
Scenario Week 4
(comp203p)

scenario@cs.ucl.ac.uk

20–24 February 2017









ZZz ZZzZZz



WALL-E #1









What is the most efficient way to wake up everyone?

Timeline

A B EC D

A moving

B moving

A

B
C

D

E

C moving

X

X

O1

O2

A

B
C

D

E

O1

O2

Figure 2: Moving and tagging with obstacles, starting from A: initial setup, paths and timeline.

2 Tasks and Grading

For this week, you will be working in groups of up to four members. Each group is assigned a
unique identifier (a name of an animal species) and a password, which will be mailed to you at
the beginning of the week. As customary, we advise you to keep your password secret, as it will be
used for submission of the results by your team to the testing server.

There will be four tasks of di↵erent di�culty, and we encourage you to make the best of splitting
the workload to solve them in parallel. The maximal grade for this scenario week is 100 points.
The table below outlines the distribution of the points between several tasks:

Task Name Maximal Score (points) Details

Solving 30 large instances of the MAT problem 60 Section 2.1
Visualisation of the Solutions 10 Section 2.2
Implementation Report 10 Section 2.3
The Competition 20 Section 2.4

The next subsections outline the details of each of the tasks.

3

Timeline

A B EC D

A moving

B moving

A

B
C

D

E

C moving

X

X

O1

O2

A

B
C

D

E

O1

O2

Figure 2: Moving and tagging with obstacles, starting from A: initial setup, paths and timeline.

2 Tasks and Grading

For this week, you will be working in groups of up to four members. Each group is assigned a
unique identifier (a name of an animal species) and a password, which will be mailed to you at
the beginning of the week. As customary, we advise you to keep your password secret, as it will be
used for submission of the results by your team to the testing server.

There will be four tasks of di↵erent di�culty, and we encourage you to make the best of splitting
the workload to solve them in parallel. The maximal grade for this scenario week is 100 points.
The table below outlines the distribution of the points between several tasks:

Task Name Maximal Score (points) Details

Solving 30 large instances of the MAT problem 60 Section 2.1
Visualisation of the Solutions 10 Section 2.2
Implementation Report 10 Section 2.3
The Competition 20 Section 2.4

The next subsections outline the details of each of the tasks.

3

Solution

A B EC D

A moving
B moving

C moving

X

Timeline

Problem

Awakening time
| {z }



Move-and-Tag Problem
For given positions of robots and obstacles,  

 find the set of robots paths (starting from robot #1),  
so by following them all robots would wake up  

in the shortest period of time.

NP
-h
ar
d• Complexity-wise, harder than

• SAT

• Travelling salesman

• Hamiltonian paths

• Knapsack problem



Valid Set of Robot Paths

• Has a path starting from robot #1;
• Do not cross the obstacles (but can touch their boundaries);
• All robots in the swarm are “tagged” by the end;
• Do not have “cycles” in the awakening sequences.



Task 1: Computing valid MAT solutions

• 30 instances with obstacles of different shapes; 

• File with instances: robots.mat (see Moodle page);

• 2–400 robots 

• 0–200 obstacles;

• Compute a valid set of robots paths for each problem instance;

• Grading: 60 points, two per instance, for any valid solution.



Encoding of the problems

2.1 Solving the Move-and-Tag problem

In this task, you will be given a text file robots.mat (available from the Moodle page of the course),
containing definitions of 30 configurations with robot positions and obstacles. The obstacles
are simple polygons, with no holes or self-intersections. They also do not intersect with each other.

Each line of the problem file contains an problem instance number, followed by a colon (ignoring
possible spaces between other lexical tokens), a list of robot positons, a an optional # separator
followed by a list of polygons separated by a semicolon, if there are any obstacles.

Each robot is represented by a point on a plane, encoded as a pair of integer or double-precision
floating-point coordinates, e.g., (4.5, 3.534635257) or (5,0). A polygon is represented by a list
of coordinates of its vertices (x, y), where x, y can be integers or double-precision floating-point
numbers. The sequence of the vertices is arranged in a way that the interior of the polygon will
stay on the left, when one “walks” from one vertex to the next one. The successor of the last vertex
in the list is the first vertex.

For instance, the following text describes the two problems from Figures 1 and 2 in the defined
format, numbered 1 and 2 correspondingly:

1: (-1.5, 1.5), (-1,0), (5,0), (4.5, 3.5), (4.6, -3)

2: (-1.5, 1.5), (-1,0), (5,0), (4.5, 3.5), (4.6, -3) # (0,1), (2,3), (4,1), (4,10), (0,10); (4,0), (2,2), (0,0), (0,-10), (4,-10)

The first line corresponds to the obstacle-free setup from Figure 1, with the five coordinates
describing positions of the robots A–E, so the robot A with coordinates (-1.5, 1.5) is the first
one in the list, so it should awake the rest. The second line describes the setup from Figure 2, with
the same robots and two obstacles, represented by 5-vertex polygons.

Your goal for this task is to compute, for each MAT instance, a set of paths of a subset of
robots, so by following those paths the corresponding robots would eventually awake all their peers
without forgetting anyone and without intersecting the obstacles. You only need to give paths for
robots that do move in your solution.

The solution for this task is a text file. You can implement your algorithm in any

programming language of your preference and use any libraries you consider necessary.

You do not have to (and should not) submit the code.

The file with the results should start with the first line containing the name of the team and
the second line being its password. If those do not match, the file will not be accepted by the
system. The remaining lines should contain the solutions in the format, described by the following
grammar (white spaces are ignored and can be added arbitrarily):

<ProblemSolution> := <number>: <Solution>

<Solution> := <path> | <Solution> ";" <path>

<path> := <points>

<points> := <point> | <points> "," <point>

<point> := "(" <float> "," <float> ")"

A solution for each problem, along with its number, should be placed on a separate line. There
is no specific order imposed on the sequence of the paths or solutions. Each solution line starts with
a number of a problem, followed by a semicolon, followed by one or more paths (lists of points),
separated by semicolons. Each path should be a list of points, described the movements of a specific
robot. It should start from a a coordinate of some robot, and explicitly mention all other robots,

4

robots.mat

(-1.5, 1.5)

(-1, 0)

(4.5, 3.5)

(5, 0)

(4.6, -3)



Encoding of the problems

2.1 Solving the Move-and-Tag problem

In this task, you will be given a text file robots.mat (available from the Moodle page of the course),
containing definitions of 30 configurations with robot positions and obstacles. The obstacles
are simple polygons, with no holes or self-intersections. They also do not intersect with each other.

Each line of the problem file contains an problem instance number, followed by a colon (ignoring
possible spaces between other lexical tokens), a list of robot positons, a an optional # separator
followed by a list of polygons separated by a semicolon, if there are any obstacles.

Each robot is represented by a point on a plane, encoded as a pair of integer or double-precision
floating-point coordinates, e.g., (4.5, 3.534635257) or (5,0). A polygon is represented by a list
of coordinates of its vertices (x, y), where x, y can be integers or double-precision floating-point
numbers. The sequence of the vertices is arranged in a way that the interior of the polygon will
stay on the left, when one “walks” from one vertex to the next one. The successor of the last vertex
in the list is the first vertex.

For instance, the following text describes the two problems from Figures 1 and 2 in the defined
format, numbered 1 and 2 correspondingly:

1: (-1.5, 1.5), (-1,0), (5,0), (4.5, 3.5), (4.6, -3)

2: (-1.5, 1.5), (-1,0), (5,0), (4.5, 3.5), (4.6, -3) # (0,1), (2,3), (4,1), (4,10), (0,10); (4,0), (2,2), (0,0), (0,-10), (4,-10)

The first line corresponds to the obstacle-free setup from Figure 1, with the five coordinates
describing positions of the robots A–E, so the robot A with coordinates (-1.5, 1.5) is the first
one in the list, so it should awake the rest. The second line describes the setup from Figure 2, with
the same robots and two obstacles, represented by 5-vertex polygons.

Your goal for this task is to compute, for each MAT instance, a set of paths of a subset of
robots, so by following those paths the corresponding robots would eventually awake all their peers
without forgetting anyone and without intersecting the obstacles. You only need to give paths for
robots that do move in your solution.

The solution for this task is a text file. You can implement your algorithm in any

programming language of your preference and use any libraries you consider necessary.

You do not have to (and should not) submit the code.

The file with the results should start with the first line containing the name of the team and
the second line being its password. If those do not match, the file will not be accepted by the
system. The remaining lines should contain the solutions in the format, described by the following
grammar (white spaces are ignored and can be added arbitrarily):

<ProblemSolution> := <number>: <Solution>

<Solution> := <path> | <Solution> ";" <path>

<path> := <points>

<points> := <point> | <points> "," <point>

<point> := "(" <float> "," <float> ")"

A solution for each problem, along with its number, should be placed on a separate line. There
is no specific order imposed on the sequence of the paths or solutions. Each solution line starts with
a number of a problem, followed by a semicolon, followed by one or more paths (lists of points),
separated by semicolons. Each path should be a list of points, described the movements of a specific
robot. It should start from a a coordinate of some robot, and explicitly mention all other robots,

4

robots.mat

(-1.5, 1.5)

(-1, 0)

(4.5, 3.5)

(5, 0)

(4.6, -3)

(0, 1)
• Polygon is “on the left”

• No holes in obstacles



Encoding your solutions
Solution file:

team name
team’s password

per-instance robot paths

(-1.5, 1.5)

(-1, 0)

(4.5, 3.5)

(5, 0)

(4.6, -3)

(-1.5, 1.5)

(-1, 0)

(4.5, 3.5)

(5, 0)

(4.6, -3)

(2, 2)

Figure 3: Problems from Figure 1 and Figure 2 with the corresponding coordinates.

which this one is going to “tag”, as waypoints, as well as points where direction is changed in
order to avoid obstacles. The ordering of points in a path is important, but the ordering of paths
in a solution does not matter. In each solution, there must be exactly one path that starts with
coordinates of the first robot.

For instance, solutions for the problems from Figures 1 and 2 submitted by the team tiger

with a password lt671vecrskq might look as follows:

tiger

lt671vecrskq

1: (-1.5, 1.5), (-1, 0), (4.5, 3.5); (-1, 0), (5, 0), (4.6, -3)

2: (-1.5, 1.5), (-1, 0); (-1, 0), (2, 2), (5, 0), (4.6, -3); (5, 0), (4.5, 3.5)

That is, the solution for the first problem contains two paths: for the robot A (with coordinates
(-1.5, 1.5)) and for the robot B (coordinates (-1, 0)), which will wake up all other robots.
Similarly, the second line provides three paths outlining the routes for the robots A, B and C. The
graphical representation of the solutions, with the corresponding coordinates, is shown in Figure 3.

Each solution will be assigned a score (rounded up to 0.001), corresponding to the actual time
of the swarm awakening according ot the provided paths, computed as a length of the joint timeline
(1 unit of distance = 1 unit of time), where several robots can be working in parallel. For instance,
the score assigned to the first solution from the example above is 10.608, whereas the score of the
second one is 12.327, because of the detours, required to go around obstacles.

The text file with the solution should be submitted in the form of the following page:

http://scenario.cs.ucl.ac.uk

WARNING! Parts of the input are specified via double-precision floating points, which assumes
working with "-equality instead of equality.1 Your solutions may contain double-precision floating-
point numbers, as well. The server uses " = 0.000000001, therefore all values with di↵erence smaller

1
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

5



Encoding your solutions

(-1.5, 1.5)

(-1, 0)

(4.5, 3.5)

(5, 0)

(4.6, -3)

(-1.5, 1.5)

(-1, 0)

(4.5, 3.5)

(5, 0)

(4.6, -3)

(2, 2)

Figure 3: Problems from Figure 1 and Figure 2 with the corresponding coordinates.

which this one is going to “tag”, as waypoints, as well as points where direction is changed in
order to avoid obstacles. The ordering of points in a path is important, but the ordering of paths
in a solution does not matter. In each solution, there must be exactly one path that starts with
coordinates of the first robot.

For instance, solutions for the problems from Figures 1 and 2 submitted by the team tiger

with a password lt671vecrskq might look as follows:

tiger

lt671vecrskq

1: (-1.5, 1.5), (-1, 0), (4.5, 3.5); (-1, 0), (5, 0), (4.6, -3)

2: (-1.5, 1.5), (-1, 0); (-1, 0), (2, 2), (5, 0), (4.6, -3); (5, 0), (4.5, 3.5)

That is, the solution for the first problem contains two paths: for the robot A (with coordinates
(-1.5, 1.5)) and for the robot B (coordinates (-1, 0)), which will wake up all other robots.
Similarly, the second line provides three paths outlining the routes for the robots A, B and C. The
graphical representation of the solutions, with the corresponding coordinates, is shown in Figure 3.

Each solution will be assigned a score (rounded up to 0.001), corresponding to the actual time
of the swarm awakening according ot the provided paths, computed as a length of the joint timeline
(1 unit of distance = 1 unit of time), where several robots can be working in parallel. For instance,
the score assigned to the first solution from the example above is 10.608, whereas the score of the
second one is 12.327, because of the detours, required to go around obstacles.

The text file with the solution should be submitted in the form of the following page:

http://scenario.cs.ucl.ac.uk

WARNING! Parts of the input are specified via double-precision floating points, which assumes
working with "-equality instead of equality.1 Your solutions may contain double-precision floating-
point numbers, as well. The server uses " = 0.000000001, therefore all values with di↵erence smaller

1
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

5

(-1.5, 1.5)

(-1, 0)

(4.5, 3.5)

(5, 0)

(4.6, -3)

(-1.5, 1.5)

(-1, 0)

(4.5, 3.5)

(5, 0)

(4.6, -3)

(2, 2)

Figure 3: Problems from Figure 1 and Figure 2 with the corresponding coordinates.

which this one is going to “tag”, as waypoints, as well as points where direction is changed in
order to avoid obstacles. The ordering of points in a path is important, but the ordering of paths
in a solution does not matter. In each solution, there must be exactly one path that starts with
coordinates of the first robot.

For instance, solutions for the problems from Figures 1 and 2 submitted by the team tiger

with a password lt671vecrskq might look as follows:

tiger

lt671vecrskq

1: (-1.5, 1.5), (-1, 0), (4.5, 3.5); (-1, 0), (5, 0), (4.6, -3)

2: (-1.5, 1.5), (-1, 0); (-1, 0), (2, 2), (5, 0), (4.6, -3); (5, 0), (4.5, 3.5)

That is, the solution for the first problem contains two paths: for the robot A (with coordinates
(-1.5, 1.5)) and for the robot B (coordinates (-1, 0)), which will wake up all other robots.
Similarly, the second line provides three paths outlining the routes for the robots A, B and C. The
graphical representation of the solutions, with the corresponding coordinates, is shown in Figure 3.

Each solution will be assigned a score (rounded up to 0.001), corresponding to the actual time
of the swarm awakening according ot the provided paths, computed as a length of the joint timeline
(1 unit of distance = 1 unit of time), where several robots can be working in parallel. For instance,
the score assigned to the first solution from the example above is 10.608, whereas the score of the
second one is 12.327, because of the detours, required to go around obstacles.

The text file with the solution should be submitted in the form of the following page:

http://scenario.cs.ucl.ac.uk

WARNING! Parts of the input are specified via double-precision floating points, which assumes
working with "-equality instead of equality.1 Your solutions may contain double-precision floating-
point numbers, as well. The server uses " = 0.000000001, therefore all values with di↵erence smaller

1
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

5

Instance 1



Encoding your solutions
(-1.5, 1.5)

(-1, 0)

(4.5, 3.5)

(5, 0)

(4.6, -3)

(-1.5, 1.5)

(-1, 0)

(4.5, 3.5)

(5, 0)

(4.6, -3)

(2, 2)

Figure 3: Problems from Figure 1 and Figure 2 with the corresponding coordinates.

which this one is going to “tag”, as waypoints, as well as points where direction is changed in
order to avoid obstacles. The ordering of points in a path is important, but the ordering of paths
in a solution does not matter. In each solution, there must be exactly one path that starts with
coordinates of the first robot.

For instance, solutions for the problems from Figures 1 and 2 submitted by the team tiger

with a password lt671vecrskq might look as follows:

tiger

lt671vecrskq

1: (-1.5, 1.5), (-1, 0), (4.5, 3.5); (-1, 0), (5, 0), (4.6, -3)

2: (-1.5, 1.5), (-1, 0); (-1, 0), (2, 2), (5, 0), (4.6, -3); (5, 0), (4.5, 3.5)

That is, the solution for the first problem contains two paths: for the robot A (with coordinates
(-1.5, 1.5)) and for the robot B (coordinates (-1, 0)), which will wake up all other robots.
Similarly, the second line provides three paths outlining the routes for the robots A, B and C. The
graphical representation of the solutions, with the corresponding coordinates, is shown in Figure 3.

Each solution will be assigned a score (rounded up to 0.001), corresponding to the actual time
of the swarm awakening according ot the provided paths, computed as a length of the joint timeline
(1 unit of distance = 1 unit of time), where several robots can be working in parallel. For instance,
the score assigned to the first solution from the example above is 10.608, whereas the score of the
second one is 12.327, because of the detours, required to go around obstacles.

The text file with the solution should be submitted in the form of the following page:

http://scenario.cs.ucl.ac.uk

WARNING! Parts of the input are specified via double-precision floating points, which assumes
working with "-equality instead of equality.1 Your solutions may contain double-precision floating-
point numbers, as well. The server uses " = 0.000000001, therefore all values with di↵erence smaller

1
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

5

(-1.5, 1.5)

(-1, 0)

(4.5, 3.5)

(5, 0)

(4.6, -3)

(-1.5, 1.5)

(-1, 0)

(4.5, 3.5)

(5, 0)

(4.6, -3)

(2, 2)

Figure 3: Problems from Figure 1 and Figure 2 with the corresponding coordinates.

which this one is going to “tag”, as waypoints, as well as points where direction is changed in
order to avoid obstacles. The ordering of points in a path is important, but the ordering of paths
in a solution does not matter. In each solution, there must be exactly one path that starts with
coordinates of the first robot.

For instance, solutions for the problems from Figures 1 and 2 submitted by the team tiger

with a password lt671vecrskq might look as follows:

tiger

lt671vecrskq

1: (-1.5, 1.5), (-1, 0), (4.5, 3.5); (-1, 0), (5, 0), (4.6, -3)

2: (-1.5, 1.5), (-1, 0); (-1, 0), (2, 2), (5, 0), (4.6, -3); (5, 0), (4.5, 3.5)

That is, the solution for the first problem contains two paths: for the robot A (with coordinates
(-1.5, 1.5)) and for the robot B (coordinates (-1, 0)), which will wake up all other robots.
Similarly, the second line provides three paths outlining the routes for the robots A, B and C. The
graphical representation of the solutions, with the corresponding coordinates, is shown in Figure 3.

Each solution will be assigned a score (rounded up to 0.001), corresponding to the actual time
of the swarm awakening according ot the provided paths, computed as a length of the joint timeline
(1 unit of distance = 1 unit of time), where several robots can be working in parallel. For instance,
the score assigned to the first solution from the example above is 10.608, whereas the score of the
second one is 12.327, because of the detours, required to go around obstacles.

The text file with the solution should be submitted in the form of the following page:

http://scenario.cs.ucl.ac.uk

WARNING! Parts of the input are specified via double-precision floating points, which assumes
working with "-equality instead of equality.1 Your solutions may contain double-precision floating-
point numbers, as well. The server uses " = 0.000000001, therefore all values with di↵erence smaller

1
https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/

5

Instance 2



Checking and submitting solutions
• Warning: double-precision floating-point arithmetic

• all equalities are up to ε = 0.000,000,001
• Details on acceptance criteria are in the specification (on Moodle)
• Submit your solutions here:

http://scenario.cs.ucl.ac.uk

Solutions are accepted until 14:00 GMT 24 Feb 2017

http://scenario.cs.ucl.ac.uk


Task 2: Visualisation
• Implement a visualiser for robots, obstacles and paths:

• drawing obstacles;
• drawing paths for each robot;
• drawing movement of robots.

• Grading: 10 points

• Assessed by the organisers from 14:00 till 17:00, 24 Feb

• book a slot for your team!



Visuals by Organisers (could be prettier…)

Robot #1

• 2 robots 
• 150 obstacles



Visuals by Organisers (could be prettier…)

Robot #1

• 250 robots 
• 11 obstacles



Task 3: Implementation report

• Describe your implementation experience
• language, tools, algorithms, heuristics, etc.

• details in the specification (see Moodle)
• Grading: 10 points

• Submit on Moodle by 17:00, 24 Feb 2017 (one per team)



• Compete with other teams for the best MAT solutions
• Check the score table http://scenario.cs.ucl.ac.uk for details
• Grading: up to 20 points.

Task 4: The Competition!

Reward (team) = 20 − min(20, rank (team) − 1)

http://scenario.cs.ucl.ac.uk


Overall grading

Task Max grade

Computing valid MAT solutions 60

Visualisation of the solutions 10

Implementation report 10

The Competition 20



This week schedule
Monday 
20 Feb

Tuesday 
21 Feb

Wednesday 
22 Feb

Thursday 
23 Feb

Friday 
24 Feb

10:00-11:00 Royal National Hotel  
Galleon Suite B

IOE - Bedford Way 
(20) - 305 - Clarke 

Hall

Cruciform Building 
B304 - LT1

Birkbeck Malet Street 
B36

Birkbeck Malet Street 
B36

11:00-13:00 Royal National Hotel  
Galleon Suite B

Wilkins Building (Main 
Building) Gustave 

Tuck LT

School of Pharmacy 
228

Royal National Hotel 
Galleon Suite A

Bedford Way (26) 
G03

14:00-16:00 School of Pharmacy 
225

IOE - Bedford Way 
(20) - 103 - Jeffery 

Hall

Birkbeck Malet Street 
B36

Bedford Way (26) 
LG04

16:00-17:00
Anatomy G29 J Z 

Young LT
Anatomy G29 J Z 

Young LT

Bedford Way (26) 
G03

17:00-18:00 Bedford Way (26) 
G03

Helpdesk (green) — time and location where the staff and/or TAs will be present to answer your questions 
Lectures (blue) — introductory and concluding lectures 
Demonstration (red) — checking the visualisation of the algorithms by the staff and TAs (book your slot!)



Good luck!


