Random Testing of
a Higher-Order Blockchain Language
(Experience Report)

| . N\\\\
atiy / ap 3 \

e AW |
CR s
S

Tram Hoang Anton Trunov Leonidas Lampropoulos llya Sergey
National University of Singapore Zilliga University of Maryland, College Park National University of Singapore

2

% National University
of Singapore

zilliga

ICFP 2022

What is Blockchain?

Blockchain a

From Wikipedia, the free encyclopedia

For other uses, see Block chain (disambiguation).

A blockchain is a type of Digital Ledger Technology (DLT) that consists of
growing list of records, called blocks, that are securely linked together using ﬁp,wi““fmw}_{mHaib]ck MHBC}M}
[

cryptography.[12IBI4] Each block contains a cryptographic hash of the o) (o
previous block, a timestamp, and transaction data (generally represented as /L /1 [;lm]

a Merkle tree, where data nodes are represented by leafs). The timestamp [Ha;@] [”TJ [H?z] [”?3]

proves that the transaction data existed when the block was created. Since i | I | I |

each block contains information about the block previous to it, they Bitcoin blockchain &

effectively form a chain (compare linked list data structure), with each structurelfurther explanation needed]

additional block linking to the ones before it. Consequently, blockchain
transactions are irreversible in that, once they are recorded, the data in any given block cannot be altered retroactively without

altering all subsequent blocks.
- —

What is Blockchain?

Blockchain

From Wikipedi

For,
A blo consists of
growi ' ether using : ‘
crypto ' ‘ f the . L A=
previous ' resented as y

a Merkle tre

odes are represente e timestamp o | (ot | (a2 | (tons |

Tx0 x1 Tx2] Tx3

proves that the transaction data existed when the block was created. Since

each block contains information about the block previous to it, they Bitcoin blockchain =5
. structurelfurther explanation needed]

effectj form a chain (compare lin cture) with each

e altered ggtroactively without >
90
°* 90
® ®

adg lock linking to the one ockchain

ga are irreversible in that, once they are recorded, the data in any given igock canno

Altering subsequent blocks.

A ICFP 2019 (series) / #A Keynotes and Reports /

Blockchains are functional |ICFP 2019 Keyn ote

Track ICFP 2019 Keynotes and Reports

When Mon 19 Aug 2019 09:00 - 10:00 at Aurora Borealis - Monday Keynote Chair(s):
Derek Dreyer

Abstract Functional programming and blockchains are a match made in heaven! The
immutable and reproducible nature of distributed ledgers is mirrored in the
semantic foundation of functional programming. Moreover, the concurrent and
distributed operation calls for a programming model that carefully controls
shared mutable state and side effects. Finally, the high financial stakes often
associated with blockchains suggest the need for high assurance software and
formal methods.

Nevertheless, most existing blockchains favour an object-oriented, imperative
approach in both their implementation as well as in the contract programming
layer that provides user-defined custom functionality on top of the basic ledger.
On the one hand, this might appear surprising, given that it is widely understood Tweag 1/0 & IOHK
that this style of programming is particularly risky in concurrent and distributed

systems. On the other hand, blockchains are still in their infancy and little

research has been conducted into associated programming language

technology.

Manuel Chakravarty

Getting Your Code on a Blockchain

1 scilla_version @

2 library FungibleToken

3 let min_int : Uint128 — Uint128 — Uint128 = (x ... *)

4 let le_int : Uint128 — Uint128 — Bool = (x ... %)

5 let one_msg : Msg — List Msg = (* Return singleton List with a message x*)

6

7 contract FungibleToken

8 (owner : ByStr20, total_tokens : Uint128, decimals : Uint32, name : String, symbol : String)

9

10 field balances : Map ByStr20 Uint128 =

11 let m = Emp ByStr20 Uint128 in builtin put m owner total_tokens

12 field allowed : Map ByStr20 (Map ByStr20 Uint128) = Emp ByStr20 (Map ByStr20 Uint128)

13

14 transition BalanceOf (tokenOwner : ByStr20)

15 bal <« balances[tokenOwner];

16 match bal with

17 | Some v =

18 msg = {_tag : "BalanceOfResponse"; _recipient : _sender; address : tokenOwner; balance : v};
19 msgs = one_msg msg; send msgs

20 | None =

21 msg = {_tag : "BalanceOfResponse"; _recipient : _sender; address : tokenOwner; balance : zero};
22 msgs = one_msg msg; send msgs

23 end

24 end

25 transition TotalSupply () (* code omitted *) end

26 transition Transfer (to : ByStr20, tokens : Uint128) (* code omitted *) end

27 transition TransferFrom (from : ByStr20, to : ByStr20, tokens : Uint128) (* code omitted *) end
28 transition Approve (spender : ByStr20, tokens : Uint128) (* code omitted *) end

29 transition Allowance (tokenOwner : ByStr20, spender : ByStr20) (* code omitted *) end

Getting Your Code on a Blockchain

Proposed by a user

Code

Getting Your Code on a Blockchain

Validated by other users

) v p@
o vopioatad Y‘LJ'Y

Proposed by a user

Type Checker

TTTTTTTT

Using Your Code on a Blockchain

N\ S

to: SomeContract C

call: C.m(x)

Using Your Code on a Blockchain

Replicated by others

Message by a user

N

to: SomeContract C |nterpreter
validation

call: C.m(x) X 1

TX aborted

Using Your Code on a Blockchain

Replicated by others

Message by a user
N /7 $ Vv Vv I

to: SomeContract C

e Interpreter
validation eval C.m(x, oc)

call: C.m(x) X 1

TX aborted

10

What Can Go Wrong?

Scenario 1: Static Semantics Bug

Fund Amy.code

fun withdraw donations

for (b <- backer accounts) do
account to address(b) match

Some (addr) => ..

None => ..

done

- Fund Amy OK => No Exceptions

12

Scenario 1: Static Semantics Bug

Fund Amy.code

Throws an
exception if b

for (b <- backer_accountg)@ is ill-formed
account to address(b) match

Some (addr) => ..

None => ..

fun withdraw donations

done

- Fund Amy OK => NO Excep o,

13

Scenario 1: Static Semantics Bug

What Else Can Go Wrong?

Scenario 2: Cost Semantics Bug

Interpreter.ml

fun eval arith operation op args =

| Power base x =>
let res = compute pow base x in
let gas charged = log2 x in
(res, gas charged)

10

Scenario 2: Cost Semantics Bug

Interpreteg

let gas charged =
(res, gas charged)

fun eval arith operatio

| Power base x =>
let res = compute pow base x in

Replicated by
many users to
re-validate

log2 x 1in

Takes O(x)
in Leela’s
implementation

17

Scenario 2: Cost Semantics Bug

Interpreter.ml

fun eval arith operation op args = Takes O(x)
in Leela’s
| Power base x => ® " J implementation
let res = compute pow base x in

let gas charged = logg X in
(res, gas charged) @

O
Charges for

computing
power

Scenario 2: Cost Semantics Bug

pow(b, x)
cheap to
propose

Expensive
to execute

@
O
to: ArithContract C
Interpreter.ml

call: C.m(x) validation eval C.m(x, oc)

X

TX aborted

19

Scenario 2: Cost Semantics Bug

pow(b, x)
cheap to
propose

Expensive
to execute

/[

K
— x|
\\ 4} TX aborted

‘ l
O
e
AN
Interpreter.ml
| N_ validation eval C.m(X, oc) {

to: ArithContract C

call: C.m(x)

Scenario 2: Cost Semantics Bug

Interpreter.ml

fun eval arith operation op args =

| Power base x =>
let res = compute pow base x in
let gas charged = log2 x in
(res, gas charged)

21

What Else Can Go Wrong?

Scenario 3: A Compiler Exploit

O NO Ul WN =

NN DN NN NDNDDNDNDNDN= 2 @Q@A@Q@Q@Q@Q@@Q
OO0 NOULDA WN—_-O© OO NOOUL A WN-—- O O

scilla_version @

library FungibleToken

let min_int : Uint128 —» Uint128 — Uint128 (* ... %)

let le_int : Uint128 — Uint128 — Bool = (x ... %)

let one_msg : Msg — List Msg = (* Return singleton List with a message *)

contract FungibleToken
(owner : ByStr20, total_tokens : Uint128, decimals : Uint32, name : String, symbol : String)

field balances : Map ByStr20 Uint128 =
let m = Emp ByStr20 Uint128 in builtin put m owner total_tokens
field allowed : Map ByStr20 (Map ByStr20 Uint128) = Emp ByStr20 (Map ByStr20 Uint128)

transition BalanceOf (tokenOwner : ByStr20)
bal < balances[tokenOwner];
match bal with

| Some v=
msg = {_tag : "BalanceOfResponse"; _recipient : _sender; address : tokenOwner; balance : v};
msgs = one_msg msg; send msgs

| None =
msg = {_tag : "BalanceOfResponse"; _recipient : _sender; address : tokenOwner; balance : zero};
msgs = one_msg msg; send msgs

end

end

transition TotalSupply () (* code omitted *) end

transition Transfer (to : ByStr20, tokens : Uint128) (* code omitted *) end

transition TransferFrom (from : ByStr20, to : ByStr20, tokens : Uint128) (* code omitted *) end
transition Approve (spender : ByStr20, tokens : Uint128) (* code omitted *) end

transition Allowance (tokenOwner : ByStr20, spender : ByStr20) (* code omitted *) end

23

10x speedup
IN transaction
processing!

1010111010110110101010
1010101011001010101000
1010101010111010101101

0101010101010101010101
1010101010101010110101

Scenario 3: A Replicated Compiler Exploit

Code

1010111010110110101010
1010101011001010101000
1010101010111010101101
0101010101010101010101

1010101010101010110101

)

Code Code

1010111010110110101010
1010101011001010101000
1010101010111010101101
0101010101010101010101
1010101010101010110101

1010111010110110101010
1010101011001010101000
1010101010111010101101

0101010101010101010101
1010101010101010110101

24

scilla_version @

library FungibleToken

let min_int : Uint128 — Uint128 — Uint128 = (* ...
let le_int : Uint128 — Uint128 — Bool = (* ...
let one_msg : Msg — List Msg = (* Return singleton

contract FungibleToken

O NOY Ul A WN =

field balances : Map ByStr20 Uint128 =
let m = Emp ByStr20 Uint128 in builtin put m owne
field allowed : Map ByStr2@ (Map ByStr20 Uint128) =

transition BalanceOf (tokenOwner : ByStr20)
bal < balances[tokenOwner];
match bal with
| Some v=
msg = {_tag : "BalanceOfResponse"; _recipient :
msgs = one_msg msg; send msgs
None =
msg = {_tag : "BalanceOfResponse"; _recipient :
msgs = one_msg msg; send msgs
end
end
transition TotalSupply () (* code omitted *) end
transition Transfer (to : ByStr20, tokens : Uint128
transition TransferFrom (from : ByStr20, to : ByStr
transition Approve (spender : ByStr20, tokens : Uin

transition Allowance (tokenOwner : ByStr2@, spender :

O(n3)
in the
program size

(owner : ByStr20, total_tokens : Uint128, decimals :

3
*)

List with a message %)

Uint32, name : String, symbol : String)

r total_tokens
Emp ByStr20 (Map ByStr20 Uint128)

_sender; address : tokenOwner; balance : v};

_sender; address : tokenOwner; balance : zero};

) (*x code omitted *) end

20, tokens : Uint128) (* code omitted *) end
t128) (* code omitted *) end

ByStr20) (* code omitted *) end

Scenario 3: A Replicated Compiler Exploit

1010111010110110101010
1010101011001010101000
1010101010111010101101
0101010101010101010101
1010101010101010110101

Scenario 3: A Replicated Compiler Exploit

1010111010110110101010
1010101011001010101000
1010101010111010101101
0101010101010101010101
1010101010101010110101

1010111010110110101010 1010111010110110101010
1010101011001010101000 1010101011001010101000
1010101010111010101101 1010101010111010101101
0101010101010101010101 0101010101010101010101
1010101010101010110101 1010101010101010110101

20

Language-Layer Bugs

® Type Checker & Interpreter:
static guarantees are not ensured at runtime

® Reference Interpreter:
cost semantics is misaligned with runtime costs

® Compiler:
Compilation cost is not linear in the program size

27

This Talk

Catching Bugs
in the Blockchain Language Layer

using Property-Based Testing

The Rest of the Talk

® The Language

® The Testing Framework

® Generating Random Programs
® Semantic Harness for Testing

® Found Bugs

29

The Rest of the Talk

® The Language

Scilla

Smart Contract Intermediate Level Language SCILL A

Principled Model for Computation
System F + extensions
Not Turing Complete
Only structural recursion/iteration
Explicit Effects
State Transformer Semantics
Communication
Contracts are autonomous actors

31

Used by zilliga

OOPSLA’19

Safer Smart Contract Programming with SciLLA

ILYA SERGLY, Yale-NUS College, Singapore and National University of Singapore, Singapore
VAIVASWATHA NAGARAJ, Zilliqa Research, India

JACOB JOHANNSEN, Zilliga Research, Denmark

AMRIT KUMAR, Zilliqa Research, United Kingdom

ANTON TRUNOV, Zzilliga Research, Russia

KEN CHAN GUAN HAQ, Zilliqa Research, Malaysia

The rise of programmable open distributed consensus platforms based on the blockchain technology has
aroused a lot of interest in replicated stateful computations, aka smart contracts. As blockchains are used
predominantly in financial applications, smart contracts frequently manage millions of dollars worth of virtual
coins. Since smart contracts cannot be updated once deployed, the ability to reason about their correctness
becomes a critical task. Yet, the de facto implementation standard, pioneered by the Ethereum platform,
dictates smart contracts to be deployed in a low-level language, which renders independent audit and formal

verification of deployed code infeasible in practice.
- e —

Scilla

Pure Fragment: System F

Variables: x,y, ..., X, Y, ...
Primitives: p ::= Int32 | Int64 | ... |Uint32 | ...]
| String | ByStr | ByStrX | Message | ...

Constants:Cc =0 |1]|""] ..
Types:0,T...:=plo - 1| X |VX.T
Terms:e,... = Xx|c|eie, | Ax : 0.€

let|AX.e|{f:e ..}

| Ceq ...e, | match e with < pat = sel > end

Scilla

Pure Fragment: System F

plo ->t|X|VX.T
x|clejey, | Ax 0. €
let| AX. e

Scilla

Stateful Fragment

S :1=
| x <-f
| f:=x
| letx = e
| event m
| send ms

Contract
definition

oY O B W N —

11

1’.

14

23

. Library of
o, pure
scilla_version 0 functions Immutable

library FungibleToken
let min_int : Uint128 — Uint128)ui
let le_int : Uint128—>Ui£|tQ8—>Bool = (* *) IVIutabIe parameters
let one_msg : Msg — List Msg = (* Return singleton List wi f' |cj

elas

contract

contract FungibleToken
(owner : ByStr20, total_tokens : Uint128, decimals : Uint').

field balances : Map ByStr20 Uint128 = ®
let m = Emp ByStr20 Uint128 in builtin put m owner total_tokens
field allowed : Map ByStr20 (Map ByStr20 Uint128) = Emp ByStr20 (Map ByStr20 Uint128) Interaction

transition BalanceOf (tokenOwner : ByStr20) Vid MESSAGES

bal <« balances[tokenOwner];
match bal with

| Some v = O
msg = {_tag : "BalanceOfResponse"; _recipient : _sender; address : tokenOwner; balance : v};
msgs = one_msg msg; send msgs

| None =
msg = {_tag : "BalanceOfResponse"; _recipient : _sender; address : tokenOwner; balance : zero};
msgs = one_msg msg; send msgs

end

end

transition TotalSupply () (* code omitted *) end

transition Transfer (to : ByStr20, tokens : Uint128) (* code omitted *) end

transition TransferFrom (from : ByStr20, to : ByStr20, tokens : Uint128) (* code omitted *) end
transition Approve (spender : ByStr20, tokens : Uint128) (* code omitted *) end

transition Allowance (tokenOwner : ByStr20, spender : ByStr20) (* code omitted *) end

Or B W N -0 O 00 NOOL A WDN =

Monadic Interpreter (in OCaml)

let rec exp_eval

Scilla

Monadic

(e, loc) env = match e with cost & failure

let open EvalMonad.Let_syntax 1n tracking

| Literal 1 ->
| Var 1 ->
let%bind v

return (1, env)

= Env.lookup env 1 in return@v, env)

| Let (i, _, lhs, rhs) -> e
let%bind 1lval, _ = wrap_eval lhs env (e, U) in
let env' = Env.bind env (get_id i) 1lval 1in

wrap_eval rhs env' (e, E lval)

| GaskExpr (g, e

|) ->

let thunk () = exp_eval e' env 1in

let%bind cost = eval_gas_charge env g in

checkwrap thunk (Uint64.of_int cost)
("Insufficient gas")

| Fixpoint (g,

_, body) -> (* Other cases %)

The Rest of the Talk

® The Language

The Rest of the Talk

® The Testing Framework

Property-Based Testing

® Programmer writes properties of software system or
component as a function from inputs to Booleans

® Tool generates many random inputs and applies the
function to each one - N

® Famously embodied in Haskell QuickCheck

39

Testing Language Properties

Theorem preservation :
forall I e T €’,

[|[-e: T ->e=>¢e’ ->T |- : T.
@

Tricky part:

we only need
well-typed terms

40

Testing Language Properties

Theorem preservation :
forall I e T €’,
[|[-e : T ->e=>¢e’” ->T |-e” : T.

Non-Solution

1. Generate an environment, term, and type
2. Check if the term e is well-typed

3. Ifit’s not, start over (and again...)

41

Testing Language Properties

Theorem preservation :
forall I e T €’,
[|[-e : T ->e=>¢e’” ->T |-¢e” : T.

Solution

Write a generator that produces well-typed terms!

42

Testing Language Properties

Write a generator that produces well-typed terms.

This is a difficult and long-studied problem!

® CSmith [Yang et al., PLDI ‘11]
® Testing GHC's strictness analyser [Palka et al., AST ‘11]

® Testing Noninterference, Quickly [Hritcu et al., ICFP “13]

43

A Tool for the Job: QuickChick

SOFTWARE

QuickChick

Property-Based Testing in Coq

... used in practice to facilitate verification ([JFP 2016], DeepWeb, Vellvm)

... In many places
(UPenn, UMD, Princeton, MIT, INRIA)
... taught in courses and summer schools (UMD 631, DeepSpec Summer Schools)

PHOTO: Benjamin C. Pierce

44

A Tool for the Job: QuickChick

> y
@a / C'é T —1))
C/]/ e

® Fasy to define generators for hierarchical data (ASTs)
® Good integration with OCaml via Coq extraction

® Ability to do fuzzing-like, feedback-based generation

45

A Tool for the Job: QuickChick

> y
@a / C'é T —1))
C/]/ e

® Fasy to define generators for hierarchical data (ASTs)
® Good integration with OCaml via Coq extraction

® Ability to do fuzzing-like, feedback-based generation

46

The Rest of the Talk

® The Testing Framework

The Rest of the Talk

® Generating Interesting Programs

Scilla

Pure Fragment: System F

plo -t|X|VX.T
x|clejey | Ax 0. €
let| AX. e

Generating System F Terms

"X, AFe:T
[CAFAX. e: VX.T

["AFe:VX.T
AFet:T[t'/X]

50

Generating System F Terms

[A VX, T

Generating System F Terms

"X, AFe:T
[A VX, T

Generating System F Terms

"X, AFe:T
[CAFAX. e: VX.T

Generating System F Terms

["AFe:VX.T
AFet: T[Tt/ X]

Generating System F Terms

AFe:VX.T o=r1[t/X]
[CAretT:o

Generating System F Terms

How do we generate
T, T, and X such that
this equality holds?

["AF 'V . 0 =
[A)

56

Un-substitution

ldea: Produce a distribution of closed “sub-types” 7' of o to abstract!*

["AF 'V . 0 =
[A)

® Pick a closed sub-type T of 0

® Traverse o and abstract T with X
*Details are a bit tricky (need keep track of closedness and frequencies): see the paper for the algorithm.

57

The Rest of the Talk

® Generating Interesting Programs

The Rest of the Talk

® Semantic Harness for Testing

Testing Control- and Type-Flow Analysis
in Scilla Compiler

® The analysis correctly over-approximates the flow of values to variables

® use case: function inlining

® |t also over-approximates the flow of ground types to type variables

® use case: monomorphization

® To test over-approximation, we need collecting semantics

60

Monadic Interpreters to the Rescue

let rec exp_eval (e, loc) env match e with
let open EvalMonad.Let_syntax 1n
| Literal 1 -> return (1, env)
| Var 1 ->
let%bind v

Let (1, _, lhs,
let%bind 1lval, wrap_eval lhs env (e, U)
let env' Env.bind env (get_id i) 1lval 1in
wrap_eval rhs env' (e, E lval)

GaskExpr (g, e') ->
let thunk () exp_eval e' env 1n
let%bind cost eval_gas_charge env g 1in
checkwrap thunk (Uint64.of_int cost)

("Insufficient gas")
Fixpoint (g, _, body) -> (* Other cases x*)

Env.lookup env 1 in return (v, env)
rhs) ->

= in

Or b W N -0 O 00 NO O~ WDND =

IMDEA Software Institute, Spain

PLDI) 13 Monadic Abstract Interpreters

Ilya Sergey Dominique Devriese

iMinds — DistriNet, KU Leuven, Belgium
dominique.devriese@cs.kuleuven.be

Matthew Might

University of Utah, USA

ilya.sergey@imdea.org might@cs.utah.edu

Dave Clarke

iMinds — DistriNet, KU Leuven, Belgium
{firstname.lastname}@cs.kuleuven.be

David Darais Frank Piessens

Harvard University, USA
darais@seas.harvard.edu

Jan Midtgaard

Aarhus University, Denmark
jmi@cs.au.dk

ICFP’17

Abstracting Definitional Interpreters
(Functional Pearl)

DAVID DARAIS, Univeristy of Maryland, USA
NICHOLAS LABICH, Univeristy of Maryland, USA
PHUC C. NGUYEN, Univeristy of Maryland, USA
DAVID VAN HORN, Univeristy of Maryland, USA

Implemented State-Collecting Semantics for Flows-To Information

as a monad instance

o1

The Rest of the Talk

® Semantic Harness for Testing

62

The Rest of the Talk

® Bugs

Bugs Found!

ID Short bug description Status
Type checking and type inference
#1 Closure values could be used as map keys known
#2 Type variables were not properly shadowed; the bug allowed for encoding non well-formed recursion known
#3 Type checker allowed for hashing closure values new
#4 Type checker allowed for hashing polymorphically-typed values new
#5 Sub-types of address type ByteString were implicitly up-cast to type ByteString new
Definitional interpreter
#6 Conversion between bech32 and ByStr20 datatypes threw an exception new
#7 Cryptographic built-in operations ecdsa_verify and ecdsa_recover_pk were throwing exceptions new
#8 Cryptographic built-in ecdsa_recover_pk could abort Scilla interpreter with an OS-level exception new
#9 The interpreter inadequately charged gas for the power arithmetic operation new
Type-flow analysis
#10 Type-tlow analysis does not terminate on programs that make use of impredicative polymorphism known

64

Bugs Found!

ID Short bug description Status
Type checking and type inference
#1 Closure values could be used as map keys known
#2 Type variables were not properly shadowed; the bug allowed for encoding non well-formed recursion known
#3 Type checker allowed for hashing closure values new
#4 Type checker allowed for hashing polymorphically-typed values new
#5 Sub-types of address type ByteString were implicitly up-cast to type ByteString new
Definitional interpreter
#6 Conversion between bech32 and ByStr20 datatypes threw an exception new
#7 Cryptographic built-in operations ecdsa_verify and ecdsa_recover_pk were throwing exceptions new
#8 Cryptographic built-in ecdsa_recover_pk could abort Scilla interpreter with an OS-level exception new
#9 The interpreter inadequately charged gas for the power arithmetic operation new
Type-flow analysis
#10 Type-tlow analysis does not terminate on programs that make use of impredicative polymorphism known

65

Bugs Found!

ID Short bug description Status
Type checking and type inference
Closure values could be used as map keys known
Type variables were not properly shadowed; the bug allowed for encoding non well-formed recursion known
Type checker allowed for hashing closure values new
Type checker allowed for hashing polymorphically-typed values new
Sub-types of address type ByteString were implicitly up-cast to type ByteString new
Definitional interpreter
Conversion between bech32 and ByStr20 datatypes threw an exception new
Cryptographic built-in operations ecdsa_verify and ecdsa_recover_pk were throwing exceptions new
Cryptographic built-in ecdsa_recover_pk could abort Scilla interpreter with an OS-level exception new
The interpreter inadequately charged gas for the power arithmetic operation new
Type-flow analysis
#10 Type-tlow analysis does not terminate on programs that make use of impredicative polymorphism known

006

Bugs Found!

ID Short bug description Status
Type checking and type inference
#1 Closure values could be used as map keys known
#2 Type variables were not properly shadowed; the bug allowed for encoding non well-formed recursion known
#3 Type checker allowed for hashing closure values new
#4 Type checker allowed for hashing polymorphically-typed values new
#5 Sub-types of address type ByteString were implicitly up-cast to type ByteString new
Definitional interpreter
#6 Conversion between bech32 and ByStr20 datatypes threw an exception new
#7 Cryptographic built-in operations ecdsa_verify and ecdsa_recover_pk were throwing exceptions new
#8 Cryptographic built-in ecdsa_recover_pk could abort Scilla interpreter with an OS-level exception new
#9 The interpreter inadequately charged gas for the power arithmetic operation new
Type-flow analysis
#10 Type-tlow analysis does not terminate on programs that make use of impredicative polymorphism known

67

Type Variable Shadowing Bug (#2)

let a =
let b =

let c =
let d = tfun 'V= fun (v1 : 'V) = tfun 'V = vl

in @d (ByStr32) N/

in
let e = 0x0002
in Cc e
in @ (forall 'V. Nat)
in @ Nat

IR
B
>
V)

This program should be ill-typed!

683

To Take Away

Random Testing of a Higher-Order Blockchain Language
(Experience Report)

TRAM HOANG, National University of Singapore, Singapore
ANTON TRUNOV, Zilliqa Research, Russia

LEONIDAS LAMPROPOULQOS, University of Maryland, USA
ILYA SERGEY, National University of Singapore, Singapore

We describe our experience of using property-based testing—an approach for automatically generating random
inputs to check executable program specifications—in a development of a higher-order smart contract language
that powers a state-of-the-art blockchain with thousands of active daily users.

We outline the process of integrating QuickCHick—a framework for property-based testing built on top of
the Coq proof assistant—into a real-world language implementation in OCaml. We discuss the challenges we
have encountered when generating well-typed programs for a realistic higher-order smart contract language,
which mixes purely functional and imperative computations and features runtime resource accounting. We
describe the set of the language implementation properties that we tested, as well as the semantic harness
required to enable their validation. The properties range from the standard type safety to the soundness of a
control- and type-flow analysis used by the optimizing compiler. Finally, we present the list of bugs discovered
and rediscovered with the help of QuickCHick and discuss their severity and possible ramifications.

® \We've tested the language layer (based on System F) of a
real-world blockchain with QuickChick and found several
critical bugs.

® \We’'ve introduced un-substitution:
a simple technique to generate well-typed System F terms.

® \We’'ve used monadic interpreters methodology of
implementing collecting semantics.

® Check out our artifact for the QuickChick test harness and
examples!

Thanks!

