique label `i (e.g., C`1 , C`2).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Inductive Invariant Inv1

Inv1(s) ≜ ∀m ∈ s.MS, m = <from, to, -, (Req, args)>
 ⇒ args ∈ dom(factor)

A rule for Invariant Strengthening

A “protocol combinator”

Inv1(s) ≜ ∀m ∈ s.MS, m = <from, to, -, (Req, args)>
 ⇒ args ∈ dom(factor)

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Programming and Proving with Distributed Protocols 1:15

Bind

�;W
n
` c1 : {P}{Q ^ res : T }

�, x : T ;W
n
` [x/res]c2 : {Q}{R} x /2 FV(R)

�;W
n
` x c1; c2 : {P}{R}

Letrec

�, x : T , f : hW,8x : T . {P}{Q}i;W
n
` c : {P}{Q}

�;W
n
` letrec f(x : T) , c : 8x.T . {P}{Q}

SendWrap

P,Q are W -stable W = hC,Hi ⌧s 2 C(`).Ts

Sent(⌧s, `, n,m, to, H) v (P,Q)

�;W
n
` send[⌧

s

, `](m, to) : {P}{Q}

ReceiveWrap

P,Q are W -stable W = hC,Hi
Received(T, L,C) v (P,Q)

�;W
n
` recv[T, L](m, to) : {P}{Q}

Read

P,Q are W -stable W = hC,Hi
(this s ^ v 2 dom(s(`)(n)), this s ^ res = s(`)(n)(v)) v (P,Q)

�;W
n
` read`(v) : {P}{Q}

Frame

�;W
n
` c : {P}{Q}

NotHooked(W,H) R is C-stable

�;W] hC,Hi
n
` c : {P ⇤R}{Q ⇤R}

WithInv

�; h` 7! P`]W,Hi
n
` c : {P}{Q} I is inductive wrt. P` I , 8s, this s) I(s)

�; h` 7!WithInv(P`, I)]W,Hi
n
` c : {P ^ I}{Q ^ I}

Auxiliary definitions

Sent(⌧s, `, n,m, to, H) ,

0

@

this s ^
⌧s.pre(n, to,m, s(`)) ^
HooksOk(H, ⌧s, `, n,m, to)

,
this s0 ^ res = m ^
s0 = (s[`, n] 7! ⌧s.step(to,m, s(`)(n))) ^
s0#MS` = s#MS`] hn, to, �, (⌧s.tag,m)i

1

A

Received(T, L,C) ,

0

B

B

B

B

B

B

B

B

@

this s ,

this s0 ^ if res = Some (from,m)
then 9` 2 L, t 2 T,MS 0, ⌧r 2 C(`).Tr, t = ⌧r.tag ^

s#MS` = MS 0] hfrom, n, �, (t,m)i ^
s0#MS` = MS 0] hfrom, n, •, (t,m)i ^
⌧r.pre(m, s(`)(n)) ^
s0 = (s[`, n] 7! ⌧r.step(m, s(`)(n)))

else s = s0

1

C

C

C

C

C

C

C

C

A

HooksOk(H, ⌧s, `c, s, n,m, to) , 8`s h z,H(z, `s, `c, ⌧s.tag) = h =) h(s(`s)(n), s(`c)(n),m, to)

NotHooked(W,H) , 9C0, W = hC0,�i ^ 8(z, `s, `c, t) 2 dom(H), `c /2 dom(C).

Fig. 8. Selected logic inference rules of Disel and auxiliary predicates.

of the `-labelled protocol, so the transition has changed the local state of n accordingly, and
also “consumed” the received message in the message soup MS `. In conjunction with the
protocol invariants, relating local state and message soup properties, this allows one to infer
global assertions about the state of the network, as we have shown in Section 2.3.

The premises of these rules rely on the following definition of Hoare ordering v, allowing
one to strengthen the precondition P2) P1 and weaken the postcondition Q1) Q2, while
accounting for the local scope of free logical variables in the assertions [25].

Definition 3.1 (Hoare ordering). For the given pairs preconditions P1, P2 and postcondi-
tions Q1, Q2, possibly containing free logical variables, we say (P1, Q1) v (P2, Q2) i↵ 8s s

0
, (s ✏

9x2.P2) s ✏ 9x1.P1) ^ ((8x1 res. s ✏ P1) s

0 ✏ Q1)) (8x2 res. s ✏ P2) s

0 ✏ Q2), where xi are
the free logical variables of both Pi and Qi correspondingly.

The rule Read is similar to the rules for sending and receiving messages, but it does not
modify the local state in any way, observable by other nodes, which is what is ensured by
the “atomic specification” in its premise.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: July 2017.

letrec server_loop _ =
 (from, args) ← blocking_receive();
 let ans = factor(args) in
 sendsresp ((Resp, ans, args), from);
 server_loop()
in server_loop() :

Inv1(s) ≜ ∀m ∈ s.MS, m = <from, to, -, (Req, args)>
 ⇒ args ∈ dom(factor)

CCI1 ⊢

WithInv(CC, Inv1)

{ this is a server ⋀ ∃rs, this ↣ rs }
{ False }

More Implementations  
for Cheap

C`

n

` letrec receive req (: unit) ,
r recv[{Req} , {`}];
if r = Some (from, m)
then return (from, m)
else receive req () :

�

�s. n 2 S ^ s.n 7! rs

⇢

�r s0. s0.n 7! (r.1, r.2) [rs ^
hr.1, n, •, (Req, r.2)i 2 s0.MS `

�

(3)

The type of receive req is derived from the type (2) by ap-
plication of a typing (inference) rule for fixpoint combina-
tor. Internally, receive req corresponds to an execution of
possibly several idle transitions, followed by one receive-
transition. That is, it still follows C`’s transitions: otherwise
we simply could not have assigned a type to it at all! In other
words, receive req is merely a combination of more primi-
tive sub-programs (namely, the “wrapped” receive (2)) that
are proven to be protocol-compliant.

2.3 Elaborating State-Space Invariants of a Protocol
Let us now use receive req to implement our first useful
component of the system: a simple server, which runs an
infinite loop, responding to one request each iteration:

1 letrec simple server (: unit) ,
2 (from, args) receive req ();
3 let ans = f(args) in
4 send[sresp, `]((Resp, ans, args), from);
5 simple server ()
6 in simple server ()

(4)

In trying to assign a type to this program in the context of C`

for a node n 2 S, we encounter a problem at line 3. Since f

is partially-defined, DISEL will emit a verification condition
(VC), requiring us to prove that f is defined at args . Un-
fortunately, the precondition of receive req does not allow
us to prove the triple: we can only conclude that a message
from the soup is consumed, but not that its contents are well-
formed, i.e., that args 2 dom(f). The problem is caused by
the lack of constraints, imposed by the protocol C` on the
global system state s, specifically, on the messages in the
soup s.MS `. The necessary requirement for this example,
however, could be derived out of the following property of a
state s:
INV1(s) , 8m 2 s.MS `, m = hfrom, to,�, (Req, args)i

=) args 2 dom(f)
(5)

The good news is that the property INV1 is an inductive
invariant with respect to the transitions of C`: if it holds at
some initial state s0, then it holds for any state s reachable
from s0 via C`’s transitions. Better yet, since every well-
typed program in DISEL is composed of protocol transitions,
it will automatically preserve the inductive invariant and can
be given the same pre/postconditions under assumptions that
the pre-state satisfies the invariant property.

To account for this possibility of invariant strengthening,
DISEL provides a protocol combinator WithInv that takes a
protocol P and a state invariant I , proven to be inductive wrt.

Batching server implementation

letrec receive batch (k : nat) ,
if k = k0 + 1
then fargs receive req ();

rest receive batch k0;
return fargs :: rest

else return []

letrec send batch (rs : [(Node, [nat])]) ,
if rs = (from, args) :: rs

0

then let v = f(args) in
send[sresp, `]((Resp, v, args), from);
send batch rs

0

else return ()

letrec batch server (bsize : nat) ,
reqs receive batch bsize; send batch(reqs); batch server bsize

Memoizing server implementation
letrec memo server (mmap : map) ,

(from, args) receive req ();
let ans = lookup mmap in
if ans 6= ? then send[sresp, `]((Resp, ans, args), from);

memo server mmap

else let ans = f(args) in
send[sresp, `](m, (Resp, ans, args));
let mmap

0 = update(mmap, args, ans) in
memo server mmap

0

Figure 3. Batching and memoizing servers on top of C0`.

P , and returns a new protocol P 0, whose state-space defini-
tion is strengthened with I . That is, the pre/postcondition of
every transition can be strengthened with I “for free” once I

is shown be an inductive invariant.
Therefore, taking C0` , WithInv(C`, INV1), we can reuse

all of simple server’s subprograms in the new context C0`.
The postcondition on line 3, in conjunction with INV1 hold-
ing over any intermediate states ensures that f is defined at
args , allowing us to complete the verification of our non-
terminating server implementation, assigning it the follow-
ing type:

C0
`

n

` simple server () :
�

�s. n 2 S ^ s.n 7! rs

{�r s0. False}
(6)

2.4 More Implementations for Cheap
With the strengthened protocol C0`, we can now develop and
verify a variety of system components, reusing the previ-
ously developed program components and enjoying the com-
positionality of specifications, afforded by Hoare types.
Alternative servers. Figure 3 presents two alternative loop-
ing server implementations. The first one, batch server, pro-
cesses requests in batches of a predefined size bsize . This
batching may cause batch server to loop for an unbounded
period, until bsize requests have been received, but this is
perfectly safe.3 Once this is done, the batch is passed to
the second subroutine, send batch, which delivers the re-
sults. Finally, the server loop restarts. Another, more efficient
server implementation memo server uses memoization, im-
plemented by means of store-passing style, in order to avoid
repeating computations. It first checks whether the answer
for a requested argument list is available in the memoization
table mmap, and, if so, sends it back to the client. Other-

3 We leave concerns of liveness to future work.

Programming and Proving with Distributed Protocols 5 2016/11/19

A Batching Server
C`

n

` letrec receive req (: unit) ,
r recv[{Req} , {`}];
if r = Some (from, m)
then return (from, m)
else receive req () :

�

�s. n 2 S ^ s.n 7! rs

⇢

�r s0. s0.n 7! (r.1, r.2) [rs ^
hr.1, n, •, (Req, r.2)i 2 s0.MS `

�

(3)

The type of receive req is derived from the type (2) by ap-
plication of a typing (inference) rule for fixpoint combina-
tor. Internally, receive req corresponds to an execution of
possibly several idle transitions, followed by one receive-
transition. That is, it still follows C`’s transitions: otherwise
we simply could not have assigned a type to it at all! In other
words, receive req is merely a combination of more primi-
tive sub-programs (namely, the “wrapped” receive (2)) that
are proven to be protocol-compliant.

2.3 Elaborating State-Space Invariants of a Protocol
Let us now use receive req to implement our first useful
component of the system: a simple server, which runs an
infinite loop, responding to one request each iteration:

1 letrec simple server (: unit) ,
2 (from, args) receive req ();
3 let ans = f(args) in
4 send[sresp, `]((Resp, ans, args), from);
5 simple server ()
6 in simple server ()

(4)

In trying to assign a type to this program in the context of C`

for a node n 2 S, we encounter a problem at line 3. Since f

is partially-defined, DISEL will emit a verification condition
(VC), requiring us to prove that f is defined at args . Un-
fortunately, the precondition of receive req does not allow
us to prove the triple: we can only conclude that a message
from the soup is consumed, but not that its contents are well-
formed, i.e., that args 2 dom(f). The problem is caused by
the lack of constraints, imposed by the protocol C` on the
global system state s, specifically, on the messages in the
soup s.MS `. The necessary requirement for this example,
however, could be derived out of the following property of a
state s:
INV1(s) , 8m 2 s.MS `, m = hfrom, to,�, (Req, args)i

=) args 2 dom(f)
(5)

The good news is that the property INV1 is an inductive
invariant with respect to the transitions of C`: if it holds at
some initial state s0, then it holds for any state s reachable
from s0 via C`’s transitions. Better yet, since every well-
typed program in DISEL is composed of protocol transitions,
it will automatically preserve the inductive invariant and can
be given the same pre/postconditions under assumptions that
the pre-state satisfies the invariant property.

To account for this possibility of invariant strengthening,
DISEL provides a protocol combinator WithInv that takes a
protocol P and a state invariant I , proven to be inductive wrt.

Batching server implementation

letrec receive batch (k : nat) ,
if k = k0 + 1
then fargs receive req ();

rest receive batch k0;
return fargs :: rest

else return []

letrec send batch (rs : [(Node, [nat])]) ,
if rs = (from, args) :: rs

0

then let v = f(args) in
send[sresp, `]((Resp, v, args), from);
send batch rs

0

else return ()

letrec batch server (bsize : nat) ,
reqs receive batch bsize; send batch(reqs); batch server bsize

Memoizing server implementation
letrec memo server (mmap : map) ,

(from, args) receive req ();
let ans = lookup mmap in
if ans 6= ? then send[sresp, `]((Resp, ans, args), from);

memo server mmap

else let ans = f(args) in
send[sresp, `](m, (Resp, ans, args));
let mmap

0 = update(mmap, args, ans) in
memo server mmap

0

Figure 3. Batching and memoizing servers on top of C0`.

P , and returns a new protocol P 0, whose state-space defini-
tion is strengthened with I . That is, the pre/postcondition of
every transition can be strengthened with I “for free” once I

is shown be an inductive invariant.
Therefore, taking C0` , WithInv(C`, INV1), we can reuse

all of simple server’s subprograms in the new context C0`.
The postcondition on line 3, in conjunction with INV1 hold-
ing over any intermediate states ensures that f is defined at
args , allowing us to complete the verification of our non-
terminating server implementation, assigning it the follow-
ing type:

C0
`

n

` simple server () :
�

�s. n 2 S ^ s.n 7! rs

{�r s0. False}
(6)

2.4 More Implementations for Cheap
With the strengthened protocol C0`, we can now develop and
verify a variety of system components, reusing the previ-
ously developed program components and enjoying the com-
positionality of specifications, afforded by Hoare types.
Alternative servers. Figure 3 presents two alternative loop-
ing server implementations. The first one, batch server, pro-
cesses requests in batches of a predefined size bsize . This
batching may cause batch server to loop for an unbounded
period, until bsize requests have been received, but this is
perfectly safe.3 Once this is done, the batch is passed to
the second subroutine, send batch, which delivers the re-
sults. Finally, the server loop restarts. Another, more efficient
server implementation memo server uses memoization, im-
plemented by means of store-passing style, in order to avoid
repeating computations. It first checks whether the answer
for a requested argument list is available in the memoization
table mmap, and, if so, sends it back to the client. Other-

3 We leave concerns of liveness to future work.

Programming and Proving with Distributed Protocols 5 2016/11/19

C`

n

` letrec receive req (: unit) ,
r recv[{Req} , {`}];
if r = Some (from, m)
then return (from, m)
else receive req () :

�

�s. n 2 S ^ s.n 7! rs

⇢

�r s0. s0.n 7! (r.1, r.2) [rs ^
hr.1, n, •, (Req, r.2)i 2 s0.MS `

�

(3)

The type of receive req is derived from the type (2) by ap-
plication of a typing (inference) rule for fixpoint combina-
tor. Internally, receive req corresponds to an execution of
possibly several idle transitions, followed by one receive-
transition. That is, it still follows C`’s transitions: otherwise
we simply could not have assigned a type to it at all! In other
words, receive req is merely a combination of more primi-
tive sub-programs (namely, the “wrapped” receive (2)) that
are proven to be protocol-compliant.

2.3 Elaborating State-Space Invariants of a Protocol
Let us now use receive req to implement our first useful
component of the system: a simple server, which runs an
infinite loop, responding to one request each iteration:

1 letrec simple server (: unit) ,
2 (from, args) receive req ();
3 let ans = f(args) in
4 send[sresp, `]((Resp, ans, args), from);
5 simple server ()
6 in simple server ()

(4)

In trying to assign a type to this program in the context of C`

for a node n 2 S, we encounter a problem at line 3. Since f

is partially-defined, DISEL will emit a verification condition
(VC), requiring us to prove that f is defined at args . Un-
fortunately, the precondition of receive req does not allow
us to prove the triple: we can only conclude that a message
from the soup is consumed, but not that its contents are well-
formed, i.e., that args 2 dom(f). The problem is caused by
the lack of constraints, imposed by the protocol C` on the
global system state s, specifically, on the messages in the
soup s.MS `. The necessary requirement for this example,
however, could be derived out of the following property of a
state s:
INV1(s) , 8m 2 s.MS `, m = hfrom, to,�, (Req, args)i

=) args 2 dom(f)
(5)

The good news is that the property INV1 is an inductive
invariant with respect to the transitions of C`: if it holds at
some initial state s0, then it holds for any state s reachable
from s0 via C`’s transitions. Better yet, since every well-
typed program in DISEL is composed of protocol transitions,
it will automatically preserve the inductive invariant and can
be given the same pre/postconditions under assumptions that
the pre-state satisfies the invariant property.

To account for this possibility of invariant strengthening,
DISEL provides a protocol combinator WithInv that takes a
protocol P and a state invariant I , proven to be inductive wrt.

Batching server implementation

letrec receive batch (k : nat) ,
if k = k0 + 1
then fargs receive req ();

rest receive batch k0;
return fargs :: rest

else return []

letrec send batch (rs : [(Node, [nat])]) ,
if rs = (from, args) :: rs

0

then let v = f(args) in
send[sresp, `]((Resp, v, args), from);
send batch rs

0

else return ()

letrec batch server (bsize : nat) ,
reqs receive batch bsize; send batch(reqs); batch server bsize

Memoizing server implementation
letrec memo server (mmap : map) ,

(from, args) receive req ();
let ans = lookup mmap in
if ans 6= ? then send[sresp, `]((Resp, ans, args), from);

memo server mmap

else let ans = f(args) in
send[sresp, `](m, (Resp, ans, args));
let mmap

0 = update(mmap, args, ans) in
memo server mmap

0

Figure 3. Batching and memoizing servers on top of C0`.

P , and returns a new protocol P 0, whose state-space defini-
tion is strengthened with I . That is, the pre/postcondition of
every transition can be strengthened with I “for free” once I

is shown be an inductive invariant.
Therefore, taking C0` , WithInv(C`, INV1), we can reuse

all of simple server’s subprograms in the new context C0`.
The postcondition on line 3, in conjunction with INV1 hold-
ing over any intermediate states ensures that f is defined at
args , allowing us to complete the verification of our non-
terminating server implementation, assigning it the follow-
ing type:

C0
`

n

` simple server () :
�

�s. n 2 S ^ s.n 7! rs

{�r s0. False}
(6)

2.4 More Implementations for Cheap
With the strengthened protocol C0`, we can now develop and
verify a variety of system components, reusing the previ-
ously developed program components and enjoying the com-
positionality of specifications, afforded by Hoare types.
Alternative servers. Figure 3 presents two alternative loop-
ing server implementations. The first one, batch server, pro-
cesses requests in batches of a predefined size bsize . This
batching may cause batch server to loop for an unbounded
period, until bsize requests have been received, but this is
perfectly safe.3 Once this is done, the batch is passed to
the second subroutine, send batch, which delivers the re-
sults. Finally, the server loop restarts. Another, more efficient
server implementation memo server uses memoization, im-
plemented by means of store-passing style, in order to avoid
repeating computations. It first checks whether the answer
for a requested argument list is available in the memoization
table mmap, and, if so, sends it back to the client. Other-

3 We leave concerns of liveness to future work.

Programming and Proving with Distributed Protocols 5 2016/11/19

CCI1 ⊢
{ this is a server ⋀ ∃rs, this ↣ rs }
{ False }

batch_server(5) :

A Memoising Server

C`

n

` letrec receive req (: unit) ,
r recv[{Req} , {`}];
if r = Some (from, m)
then return (from, m)
else receive req () :

�

�s. n 2 S ^ s.n 7! rs

⇢

�r s0. s0.n 7! (r.1, r.2) [rs ^
hr.1, n, •, (Req, r.2)i 2 s0.MS `

�

(3)

The type of receive req is derived from the type (2) by ap-
plication of a typing (inference) rule for fixpoint combina-
tor. Internally, receive req corresponds to an execution of
possibly several idle transitions, followed by one receive-
transition. That is, it still follows C`’s transitions: otherwise
we simply could not have assigned a type to it at all! In other
words, receive req is merely a combination of more primi-
tive sub-programs (namely, the “wrapped” receive (2)) that
are proven to be protocol-compliant.

2.3 Elaborating State-Space Invariants of a Protocol
Let us now use receive req to implement our first useful
component of the system: a simple server, which runs an
infinite loop, responding to one request each iteration:

1 letrec simple server (: unit) ,
2 (from, args) receive req ();
3 let ans = f(args) in
4 send[sresp, `]((Resp, ans, args), from);
5 simple server ()
6 in simple server ()

(4)

In trying to assign a type to this program in the context of C`

for a node n 2 S, we encounter a problem at line 3. Since f

is partially-defined, DISEL will emit a verification condition
(VC), requiring us to prove that f is defined at args . Un-
fortunately, the precondition of receive req does not allow
us to prove the triple: we can only conclude that a message
from the soup is consumed, but not that its contents are well-
formed, i.e., that args 2 dom(f). The problem is caused by
the lack of constraints, imposed by the protocol C` on the
global system state s, specifically, on the messages in the
soup s.MS `. The necessary requirement for this example,
however, could be derived out of the following property of a
state s:
INV1(s) , 8m 2 s.MS `, m = hfrom, to,�, (Req, args)i

=) args 2 dom(f)
(5)

The good news is that the property INV1 is an inductive
invariant with respect to the transitions of C`: if it holds at
some initial state s0, then it holds for any state s reachable
from s0 via C`’s transitions. Better yet, since every well-
typed program in DISEL is composed of protocol transitions,
it will automatically preserve the inductive invariant and can
be given the same pre/postconditions under assumptions that
the pre-state satisfies the invariant property.

To account for this possibility of invariant strengthening,
DISEL provides a protocol combinator WithInv that takes a
protocol P and a state invariant I , proven to be inductive wrt.

Batching server implementation

letrec receive batch (k : nat) ,
if k = k0 + 1
then fargs receive req ();

rest receive batch k0;
return fargs :: rest

else return []

letrec send batch (rs : [(Node, [nat])]) ,
if rs = (from, args) :: rs

0

then let v = f(args) in
send[sresp, `]((Resp, v, args), from);
send batch rs

0

else return ()

letrec batch server (bsize : nat) ,
reqs receive batch bsize; send batch(reqs); batch server bsize

Memoizing server implementation
letrec memo server (mmap : map) ,

(from, args) receive req ();
let ans = lookup mmap in
if ans 6= ? then send[sresp, `]((Resp, ans, args), from);

memo server mmap

else let ans = f(args) in
send[sresp, `](m, (Resp, ans, args));
let mmap

0 = update(mmap, args, ans) in
memo server mmap

0

Figure 3. Batching and memoizing servers on top of C0`.

P , and returns a new protocol P 0, whose state-space defini-
tion is strengthened with I . That is, the pre/postcondition of
every transition can be strengthened with I “for free” once I

is shown be an inductive invariant.
Therefore, taking C0` , WithInv(C`, INV1), we can reuse

all of simple server’s subprograms in the new context C0`.
The postcondition on line 3, in conjunction with INV1 hold-
ing over any intermediate states ensures that f is defined at
args , allowing us to complete the verification of our non-
terminating server implementation, assigning it the follow-
ing type:

C0
`

n

` simple server () :
�

�s. n 2 S ^ s.n 7! rs

{�r s0. False}
(6)

2.4 More Implementations for Cheap
With the strengthened protocol C0`, we can now develop and
verify a variety of system components, reusing the previ-
ously developed program components and enjoying the com-
positionality of specifications, afforded by Hoare types.
Alternative servers. Figure 3 presents two alternative loop-
ing server implementations. The first one, batch server, pro-
cesses requests in batches of a predefined size bsize . This
batching may cause batch server to loop for an unbounded
period, until bsize requests have been received, but this is
perfectly safe.3 Once this is done, the batch is passed to
the second subroutine, send batch, which delivers the re-
sults. Finally, the server loop restarts. Another, more efficient
server implementation memo server uses memoization, im-
plemented by means of store-passing style, in order to avoid
repeating computations. It first checks whether the answer
for a requested argument list is available in the memoization
table mmap, and, if so, sends it back to the client. Other-

3 We leave concerns of liveness to future work.

Programming and Proving with Distributed Protocols 5 2016/11/19

CCI1 ⊢
{ this is a server ⋀ ∃rs, this ↣ rs }
{ False }

memo_server({}) :

fun compute_factor (arg, serv) =
 sendsreq ((Req, args), serv);
 r ← receive_resp();
 return r

A Client Implementation

:

{ serv is a server ⋀  
 arg ∈ dom(factor) ⋀
 this ↣ ∅ }
{ res = factor(arg) ⋀ this ↣ ∅ }

CCI1 ⊢

{ <serv, this, •, (Resp, res, arg)> ∈ MS ⋀
 this ↦ ∅ }

{ this ↦ {(serv, arg)} }

Cannot conclude res = factor(args).

receive_resp()CCI1 ⊢ :

Programming and Proving with Distributed Protocols • 1:5

Send-transitions Receive-transitions

⌧s Requires (m, to) Ensures

sreq
n 2 C ^ to 2 S ^
n 7! rs ^ m = (Req, args) ^
args 2 dom(f)

n 7! (to, args)] rs

sresp
n 2 S ^ f(args) = v ^
n 7! (to, args)] rs ^
m = (Resp, v, args)

n 7! rs

⌧r Requires (m, from) Ensures

rreq n 2 S && n 7! rs &&
m = (Req, args)

n 7! (from, args)] rs

rresp
n 2 C &&
n 7! (from, args)] rs &&
m = (Resp, ans, args)

n 7! rs

Fig. 2. Send- and receive-transitions of the distributed calculator protocol with respect to a node n.

message being sent/received, recipient/sender (to/from), and the protocol-specific state of a node. For
the calculator, the state for node n is a multiset of outstanding requests rs, denoted as n 7! rs.

Protocol transitions synchronize the exchange of messages with changes in a node’s state. Preconditions
in send-transitions specify requirements that must be satisfied by the local state of node n for it to send
message m to recipient to and postconditions specify how n’s state must be updated afterward. For
example, the sreq transition can be taken by a client node n to send a request message (Req, args) to
server to where args 2 dom(f) and, after sending, n has added (to, args) to its state. Preconditions in
receive-transitions specify requirements that must be satisfied by the local state of node n for it to receive
message m from sender from and postconditions specify how n’s state must be updated. For example,
the rreq transition can be taken by a server node n to receive a request message (Req, args) from node
from where, after receiving, n has added (from, args) to its state.

Notice that preconditions in send-transition can be arbitrary predicates, while the precondition of
receive-transitions must be decidable (which we emphasize by using boolean conjunction && instead of
propositional ^). This is because a program’s decision to send a message is active and corresponds to
calling the low-level send primitive (described later in this section); the system implementer must prove
such preconditions to use the transition. In contrast, receiving messages is passive and corresponds
to using the low-level recv primitive (also described later in this section) that will react to any valid
message. A message m sent to node n should trigger the corresponding receive transition only if n’s
state along with the message satisfies the transition’s precondition. In order to choose such a transition
unambiguously, we require that each incoming message tag (e.g., Req and Resp) uniquely identifies a
receive-transition that should be run. Combined with the decidability of receive-transition preconditions,
this allows Disel systems to automatically decide whether a transition can be executed.

As definition, the calculator protocol prohibits several unwelcome behaviors. For instance, a server
cannot send a response without a client first requesting it, since (A) servers only send messages via the
sresp transition, (B) sresp requires (to, args) to be in the multiset of outstanding requests at the server,
and (C) (to, args) can only be added to the set of outstanding requests once it has been received from a
client. Also note that the precondition of sreq requires that when a client sends a request to a server
to compute f(args), args 2 dom(f). Similarly, the precondition of sresp requires that when a server
responds to a client request for args, it may only send the correct result f(args).

The protocol also leaves several details up to the implementation. For example, the sresp transition
allows a server to respond to any outstanding request, not necessarily the least recently received. This
flexibility allows for diverse implementation strategies and enables the implementation I of a component
to evolve without requiring updates to other components which only assume that I satisfies its protocol.

This state-space and transitions defines the calculator protocol C. Protocols are basic specification
units in Disel, and, as we will soon see, a single program can “span” several protocols. Thus, we will
annotate each protocol instance with a unique label `i (e.g., C`1 , C`2).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Programming and Proving with Distributed Protocols • 1:5

Send-transitions Receive-transitions

⌧s Requires (m, to) Ensures

sreq
n 2 C ^ to 2 S ^
n 7! rs ^ m = (Req, args) ^
args 2 dom(f)

n 7! (to, args)] rs

sresp
n 2 S ^ f(args) = v ^
n 7! (to, args)] rs ^
m = (Resp, v, args)

n 7! rs

⌧r Requires (m, from) Ensures

rreq n 2 S && n 7! rs &&
m = (Req, args)

n 7! (from, args)] rs

rresp
n 2 C &&
n 7! (from, args)] rs &&
m = (Resp, ans, args)

n 7! rs

Fig. 2. Send- and receive-transitions of the distributed calculator protocol with respect to a node n.

message being sent/received, recipient/sender (to/from), and the protocol-specific state of a node. For
the calculator, the state for node n is a multiset of outstanding requests rs, denoted as n 7! rs.

Protocol transitions synchronize the exchange of messages with changes in a node’s state. Preconditions
in send-transitions specify requirements that must be satisfied by the local state of node n for it to send
message m to recipient to and postconditions specify how n’s state must be updated afterward. For
example, the sreq transition can be taken by a client node n to send a request message (Req, args) to
server to where args 2 dom(f) and, after sending, n has added (to, args) to its state. Preconditions in
receive-transitions specify requirements that must be satisfied by the local state of node n for it to receive
message m from sender from and postconditions specify how n’s state must be updated. For example,
the rreq transition can be taken by a server node n to receive a request message (Req, args) from node
from where, after receiving, n has added (from, args) to its state.

Notice that preconditions in send-transition can be arbitrary predicates, while the precondition of
receive-transitions must be decidable (which we emphasize by using boolean conjunction && instead of
propositional ^). This is because a program’s decision to send a message is active and corresponds to
calling the low-level send primitive (described later in this section); the system implementer must prove
such preconditions to use the transition. In contrast, receiving messages is passive and corresponds
to using the low-level recv primitive (also described later in this section) that will react to any valid
message. A message m sent to node n should trigger the corresponding receive transition only if n’s
state along with the message satisfies the transition’s precondition. In order to choose such a transition
unambiguously, we require that each incoming message tag (e.g., Req and Resp) uniquely identifies a
receive-transition that should be run. Combined with the decidability of receive-transition preconditions,
this allows Disel systems to automatically decide whether a transition can be executed.

As definition, the calculator protocol prohibits several unwelcome behaviors. For instance, a server
cannot send a response without a client first requesting it, since (A) servers only send messages via the
sresp transition, (B) sresp requires (to, args) to be in the multiset of outstanding requests at the server,
and (C) (to, args) can only be added to the set of outstanding requests once it has been received from a
client. Also note that the precondition of sreq requires that when a client sends a request to a server
to compute f(args), args 2 dom(f). Similarly, the precondition of sresp requires that when a server
responds to a client request for args, it may only send the correct result f(args).

The protocol also leaves several details up to the implementation. For example, the sresp transition
allows a server to respond to any outstanding request, not necessarily the least recently received. This
flexibility allows for diverse implementation strategies and enables the implementation I of a component
to evolve without requiring updates to other components which only assume that I satisfies its protocol.

This state-space and transitions defines the calculator protocol C. Protocols are basic specification
units in Disel, and, as we will soon see, a single program can “span” several protocols. Thus, we will
annotate each protocol instance with a unique label `i (e.g., C`1 , C`2).

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

(a)

(b)

(c)

Inductive Invariant Inv2

Inv2(s) ≜ ∀m ∈ s.MS, m = <-, -, -, (Resp, ans, args)>
 ⇒ factor(args) = ans)

fun compute_factor (arg, serv) =
 sendsreq ((Req, args), serv);
 r ← receive_resp();
 return r

{ serv is a server ⋀  
 arg ∈ dom(factor) ⋀
 this ↣ ∅ }
{ res = factor(arg) ⋀ this ↣ ∅ }

:

Inv2(s) ≜ ∀m ∈ s.MS, m = <-, -, -, (Resp, ans, args)>
 ⇒ factor(args) = ans)

CCI2 ⊢

WithInv(CCI1, Inv2)

• Modular Program Verification  
 
 

• Horizontal System Decomposition  
 
 

• Inter-Protocol Dependencies

Composition in Distributed Systems
let f x = send x to h;
 r ← receive_from h
 return r
in (f 42) + (f 239)

foo x bar y;

⇒

Protocol-aware logic + 
Rule for inductive invariants

{s | s = S1}

send(msg);
doStuff();

{s | s = S2}

m <- receive(c);
doMoreStuff();

{s | s = S3}

⊢
() τ1

() τ2

Horizontal System Decomposition

S2

S1 S3

S5 S4

τ1 τ2

{s | s = S1}
send(msg);
doStuff();

{s | s = S2}

m <- receive(c);
doMoreStuff();
{s | s = S3}

doOtherStuff();
{s | s = S3}

⊢
S2

S1 S3

S5 S4

τ1 τ2

() τ1

() τ2

{s | s = S1 ⊕ T6}
send(msg);
doStuff();

{s | s = S2 ⊕ T6}

m <- receive(c);
doMoreStuff();
{s | s = S3 ⊕ T6}

doOtherStuff();
{s | s = S3 ⊕ T7}

⊢

S2

S1 S3

S5 S4

τ1 τ2

T7

T6

τ3
() τ3

⊕

“frame”

() τ1

() τ2

letrec delegating_server (n′: Node) =
 (from, args) ← blocking_receive();
 let ans = compute_factor(args) in
 sendsresp ((Resp, ans, args), from);
 delegating_server (n′)
in delegating_server(server)

A Delegating Server

CCI1 ⊕ CCI2 ⊢

• Modular Program Verification  
 
 

• Horizontal System Decomposition  
 
 

• Inter-Protocol Dependencies

Composition in Distributed Systems
let f x = send x to h;
 r ← receive_from h
 return r
in (f 42) + (f 239)

foo x bar y;

⇒

Protocol-aware logic + 
Rule for inductive invariants

Framing wrt. a protocol

⊢ r ← compute_factor(n);

{r = factor(n)}
CloudComp + Inv

{True}

⊢ r ← compute_factor(n);

CloudComp + Inv
ps ← query_server(s)

{r = factor(n)}

{True}

r ← compute_factor(n);

{r = factor(n) ⋀ this ∉ ps}
ps ← query_server(s)

⊢
CloudComp + Inv

{True}

⊢

r ← compute_factor(n);

CloudComp + Inv

ps ← query_server(s)

⊕

QueryService

Why adequate wrt. CCI?

(QS)(CCI) {True}

{r = factor(n) ⋀ this ∉ ps}

CloudComp + Inv

⋉

QueryService

“restricted by”

(QS)(CCI)

(QS)(CCI)

Logical Hooks

⋉

ɕ[CCI, QS, tr](m, scci, sqs) ≜
tr ∈ QS ⋀  
tr is send-response-to-enquiry ⋀  
m = perms(scci)

ɕ[CCI, QS, tr]

(QS)(CCI)

⋉ ⊢

r ← compute_factor(n);

ps ← query_server(s)

ɕ[CCI, QS, tr]

{r = factor(n) ⋀ this ∉ ps}

(CCI)

ps ← query_server(s)

{this ∉ ps}
(QS)(CCI)

⋉ ⊢

⋀

r ← compute_factor(n);⊢

ɕ[CCI, QS, tr]

{r = factor(n)}

{True}

{True}

Hooks and Framing

(QS)(CCI)

⋉

• Hooks allow to reuse complex protocol invariants for server
(dependable) components (e.g., CCI);

• Hook Footprint (e.g., CCI) determines necessary server protocol
that cannot be “framed out”;

• Can be more fine-grained: consider specific transitions.

ɕ[CCI, QS, tr]

• Modular Program Verification  
 
 

• Horizontal System Decomposition  
 
 

• Inter-Protocol Dependencies

Composition in Distributed Systems
let f x = send x to h;
 r ← receive_from h
 return r
in (f 42) + (f 239)

foo x bar y;

⇒

Protocol-aware logic + 
Rule for inductive invariants

Framing wrt. a protocol

Send-Hooks/Hook Footprint

Disel:  
Distributed Separation Logic

https://github.com/DistributedComponents/disel

`{P} c {Q}

• Cloud Compute + Variations;

• Two-Phase Commit: Protocol, Invariants, Clients;

• Simple Blockchain Consensus protocol;

• Lease-based lock and distributed resource (WIP);

• Extraction and trusted shim implementation,

• Separation of Programs and Protocols: Program Logics 
 

• Separation of Invariant Proofs: Framing 

• Separation of Inter-Protocol Dependencies: Hooks

To Take Away

`{P} c {Q}

Compositional Reasoning about Distributed Systems

⊕

Plenty of aspects to address in the future:  
node crashes, reconfiguration, byzantine faults, protocol updates,
authentication, per-node concurrency, dynamic network topologies,
integrating automation tools, (Ivy, TLA+, CVC4)… Thanks!

Backup Slides

How is it different from
(Multiparty) Session Types?

• Session types do not describe the state of nodes;

• No way to express global system invariants (e.g., consensus);

• Limited support for horizontal system composition.

How is it different from
proving program refinement?

• Our logic establishes a version of refinement  
by means of “programming with linearization points”;

• Protocol transitions (send/receive) — observable LPs.

• Information hiding by means of abstract predicates.

Verification Efforts

TLA+

Ivy
PSync

IronFleet

Chapar

EventML
Mace

DistAlgo

Verdi

Protocol Invariants

System Correctness

Protocol-
implementation

modularity
Modular program 

verification
Horizontal protocol

composition

Yes Sort of No

No No No

No No No

No No No

Verification Efforts

IronFleet

PSync

EventML

Verdi

Protocol Framing with Hooks

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Programming and Proving with Distributed Protocols 1:15

Bind

�;W
n
` c1 : {P}{Q ^ res : T }

�, x : T ;W
n
` [x/res]c2 : {Q}{R} x /2 FV(R)

�;W
n
` x c1; c2 : {P}{R}

Letrec

�, x : T , f : hW,8x : T . {P}{Q}i;W
n
` c : {P}{Q}

�;W
n
` letrec f(x : T) , c : 8x.T . {P}{Q}

SendWrap

P,Q are W -stable W = hC,Hi ⌧s 2 C(`).Ts

Sent(⌧s, `, n,m, to, H) v (P,Q)

�;W
n
` send[⌧

s

, `](m, to) : {P}{Q}

ReceiveWrap

P,Q are W -stable W = hC,Hi
Received(T, L,C) v (P,Q)

�;W
n
` recv[T, L](m, to) : {P}{Q}

Read

P,Q are W -stable W = hC,Hi
(this s ^ v 2 dom(s(`)(n)), this s ^ res = s(`)(n)(v)) v (P,Q)

�;W
n
` read`(v) : {P}{Q}

Frame

�;W
n
` c : {P}{Q}

NotHooked(W,H) R is C-stable

�;W] hC,Hi
n
` c : {P ⇤R}{Q ⇤R}

WithInv

�; h` 7! P`]W,Hi
n
` c : {P}{Q} I is inductive wrt. P` I , 8s, this s) I(s)

�; h` 7!WithInv(P`, I)]W,Hi
n
` c : {P ^ I}{Q ^ I}

Auxiliary definitions

Sent(⌧s, `, n,m, to, H) ,

0

@

this s ^
⌧s.pre(n, to,m, s(`)) ^
HooksOk(H, ⌧s, `, n,m, to)

,
this s0 ^ res = m ^
s0 = (s[`, n] 7! ⌧s.step(to,m, s(`)(n))) ^
s0#MS` = s#MS`] hn, to, �, (⌧s.tag,m)i

1

A

Received(T, L,C) ,

0

B

B

B

B

B

B

B

B

@

this s ,

this s0 ^ if res = Some (from,m)
then 9` 2 L, t 2 T,MS 0, ⌧r 2 C(`).Tr, t = ⌧r.tag ^

s#MS` = MS 0] hfrom, n, �, (t,m)i ^
s0#MS` = MS 0] hfrom, n, •, (t,m)i ^
⌧r.pre(m, s(`)(n)) ^
s0 = (s[`, n] 7! ⌧r.step(m, s(`)(n)))

else s = s0

1

C

C

C

C

C

C

C

C

A

HooksOk(H, ⌧s, `c, s, n,m, to) , 8`s h z,H(z, `s, `c, ⌧s.tag) = h =) h(s(`s)(n), s(`c)(n),m, to)

NotHooked(W,H) , 9C0, W = hC0,�i ^ 8(z, `s, `c, t) 2 dom(H), `c /2 dom(C).

Fig. 8. Selected logic inference rules of Disel and auxiliary predicates.

of the `-labelled protocol, so the transition has changed the local state of n accordingly, and
also “consumed” the received message in the message soup MS `. In conjunction with the
protocol invariants, relating local state and message soup properties, this allows one to infer
global assertions about the state of the network, as we have shown in Section 2.3.

The premises of these rules rely on the following definition of Hoare ordering v, allowing
one to strengthen the precondition P2) P1 and weaken the postcondition Q1) Q2, while
accounting for the local scope of free logical variables in the assertions [25].

Definition 3.1 (Hoare ordering). For the given pairs preconditions P1, P2 and postcondi-
tions Q1, Q2, possibly containing free logical variables, we say (P1, Q1) v (P2, Q2) i↵ 8s s

0
, (s ✏

9x2.P2) s ✏ 9x1.P1) ^ ((8x1 res. s ✏ P1) s

0 ✏ Q1)) (8x2 res. s ✏ P2) s

0 ✏ Q2), where xi are
the free logical variables of both Pi and Qi correspondingly.

The rule Read is similar to the rules for sending and receiving messages, but it does not
modify the local state in any way, observable by other nodes, which is what is ensured by
the “atomic specification” in its premise.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: July 2017.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Programming and Proving with Distributed Protocols 1:15

Bind

�;W
n
` c1 : {P}{Q ^ res : T }

�, x : T ;W
n
` [x/res]c2 : {Q}{R} x /2 FV(R)

�;W
n
` x c1; c2 : {P}{R}

Letrec

�, x : T , f : hW,8x : T . {P}{Q}i;W
n
` c : {P}{Q}

�;W
n
` letrec f(x : T) , c : 8x.T . {P}{Q}

SendWrap

P,Q are W -stable W = hC,Hi ⌧s 2 C(`).Ts

Sent(⌧s, `, n,m, to, H) v (P,Q)

�;W
n
` send[⌧

s

, `](m, to) : {P}{Q}

ReceiveWrap

P,Q are W -stable W = hC,Hi
Received(T, L,C) v (P,Q)

�;W
n
` recv[T, L](m, to) : {P}{Q}

Read

P,Q are W -stable W = hC,Hi
(this s ^ v 2 dom(s(`)(n)), this s ^ res = s(`)(n)(v)) v (P,Q)

�;W
n
` read`(v) : {P}{Q}

Frame

�;W
n
` c : {P}{Q}

NotHooked(W,H) R is C-stable

�;W] hC,Hi
n
` c : {P ⇤R}{Q ⇤R}

WithInv

�; h` 7! P`]W,Hi
n
` c : {P}{Q} I is inductive wrt. P` I , 8s, this s) I(s)

�; h` 7!WithInv(P`, I)]W,Hi
n
` c : {P ^ I}{Q ^ I}

Auxiliary definitions

Sent(⌧s, `, n,m, to, H) ,

0

@

this s ^
⌧s.pre(n, to,m, s(`)) ^
HooksOk(H, ⌧s, `, n,m, to)

,
this s0 ^ res = m ^
s0 = (s[`, n] 7! ⌧s.step(to,m, s(`)(n))) ^
s0#MS` = s#MS`] hn, to, �, (⌧s.tag,m)i

1

A

Received(T, L,C) ,

0

B

B

B

B

B

B

B

B

@

this s ,

this s0 ^ if res = Some (from,m)
then 9` 2 L, t 2 T,MS 0, ⌧r 2 C(`).Tr, t = ⌧r.tag ^

s#MS` = MS 0] hfrom, n, �, (t,m)i ^
s0#MS` = MS 0] hfrom, n, •, (t,m)i ^
⌧r.pre(m, s(`)(n)) ^
s0 = (s[`, n] 7! ⌧r.step(m, s(`)(n)))

else s = s0

1

C

C

C

C

C

C

C

C

A

HooksOk(H, ⌧s, `c, s, n,m, to) , 8`s h z,H(z, `s, `c, ⌧s.tag) = h =) h(s(`s)(n), s(`c)(n),m, to)

NotHooked(W,H) , 9C0, W = hC0,�i ^ 8(z, `s, `c, t) 2 dom(H), `c /2 dom(C).

Fig. 8. Selected logic inference rules of Disel and auxiliary predicates.

of the `-labelled protocol, so the transition has changed the local state of n accordingly, and
also “consumed” the received message in the message soup MS `. In conjunction with the
protocol invariants, relating local state and message soup properties, this allows one to infer
global assertions about the state of the network, as we have shown in Section 2.3.

The premises of these rules rely on the following definition of Hoare ordering v, allowing
one to strengthen the precondition P2) P1 and weaken the postcondition Q1) Q2, while
accounting for the local scope of free logical variables in the assertions [25].

Definition 3.1 (Hoare ordering). For the given pairs preconditions P1, P2 and postcondi-
tions Q1, Q2, possibly containing free logical variables, we say (P1, Q1) v (P2, Q2) i↵ 8s s

0
, (s ✏

9x2.P2) s ✏ 9x1.P1) ^ ((8x1 res. s ✏ P1) s

0 ✏ Q1)) (8x2 res. s ✏ P2) s

0 ✏ Q2), where xi are
the free logical variables of both Pi and Qi correspondingly.

The rule Read is similar to the rules for sending and receiving messages, but it does not
modify the local state in any way, observable by other nodes, which is what is ensured by
the “atomic specification” in its premise.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: July 2017.

Programming and Proving with Distributed Protocols • 1:13

W = hC,Hi W ✏ s ` 2 dom(C) P` = C(`) (MS , d) = s(`)
n

n, to
o

✓ dom(d)

⌧s 2 P`.Ts ⌧s.pre(n, to, m , d) HooksOk(W, ⌧s, `, s, n,m, to) MS 0 = MS] hn, to, �, (⌧s.tag,m)i

s
n W s[` 7! (MS 0, d[n 7! ⌧s.step(to,m, d(n))])]

Send

W = hC,Hi W ✏ s ` 2 dom(C) P` = C(`) (MS , d) = s(`) ⌧r 2 P`.Tr MS = MS 0] m

m = hfrom, n, �, (⌧r.tag,m)i {from, n} ✓ dom(d) ⌧r.pre(m, d(n)) MS 00 = MS 0] hfrom, n, •, (⌧r.tag,m)i
s

n W s[` 7! (MS 00, d[n 7! ⌧r.step(m, d(n))])]
Recv

Fig. 8. Transition rules of the network semantics.

Definition 3.2 (Receive-wrapper). The semantics of a receive-wrapper call recv[T, L] is defined by fixing
the grayed elements in the rule Recv such that ` 2 L and ⌧r.tag 2 T . The precondition w.pre is True and
the result is the pair Some (from, m) from m, if side conditions of Recv are satisfied, or None otherwise.

Lemma 3.3 (Wrappers obey the network semantics). Let w be a send- or receive-wrapper
call at a node n in a world W , instantiated with valid arguments. Then for any global state s, such that

W ✏ s, the resulting state s0 of a wrapper execution s
w,n W s0 is computable and s

n W s0 holds.

A program execution in Disel can be thought of as a sequence of wrapper calls. Indeed, in a distributed
system, every such execution on a specific node takes place concurrently with executions on other nodes,
which will typically result in multiple possible outcomes for the global state s. To account for all such
behaviors experienced by a program e running locally, we adopt the trace-based approach for semantics
of sequentially-consistent concurrent programs (Brookes 2007; Ley-Wild and Nanevski 2013) and define
a denotational semantics of a program e as a (possibly infinite) set of finite partial execution traces
JeK = {t | t = [w1, . . . , wn]}, where each element wi of a trace t is a transition wrapper as it occurs
during a single, potentially incomplete, sequential execution of e, and 2 {?, done v}, where ? indicates
an incomplete execution of e, and done v stands for a complete execution returning a result value v.
Thus, a trace t is generated by a program running at a node, so each of its element corresponds to a
single transition, changing the global state of the system.

To give semantics for the Hoare types and formulate a type soundness result, we need several auxiliary
definitions, relating program traces and system states. Those are directly inspired by modern concurrency
logics (Nanevski et al. 2014), and we refer the reader to our Coq code for fully formal definitions. We
first define interference-reachable states from a system state s with respect to a node n:

Definition 3.4. A state s0 is interference-reachable from s0 wrt. a node n (denoted by s
¬n⇤ W s0) i↵

s = s0 or there exists a state s00 and a node n0, n0 6= n, such that s
n0

 W s00 and s00 ¬n⇤ W s0.

We next inductively define Q-satisfying safe traces wrt. a node n, state s and a value-state predicate Q,
as those that execute from s till the end under interference, so the final state and the result satisfy Q:

Definition 3.5. A trace t is post-safe for n, s and Q i↵

• t = [], = done v and 8s0, s
¬n⇤ W s0 =) Q(v, s0), or

• t = w :: t0, and for any s0, such that s
¬n⇤ W s0, the state s0 satisfies w.pre, and there exists s00, such

that s0 w,n W s00, and t0 is post-safe for n, s00 and Q.

Finally, we define well-typed programs in terms of our denotational semantics and post-safe traces.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Network Semantics

1:18 • Ilya Sergey, James R. Wilcox, and Zachary Tatlock

Finally, we can use the abstract predicates from Fig. 15 to provide specifications for querying procedures
from Fig. 14, stating query_init in terms of assertions involving local_indicator and query_state, in
the context, parameterized over a “core” protocol pc and restricted with QHook. To verify the program
in Fig. 14 against the desired spec we only need to instantiate the predicates as follows and prove the
corresponding hypotheses, which follow from the invariant TPCInv and Lemma cn_log_agreement:

Definition Data := nat * Log. (* For TPC, abstract Data type is instantiated with a round number and Log. *)

Definition local_indicator (d : Data) l := l = st 7! (d.1, CInit)] log 7! d.2.

Definition core_state (d : Data) l := l = st 7! (d.1, PInit)] log 7! d.2.

The rest of the proof is by using the rule Frame with W = TPC, C = Query and H = QHook. Since QHook

does not restrict the transitions of TPC, the assertion NotHooked holds. Thanks to the parameterization of
querying programs with abstract predicates and hypotheses from Fig. 15, we can compose them, without
changing their specifications, with any other instance of a consensus protocol, e.g., Paxos (Lamport
1998b) or Raft (Ongaro and Ousterhout 2014), thus, reusing the proofs of their core invariants.

5 IMPLEMENTATION AND EXPERIENCE
Disel combines two traits that rarely occur in a single tool for reasoning about programs. First, thanks
to the representation of Hoare types by means of Coq’s dependent types, the soundness result of Disel

scales not just to a toy core calculus, but to the entirety of Gallina, the programming language of Coq,
enhanced with general recursion and message-passing primitives. Second, Disel programs are immediately
executable by means of extracting them into OCaml, which provides the features that Gallina lacks:
general fixpoints, mutable state, and networking constructs, enabled by our trusted shim implementation.

Component Defs/Specs Impl Proofs Build
Calculator (§2)

protocol (§2.1)
239 - 243 4.8INV1 (§2.3)

INV2 (§2.4)
simple server (§2.3)

192 43 153 8.6batch server (§2.4)
memo server (§2.4)
compute (§2.4) 120 24 99 4.8
deleg server (§2.4) 75 7 49 2.4

Two-Phase Commit (§4.1–§4.3)
protocol (§4.1) 465 - 231 3.9
coordinator (§4.2) 236 35 440 20
participant (§4.2) 163 24 198 11
TPCInv (§4.3) 997 - 2113 36

Query/TPC (§4.4)
protocol 169 - 115 2.1
querying procedures 326 18 707 22
run and query 76 5 89 2.6

Table 1. Statistics for implemented systems: sizes of protocol
definitions/specs, implementation, proofs of protocol axioms
/invariants/program specs (LOC), and build times (sec.).

Formal development and proof burden. The size
of our formalization of the metatheory, inference
rules and soundness proofs is about 4500 LOC.
Our development builds on well-established Ssre-
flect/MathComp libraries (Mahboubi and Tassi
2017; Sergey 2014) as well as on the implemen-
tation of heap theory by Nanevski et al. (2010).
Table 1 summarizes the proof e↵ort for the calcu-
lator, TPC/Query systems. The Defs/Specs column
measures all specification components, including,
e.g., auxiliary predicates, whereas Impl reports the
sizes of actual Disel programs. Due to the high
degree of code reuse, it is di�cult to provide sepa-
rate metrics in some cases; for those parts we only
report the joint numbers. Although Disel is not
yet a production-quality verification tool, proofs
of full functional correctness of interesting systems
can be obtained in it in a reasonably short pe-
riod of time and with moderate verification e↵ort
(e.g., the full development of the TPC system took
nine person-days of work and less than 5 KLOC).
Given that the current version of Disel employs
no advanced proof automation (Chlipala 2011; Padon et al. 2016), we consider these results encouraging.

PACM Progr. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2017.

