
Concurrent Data Structures
Made Easy

Ilya Sergey

ilyasergey.net

joint work with Callista Le, Koon Wen Lee, Kiran Gopinathan, and Seth Gilbert

http://ilyasergey.net

2

Concurrency is Hard

insert (10)

find (6)

remove (2)

3

Concurrency is Hard

insert (10)

find (6)

remove (2)

• Advantages:

• Easy to implement

• Immediately thread-safe

• Disadvantages:

• High lock contention

• No parallelisation

4

Concurrency is Hard
Coarse-grained concurrency

5

Concurrency is Hard

insert (10)

find (6)

remove (2)

6

Concurrency is Hard

insert (10)

find (6)

remove (2)

7

Concurrency is Hard
Fine-grained Concurrency

8

Concurrency is Hard
Fine-grained Concurrency

• Advantages:

• High degree of parallelism

• Little contention

• Disadvantages:

• Hard to design

• Hard to reason about

• Hard to debug

9

Concurrency is Hard

This is a pretty thick book btw.

Batch Parallelism

10

Insight:
Handling a batch of known operations

is easier than
 handling a stream of arbitrary operations

11

Batch Parallelism

12

Batch Parallelism

remove (2) insert (10) find (6)

Advantages:

• Less lock contention

• Parallel operations

• Simpler design

But… some problems

13

Batch Parallelism

remove (2) insert (10) find (6)

14

Explicit Batch Parallelism

remove (2) insert (10) find (6)

15

Implicit Batch Parallelism

1. How to implement implicit batching

2. How to parallelise operations within a batch

16

This Work

1. How to implement implicit batching

2. How to parallelise operations within a batch

17

This Work

1. How to implement implicit batching

Key idea: You only need async/await for this

2. How to parallelise operations within a batch

18

This Work

19

Batching with async/await

Operation
(e.g. insert, search, etc.)

Blocks until fulfilled

Wrapped operation

Operation

Promise

Batch of
operations

Wrapped
operation

Wrapped
operation

Wrapped
operation

Wrapped
operation

Tries to launch batch

Run batch,
parallelise
operations

Fulfils promise

1. How to implement implicit batching

Key idea: You only need async/await for this

2. How to parallelise operations within a batch

20

This Work

1. How to implement implicit batching

Key idea: You only need async/await for this

2. How to parallelise operations within a batch

21

Outline

1. How to implement implicit batching

Key idea: You only need async/await for this

2. How to parallelise operations within a batch

Key idea: Sequential strategies for batch-parallelism

22

Outline

1. Split data structure into independent (sub-)data structures.

2. Modify each split data structure in parallel.

3. Rejoin modified data structures together.

Let’s look at an example!

23

A Sequential Strategy: Split-Join

24

10

116

1 8 18

Meet the Red-Black Tree

• An approximately balanced binary tree.

25

10

116

1 8 18

Meet the Red-Black Tree

• An approximately balanced binary tree.

• Each node is either red or black.

26

10

116

1 8 18

Meet the Red-Black Tree

• An approximately balanced binary tree.

• Each node is either red or black.

• Has empty leaves at the bottom layer.

27

10

116

1 8 18

Meet the Red-Black Tree

• An approximately balanced binary tree.

• Each node is either red or black.

• Has empty leaves at the bottom layer.

• Supports search, insert, delete operations
in O(log n) time complexity.

28

10

116

1 8 18

Meet the Red-Black Tree

• Invariants:

• Every leaf is black.

• If a node is red, both its children must
be black.

• Paths from a given node to any of its
descendant leaves must have the
same number of black nodes.

• Must rebalance after each update.
29

10

116

1 8 18

Meet the Red-Black Tree

30

2 3 4 5 7 9 12 13 15 20 22 24

10

116

1 8 18

A Batch-Parallel Red-Black Tree

31

6

1 8

2 3 4 5 7 9 12 13 15 20 22 24

11

10 18

A Batch-Parallel Red-Black Tree

32

61

8

11

10

18

2 3 4 5 7 9 12 13 15 20 22 24

A Batch-Parallel Red-Black Tree

33

2

31

4

6

85

97

11

1310

1512

20

2218

24

A Batch-Parallel Red-Black Tree

34

A Batch-Parallel Red-Black Tree

4

6

85

97

2

31

13

18

2215

2420

11

1210

35

A Batch-Parallel Red-Black Tree

4

6

85

2

31

13

18

2215

2420

11

1210

24

13

To sum up:

• Just implement split and join.

• No concurrent programming!

• Can be made generic, e.g. via functors (OCaml) or traits (Rust)

36

Batch Parallelisation Strategy: Split-Join

37

Other Data Structures and Strategies

AVL Tree

Red-Black Tree

Treap

Split-Join

van Emde Boas Tree

X-Fast Trie

Y-Fast Trie

Expose-Repair

B-tree

Skiplist

Ad-Hoc

Datalog

1. How to implement implicit batching

Key idea: You only need async/await

2. How to parallelise operations within a batch

Key idea: Sequential strategies for batch-parallelism

38

Our Work

• Implemented in OCaml 5:

• ~230 LOC for implicit batching.

• ~150 to ~200 LOC for generic part of each batching pattern.

• Using async/await from Domainslib library.

• Implemented in Rust:

• Approx. 150 LOC for implicit batching

39

Implementation Details

Test setup:

• OCaml implementation.

• Setup: 2M initial elements, 1M benchmarked operations.

• One operation = one concurrent task.

• Machine: AWS EC2, Intel Core Xeon Processor, 24 cores, 96 GB of RAM, Ubuntu 22.02.

40

Performance Evaluation

41

Performance Evaluation: Red-Black Tree

42

Performance Evaluation: AVL Tree

43

Performance Evaluation: Treap

44

Performance Evaluation: van Emde Boas Tree

45

Performance Evaluation: X-Fast Trie

46

Performance Evaluation: Y-Fast Trie

47

Performance Evaluation: Skiplist

48

Performance Evaluation: Datalog Solver

• Batching — easy way to implement parallel processing

• Implicit batching can be implemented using async/await

• Split/Join and other strategies: concurrent data structures without concurrent code!

49

To Take Away

OCaml library The paper

