
Scenario Week 2
COMP214P

scenario@cs.ucl.ac.uk

11–15 December 2017

Torpe
(the prosperous crab)

How to Furnish a Room

MOVE
!

This Week

Room Furnishing Problem
Put furniture pieces within a room,

without them overlapping,
using each item at most once,

trying to maximise their overall cost.

NP
-c
om
pl
et
e• Complexity-wise, harder than

• SAT

• Travelling salesman

• Hamiltonian paths

• Knapsack problem

Task 1: Computing the best RFP solutions

• 30 instances with obstacles of different shapes;

• File with instances: problems.rfp (see Moodle page);

• Room sizes: 4–250 vertices;

• 40–500 furniture pieces of various shapes;

• Compute a valid set of furniture locations for each problem instance;

• Grading: 60 points, two per instance, for any valid solution.

Encoding of the problems
problems.rfp

i.e., (4.5, 3.534635257) or (5,0). The sequence of the vertices is arranged in a way that the interior
of the polygon will stay on the left, when one “walks” from one vertex to the next one. The successor of
the last vertex in the list is the �rst vertex.

For the room and the coordinates of furniture pieces, the �rst vertex is always (0, 0). However, in
your solutions, furniture pieces are going to be moved and rotated, so the �rst coordinate may no longer
be (0, 0). The following grammar in BNF1 formally speci�es the format of the problem description:

<problem-instance> ::= <problem-identifier> ":" <room> "#" <furniture-set>

<problem-identifier> ::= <int>

<room> ::= <point-sequence>

<furniture-list> ::= <furniture> | <furniture> ";" <furniture-list>

<furniture> ::= <cost> ":" <furniture-location>

<cost> ::= <int>

<furniture-location> ::= <point-sequence>

<point-sequence> ::= <point> | <point> "," <point-sequence>

<point> ::= "(" <double> "," <double> ")"

As an example, the text below describes the problem from Figures 1, the room and three furniture
entries, in the de�ned format, numbered 1:

1: (0,0), (2,0), (2,1), (1,1), (1,2), (0,2) # 1:(0,0), (1,0), (1,1), (0,1); 2:(0,0), (2,0), (0,1); 3:(0,0), (0.5,0), (0.5,2), (0,2)

In this example, the room is encoded as a polygon with six comma-separated integer vertices (0,0),
(2,0), (0,0), (2,1), (1,1), (1,2), (0,2), which follow the problem number. After the # sign,
follow three furniture entries. The �rst one, 1: (0,0), (1,0), (1,1), (0,1), for instance, corre-
sponds to the square A from Figure 1, with unit density 1; the second one, 2: (0,0), (2,0), (0,1)

is a triangle B, whose unit density is 2, etc.
Your goal for this task is to compute, for each of the 30 RFP instances, a set of positions of furniture

items, so they would �t the room (i.e., would not intersect its boundaries), would not overlap between
each other, and would correspond to items from the list, speci�ed in the problem description. You can
use each item only once, but it is okay not to use all available items (som of them might not even �t the
room). Furniture items can be rotated and translated (i.e., moved to new positions) in order to �t the room,
whose position is �xed. A “furnishing” is considered successful if it covers 30% or more of the room
area. Solutions that cover smaller area of a room will not be accepted by the server. At the moment, let
us ignore the unit costs: they will matter for the competition, outlined in Section 2.4.

For a submitted solution, the server checks that all encoded pieces of furniture at their new positions
are those from the problem statement, up to rotation and translation, but not up to permutation of the
order of the vertices in the encoding of polygons. That is if a piece of furniture with 4 vertices (A, B, C ,
D) was encoded as A,B,C,D, so that A0

, B

0
, C

0
, D

0 is the encoding of its rotation/translation in your
solution, then A

0 should be an image of A, B0 is an image of B, etc.

The solution for this task is a text �le. You can implement your algorithm in any program-
ming language of your preference and use any libraries you consider necessary. You do not have
to (and should not) submit the code.

1 https://en.wikipedia.org/wiki/Backus%E2%80%93Naur_form

3

R

R

A

B

C

A B C

1

2

3

1

2

3

A Solution

Encoding your solutions

team name

team’s password

per-instance furniture positions

1

2
3

1

(a) (b) (c)

cost = 3 cost = 4 cost = 5

2

3

Figure 2: Three possible solutions for the problem for Figure 1, with cumulative costs.

Solution format

The �le with the results should start with the �rst line containing the name of the team and the second
line being its password. If those do not match, the �le will not be accepted by the system. The remaining
lines should contain the solutions in the format, described by the following grammar (white spaces are
ignored and can be added arbitrarily):

<solution-instance> ::= <problem-identifier> ":" <location-list>

<problem-identifier> ::= <int>

<location-list> ::= <furniture-location> | <furniture-location> ";" <location-list>

<furniture-location> ::= <point-sequence>

<point-sequence> ::= <point> | <point> "," <point-sequence>

<point> ::= "(" <double> "," <double> ")"

A solution for each problem, along with its number, should be placed on a separate line. There is no
speci�c order imposed on the sequence of the paths or solutions. Each solution line starts with a number
of a problem, followed by a semicolon, followed by one or more furniture items, separated by semicolons.
Each furniture item is a list of points. No unit costs should be mentioned in the solution: they will be
retrieved automatically from the problem description.

For instance, a solution (a) from Figure 2 for the problem from Figure 1, containing a triangle and a
square, and submitted by the team alarcon with a password lt239vshrskq might look as follows:

alarcon

lt239vshrskq

1: (2,1), (0,1), (2,0); (0,1), (1,1), (1,2), (0,2)

That is, the initial furniture item (triangle B) encoded as (0,0), (2,0), (0,1) has been rotated and
shifted, so in the submitted solution it has become (2,1), (0,1), (2,0) (i.e., (0, 0) has been mapped
to (2, 1), (2, 0) to (0, 1), etc). The square A has been shifted by 1 unit vertically, so it is now encoded
as (0,1), (1,1), (1,2), (0,2).

Two alternative solutions, (b) and (c) from Figure 2, can be encoded (and submitted separately) as:

4

1

2

problem number

Checking and submitting solutions
• Warning: double-precision floating-point arithmetic

• all equalities are up to ε = 0.000,000,001
• Details on acceptance criteria are in the specification (on Moodle)
• Submit your solutions here:

http://scenario.cs.ucl.ac.uk

Solutions are accepted until 14:00 GMT 15 Dec 2017

http://scenario.cs.ucl.ac.uk

Task 2: Visualisation
• Implement a visualiser for rooms and furniture locations:

• drawing room shapes;
• showing by colour different unit costs of furniture items;
• drawing remaining unused furniture;
• drawing selected furniture items within the room.

• Grading: 10 points

• Assessed by the organisers from 14:00 till 17:00, 15 Dec

• book a slot for your team!

Our Solution (intentionally suboptimal)

• Room size: 9
• 39 furniture pieces
• Coverage: 40%

Our Solution (intentionally suboptimal)
• Room size: 180
• 500 furniture pieces
• Coverage: 46%

Task 3: Implementation report

• Describe your implementation experience
• language, tools, algorithms, heuristics, etc.

• details in the specification (see Moodle)
• Grading: 10 points

• Submit on Moodle by 17:00, 15 Dec 2017 (one per team)

• Compete with other teams for the best RFP solutions
• Check the score table http://scenario.cs.ucl.ac.uk for details
• Grading: up to 20 points.

Task 4: The Competition!

Reward (team) = 20 − min(20, rank (team) − 1)

http://scenario.cs.ucl.ac.uk

Overall grading

Task Max grade

Computing valid RFP solutions 60

Visualisation of the solutions 10

Implementation report 10

The Competition 20

This week schedule
Monday
11 Dec

Tuesday
12 Dec

Wednesday
13 Dec

Thursday
14 Dec

Friday
15 Dec

10:00-11:00 Darwin Building B40
LT

Darwin Building B15

Student Central - 1st
Floor - The Venue

IOE - Bedford Way
(20) - 802

11:00-12:00

12:00-13:00 Gordon House 106

14:00-16:00 IOE - Bedford
Way (20) - 104 -

Elvin Hall16:00-17:00 Medawar Building
G02 Watson LT

Birkbeck Malet
Street B36

17:00-18:00 IOE - Bedford Way
(20) - 104 - Elvin Hall

Helpdesk (green) — time and location where the staff and/or TAs will be present to answer your questions
Lectures (blue) — introductory and concluding lectures
Demonstration (red) — checking the visualisation of the algorithms by the staff and TAs (book your slot!)

Good luck!

