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Concurrency is Hard

Coarse-grained concurrency
- Advantages:

- Easy to implement

- Immediately thread-safe
- Disadvantages:

- High lock contention

- No parallelisation
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Fine-grained Concurrency

00 README & Code of conduct 33 ISC license V4

APl Reference - Benchmarks - Stdlib Benchmarks

Saturn — Parallelism-Safe Data Structures for
Multicore OCaml

This repository is a collection of concurrent-safe data structures for OCaml 5. It aims to
provide an industrial-strength, well-tested (and possibly model-checked and verified in the
future), well documented, and maintained concurrent-safe data structure library. We want to
make it easier for Multicore OCaml users to find the right data structures for their uses.

You can learn more about the motivation behind Saturn through the implementation of a
lock-free stack here.

Saturn is published on opam and is distributed under the ISC license.

ocaml-ci | passing j§ release v1.0.0




Concurrency 1s Hard

Fine-grained Concurrency

- Advantages: - Disadvantages:
- High degree of parallelism - Hard to design
. Little contention - Hard to reason about

- Hard to debug

[J README & Code of conduct  3[3 ISC license V4

API| Reference - Benchmarks - Stdlib Benchmarks

Saturn — Parallelism-Safe Data Structures for
Multicore OCaml

This repository is a collection of concurrent-safe data structures for OCaml 5. It aims to
provide an industrial-strength, well-tested (and possibly model-checked and verified in the
future), well documented, and maintained concurrent-safe data structure library. We want to
make it easier for Multicore OCaml users to find the right data structures for their uses.

You can learn more about the motivation behind Saturn through the implementation of a
lock-free stack here.

Saturn is published on opam and is distributed under the ISC license.

ocaml-ci | passing | release v1.0.0 § doc online
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Abstract

Fine-grained concurrent programs are difficult to get right,
yet play an important role in modern-day computers. We
want to prove strong specifications of such programs, with
minimal user effort, in a trustworthy way. In this paper, we
present Diaframe—an automated and foundational verifica-
tion tool for fine-grained concurrent programs.

Diaframe is built on top of the Iris framework for higher-
order concurrent separation logic in Coq, which already
has a foundational soundness proof and the ability to give
strong specifications, but lacks automation. Diaframe equips
Iris with strong automation using a novel, extendable, goal-
directed proof search strategy, using ideas from linear logic
programming and bi-abduction. A benchmark of 24 examples
from the literature shows that the proof burden of Diaframe
is competitive with existing non-foundational tools, while
its expressivity and soundness guarantees are stronger.

CCS Concepts: - Theory of computation — Separation
logic; Automated reasoning; Program verification.

Keywords: Separation logic, fine-grained concurrency, proof
automation, Iris, Coq
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1 Introduction

Fine-grained concurrent programs, such as locks, reference
counters, barriers, and queues, play a critical role in modern
day programs and operating systems. Based on 15 years of
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research on concurrent separation logic [12, 13, 25, 29, 30, 32
35, 48, 67, 68, 74, 80, 81, 85-89], it has become possible t
verify increasingly complicated versions of such program
Yet, while several tools for verification of fine-grained co}
current programs based on these logics exist, none of thet
are both automated (the majority of the proof work is carrie
out by the tool) and foundational (a closed proof w.r.t. th
operational semantics is produced in a proof assistant).

Tools with good automation like Caper [31], Starling [9(
and Voila [91], generally use SMT [27] or separation-logi
solvers [65, 73] as trusted oracles. They are capable of pro
ing programs correct with relatively little help from th
user, allowing quick experimentation when designing alg
rithms. However, they have a large trusted computing base
one needs to trust their implementation, the used solvers, th
translation of the required side conditions to the used solver
and sometimes also the soundness of the underpinned logi
In particular, the results of such tools do not come wit
closed proofs that can be checked independently.

Foundational tools like Iris [45, 46, 48, 52], FCSL [77] an
VST [3, 17] are embedded in a proof assistant. Hence, on
only needs to trust the implementation of the proof assistat
and the operational semantics of the programming languag
but not the solvers or underpinned logic. Foundational too]
typically provide tactics [2, 6, 17, 51, 53, 60] to hide low-lew|
proofs, but the bulk of the proof work needs to be spelle
out. There are two reasons for this status quo. First, found
tional tools cannot rely on trusted oracles, unless proofs a1
reconstructed so that the proof assistant can verify them 1
dependently. Second, foundational tools usually have a ric
logic that can prove strong specifications, e.g., using impre|
icative invariants [80], for which automation has receive
little attention, even in a non-foundational setting.

In this paper, we present Diaframe—a foundational to¢
for automatic verification of fine-grained concurrent pr
grams. Diaframe extends Iris [45, 46, 48, 52]—a framewor
for interactive proofs in higher-order impredicative concu
rent separation logic in Coq—with powerful tactics to pe
form the bulk of the proof work automatically. This mear
we get the best of both worlds: closed proofs to underpin ot
results, while needing relatively little help from the user.

An overview of the architecture of Diaframe is displaye
in Figure 1. Diaframe takes two inputs from the user (marke
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2z A Concurrent Program Logic with a Future and History

Mechanized Verification of Fine-grained Concurrent Programs

Ilya Sergey
IMDEA Software Institute
ilya.sergey@imdea.org

Abstract

Efficient concurrent programs and data structures rarely employ
coarse-grained synchronization mechanisms (i.e., locks); instead,
they implement custom synchronization patterns via fine-grained
primitives, such as compare-and-swap. Due to sophisticated inter-
ference scenarios between threads, reasoning about such programs
is challenging and error-prone, and can benefit from mechanization.

In this paper, we present the first completely formalized frame-
work for mechanized verification of full functional correctness of
fine-grained concurrent programs. Our tool is based on the re-
cently proposed program logic FCSL. It is implemented as an
embedded domain-specific language in the dependently-typed lan-
guage of the Coq proof assistant, and is powerful enough to rea-
son about programming features such as higher-order functions
and local thread spawning. By incorporating a uniform concurrency
model, based on state-transition systems and partial commutative
monoids, FCSL makes it possible to build proofs about concurrent
libraries in a thread-local, compositional way, thus facilitating scal-
ability and reuse: libraries are verified just once, and their specifi-
cations are used ubiquitously in client-side reasoning. We illustrate
the proof layout in FCSL by example, and report on our experience
of using FCSL to verify a number of concurrent programs.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs): Specifying and Verifying and Reasoning about
Programs

General Terms  Algorithms, Theory, Verification

Keywords Compositional program verification, concurrency, sep-
aration logic, mechanized proofs, dependent types.

1. Introduction

It has been long recognized that efficient concurrency is of crucial
importance for high-performant software. Unfortunately, proving
correctness of concurrent programs, in which several computations
can be executed in parallel, is difficult due to the large number
of possible interactions between concurrent processes/threads on
shared data structures.

One way to deal with the complexity of verifying concurrent
code is to employ the mechanisms of so-called coarse-grained syn-
chronization, i.e., locks. By making use of locks in the code, the
programmer ensures mutually-exclusive thread access to critical
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resources, therefore, reducing the proof of correctness of concur-
rent code to the proof of correctness of sequential code. While
sound, this approach to concurrency prevents one from taking full
advantage of parallel computations. An alternative is to implement
shared data structures in a fine-grained (i.e., lock-free) manner, so
the threads manipulating such structures would be reaching a con-
sensus via the active use of non-blocking read-modify-write opera-
tions (e.g., compare-and-swap) instead of locks.

Despite the clear practical advantages of the fine-grained ap-
proach to the implementation of concurrent data structures, it re-
quires significant expertise to devise such structures and establish
correctness of their behavior.

In this paper, we focus on program logics as a generic ap-
proach to specify a program and formally prove its correctness wrt.
the given specification. In such logics, program specifications (or
specs) are represented by Hoare triples {P} ¢ {Q}, where ¢ is
a program being described, P is a precondition that constrains a
state in which the program is safe to run, and Q is a postcondition,
describing a state upon the program’s termination. Modern logics
are sufficiently expressive: they can reason about programs oper-
ating with first-class executable code, locally-spawned threads and
other features omnipresent in modern programming. Verifying a
program in a Hoare-style program logic can be done structurally,
i.e., by means of systematically applying syntax-directed inference
rules, until the spec is proven.

Importantly, logic-based verification of fine-grained concur-
rency requires reasoning about a number of concepts that don’t
have direct analogues in reasoning about sequential or coarse-
grained concurrent programs:

(1) Custom resource protocols. Each shared data structure (i.e.,
a resource) that can be used by several threads concurrently,
requires a specific “evolution protocol”, in order to enforce
preservation of the structure’s consistency. In contrast to the
coarse-grained case, where the protocol is fixed to be lock-
ing/unlocking, a fine-grained resource comes with its own no-
tion of consistency and protocol.

(2) Interference and stability. Absent locking, local reasoning
about a shared resource from a single thread’s perspective
should manifest the admissible changes that can be made by
other threads that interfere with the current one. Every thread-
local assertion about a fine-grained data structure’s state should
be stable, i.e., invariant under possible concurrent modifications
of the resource.

(3) Helping. This concurrent pattern appears in fine-grained pro-
grams due to relaxing the mutual exclusion policy; thus sev-
eral threads can simultaneously operate with a single shared re-
source. The “helping” happens when a thread is scheduled for
a task involving the resource, but the task is then accomplished
by another thread; however, the result of the work, once the task
is completed, is ascribed to the initially assigned thread.

In addition, Hoare-style reasoning about coarse- or fine-grained

concurrency requires a form of (4) auxiliary state to partially ex-

pose the internal threads’ behavior and relate local program asser-

EYER, TU Braunschweig, Germany
[IES, New York University, USA
WOLFF, New York University, USA

grained optimistic concurrent programs remains an open problem. Modern program logics
tion mechanisms and compositional reasoning principles to deal with the inherent complexity.
use is mostly confined to pencil-and-paper or mechanized proofs. We devise a new separation
vards the lacking automation. While local reasoning is known to be crucial for automation, we
show how to retain this locality for (i) reasoning about inductive properties without the need
and (ii) reasoning about computation histories in hindsight. We implemented our new logic
ied it to automatically verify challenging concurrent search structures that require inductive
hindsight reasoning, such as the Harris set.

{« Theory of computation — Separation logic; Hoare logic; Automated reasoning;
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Batch .

Parallelism

INsight:
Handling a batch of known operations
'S easier than
handling a stream of arbitrary operations
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Batch Parallelism
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remove (2)

insert (10)

Advantages:

. Less lock contention
- Parallel operations
.« Simpler design

But... some problems
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Explicit
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T'nhis Work

1. How to implement implicit batching

2. How to parallelise operations within a batch
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1. How to implement implicit batching
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T'nhis Work

1. How to implement implicit batching

Key idea: You only need async/await for this
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Batching with async/await
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T'nhis Work

1. How to implement implicit batching

Key idea: You only need async/await for this
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Outline

2. How to parallelise operations within a batch
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Outline

2. How to parallelise operations within a batch

Key idea: Sequential strategies for batch-parallelism

22



A Sequential Strategy: Split-Join

1. Split data structure into independent (sub-)data structures.
2. Modity each split data structure in parallel.

3. Rejoin modified data structures together.

Let’s look at an example!

23
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Meet the Red-Black Tree

- An approximately balanced binary tree.
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Meet the Red-Black Tree

- An approximately balanced binary tree.

- Each node is either red or black.
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Meet the Red-Black Tree

- An approximately balanced binary tree.
- Fach node is either red or black.

- Has empty leaves at the bottom layer.
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Meet the Red-Black Tree

- An approximately balanced binary tree.

- Each node is either red or black.

- Has empty leaves at the bottom layer.

« Supports search, insert, ¢

in O(log n) time complexit

elete operations
V.

28



Meet the Red-Black Tree

e |nvariants:
- Every leaf is black.

. |f a nodeis red, both its children must
ne black.

- Paths from a given node to any of its
descendant leaves must have the
same number of black nodes.

« Mustrebalance after each update.
29
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Batch-Parallel Red-Black Tree
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Batch Parallelisation Strategy: Split-Join

To sum up:
. Just implement split and join.
- No concurrent programming!

- Can be made generic, e.g. via functors (OCaml) or traits (Rust)
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Other Data Structures and Strategies

Split-Join

AVL Tree

Red-Black Tree

Treap

Expose-Repair

van Emde Boas Tree

Y-Fast Trie

Ad-Hoc

Skiplist

B-tree
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Our Work

1. How to implement implicit batching

Key idea: You only need async/await

2. How to parallelise operations within a batch

Key idea: Sequential strategies for batch-parallelism

38



Implementation Detalils

- Implemented in OCaml 5:
.« ~230 LOC for implicit batching.
- ~150 to ~200 LOC for generic part of each batching pattern.
. Using async/await from Domainslib library.

- Implemented in Rust:

- Approx. 150 LOC for implicit batching

39



Pertformance Evaluation

Test setup:
- OCaml implementation.
- Setup: 2M initial elements, TM benchmarked operations.

- One operation = one concurrent task.

- Machine: AWS EC2 Intel Core Xeon Processor, 24 cores 96 GB of RAM. Ubuntu 22.02.

40



Pertormance Evaluation: Red-Black Tree
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Performance Evaluation: AVL Tree
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Pertformance Evaluation: Treap
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Performance
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Throughput (ops/s)
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Throughput (ops/s)
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Performance
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To Take Away

- Batching — easy way to implement parallel processing
- Implicit batching can be implemented using async/await

- Split/Join and other strategies: concurrent data structures without concurrent code!

OCaml library The paper
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