

Scenario Week 4: Art Gallery Competition Organisers' Report

scenario@cs.ucl.ac.uk

26 February 2016

- 94 participants
- 24 teams
- 1892 submissions for Part 1
- 468 submissions for Part 2
- One subtle server bug discovered (non-lethal)

The Week

• floating-point arithmetic is a nasty thing...

The Problem and its solutions

- Original formulation is due to Chvátal (1975)
- Textbook algorithm by Fisk (1978)
 - Triangulation and 3-colouring, delivers a decent $\lfloor n/3 \rfloor$ solution
- Better solutions exist for specific polygons
 - L-partitioning for rectilinear polygons: [n/4] solution
 - Detecting convex suqpolygons just one guard required;
 - Even better: detecting "star" sub-polygons;
- A good survey: "Art Gallery Theorems and Algorithms" by O'Rourke

Initial setup

- **Part I**: 30 polygons for finding the best guards sets
 - **I-5** are trivial to test intuition (small size);
 - **8–13** are rectilinear (74–334 vertices);
 - **I5–I7** composed from triangles (42-360 vertices);
 - **18–26** are "quasi-convex" with large convex regions;
 - 27-30 composed from various random shapes.
- Part 2: 20 polygons/guards to find refutations
 - About **2/3** problems had one node non-covered (easy to find);
 - 6 or 7 problems required a proper algorithms (or *a lot* of patience).

Part I, polygon 14

Checking your solutions

- Server is written in **Scala** via **Spray** framework on servlets (**I 500 LOC**);
 - Run during the week on a single Linux machine with 4 GB RAM;
 - Each team's submissions are processed by a separate **actor** (non-blocking);
- All geometric processing is implemented in **Scala** from scratch, no third-party libraries (**I800 LOC**, including tests);
- ~150 unit tests + several randomised testing procedures (*bazillions* of randomly-generated polygons);
 - still missed one floating-point bug :(
- Guards checking procedure is a slightly modified version of Joe-Simpson algorithm for visibility polygons (1985).

Checking your solutions

Step 1: compute *all* individual visibility areas via Joe-Simpson algorithm.

Step 2: triangulate the initial polygon

<u>Step 3</u>^{*}: add visibility areas one by one, compute intersections with present triangles and Δ -partition again

<u>Step 3</u>^{*}: add visibility areas one by one, compute intersections with present triangles and Δ -partition again

<u>Step 3</u>^{*}: add visibility areas one by one, compute intersections with present triangles and Δ -partition again

Loop Invariant: at the end of each iteration, each triangle is either *fully visible* or is *fully grey* (invisible).

<u>Step 4</u>: iterate through *all* the triangles of the partition and check if a centre of each *belongs* to *some* visibility area.

Behind the Scenes

Geeks and repetitive tasks

Kareem's Demo

Analysing submission patterns

- Taking data about **Part I** submissions
- Recording time of successful submissions (green)
- Propagated submissions (purple)
- No submission (blank)

"Experimentators"

"Hard workers"

"Late bloomers"

"Parallel computers"

Part I problems: Toughies

- polygon 10 (338 vertices)
- polygon 12 (288 vertices)
- polygon 13 (334 vertices)
- polygon 17 (360 vertices)

Shameless Advertisement

L

PPLV

MSc Programme by PPLV: Logic, Semantics and Verification of Programs.

- Analysis of the correctness of *large* systems;
- Concurrent and distributed programming;
- Formal methods and theorem proving (yay!);
- Dark magic of *abstract algebra* and *category theory* to make better software (without actual bugs);
 - Starts next year, apply in 2017!

http://pplv.cs.ucl.ac.uk

The Competition

Ranking solutions

- Solutions were **not** ranked based on the total sum of guards;
- Instead, (1) for each polygon, teams were grouped according to the number of guards, smaller is better (e.g., 5 groups of solutions)
 - Teams that didn't solve a polygon were all put into the ''last'' group for this polygon (e.g., *group 6* for the previous example)
- (2) Next, per-polygon rankings were aggregated for each team;
- (3) Overall ranking is based on a sum of per-polygon rankings;
 - Team B that did worse than team A for some problems might still be ranked above A
- Teams that solved all 30 problems were ranked first amongst each other.

Expectations and Surprises

- For the first three days results in in **Part I** were consistent with the triangulation-based algorithm.
- Last-minute results look way better than the baseline
- Several top-ranked solutions are *astonishingly* good
 - Although we suspect some of them to be hand-crafted.
- Part 2 didn't seem to pose too much challenge after all.

Finish line

Last submitted	Rank	Done	1 (3)	2 (4)	3 (6)	4 (8)	5 (12)	6 (180)	7 (92)	8 (244)	9 (74)	10 (338)	11 (104)	12 (288)	13 (334)	14 (58)
15:27:23, 24 Feb 2016	1	30	1	1	2	1	2	23	11	33	10	47	14	41	43	5
13:10:28, 26 Feb 2016	2	30	1	1	2	1	2	23	11	33	10	48	14	41	43	5
13:50:36, 26 Feb 2016	2	30	1	1	2	1	2	23	11	33	10	48	14	41	43	5
13:51:13, 26 Feb 2016	3	30	1	1	2	1	2	23	11	33	10	48	14	41	43	5
13:49:19, 26 Feb 2016	4	30	1	1	2	1	2	23	11	33	10	48	14	41	43	5
13:54:27, 26 Feb 2016	5	30	1	1	2	1	2	23	11	33	10	48	14	41	43	5
13:46:45, 26 Feb 2016	6	30	1	1	2	1	2	25	11	34	10	47	14	41	47	5
13:45:49, 26 Feb 2016	6	30	1	1	2	1	2	24	11	34	10	51	14	43	47	5
13:58:56, 26 Feb 2016	7	30	1	1	2	1	2	23	11	33	10	49	14	41	50	5
13:47:00, 26 Feb 2016	7	30	1	1	2	1	2	23	11	33	10	49	14	41	46	5
13:28:53, 26 Feb 2016	8	30	1	1	2	1	2	23	11	33	10	111	14	93	43	5

The Winners

7 guards (best solution)

In conclusion

- This week was fun to design...
- ...and even more fun to observe.
- We hope, it was fun to participate in it.

Have a nice weekend... ... and take some time to enjoy art in galleries, which are now well-guarded.

