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to: SomeContract C

call: C.m(x)
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Scenario 1: Static Semantics Bug
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⊢ Fund_Amy OK => No Exceptions

fun withdraw_donations _ = 
…
for (b <- backer_accounts) do
account_to_address(b) match
| Some(addr) => …
| None => …

done

Fund_Amy.code



Scenario 1: Static Semantics Bug
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Fund_Amy.code

fun withdraw_donations _ = 
…
for (b <- backer_accounts) do
account_to_address(b) match
| Some(addr) => …
| None => …

done

Throws an 
exception if b 
is ill-formed

⊢ Fund_Amy OK => No Exceptions
WRONG!
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14

Fund_AmyFund_Amy

Fund_Amy

Fund_Amy.
withdraw_donations

throws
Exception



What Else Can Go Wrong?
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Scenario 2: Cost Semantics Bug
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Interpreter.ml

fun eval_arith_operation op args = 
…
| Power base x =>  
let res = compute_pow base x in
let gas_charged = log2 x in
(res, gas_charged)  
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Interpreter.ml

fun eval_arith_operation op args = 
…
| Power base x =>  
let res = compute_pow base x in
let gas_charged = log2 x in
(res, gas_charged)  

Replicated by 
many users to

re-validate
Takes O(x) 
in Leela’s

implementation
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Interpreter.ml

fun eval_arith_operation op args = 
…
| Power base x =>  
let res = compute_pow base x in
let gas_charged = log2 x in
(res, gas_charged)  

Charges for 
computing 

power

Takes O(x) 
in Leela’s

implementation



19

validation
Interpreter

✗
TX aborted

✔
validation

Interpreter

✗
TX aborted

✔
eval C.m(x, σc)validation

to: ArithContract C

call: C.m(x)

✗
TX aborted

Scenario 2: Cost Semantics Bug
pow(b, x)
cheap to 
propose Expensive

to execute

Interpreter.ml
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Interpreter.ml

fun eval_arith_operation op args = 
…
| Power base x =>  
let res = compute_pow base x in
let gas_charged = log2 x in
(res, gas_charged)  
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Scenario 3: A Compiler Exploit

10x speedup
in transaction 

processing!
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O(n3)
in the 

program size
25

Scenario 3: A Replicated Compiler Exploit
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Language-Layer Bugs

• Type Checker & Interpreter: 
static guarantees are not ensured at runtime

• Reference Interpreter:
cost semantics is misaligned with runtime costs

• Compiler:
Compilation cost is not linear in the program size

27



This Talk

28

Catching Bugs

in the Blockchain Language Layer

using Property-Based Testing



The Rest of the Talk
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• The Language

• The Testing Framework

• Generating Random Programs

• Semantic Harness for Testing

• Found Bugs
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Smart Contract Intermediate Level Language

• Principled Model for Computation 

• Not Turing Complete

• Explicit Effects

• Communication

System F + extensions

Only structural recursion/iteration

State Transformer Semantics

Contracts are autonomous actors

Used by

OOPSLA’19

Scilla



Scilla

Variables: 𝑥, 𝑦,… , 𝑋, 𝑌,…
Primitives: 𝑝 ∷= 𝐼𝑛𝑡32 | 𝐼𝑛𝑡64 … 𝑈𝑖𝑛𝑡32 …

𝑆𝑡𝑟𝑖𝑛𝑔 𝐵𝑦𝑆𝑡𝑟 𝐵𝑦𝑆𝑡𝑟𝑋 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 | …
Constants : 𝑐 ∷= 𝑂 1 " " | …
Types: σ, τ… ∷= 𝑝 𝜎 → 𝜏 𝑋 | ∀𝑋. 𝜏
Terms: e, … ∷= 𝑥 𝑐 𝑒!𝑒" | 𝜆𝑥 ∶ 𝜎. e

| e τ ΛΧ. e f ∶ e, …
C e!…e" match e with < pat ⇒ sel > end

Pure Fragment: System F



Scilla
Pure Fragment: System F

Variables: 𝑥, 𝑦,… , 𝑋, 𝑌,…
Primitives: 𝑝 ∷= 𝐼𝑛𝑡32 | 𝐼𝑛𝑡64 … 𝑈𝑖𝑛𝑡32 …

𝑆𝑡𝑟𝑖𝑛𝑔 𝐵𝑦𝑆𝑡𝑟 𝐵𝑦𝑆𝑡𝑟𝑋 𝑀𝑒𝑠𝑠𝑎𝑔𝑒 | …
Constants : 𝑐 ∷= 𝑂 1 " " | …
Types: σ, τ… ∷= 𝒑 𝝈 → 𝝉 𝑿 | ∀𝑿. 𝝉
Terms: e, … ∷= 𝒙 𝒄 𝒆𝟏𝒆𝟐 | 𝝀𝒙 ∶ 𝝈. 𝐞

| 𝐞 𝛕 𝚲𝚾. 𝐞 f ∶ e, …
C e!…e" match e with < pat ⇒ sel > end



Scilla
Stateful Fragment

s ::= 
| x <- f 
| f := x 
| let x = e
| event m
| send ms



Scilla
Library of 

pure 
functions

Contract 
definition

Immutable 
contract 

parametersMutable 
fields

Interaction 
via messages

Transitions



Scilla
Monadic Interpreter (in OCaml)

Monadic
cost & failure

tracking
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• The Language

• The Testing Framework

• Generating Interesting Programs

• Semantic Harness for Testing

• Found Bugs
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Property-Based Testing

• Programmer writes properties of software system or 
component as a function from inputs to Booleans

• Tool generates many random inputs and applies the 
function to each one

• Famously embodied in Haskell QuickCheck

39

John Hughes

Koen Claessen



Tricky part:
we only need

well-typed terms

Theorem preservation : 
forall Γ e τ e’,
Γ |- e : τ -> e => e’ -> Γ |- e’ : τ.

40

Testing Language Properties



Theorem preservation : 
forall Γ e τ e’,
Γ |- e : τ -> e => e’ -> Γ |- e’ : τ.

41

1. Generate an environment, term, and type

2. Check if the term e is well-typed

3. If it’s not, start over (and again…)

Non-Solution

Testing Language Properties



Theorem preservation : 
forall Γ e τ e’,
Γ |- e : τ -> e => e’ -> Γ |- e’ : τ.

42

Write a generator that produces well-typed terms!

Solution

Testing Language Properties
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Write a generator that produces well-typed terms.

Testing Language Properties

This is a difficult and long-studied problem!

• CSmith [Yang et al., PLDI ‘11]

• Testing GHC’s strictness analyser [Palka et al., AST ‘11]

• Testing Noninterference, Quickly [Hritcu et al., ICFP ‘13]



A Tool for the Job: QuickChick
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… used in practice to facilitate verification         ([JFP 2016], DeepWeb, Vellvm)
… in many places

(UPenn, UMD, Princeton, MIT, INRIA)
… taught in courses and summer schools                  (UMD 631, DeepSpec Summer Schools)



A Tool for the Job: QuickChick
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• Easy to define generators for hierarchical data (ASTs)

• Good integration with OCaml via Coq extraction

• Ability to do fuzzing-like, feedback-based generation 
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• Easy to define generators for hierarchical data (ASTs)

• Good integration with OCaml via Coq extraction

• Ability to do fuzzing-like, feedback-based generation

(ended up not using much, at least so far)
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• Found Bugs
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Scilla
Pure Fragment: System F

Variables: 𝑥, 𝑦,… , 𝑋, 𝑌,…
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Generating System F Terms
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Γ; Χ, Δ ⊢ e ∶ τ
Γ; Δ ⊢ ΛΧ. e ∶ ∀𝑋. 𝜏

Γ; Δ ⊢ e ∶ ∀𝑋. τ
Γ; Δ ⊢ e τ′: 𝜏[𝜏!/ Χ]
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Γ; Χ, Δ ⊢ e ∶ τ
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Generating System F Terms
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Generating System F Terms

Γ; Χ, Δ ⊢ e ∶ τ
Γ; Δ ⊢ ΛΧ. e ∶ ∀𝑋. 𝜏
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Generating System F Terms

Γ; Δ ⊢ e ∶ ∀𝑋. τ
Γ; Δ ⊢ e τ′: 𝜏[𝜏!/ Χ]
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Γ; Δ ⊢ e ∶ ∀𝑋. τ σ = τ[𝜏!/ Χ]
Γ; Δ ⊢ e τ′: σ

Generating System F Terms



Γ; Δ ⊢ e ∶ ∀𝑋. τ σ = τ[𝜏!/ Χ]
Γ; Δ ⊢ e τ′: σ

56

Generating System F Terms
How do we generate 
τ, τʹ, and Χ such that 
this equality holds?



Γ; Δ ⊢ e ∶ ∀𝑋. τ σ = τ[𝜏!/ Χ]
Γ; Δ ⊢ e τ′: σ

57

Un-substitution

*Details are a bit tricky (need keep track of closedness and frequencies): see the paper for the algorithm.

• Pick a closed sub-type τ’ of σ

• Traverse σ and abstract τ’ with X

Idea: Produce a distribution of closed “sub-types” τ′ of σ to abstract!*
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Testing Control- and Type-Flow Analysis
in Scilla Compiler
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• The analysis correctly over-approximates the flow of values to variables

• use case: function inlining

• It also over-approximates the flow of ground types to type variables

• use case: monomorphization

• To test over-approximation, we need collecting semantics
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Monadic Interpreters to the Rescue

Implemented State-Collecting Semantics for Flows-To Information
as a monad instance

ICFP’17

PLDI’13
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Bugs Found!
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Bugs Found!
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Type Variable Shadowing Bug (#2)

68

This program should be ill-typed!

: ByStr32



To Take Away
• We’ve tested the language layer (based on System F) of a 

real-world blockchain with QuickChick and found several 
critical bugs.

• We’ve introduced un-substitution:
a simple technique to generate well-typed System F terms.

• We’ve used monadic interpreters methodology of 
implementing collecting semantics.

• Check out our artifact for the QuickChick test harness and 
examples!

Thanks!


