
Scenario Week 4
(comp203p)

scenario@cs.ucl.ac.uk

22-26 February 2016

Ilya Sergey





How many guards do we really need?
The answer depends on the shape of the gallery.



How many guards do we really need?
The answer depends on the shape of the gallery.

Here just 1 guard is okay.



How many guards do we really need?



How many guards do we really need?



How many guards do we really need?



How many guards do we really need?

3 guards will do.



How many guards do we really need?



Art Gallery Problem
For a given gallery (polygon),  

find the minimal set of guards’ positions,  
so together the guards can “see” the whole interior.

NP
-h
ar
d

• Complexity-wise, harder than
• SAT
• Travelling salesman
• Hamiltonian paths
• Knapsack problem



•Putting guard in each vertex
‣n guards for a polygon with n vertices 

•Václav Chvátal’s solution (1975)
‣based on triangulation, ⌊n/3⌋ guards;
‣Chvátal’s theorem: this number is always 
sufficient and is in some cases necessary.

Cheap-and-cheerful “almost”solutions

:-(



Chvátal’s solution in practice

• 246 vertices
• 79 guards

Can we do better?



Scenario Week 4
(comp203p)

scenario@cs.ucl.ac.uk

22-26 February 2016

Art Gallery Competition



Part 1: Computing “good enough” set of guards

• 30 galleries of different shapes; 

• File with galleries: guards.pol (see Moodle page);

• sizes of problems: small (<10) to large (~300);

• Compute a complete set of guards for each one of them;

• Baseline — Chvátal’s boundary (cannot get worse than that);

• Grading: 30 points, one per gallery, for any solution, which is 
not worse than the baseline.



Encoding of the problems (Part 1)

Task Name Maximal Score (points) Details

Computing the Set of Guards (Part 1) 30 Section 2.1
Checking the Set of Guards (Part 2) 20 Section 2.2
Visualisation of the Solutions 15 Section 2.3
Implementation Report 15 Section 2.4
The Competition 20 Section 2.5

The next subsections outline the details of the tasks.

2.1 Computing the Set of Guards (Part I)

In this task, you will be given a text file guards.pol (available from the Moodle page of the course),
containing definitions of 30 simple polygons (with no holes or self-intersections).

Each line contains a polygon number, followed by its definition after a colon (ignoring possible
spaces between other lexical tokens). The definition of a polygon is a list of coordinates of its
vertices (x, y), where x, y can be integers or double-precision floating-point numbers. The sequence
of the vertices is arranged in a way that the interior of the polygon will stay on the left, when one
“walks” from one vertex to the next one. The successor of the last vertex in the list is the first
vertex. For instance, the following file describes two polygons in the defined format, numbered 1
and 2, correspondingly and depicted in Figure 1:

guards.pol

1: (0, 0), (2, 0), (2, 1), (1, 1), (1, 3), (0, 3)

2: (0, 0), (5, 0), (5, 2), (4.2312351, 1.234), (1, 1), (0, 2)

Your goal for this task is to compute, for each polygon, a set of guards, which together can see
its whole interior, and the size of the set is not larger than Chvátal’s boundary bn/3c.

The solution for this task is a text file. You can implement your algorithm in any

programming language of your preference and use any libraries you consider necessary.

You don’t have to (and should not) submit the code.

The file with the results should start with the first line containing the name of the team and the
second line being its password. If those don’t match, the file will not be accepted by the system.
The remaining lines should contain the solutions in the following format:

polygon number : comma separated list of guards

where guards are represented as pairs of their coordinates (x, y). A solution for each problem,
along with its number, should be placed on a separate line. There is no specific order imposed on
the sequence of the guards or solutions. For instance, a solution for the above file guards.pol,
submitted by the team tiger with a password lt671vecrskq might look as follows:

tiger

lt671vecrskq

2: (0, 2), (4.3, 1)

1: (0.2, 2.5), (2, 0.5)

3

(a) Polygon 1

(b) Polygon 2

Figure 1: Two simple non-convex polygons.

The text file with the solution should be submitted in the form of Part 1 of the following page:

http://artgallery.cs.ucl.ac.uk

WARNING! Parts of the input are specified via double-precision floating points, which assumes
working with "-equality instead of equality.3 Your solutions may contain double-precision floating-
point numbers, as well. The server uses " = 0.0000000001, therefore all values with di↵erence
smaller than 0.0000000001 will be considered equal. This value of " is unsound for arbitrary floating-
point computations, but should su�ce for the solutions of the problems in this scenario.

The file being submitted might not contain all solutions, so only presented ones will be graded
by the system. The files with typesetting errors will not be accepted for grading. A solution for a
specific polygon will not be accepted if at least one of the following conditions holds:

1. there is a guard in a solution, whose coordinates lie outside of the corresponding polygon;

2. there is a point in a polygon, which is not visible from any of the guards in the solution;

3. the size of the solution is larger than bn/3c, where n is the size of the polygon.

Grading of a solution typically takes at least 3-4 minutes, and might take significantly longer,
depending on the current server load. Once grading is complete, the statistics for the solution will
appear in the joint score table for the Part 1. Notice that only the last solution is taken into
account, so all previous results for a team are superseded by the next submitted solution.

The server will stop accepting solutions at 14:00 GMT, 26 February 2016. Make

sure to submit your best results by then.

The maximal grade you can get for this part is 30 points, which corresponds to the number
of the polygons in the assignment.

2.2 Checking the Set of Guards (Part 2)

In this task, you will have to develop a procedure for checking a set of guards for completeness and
finding a refutation for a given polygon P and an incomplete set of guards S. A refutation is a
single point within P , such that it is not visible from any of the guards in S.

3
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

4

(0, 0) (5, 0)

(5, 2)(0, 2)

• Polygon is “on the left”
• No holes inside



Encoding your solutions (Part 1)

Task Name Maximal Score (points) Details

Computing the Set of Guards (Part 1) 30 Section 2.1
Checking the Set of Guards (Part 2) 20 Section 2.2
Visualisation of the Solutions 15 Section 2.3
Implementation Report 15 Section 2.4
The Competition 20 Section 2.5

The next subsections outline the details of the tasks.

2.1 Computing the Set of Guards (Part I)

In this task, you will be given a text file guards.pol (available from the Moodle page of the course),
containing definitions of 30 simple polygons (with no holes or self-intersections).

Each line contains a polygon number, followed by its definition after a colon (ignoring possible
spaces between other lexical tokens). The definition of a polygon is a list of coordinates of its
vertices (x, y), where x, y can be integers or double-precision floating-point numbers. The sequence
of the vertices is arranged in a way that the interior of the polygon will stay on the left, when one
“walks” from one vertex to the next one. The successor of the last vertex in the list is the first
vertex. For instance, the following file describes two polygons in the defined format, numbered 1
and 2, correspondingly and depicted in Figure 1:

guards.pol

1: (0, 0), (2, 0), (2, 1), (1, 1), (1, 3), (0, 3)

2: (0, 0), (5, 0), (5, 2), (4.2312351, 1.234), (1, 1), (0, 2)

Your goal for this task is to compute, for each polygon, a set of guards, which together can see
its whole interior, and the size of the set is not larger than Chvátal’s boundary bn/3c.

The solution for this task is a text file. You can implement your algorithm in any

programming language of your preference and use any libraries you consider necessary.

You don’t have to (and should not) submit the code.

The file with the results should start with the first line containing the name of the team and the
second line being its password. If those don’t match, the file will not be accepted by the system.
The remaining lines should contain the solutions in the following format:

polygon number : comma separated list of guards

where guards are represented as pairs of their coordinates (x, y). A solution for each problem,
along with its number, should be placed on a separate line. There is no specific order imposed on
the sequence of the guards or solutions. For instance, a solution for the above file guards.pol,
submitted by the team tiger with a password lt671vecrskq might look as follows:

tiger

lt671vecrskq

2: (0, 2), (4.3, 1)

1: (0.2, 2.5), (2, 0.5)

3

Solution file:

team name
team’s password

per-polygon guards

(0, 0) (5, 0)

(5, 2)(0, 2)



Checking and submitting solutions
• Warning: double-precision floating-point arithmetic

• all equalities are up to ε = 0.000,000,000,1
• Details on acceptance criteria are in the specification (on Moodle)
• Submit your solutions here (under Part 1):

http://artgallery.cs.ucl.ac.uk

Solutions are accepted until 14:00 GMT 26 Feb 2016



Part 2: Checking a (flawed) set of guards

• 20 galleries of different shapes with sets of guards; 
• File with problems: check.pol (see Moodle page);
• sizes of problems: small (<10) to gigantic (~500);

• Find a refutation (a point within a polygon, not visible from the 
given guards) for each problem in the set;

• Any refutation will do.
• Grading: 20 points, one per problem/refutation.



Encoding of the problems (Part 2)

(a) Polygon with guards 1
(b) Polygon with guards 2

Figure 2: Galleries with incomplete guard sets.

As an input, you get the text file check.pol (available on the Moodle page of the week),
containing 20 lines, each of which corresponds to a numbered polygon with an incomplete set of
guards in the following format:

polygon number: polygon; guards

where guards is a comma-separated list of points on the plane. For instance, the following toy
example represents an input for this problem:

1: (0, 0), (2, 0), (2, 1), (1, 1), (1, 3), (0, 3); (0, 3), (1, 2)

2: (0, 0), (5, 0), (5, 2), (4.2312351, 1.234), (1, 1), (0, 2); (0, 2), (3, 1)

The visualisation of these two inputs is shown in Figure 2, with red dots marking possible
refutations in the “grey area” of a corresponding gallery.

The main part of the solution file, whose first two lines are your team name and password

(just like in Part 1), should contain numbered refutations, one for each polygon/guard set.
For instance, a possible solution file by the team tiger for the problems in check.pol above might
look as follows:

tiger

lt671vecrskq

1: (1.56, 0.53)

2: (4.74, 1.53)

These are the refutations, corresponding to the red dots in the grey ares in Figure 2.
You should submit your text files with the solutions to the Part 2 submission web form at

5

check.pol

polygon vertices guards

File with problems

refutation



Encoding your solutions (Part 2)
Solution file:

(a) Polygon with guards 1
(b) Polygon with guards 2

Figure 2: Galleries with incomplete guard sets.

As an input, you get the text file check.pol (available on the Moodle page of the week),
containing 20 lines, each of which corresponds to a numbered polygon with an incomplete set of
guards in the following format:

polygon number: polygon; guards

where guards is a comma-separated list of points on the plane. For instance, the following toy
example represents an input for this problem:

1: (0, 0), (2, 0), (2, 1), (1, 1), (1, 3), (0, 3); (0, 3), (1, 2)

2: (0, 0), (5, 0), (5, 2), (4.2312351, 1.234), (1, 1), (0, 2); (0, 2), (3, 1)

The visualisation of these two inputs is shown in Figure 2, with red dots marking possible
refutations in the “grey area” of a corresponding gallery.

The main part of the solution file, whose first two lines are your team name and password

(just like in Part 1), should contain numbered refutations, one for each polygon/guard set.
For instance, a possible solution file by the team tiger for the problems in check.pol above might
look as follows:

tiger

lt671vecrskq

1: (1.56, 0.53)

2: (4.74, 1.53)

These are the refutations, corresponding to the red dots in the grey ares in Figure 2.
You should submit your text files with the solutions to the Part 2 submission web form at

5

team name
team’s password

per-polygon refutations

http://artgallery.cs.ucl.ac.uk

Solutions are accepted until 14:00 GMT 26 Feb 2016

• Submit your solutions here (under Part 2):



Part 3: Visualisation
• Implement a visualiser for galleries, guards and visibility:

• drawing galleries;
• drawing visibility areas from specific guards;
• drawing refutations for incomplete guard sets.

• Grading: 15 points

• Assessed by the organisers from 14:00 till 17:00, 26 Feb16 
• book a slot for your team!



Part 4: Implementation report

• Describe your implementation experience
• language, algorithms, etc.

• details in the specification (see Moodle)
• Grading: 15 points

• Submit electronically by 17:00, 26 Feb 2016 (one per 
team)



• Compete with other teams for the best solutions in Part 1.
• Teams with all accepted solutions ranked amongst each other first.
• Check the score table http://artgallery.cs.ucl.ac.uk at for details
• Grading: up to 20 points.

Part 5: The Competition!

Rank Score
1 20

2-3 15
4-5 10
6-7 5
≥8 0

http://artgallery.cs.ucl.ac.uk


Overall grading

Task Max grade

Computing “good enough” guard set 30
Checking a flawed guard set 20
Visualisation of the solutions 15

Implementation report 15
The Competition 20



This week schedule
Scenario	Week	4		

	
	 Monday,	22	Feb	 Tuesday,	23	Feb	 Wednesday,	24	Feb	 Thursday,	25	Feb	 Friday,	26	Feb	

	
10:00-11:00	

	

	
Roberts	421	

	
Bedford	Way	LG04	

	
Roberts	106	

	
Roberts	421	

	
11:00-13:00	

	
	 	
	
	 ULU	Malet	Suite	
(Introductory	lecture)	

	
	

	
Christopher	Ingold	
XLG2	Auditorium	

	

	
	

Chadwick	B05	LT	

	
Medawar	G01	
Lankester	LT	

	
	

Cruciform	B404	-	LT2	

	
	

13:00-14:00	 Lunch	 Lunch	 Lunch	 Lunch	

	
14:00-16:00	

	
Cruciform	B404	-	LT2	

	

	
Cruciform	B304	-	LT1	

Medawar	G01	
Lankester	LT	

	

Birkbeck	Malet	Street	
B36	

	
	

16:00-18:00	

	
	

Roberts	106	

	
	

Cruciform	B304	-	LT1	
	
	

Birkbeck	Clore	
Management	Centre	B01	

	
Medawar	G01	
Lankester	LT	

	
Roberts	G06	Sir	

Ambrose	Fleming	LT	
(Concluding	lecture	at	

17:	00)	
	

	
Helpdesk	(green)	=	Time	and	locations	where	staff	and/or	TAs	will	be	present	so	you	could	ask	questions.	
Lectures	(blue)	=	Introductory	and	concluding	lectures	



Good luck!


