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• Advantages: 

• Easy to implement 

• Immediately thread-safe 

• Disadvantages: 

• High lock contention 

• No parallelisation
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Concurrency is Hard
Fine-grained Concurrency

• Advantages: 

• High degree of parallelism 

• Little contention

• Disadvantages: 

• Hard to design 

• Hard to reason about 

• Hard to debug
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Concurrency is Hard

This is a pretty thick book btw.



Batch Parallelism
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Insight:  
Handling a batch of known operations 

is easier than 
 handling a stream of arbitrary operations
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Batch Parallelism
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Advantages: 

• Less lock contention 

• Parallel operations 

• Simpler design 

But… some problems
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Batch Parallelism
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Explicit Batch Parallelism
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Implicit Batch Parallelism



1. How to implement implicit batching 

2. How to parallelise operations within a batch 
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1. How to implement implicit batching 

Key idea: You only need async/await for this 

2. How to parallelise operations within a batch 
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Batching with async/await

Operation 
(e.g. insert, search, etc.)

Blocks until fulfilled

Wrapped operation

Operation

Promise

Batch of 
operations

Wrapped 
operation

Wrapped 
operation

Wrapped 
operation

Wrapped 
operation

Tries to launch batch

Run batch, 
parallelise 
operations

Fulfils promise



1. How to implement implicit batching 

Key idea: You only need async/await for this 

2. How to parallelise operations within a batch 

20

This Work



1. How to implement implicit batching 

Key idea: You only need async/await for this 

2. How to parallelise operations within a batch 

21

Outline



1. How to implement implicit batching 

Key idea: You only need async/await for this 

2. How to parallelise operations within a batch 

Key idea: Sequential strategies for batch-parallelism
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Outline



1. Split data structure into independent (sub-)data structures. 

2. Modify each split data structure in parallel. 

3. Rejoin modified data structures together. 

Let’s look at an example!
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A Sequential Strategy: Split-Join
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• An approximately balanced binary tree.
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• An approximately balanced binary tree. 

• Each node is either red or black. 

• Has empty leaves at the bottom layer.
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• An approximately balanced binary tree. 

• Each node is either red or black. 

• Has empty leaves at the bottom layer. 

• Supports search, insert, delete operations 
in O(log n) time complexity.
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• Invariants: 

• Every leaf is black. 

• If a node is red, both its children must 
be black. 

• Paths from a given node to any of its 
descendant leaves must have the 
same number of black nodes. 

• Must rebalance after each update.
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To sum up: 

• Just implement split and join. 

• No concurrent programming! 

• Can be made generic, e.g. via functors (OCaml) or traits (Rust)
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Batch Parallelisation Strategy: Split-Join
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Other Data Structures and Strategies

AVL Tree

Red-Black Tree

Treap

Split-Join

van Emde Boas Tree

X-Fast Trie

Y-Fast Trie

Expose-Repair

B-tree

Skiplist

Ad-Hoc

Datalog



1. How to implement implicit batching 

Key idea: You only need async/await 

2. How to parallelise operations within a batch 

Key idea: Sequential strategies for batch-parallelism
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Our Work



• Implemented in OCaml 5: 

• ~230 LOC for implicit batching. 

• ~150 to ~200 LOC for generic part of each batching pattern. 

• Using async/await from Domainslib library. 

• Implemented in Rust: 

• Approx. 150 LOC for implicit batching
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Implementation Details



Test setup: 

• OCaml implementation. 

• Setup: 2M initial elements, 1M benchmarked operations. 

• One operation = one concurrent task. 

• Machine: AWS EC2, Intel Core Xeon Processor, 24 cores, 96 GB of RAM, Ubuntu 22.02.
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Performance Evaluation
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Performance Evaluation: Red-Black Tree
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Performance Evaluation: AVL Tree



43

Performance Evaluation: Treap
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Performance Evaluation: van Emde Boas Tree
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Performance Evaluation: X-Fast Trie
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Performance Evaluation: Y-Fast Trie
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Performance Evaluation: Skiplist
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Performance Evaluation: Datalog Solver



• Batching — easy way to implement parallel processing 

• Implicit batching can be implemented using async/await 

• Split/Join and other strategies: concurrent data structures without concurrent code!
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To Take Away

OCaml library The paper


