
Random Testing of
a Higher-Order Blockchain Language

(Experience Report)

Ilya Sergey
National University of Singapore

Anton Trunov
Zilliqa

Tram Hoang
National University of Singapore

Leonidas Lampropoulos
University of Maryland, College Park

ICFP 2022

What is Blockchain?

2

What is Blockchain?

3

4

ICFP 2019 Keynote

Getting Your Code on a Blockchain

5

Getting Your Code on a Blockchain

Proposed by a user

Code

Parser Type Checker

✗ ✗
TX abortedTX aborted

✔

Validated by other users

Parser Type Checker

✗ ✗
TX abortedTX aborted

✔

Validated by other users

Validated by other users

Getting Your Code on a Blockchain

7

Parser

Proposed by a user

✗
TX aborted

Type Checker

✗
TX aborted

✔ ✔
code and state
are replicated

Code

State

Code

State

Code

State

Code

Using Your Code on a Blockchain

8

to: SomeContract C

call: C.m(x)

validation
Interpreter

✗
TX aborted

✔
validation

Interpreter

✗
TX aborted

✔

Replicated by others

Using Your Code on a Blockchain

9

Message by a user

to: SomeContract C

call: C.m(x)
✗

TX aborted

validation
Interpreter✔

eval C.m(x, σc)

✔

State

Code

Code

Code

State

State

validation
Interpreter

✗
TX aborted

✔
validation

Interpreter

✗
TX aborted

✔validation

Using Your Code on a Blockchain

10

Message by a user

to: SomeContract C

call: C.m(x)

Interpreter

✗
TX aborted

✔ ✔

Code

State′

Code

State′

Code

State′

Replicated by others

eval C.m(x, σc)

What Can Go Wrong?

11

Scenario 1: Static Semantics Bug

12

⊢ Fund_Amy OK => No Exceptions

fun withdraw_donations _ =
…
for (b <- backer_accounts) do
account_to_address(b) match
| Some(addr) => …
| None => …

done

Fund_Amy.code

Scenario 1: Static Semantics Bug

13

Fund_Amy.code

fun withdraw_donations _ =
…
for (b <- backer_accounts) do
account_to_address(b) match
| Some(addr) => …
| None => …

done

Throws an
exception if b
is ill-formed

⊢ Fund_Amy OK => No Exceptions
WRONG!

Scenario 1: Static Semantics Bug

14

Fund_AmyFund_Amy

Fund_Amy

Fund_Amy.
withdraw_donations

throws
Exception

What Else Can Go Wrong?

15

Scenario 2: Cost Semantics Bug

16

Interpreter.ml

fun eval_arith_operation op args =
…
| Power base x =>
let res = compute_pow base x in
let gas_charged = log2 x in
(res, gas_charged)

Scenario 2: Cost Semantics Bug

17

Interpreter.ml

fun eval_arith_operation op args =
…
| Power base x =>
let res = compute_pow base x in
let gas_charged = log2 x in
(res, gas_charged)

Replicated by
many users to

re-validate
Takes O(x)
in Leela’s

implementation

Scenario 2: Cost Semantics Bug

18

Interpreter.ml

fun eval_arith_operation op args =
…
| Power base x =>
let res = compute_pow base x in
let gas_charged = log2 x in
(res, gas_charged)

Charges for
computing

power

Takes O(x)
in Leela’s

implementation

19

validation
Interpreter

✗
TX aborted

✔
validation

Interpreter

✗
TX aborted

✔
eval C.m(x, σc)validation

to: ArithContract C

call: C.m(x)

✗
TX aborted

Scenario 2: Cost Semantics Bug
pow(b, x)
cheap to
propose Expensive

to execute

Interpreter.ml

20

validation
Interpreter

✗
TX aborted

✔
validation

Interpreter

✗
TX aborted

✔
eval C.m(x, σc)validation

to: ArithContract C

call: C.m(x)

✗
TX aborted

Scenario 2: Cost Semantics Bug

to: ArithContract C

call: C.m(x)
to: ArithContract C

call: C.m(x)
to: ArithContract C

call: C.m(x)
to: ArithContract C

call: C.m(x)
to: ArithContract C

call: C.m(x)
to: ArithContract C

call: C.m(x)
to: ArithContract C

call: C.m(x)
to: ArithContract C

call: C.m(x)
to: ArithContract C

call: C.m(x)
to: ArithContract C

call: C.m(x)

Interpreter.ml

pow(b, x)
cheap to
propose Expensive

to execute

Scenario 2: Cost Semantics Bug

21

Interpreter.ml

fun eval_arith_operation op args =
…
| Power base x =>
let res = compute_pow base x in
let gas_charged = log2 x in
(res, gas_charged)

What Else Can Go Wrong?

22

23

1010111010110110101010
1010101011001010101000
1010101010111010101101
0101010101010101010101
1010101010101010110101

Scenario 3: A Compiler Exploit

10x speedup
in transaction

processing!

24

1010111010110110101010
1010101011001010101000
1010101010111010101101
0101010101010101010101
1010101010101010110101

Code

1010111010110110101010
1010101011001010101000
1010101010111010101101
0101010101010101010101
1010101010101010110101

Code

1010111010110110101010
1010101011001010101000
1010101010111010101101
0101010101010101010101
1010101010101010110101

Code

Scenario 3: A Replicated Compiler Exploit

1010111010110110101010
1010101011001010101000
1010101010111010101101
0101010101010101010101
1010101010101010110101

O(n3)
in the

program size
25

Scenario 3: A Replicated Compiler Exploit

26

1010111010110110101010
1010101011001010101000
1010101010111010101101
0101010101010101010101
1010101010101010110101

Scenario 3: A Replicated Compiler Exploit

Code

1010111010110110101010
1010101011001010101000
1010101010111010101101
0101010101010101010101
1010101010101010110101

Code

1010111010110110101010
1010101011001010101000
1010101010111010101101
0101010101010101010101
1010101010101010110101

Code

Language-Layer Bugs

• Type Checker & Interpreter:
static guarantees are not ensured at runtime

• Reference Interpreter:
cost semantics is misaligned with runtime costs

• Compiler:
Compilation cost is not linear in the program size

27

This Talk

28

Catching Bugs

in the Blockchain Language Layer

using Property-Based Testing

The Rest of the Talk

29

• The Language

• The Testing Framework

• Generating Random Programs

• Semantic Harness for Testing

• Found Bugs

The Rest of the Talk

30

• The Language

• The Testing Framework

• Generating Random Programs

• Semantic Harness for Testing

• Found Bugs

31

Smart Contract Intermediate Level Language

• Principled Model for Computation

• Not Turing Complete

• Explicit Effects

• Communication

System F + extensions

Only structural recursion/iteration

State Transformer Semantics

Contracts are autonomous actors

Used by

OOPSLA’19

Scilla

Scilla

Variables: 𝑥, 𝑦,… , 𝑋, 𝑌,…
Primitives: 𝑝 ∷= 𝐼𝑛𝑡32 | 𝐼𝑛𝑡64 … 𝑈𝑖𝑛𝑡32 …

𝑆𝑡𝑟𝑖𝑛𝑔 𝐵𝑦𝑆𝑡𝑟 𝐵𝑦𝑆𝑡𝑟𝑋 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 | …
Constants : 𝑐 ∷= 𝑂 1 " " | …
Types: σ, τ… ∷= 𝑝 𝜎 → 𝜏 𝑋 | ∀𝑋. 𝜏
Terms: e, … ∷= 𝑥 𝑐 𝑒!𝑒" | 𝜆𝑥 ∶ 𝜎. e

| e τ ΛΧ. e f ∶ e, …
C e!…e" match e with < pat ⇒ sel > end

Pure Fragment: System F

Scilla
Pure Fragment: System F

Variables: 𝑥, 𝑦,… , 𝑋, 𝑌,…
Primitives: 𝑝 ∷= 𝐼𝑛𝑡32 | 𝐼𝑛𝑡64 … 𝑈𝑖𝑛𝑡32 …

𝑆𝑡𝑟𝑖𝑛𝑔 𝐵𝑦𝑆𝑡𝑟 𝐵𝑦𝑆𝑡𝑟𝑋 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 | …
Constants : 𝑐 ∷= 𝑂 1 " " | …
Types: σ, τ… ∷= 𝒑 𝝈 → 𝝉 𝑿 | ∀𝑿. 𝝉
Terms: e, … ∷= 𝒙 𝒄 𝒆𝟏𝒆𝟐 | 𝝀𝒙 ∶ 𝝈. 𝐞

| 𝐞 𝛕 𝚲𝚾. 𝐞 f ∶ e, …
C e!…e" match e with < pat ⇒ sel > end

Scilla
Stateful Fragment

s ::=
| x <- f
| f := x
| let x = e
| event m
| send ms

Scilla
Library of

pure
functions

Contract
definition

Immutable
contract

parametersMutable
fields

Interaction
via messages

Transitions

Scilla
Monadic Interpreter (in OCaml)

Monadic
cost & failure

tracking

The Rest of the Talk

37

• The Language

• The Testing Framework

• Generating Interesting Programs

• Semantic Harness for Testing

• Found Bugs

The Rest of the Talk

38

• The Language

• The Testing Framework

• Generating Interesting Programs

• Semantic Harness for Testing

• Found Bugs

Property-Based Testing

• Programmer writes properties of software system or
component as a function from inputs to Booleans

• Tool generates many random inputs and applies the
function to each one

• Famously embodied in Haskell QuickCheck

39

John Hughes

Koen Claessen

Tricky part:
we only need

well-typed terms

Theorem preservation :
forall Γ e τ e’,
Γ |- e : τ -> e => e’ -> Γ |- e’ : τ.

40

Testing Language Properties

Theorem preservation :
forall Γ e τ e’,
Γ |- e : τ -> e => e’ -> Γ |- e’ : τ.

41

1. Generate an environment, term, and type

2. Check if the term e is well-typed

3. If it’s not, start over (and again…)

Non-Solution

Testing Language Properties

Theorem preservation :
forall Γ e τ e’,
Γ |- e : τ -> e => e’ -> Γ |- e’ : τ.

42

Write a generator that produces well-typed terms!

Solution

Testing Language Properties

43

Write a generator that produces well-typed terms.

Testing Language Properties

This is a difficult and long-studied problem!

• CSmith [Yang et al., PLDI ‘11]

• Testing GHC’s strictness analyser [Palka et al., AST ‘11]

• Testing Noninterference, Quickly [Hritcu et al., ICFP ‘13]

A Tool for the Job: QuickChick

44

… used in practice to facilitate verification ([JFP 2016], DeepWeb, Vellvm)
… in many places

(UPenn, UMD, Princeton, MIT, INRIA)
… taught in courses and summer schools (UMD 631, DeepSpec Summer Schools)

A Tool for the Job: QuickChick

45

• Easy to define generators for hierarchical data (ASTs)

• Good integration with OCaml via Coq extraction

• Ability to do fuzzing-like, feedback-based generation

A Tool for the Job: QuickChick

46

• Easy to define generators for hierarchical data (ASTs)

• Good integration with OCaml via Coq extraction

• Ability to do fuzzing-like, feedback-based generation

(ended up not using much, at least so far)

The Rest of the Talk

47

• The Language

• The Testing Framework

• Generating Interesting Programs

• Semantic Harness for Testing

• Found Bugs

The Rest of the Talk

48

• The Language

• The Testing Framework

• Generating Interesting Programs

• Semantic Harness for Testing

• Found Bugs

Scilla
Pure Fragment: System F

Variables: 𝑥, 𝑦,… , 𝑋, 𝑌,…
Primitives: 𝑝 ∷= 𝐼𝑛𝑡32 | 𝐼𝑛𝑡64 … 𝑈𝑖𝑛𝑡32 …

𝑆𝑡𝑟𝑖𝑛𝑔 𝐵𝑦𝑆𝑡𝑟 𝐵𝑦𝑆𝑡𝑟𝑋 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 | …
Constants : 𝑐 ∷= 𝑂 1 " " | …
Types: σ, τ… ∷= 𝒑 𝝈 → 𝝉 𝑿 | ∀𝑿. 𝝉
Terms: e, … ∷= 𝒙 𝒄 𝒆𝟏𝒆𝟐 | 𝝀𝒙 ∶ 𝝈. 𝐞

| 𝐞 𝛕 𝚲𝚾. 𝐞 f ∶ e, …
C e!…e" match e with < pat ⇒ sel > end

Generating System F Terms

50

Γ; Χ, Δ ⊢ e ∶ τ
Γ; Δ ⊢ ΛΧ. e ∶ ∀𝑋. 𝜏

Γ; Δ ⊢ e ∶ ∀𝑋. τ
Γ; Δ ⊢ e τ′: 𝜏[𝜏!/ Χ]

51

Γ; Χ, Δ ⊢ e ∶ τ
Γ; Δ ⊢ ΛΧ. e ∶ ∀𝑋. 𝜏

Generating System F Terms

52

Γ; Χ, Δ ⊢ e ∶ τ
Γ; Δ ⊢ ΛΧ. e ∶ ∀𝑋. 𝜏

Generating System F Terms

53

Generating System F Terms

Γ; Χ, Δ ⊢ e ∶ τ
Γ; Δ ⊢ ΛΧ. e ∶ ∀𝑋. 𝜏

54

Generating System F Terms

Γ; Δ ⊢ e ∶ ∀𝑋. τ
Γ; Δ ⊢ e τ′: 𝜏[𝜏!/ Χ]

55

Γ; Δ ⊢ e ∶ ∀𝑋. τ σ = τ[𝜏!/ Χ]
Γ; Δ ⊢ e τ′: σ

Generating System F Terms

Γ; Δ ⊢ e ∶ ∀𝑋. τ σ = τ[𝜏!/ Χ]
Γ; Δ ⊢ e τ′: σ

56

Generating System F Terms
How do we generate
τ, τʹ, and Χ such that
this equality holds?

Γ; Δ ⊢ e ∶ ∀𝑋. τ σ = τ[𝜏!/ Χ]
Γ; Δ ⊢ e τ′: σ

57

Un-substitution

*Details are a bit tricky (need keep track of closedness and frequencies): see the paper for the algorithm.

• Pick a closed sub-type τ’ of σ

• Traverse σ and abstract τ’ with X

Idea: Produce a distribution of closed “sub-types” τ′ of σ to abstract!*

The Rest of the Talk

58

• The Language

• The Testing Framework

• Generating Interesting Programs

• Semantic Harness for Testing

• Bugs

The Rest of the Talk

59

• The Language

• The Testing Framework

• Generating Interesting Programs

• Semantic Harness for Testing

• Bugs

Testing Control- and Type-Flow Analysis
in Scilla Compiler

60

• The analysis correctly over-approximates the flow of values to variables

• use case: function inlining

• It also over-approximates the flow of ground types to type variables

• use case: monomorphization

• To test over-approximation, we need collecting semantics

61

Monadic Interpreters to the Rescue

Implemented State-Collecting Semantics for Flows-To Information
as a monad instance

ICFP’17

PLDI’13

The Rest of the Talk

62

• The Language

• The Testing Framework

• Generating Interesting Programs

• Semantic Harness for Testing

• Bugs

The Rest of the Talk

63

• The Language

• The Testing Framework

• Generating Interesting Programs

• Semantic Harness for Testing

• Bugs

Bugs Found!

64

Bugs Found!

65

Bugs Found!

66

Bugs Found!

67

Type Variable Shadowing Bug (#2)

68

This program should be ill-typed!

: ByStr32

To Take Away
• We’ve tested the language layer (based on System F) of a

real-world blockchain with QuickChick and found several
critical bugs.

• We’ve introduced un-substitution:
a simple technique to generate well-typed System F terms.

• We’ve used monadic interpreters methodology of
implementing collecting semantics.

• Check out our artifact for the QuickChick test harness and
examples!

Thanks!

