Scenario Week 4:
Art Gallery Competition

Organisers' Report

PPLV

scenariol@cs.ucl.ac.uk

26 February 2016

One subtle server bug discovered (non-lethal)

» floating-point arithmetic Is a nasty thing...

1 he Problem and its solutions

» Original formulation 1s due to Chvatal (1975)
» Textbook algorithm by Fisk (19/78)

* Triangulation and 3-colouring, delivers a decent | n/3 | solution
* Better solutions exist for specific polygons

* L-partitioning for rectilinear polygons: | n/4 | solution

» Detecting convex sugpolygons — just one guard required;

- Even better: detecting “star” sub-polygons;

* A good survey: "Art Gallery Theorems and Algorithms” by O'Rourke

Inrtial setup

* Part |: 30 polygons for finding the best guards sets
* 1-5 are trivial — to test inturtion (small size);
* 8-13 are rectilinear (/4-334 vertices);
* I15-17 composed from triangles (42-360 vertices);
* 18-26 are “quasi-convex” with large convex regions;
* 27-30 composed from various random shapes.
* Part 2: /0 polygons/guards to find refutations
« About 2/3 problems had one node non-covered (easy to find);

« 6 or 7 problems required a proper algorithms (or a lot of patience).

Part |, polygson |4

<
Ea

Checking your solutions

* Server is written in Seala via $pray framework on serviets (1500 LOC);

» Run during the week on a single Linux machine with 4 GB RAM;

* Each team’s submissions are processed by a separate @aetor (non-blocking);

* All geometric processing is implemented in Seala from scratch,
no third-party libraries (1800 LOC, including tests);

» ~ 150 unit tests + several randomised testing procedures
(bazillions of randomly-generated polygons);

» still missed one floating-point bug :(

» Guards checking procedure is a slightly modified version of Joe-Simpson
algorithm for visibility polygons (1985).

A

Checking your solutions

Detecting grey areas precisely

Step 1: compute all individual visibility areas
via Joe-Simpson algorithm.

Detecting grey areas precisely

Step 2: triangulate the initial polygon

Detecting grey areas precisely

Step 3*: add visibility areas one by one, compute
Intersections with present triangles and A-partition again

Detecting grey areas precisely

Step 3*: add visibility areas one by one, compute
Intersections with present triangles and A-partition again

Detecting grey areas precisely

Step 3*: add visibility areas one by one, compute
Intersections with present triangles and A-partition again

Detecting grey areas precisely

Loop Invariant. at the end of each iteration,
each triangle is either fully visible or is fully grey (invisible).

Proof
By induction on edges
of visibility areas.

Detecting grey areas precisely

Step 4: iterate through all the triangles of the partition
and check if a centre of each belongs to some visibility area.

It not, return the centre
of such triangle as a refutation.

Behind the Scenes

A

Geeks and repetitive tasks

time A
loses
spent uns
writes
script to
automate
gets S A wins
annoyed
does it
manually
\ makes fun of geek's
complicated method
does it -

manually

task size

Kareem's Demo

A

Analysing submission patterns

- laking data about Part 1 submissions
* Recording time of successful submissions (green)

» Propagated submissions (purple)

- No submission (blank)

A

"Experimentators”
=
!

n'l

Hour

T

:
|
\

Problems

"Hard workers”

Hour

|
||
-Hf

i — |

|

Problems

A

"Real geeks”

Hour

Problems

A

‘late bloomers”

I 'Iﬁ

Hour

Problems

A

“Parallel computers’

o
\

Problems

A

Part | problems: loughies

» polygon | 3 (334 vertices)
» polygon |/ (360 vertices)
|| |l

» polygon [0 (338 vertices)
» polygon |2 (288 vertices)

Shameless Advertisement

MSc Programme by PPLV:
Logic, Semantics and Verification of Programs.

* Analysis of the correctness of large systems;
» Concurrent and distributed programming; PPLV

- Formal methods and theorem proving (yay!);

» Dark magic of abstract algebra and category theory to make
better software (without actual bugs);

- Starts next year, apply in 2017/

http://pplv.cs.ucl.ac.uk

The Competrtion

Ranking solutions

» Solutions were not ranked based on the total sum of guards;

- Instead, () for each polygon, teams were grouped according to the
number of guards, smaller is better (e.g., 5 groups of solutions)

* Teams that didnt solve a polygon were all put into the “last” group for this polygon
(e.g., group 6 for the previous example)

» (2) Next, per-polygon rankings were aggregated for each team;
* (3) Overdll ranking Is based on a sum of per-polygon rankings;
» Team B that did worse than team A for some problems might still be ranked above A

» Jeams that solved all 30 problems were ranked first amongst each
other.

Expectations and Surprises

* For the first three days results in in Part 1 were
consistent with the triangulation-based algorithm.

- Last-minute results look way better than the baseline

» Several top-ranked solutions are astonishingly sood

» Although we suspect some of them to be hand-crafted.

- Part 2 didn't seem to pose too much challenge after all.

Finish line

3) || @) | (6) | (8) || (12) | (180) | (92) || (244) || (74) || (338) || (104) || (288) || (334) | (58)

Last submitted || Rank || Done

15:27:23,24
Feb 2016

13:10:28, 26
Feb 2016

13:50:36, 26
Feb 2016

13:51:13, 26
Feb 2016

13:49:19, 26
Feb 2016

13:54:27, 26

Feb 2016

13:46:45, 26
Feb 2016

13:45:49, 26
Feb 2016

13:58:56, 26
Feb 2016

13:47:00, 26
Feb 2016

13:28:53, 26
Feb 2016

8 30 Lf1f21)] 2 23 || 11 | 33 | 10 |[111 14 93 43 5

1he Winners

SUrprises

(.

&b

* Part |, polygon 23
* 100 vertices

» 7 guards (best solution)

%

\(4.0, 6.422649730810376)

N conclusion

» This week was fun to design...
. ...and even more fun to observe.

- We hope, It was fun to participate in It.

Have a nice weekend...

... and take some time
to enjoy art in galleries,
which are now well-guarded. T) H

Thanks!

