
Scenario Week 4:  
Art Gallery Competition

Organisers' Report

scenario@cs.ucl.ac.uk

26 February 2016

• 94 participants
• 24 teams
• 1892 submissions for Part 1
• 468 submissions for Part 2
• One subtle server bug discovered (non-lethal)

• floating-point arithmetic is a nasty thing… 

The Week

The Problem and its solutions
• Original formulation is due to Chvátal (1975)
• Textbook algorithm by Fisk (1978)

• Triangulation and 3-colouring, delivers a decent ⌊n/3⌋ solution

• Better solutions exist for specific polygons
• L-partitioning for rectilinear polygons: ⌊n/4⌋ solution

• Detecting convex suqpolygons — just one guard required;

• Even better : detecting “star” sub-polygons;

• A good survey: “Art Gallery Theorems and Algorithms” by O’Rourke

Initial setup
• Part 1: 30 polygons for finding the best guards sets

• 1–5 are trivial — to test intuition (small size);
• 8–13 are rectilinear (74–334 vertices);
• 15–17 composed from triangles (42-360 vertices);
• 18–26 are “quasi-convex” with large convex regions;
• 27–30 composed from various random shapes.

• Part 2: 20 polygons/guards to find refutations
• About 2/3 problems had one node non-covered (easy to find);
• 6 or 7 problems required a proper algorithms (or a lot of patience).

Part 1, polygon 14

Checking your solutions
• Server is written in Scala via Spray framework on servlets (1500 LOC);

• Run during the week on a single Linux machine with 4 GB RAM;
• Each team’s submissions are processed by a separate actor (non-blocking);

• All geometric processing is implemented in Scala from scratch,  
no third-party libraries (1800 LOC, including tests);

• ~150 unit tests + several randomised testing procedures  
(bazillions of randomly-generated polygons);

• still missed one floating-point bug :(
• Guards checking procedure is a slightly modified version of Joe-Simpson  

algorithm for visibility polygons (1985).

Checking your solutions

Detecting grey areas precisely
Step 1: compute all individual visibility areas
 via Joe-Simpson algorithm.

Detecting grey areas precisely
Step 2: triangulate the initial polygon

Detecting grey areas precisely
Step 3*: add visibility areas one by one, compute  
intersections with present triangles and Δ-partition again

Detecting grey areas precisely
Step 3*: add visibility areas one by one, compute  
intersections with present triangles and Δ-partition again

Detecting grey areas precisely
Step 3*: add visibility areas one by one, compute  
intersections with present triangles and Δ-partition again

Detecting grey areas precisely
Loop Invariant: at the end of each iteration,  
each triangle is either fully visible or is fully grey (invisible).

Proof
By induction on edges  
of visibility areas.

Detecting grey areas precisely
Step 4: iterate through all the triangles of the partition
and check if a centre of each belongs to some visibility area.

If not, return the centre  
of such triangle as a refutation.

Behind the Scenes

Kareem’s Demo

Analysing submission patterns

• Taking data about Part 1 submissions
• Recording time of successful submissions (green)
• Propagated submissions (purple)
• No submission (blank)

“Experimentators”
Hour

Problems

“Hard workers”
Hour

Problems

“Real geeks”
Hour

Problems

“Late bloomers”
Hour

Problems

“Parallel computers”
Hour

Problems

Part 1 problems: Toughies

• polygon 10 (338 vertices)
• polygon 12 (288 vertices)
• polygon 13 (334 vertices)
• polygon 17 (360 vertices)

Shameless Advertisement

MSc Programme by PPLV:  
Logic, Semantics and Verification of Programs.

• Analysis of the correctness of large systems;
• Concurrent and distributed programming;
• Formal methods and theorem proving (yay!);
• Dark magic of abstract algebra and category theory to make

better software (without actual bugs);
• Starts next year, apply in 2017!

http://pplv.cs.ucl.ac.uk

The Competition

Ranking solutions
• Solutions were not ranked based on the total sum of guards;
• Instead, (1) for each polygon, teams were grouped according to the

number of guards, smaller is better (e.g., 5 groups of solutions)
• Teams that didn’t solve a polygon were all put into the “last” group for this polygon 

(e.g., group 6 for the previous example)

• (2) Next, per-polygon rankings were aggregated for each team;
• (3) Overall ranking is based on a sum of per-polygon rankings;

• Team B that did worse than team A for some problems might still be ranked above A

• Teams that solved all 30 problems were ranked first amongst each
other.

Expectations and Surprises
• For the first three days results in in Part 1 were  

consistent with the triangulation-based algorithm.
• Last-minute results look way better than the baseline
• Several top-ranked solutions are astonishingly good

• Although we suspect some of them to be hand-crafted.

• Part 2 didn’t seem to pose too much challenge after all. 

Finish line

The Winners

Surprises

• Part 1, polygon 23
• 100 vertices
• 7 guards (best solution)

(4.0, 6.422649730810376)

In conclusion

Have a nice weekend…
… and take some time  
 to enjoy art in galleries,

Thanks!

which are now well-guarded.

• This week was fun to design…
• …and even more fun to observe.
• We hope, it was fun to participate in it.

