Cardinality Analysis and its Applications:
from Glasgow Haskell Compiler

to Sharded Blockchains
[lya Sergey

Yale

College
ANUS

National Universit
of Singapo

Part 1
Cardinality Analysis for Haskell Programs

Joint work with Dimitrios Vytiniotis and Simon Peyton Jones, presented at POPL 14

Optimist ;
ptimising compiler in a nutshell

P1

Optimising compiler in a nutshell

R O |

Annotating static analysis

A

A story of
three program optimisations

Optimisation 1

fi1, £f2 :: [Int] -> Int Whichfunction 1S
Better
\ better to run?
fl xs = let ys =
in squash (\n -> sum (map (+ n) ys))
—/—/

if invoked more than once by squash

/fz XS squash (\n -> sum (map (+ n))

N ————————— —

Better if invoked at most once by squash

Optimisation 1

squashl, squash2 :: (Int -> Int) -> Int

squashl kK = sum (map k [1..10])

squash2 k 2 * (k 0)

fl xs = let ys = map costly Xs
in squash (\n. sum (map (+ n) ys))

f2 xs = squash (\n. sum (map (+ n) (map costly xs)))

Need to know:
how many times
a function 1s called.

(call cardinality)

Optimisation 2

“worker-wrapper” split

f x = case x of (p,q) -> <cbody>

Optimisation 2
“worker-wrapper” split

“wrapper”, usually inlined on-site

N

f x = case x of (p,q) > fw p g

fw p q = <cbody>

“worker”

Optimisation 2
“worker-wrapper” split

What if g is never used in <cbody>?

/

f x = case x of (p,q) -> fw p

fw p = <cbody>

Don’t have to pass q to fw!

Which parts of
a data structure are
certainly not used?

(absence)

Optimisation 3

smart memoisation

f :: Int -> Int -> Int

fxc=i4if x > 0 then@else

1f x == 0 then O else

AN

Will be used exactly once:
no need to memoize!

Which parts
of a data structure
are used no more than once?

(thunk cardinality)

Cardinality Analysis

» Call cardinality
+ Absence

» Thunk cardinality

Usage demands

(how a value is used)

call demand

Usage demands d == |CY(d)|| Udf, df)| U

Cardinality demands d' == A|nx*d

Usage cardinalities n o= 1w

tuple demand

C™(d) [|\U(d], d)|| U

Usage demands d

Cardinality demands d' == A|nx*d

Usage cardinalities n o= 1w

general demand
Usage demands d == C"d)|U(df,d)|(v)

Cardinality demands d' == A|nx*d

Usage cardinalities n o= 1w

Usage demands d == CYd)|Ud,d)|U

absent value

Cardinality demands dT = \ nxd

Usage cardinalities n = 1|w

Usage demands d == CYd)|Ud,d)|U

used at most n times
Cardinality demands ~ d' == A|nxd

Usage cardinalities n o= 1w

Usage lypes

(how a function uses its arguments)

wurblel :: % C’w(C’l(U)) 5

wurblel a g = g 2@+ g 3@

wurblel :: wxU —|C¥(CH(U)) — o
wurblel a g =2 a +3 a

wurble2 :: % C’l(Cw(U)) 5 e

wurble2 a g = sum (map (g@ [1..1000])

wurble2 :: wxU — Cl(C""(U)) — e

wurble2 a g = sum (map a) [1..1000])

f :: 1xU(1xU,A) — e

f x = case x of (p, q) > p + 1

Usage type
depends on a usage context!

(result demand determines argument demands)

Two Types
of Modular Program Analyses

® Forward analysis

® “Run” the program with abstract input and infer the abstract result;

® Examples: sign analysis, interval analysis, type checking/inference.

® Backwards analysis

® From the expected abstract result of the program infer the abstract
values of its inputs.

Backwards Analysis

Infers demand type basing on a context

PHeld= (T;yp)

PHel d= (T;p)

P - signature environment, maps some of free variables of e to their
demand signatures (i.e., keeps some contextual information)

d - usage demand, describes the degree to which e is evaluated
T - demand type, usages that e places on its arguments

® - fv-usage, usages that e places on its free variables

e = \x . case z of (p,q) — (p, f True)

e = Ax .case x of (p,q) — (p,

c > ei, Cl(U)é<1*U(w*U,A)%O;>
T ¥

Each function is a
backwards demand transformer
it transforms a context demand to
argument demands and fv-demands.

How many context demands are there?

We cannot compute best argument demands
for all contexts:
need to approximate.

Demand Lattice

T wx U

1*U w*U w*UA\

/

1xU (A, wxCHU)) 1>x<U(w>l<U A)

\ / w*C;’(U(A ,wxU))

1xU (A, A)
1xC“(U(A,w=U))

\/

w*C“’

Each function is
a monotone backwards demand transformer.

Exploiting demand monotonicity

Argument demands

T=wxU...wxUe

dl

a

"""""""""""""" 3 .

i ...d
Cdl @i :
oo o

d, . d2

Context demand

Analysis-based annotations

PHPel d= (T;¢p)

Elaboration

PHeld= (T;p) ~ e

» let-bindings in e are annotated with m € {0, 1, w}
to indicate how often the let-binding is evaluated;

« Each Lambda Anx .e; in e carries an annotation n € {1, w}
to indicate how often the lambda is called.

el let f =Mz \y. 2 True in f pq | C(U)
= (o;{p = 1xC*(U),q — A})

A

let f - Max Ay, x True in f p g

Soundness

Restricted
operational
semantics

(makes sure that the annotations are respected)

Annotating
cardinality
analysis

produces well-typed

programs

N

Type and effect

annotated programs

do not get stuck

system

N\

progress and preservation

N

Restricted
operational
semantics

Small-Step CBN Machine

Sestoft:JFP97

€1

Small-Step CBN Machine

<H17 617 S1>

Small-Step CBN Machine

<H17€17‘91> 7. > <Hn7€nysn>

€1 ~~ €1

Erasing Annotations

€1 = €1

Restricted CBN Machine

<H1, 61,51> — ... “— <Hn7en757’b>

«]-annotated lambdas can be called at most once;
» I-annotated bindings can be used only once;

» (0-annotated bindings cannot be used at all.

Soundness Theorem

An analysis-annotated program
behaves the same way under restricted semantics
as the original program
under the normal semantics.

Soundness Theorem

If ee; LU = (1,€) ~ e
and (e;e1;e) —" (H;ex;S)
then
(e;e156)=3(H e2;S)

such that (H e%,S%) = (H, es, S)

Cardinality-Enabled
Optimisations

1. Let-in floating optimisation

ml

)
] A

in (letf@@.eineg)
— 1etfﬂ§@1:.ine) in es,

for any mi, me and z & F'V (e2).

Improvement Theorem 1

Let-in floating
does not increase the number
of execution steps.

Improvement Theorem 1

For any H and S, if
(Hilet 2 Zerin(let /™ Mo eines);s) IO
and z ¢ FV(e2)
then

(H;let f 2 Mz . (let 2 Z e; ine) ine2;5>l@

where o ¥ means “terminates in N steps”.

2. Smart Execution

Optimised CBN Machine

<H1,€1,Sl> > L. > <anen757’b>

» I-annotated bindings are not memoised,;

» (0-annotated bindings are skipped.

Improvement Theorem 2

Optimising semantics
works faster on elaborated expressions
and produces coherent results.

Improvement Theorem 2

If eer LU = (1,€) ~ e
and (5 er5¢) —(Hse2:5)
then

(e,e1,€) =D(ge(H), e, ge(S))

such that@

and <Hu7egash> — <H7€27S>

Implementation
and
Evaluation

GHC Compilation Pipeline

A number of Intermediate Languages v
HsSyn RdrName ‘

® Haskell Source m—

HsSyn Name ‘

. C O r e Typecheck

® Spineless Tagless G-Machine

e The Simplifier

e Rewrite rules

e Strictness analysis

e Let-floating (inwards and
outwards)

e Specialise overloaded functions

¢ Constructor specialisation

o C--

CoreExpr
(with tidy names)

® (C / Machine Code / LLVM Code

rePrep Convert to IfaceSyn

P
CoreExpr ‘ ' IfaceSyn

(in A-normal form) Serialise

Most of interesting optimizations ..
happ en here Gode goneratn

Convertto STG

-

HsSyn Name ‘

Typecheck

HsSyn Id ‘

Desugar

The Simplifier

Rewrite rules

Strictness analysis

Let-floating (inwards and
outwards)

e Specialise overloaded functions
e Constructor specialisation

CoreExpr

CoreExpr

CoreTidy

CoreExpr
(with tidy names)

I CraraPran ‘ I Convert to IfaceSyn ‘

GHC Core

A tiny language, to which Haskell sources are de-sugared;
Based on explicitly typed System F with type equality coercions;
Used as a base platform for analyses and optimisations;

All names are fully-qualified;

if-then-else is compiled to case-expressions;

Variables have additional metadata;

Type class constraints are compiled into record parameters.

Core Syntax

data Expr b

= Var Id
Lit Literal
App (Expr b) (
Lam b (Expr b)
Let (Bind b) (Expr b)
Case (Expr b) b Type [Alt Db]
Cast (Expr b) Coercion
Tick (Tickish Id) (Expr b)
Type Type
Coercion Coercion

Expr b)

data Bind b

NonRec b (Expr b)
| Rec [(b, (Expr b))]

type Alt b = (AltCon, [b], Expr b)

data AltCon
= DataAlt DataCon
| LitAlt Literal
| DEFAULT

How to See Core

Desugared Core

> ghc -ddump-ds Program.hs

Core with Strictness Annotations

> ghc -02 -ddump-stranal Program.hs

Core after Worker/Wrapper Split

> ghc -02 -ddump-worker-wrapper Program.hs

Try it on

module Program where

squash £ = £ 42
costly X = product [1l..X]
foo xs = squash (\n -> sum (map (+ n) (map costly xs)))

The analysis and optimisations are implemented

in Glasgow Haskell Compiler (GHC v7.8 and newer):
http://github.com/ghc/ghc

Added 250 LOC to 140 KLOC compiler;

Runs simultaneously with the strictness analyser;

Evaluated on

nofib benchmark suite,
- various hackage libraries,

the Benchmark Game programs,
GHC itself.

http://github.com/ghc/ghc

Results on nofib

*
Program Synt. A\ Synt. Thnk® || RT Thnk®
anna 4.0% 7.2% 2.9%
bspt 5.0% 15.4% 1.5%
cacheprof 7.6% 11.9% 5.1%
calendar 5.7% 0.0% 0.2%
constraints 2.0% 3.2% 4.5%

... and 72 more programs

Arithmetic mean 10.3% 12.6% 5.5%

* as linked and run with libraries

Results on nofib

Program ‘ Allocs Runtime
@ No hack Hack
anna -2.1% -0.2% +0.1% -0.0%
bspt -2.2% -0.0% -0.0% +0.0%
cacheprof -7.9% -0.6% -6.1% -3.0%
calendar -9.2% +0.2% -0.0% -0.0%
constraints -0.9% -0.0% -1.2% -0.2%
... and 72 more programs
Min -95.5% | -10.9% -28.2% | -12.1%
Max +3.5% | +0.5% +1.8% | +2.8%
Geometric mean

The hack (due to A. Gill): hardcode argument cardinalities for
build, foldr and runsr.

Compiling with optimised GHC

» We compiled GHC itself with cardinality optimisations;

» Then we measured improvement in comptilation runtimes.

Program [.OC GHC Alloc A GHC RT A
No hack | Hack | Nohack | Hack
anna 5740 -1.6% | -1.5% -0.8% | -0.4%
cacheprof || 1600 -1.7% | -0.4% -2.3% | -1.8%
fluid 1579 -1.9% | -1.9% -2.8% | -1.6%
gamteb 1933 -0.5% | -0.1% -0.5% | -0.1%
parser 2379 -0.7% | -0.2% -2.6% | -0.6%
veritas 4674 -1.4% | -0.3% -4.5% | -4.1%

Beyond GHC optimisations

Program Synthesis by Type-Guided Abstraction Refinement

ZHENG GUO, UC San Diego, USA
MICHAEL JAMES, UC San Diego, USA
DAVID JUSTO, UC San Diego, USA

JIAXIAO ZHOU, UC San Diego, USA
ZITENG WANG, UC San Diego, USA
RANJIT JHALA, UC San Diego, USA

NADIA POLIKARPOVA, UC San Diego, USA

* Hoogle+ synthesis algorithm (POPL20) relies on cardinality
analysis to eliminate terms where some of the inputs are unused.

To take away

Cardinality analysis is simple to design and understand:
it’s all about usage demands and demand transformers;

[t is cheap to implement: we added only 250 LOC to GHC;
[t is conservative, which makes it fast and modular;

Call demands make it higher-order, so the analysis can infer demands on
higher-order function arguments;

[t is reasonably efficient: optimised GHC compiles up to 4% faster.

The ideas of cardinality analysis extend beyond just optimisations in GHC.

Thanks!

