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Smart Contracts

Stateful mutable objects replicated via a consensus protocol
State typically involves a stored amount of funds/currency
One or more entry points: invoked reactively by a client transaction

Main usages:
* crowdfunding and ICO
e multi-party accounting
* voting and arbitration
e puzzle-solving games with distribution of rewards

Supporting platforms: Ethereum, Tezos, Zilliga, ...



Smart Contracts in a Nutshell

Computations obtaining values from inputs
State Manipulation changing contract's fields
Effects accepting funds, logging events

Communication sending funds, calling other contracts
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Scilla

Smart Contract Intermediate-Level Language

Principled model for computations  System F with small extensions
Not Turing-complete Only structural recursion/iteration
Explicit Effects State-transformer semantics

Communication Contracts are autonomous actors



Scilla Pragmatics

Open source: github.com/Zilliga/scilla

Intentionally minimalistic: a small language I1s easier to reason about
Implemented in OCaml (and a bit of C++), ~6 KLOC

Reference evaluator is only ~350 LOC

Mostly purely functional, Statically Typed

Inspired by OCaml, Haskell, Scala, and Erlang


https://github.com/Zilliqa/scilla

Statically Typed

e [ypes describe the sets of programs

o Well-typed programs don't go wrong.
 No applying an Int (as a function) to a String
 No adding List to Bool

* No mishandled/forgotten arguments

"y * No /ll-formed messages

Haskell Curry e cofC.

Robin Milner



Follow the code!

github.com/ilyasergey/scilla-demo



lTypes

= P Primitive types
Cti... 1t Algebraic data types
t1 -> to Functions
‘A lype variables

forall ‘A . 1 FPolymorphic types
Viap 11 to Maps
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Primitive types anad Values

D = Int32, IntB4, Int128, Int256
Uint32, Uinte4, Uint1238, Uint256
String
ByStrX, ByStr
BNumM

Vlessage
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lTypes

= P Primitive types
Cti... 1t Algebraic data types
t1 -> 1o Functions
‘A Type variables

forall ‘A . 1 FPolymorphic types
Viap 11 to Maps



Structural Recursion in Scilla

Natural numbers (not Ints!)

nat_rec: forall a.0 > (nat > o -> o) -> nat > «
[l ——— 1
iterations

Value for O

constructing the next value final result



Structural Recursion with Lists

list_rec:foralla f.f > (a¢ -> lista -> f > p) > list a > p

/ [
Element type [ argument list
lterator for non-empty list

Result type

Value for NIl argument list



lTypes

= P Primitive types
Cti... 1t Algebraic data types
t1 -> to Functions
‘A lype variables

forall ‘A . 1 FPolymorphic types
Map 11 to Maps
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Statements (eftecttul)

X <- f read from mutable field
f := x store to a field
X = e assign a pure expression

match x with (pat => s) end pattern matching and branching

X <- &B read from blockchain state
accept accept iIncoming payment
event m create a single event

send ms send list of messages



Statement Semantics

|s|| : BlockchainState — Configuration — Configuration

BlockchainState Immutable global data (block number etc.)

Configuration = Env X Fields X Balance X Incoming X Emitted

Y | |

o Contract's Messages
Immutable bindings o and events
OwWn TUnas to be sent

Mutable fields Funds sent to contract



Global Execution Model
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Putting it All Together

Scilla contracts are (infinite) State-Iransition Systems

Interaction between contracts via sending/receiving messages
Messages trigger (eftecttul) transitions (sequences of statements)

A contract can send messages to other contracts via send statement
Most computations are done via pure expressions, no storable closures

Contract's state is immutable parameters, . balance



Contract Structure

Library of pure functions Transition
Immutable parameters



Demo



Scilla as a Framework

Checkers

Pattern Matching
Exhaustiveness Checker

Type Checker —— Standard Library

Checker N

Runtime kEvaluator




How can you contribute”

* Implementing contracts in Scilla
* Tooling support for better user experience

e Language Infrastructure and Checkers
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\VIore resources

e http://scilla-lang.org

* hitps://github.com/Zilliga/scilla

Thanks!


http://scilla-lang.org
https://github.com/Zilliqa/scilla

