
A Concurrent Perspective  
on Smart Contracts

Ilya Sergey Aquinas Hobor

7 April 2017

1st Workshop on Trusted Smart Contracts



class ConcurrentQueue <E> {
   public synchronized void enqueue(E elem) {…}
   public synchronized E dequeue() {…}
}



class ConcurrentQueue <E> {
   public synchronized void enqueue(E elem) {…}
   public synchronized E dequeue() {…}
}

class MyQClient {
  public void foo (ConcurrentQueue<Integer> q) {
    …
    q.enqueue(1);
    q.enqueue(2);   
    doStuff();
    Integer i = q.dequeue();
    assert (i == 1);  
    q.dequeue();
  }
}



Queue q = new ConcurentQueue<Integer>();
MyQClient c1 = new MyQClient();
MyQClient c2 = new MyQClient();

c1.foo(q) c2.foo(q)||

class MyQClient {
  public void foo (ConcurrentQueue<Integer> q) {
    …
    q.enqueue(1);
    q.enqueue(2);   
    doStuff();
    Integer i = q.dequeue();
    assert (i == 1);  
    q.dequeue();
  }
}



c1.foo(q)

c2.foo(q)

class MyQClient {
  public void foo (ConcurrentQueue<Integer> q) {
    …
    q.enqueue(1);
    q.enqueue(2);   
    doStuff();
    Integer i = q.dequeue();
    assert (i == 1);  
    q.dequeue();
  }
}

enq(1) enq(2)

enq(1) enq(2) deq()=1 deq()=1

deq()=2

assert fails



contract MyQContract {
  
  Queue q = QueueContract(0x1d11e5fbe221); 
   
  function foo() {
    …
    q.enqueue(addr1);
    q.enqueue(addr2);   
    someAddr.call.value(…);
    address i = q.dequeue();
    // Assuming i == addr1
    i.send(reward);   
    q.dequeue();
  }
}



contract MyQContract {
  
  Queue q = QueueContract(0x1d11e5fbe221); 
   
  function foo() {
    …
    q.enqueue(addr1);
    q.enqueue(addr2);   
    someAddr.call.value(…);
    address i = q.dequeue();
    // Assuming i == addr1
    i.send(reward);   
    q.dequeue();
  }
}

mqc.foo(): enq(addr1) enq(addr2)

Any manipulation with qsomeAddr():

Transaction

deq() = ?



Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.



Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.

Reentrancy (Un)cooperative multitasking

call/send context switching

contract state object state—

—

—



Reentrancy and multitasking

1010 // Burn DAO Tokens
1011 Transfer(msg.sender, 0, balances[msg.sender]);
1012 withdrawRewardFor(msg.sender); // be nice, and get his rewards
1013 totalSupply -= balances[msg.sender];
1014 balances[msg.sender] = 0;
1015 paidOut[msg.sender] = 0;
1016 return true;
1017 }

Fig. 2. DAO code fragment [23].

Unfortunately, the DAO internal state still indicates that the account is funded
since its account balance has not yet been zeroed out in line 1014. Accordingly,
a malicious msg.sender can initiate a second withdrawal by calling back into the
DAO contract, which will in turn send a second payment when control reaches
line 1012 again. In fact, the malicious msg.sender can then initiate a third, fourth,
etc. withdrawal, all of which will result in payment. Only at the end is his account
zeroed out, after being paid many multiples of its original balance.

Previous analyses of this bug have indicated that the problem is due to re-
cursion or unintended reentrancy. In a narrow sense this is true, but in a wider
sense what is going on is that sequential code is running in what is in many
senses a concurrent environment.

3 Interference and Synchronization

Having showed that concurrent-type behavior exists and causes problems in
real contracts on the Blockchain, we will now examine other ways that our
concurrent-objects-as-contracts viewpoint can help us understand how contracts
can behave on the blockchain.

3.1 Atomic updates in shared-memory concurrency

Figure 3 depicts a canonical example (presented in a Java 8-like pseudocode) of
a wrongly used concurrent object, which is supposed to implement an “atomic”
counter with methods get and set. The implementation of the concurrent
counter on the left is obviously thread-safe (i.e., data race-free), thanks to the use
of synchronized primitives [17]. What is problematic, though, is how an instance
of the Counter class is used in the multithreaded client code on the right.

Specifically, with two threads running in parallel and their operations inter-
leaving, the call to incr() within thread2’s body could happen, for instance,
between the assignment to a and the call c.set(a + 1) within the incr() call of
thread1. This would invalidate the condition in the following assert statement,
making the overall program fail non-deterministically for a certain execution!

The issue arises because the implementation of incr() on top of Counter does
not provide the atomicity guarantees, expected by the client code. Specifically,
the code on the right is implemented in the assumption that there will be no
interference between the statements of incr(), hence the counter c is going to be
incremented by 1, and a and b will be the same by the end of its execution. Indeed,

6



Reentrancy and multitasking

DAO: withdrawRewardFor()

Manipulation with DAO_recipient.call.value(…):

balances[msg.sender] = 0

1010 // Burn DAO Tokens
1011 Transfer(msg.sender, 0, balances[msg.sender]);
1012 withdrawRewardFor(msg.sender); // be nice, and get his rewards
1013 totalSupply -= balances[msg.sender];
1014 balances[msg.sender] = 0;
1015 paidOut[msg.sender] = 0;
1016 return true;
1017 }

Fig. 2. DAO code fragment [23].

Unfortunately, the DAO internal state still indicates that the account is funded
since its account balance has not yet been zeroed out in line 1014. Accordingly,
a malicious msg.sender can initiate a second withdrawal by calling back into the
DAO contract, which will in turn send a second payment when control reaches
line 1012 again. In fact, the malicious msg.sender can then initiate a third, fourth,
etc. withdrawal, all of which will result in payment. Only at the end is his account
zeroed out, after being paid many multiples of its original balance.

Previous analyses of this bug have indicated that the problem is due to re-
cursion or unintended reentrancy. In a narrow sense this is true, but in a wider
sense what is going on is that sequential code is running in what is in many
senses a concurrent environment.

3 Interference and Synchronization

Having showed that concurrent-type behavior exists and causes problems in
real contracts on the Blockchain, we will now examine other ways that our
concurrent-objects-as-contracts viewpoint can help us understand how contracts
can behave on the blockchain.

3.1 Atomic updates in shared-memory concurrency

Figure 3 depicts a canonical example (presented in a Java 8-like pseudocode) of
a wrongly used concurrent object, which is supposed to implement an “atomic”
counter with methods get and set. The implementation of the concurrent
counter on the left is obviously thread-safe (i.e., data race-free), thanks to the use
of synchronized primitives [17]. What is problematic, though, is how an instance
of the Counter class is used in the multithreaded client code on the right.

Specifically, with two threads running in parallel and their operations inter-
leaving, the call to incr() within thread2’s body could happen, for instance,
between the assignment to a and the call c.set(a + 1) within the incr() call of
thread1. This would invalidate the condition in the following assert statement,
making the overall program fail non-deterministically for a certain execution!

The issue arises because the implementation of incr() on top of Counter does
not provide the atomicity guarantees, expected by the client code. Specifically,
the code on the right is implemented in the assumption that there will be no
interference between the statements of incr(), hence the counter c is going to be
incremented by 1, and a and b will be the same by the end of its execution. Indeed,

6



DAO: withdrawRewardFor()

Manipulation with DAO_recipient.call.value(…):

Inv(contract.state, balance)

c.atomicMethod()

Environment

c.atomicMethod() c.atomicMethod()

Environment

Inv Inv Inv Inv Inv Inv

Inv balances[msg.sender] = 0



Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.

Reentrancy (Un)cooperative multitasking

call/send context switching

contract state object state—

—

—

Invariants Atomicity—



Querying an Oracle

Transaction 1
c.prepareRequest()

o.raiseEvent()

o.respond()

c.__callback(data)

Transaction 2



Querying an Oracle

Transaction 1
c.prepareRequest()

o.raiseEvent()

o.respond()

c.__callback(data)

Transaction 2

Block N Block N+M



function enter() {
  if (msg.value < 50 finney) {
     msg.sender.send(msg.value);
     return; 
  }
  warrior = msg.sender; 
  warriorGold = msg.value; 
  warriorBlock = block.number; 
  bytes32 myid = 
      oraclize_query(0,”WolframAlpha","random number between 1 and 9"); 
}

BlockKing via Oraclize 

function __callback(bytes32 myid, string result) { 
  if (msg.sender != oraclize_cbAddress()) throw; 
  randomNumber = uint(bytes(result)[0]) - 48; 
  process_payment();
}



Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.

Reentrancy (Un)cooperative multitasking

call/send context switching

contract state object state—

—

—

Invariants Atomicity—

Non-determinism data races—



Reasoning about  
High-level Behavior of Contracts  

(as of Concurrent Objects)



Temporal Properties
Q since P ≝ ∀ s s′,  s →c* s′, P(s) ⇒ Q(s, s′)   

• “Token price only goes up”; 

• “No payments accepted after the quorum is reached”; 

• “No changes can be made after locking”; 

• “Consensus results are irrevocable”; 

• etc.



Work in Progress
• A Coq-based DSL for formally defining high-level 

contract behavior as of a “concurrent object”; 
• Definitions of generic semantic contract properties; 
• Formal proofs for several case studies (in Coq); 
• Reasoning about contract/object composition; 
• A verified compiler from the DSL to EVM; 
• A compiler from Solidity to the DSL;



To take away

Accounts using smart contracts in a blockchain  
are like

threads using concurrent objects in shared memory.

• Understanding intra- and inter-transactional behavior; 
• Detecting atomicity violations and data races; 
• Repurposing existing verification ideas;

Thanks!


