Safe Smart Contract Programming
with Scilla

lya Sergey

Associate Professor, Yale-NUS College
Lead Language Designer, Zilliga

http://ilyasergey.net

http://ilyasergey.net

Smart Contracts

Stateful mutable objects replicated via a consensus protocol
State typically involves a stored amount of funds/currency
One or more entry points: invoked reactively by a client transaction

Main usages:
* crowdfunding and ICO
e multi-party accounting
* voting and arbitration
e puzzle-solving games with distribution of rewards

Supporting platforms: Ethereum, Tezos, Zilliga, ...

Smart Contracts in a Nutshell

Computations obtaining values from inputs
State Manipulation changing contract's fields
Effects accepting funds, logging events

Communication sending funds, calling other contracts

Computations

State Manipulation Communication

Effects

State Manipulation Effects

Computations

Scilla

Smart Contract Intermediate-Level Language

Principled model for computations System F with small extensions
Not Turing-complete Only structural recursion/iteration
Explicit Effects State-transformer semantics

Communication Contracts are autonomous actors

Scilla Pragmatics

Open source: github.com/Zilliga/scilla

Intentionally minimalistic: a small language I1s easier to reason about
Implemented in OCaml (and a bit of C++), ~6 KLOC

Reference evaluator is only ~350 LOC

Mostly purely functional, Statically Typed

Inspired by OCaml, Haskell, Scala, and Erlang

https://github.com/Zilliqa/scilla

Statically Typed

e [ypes describe the sets of programs

o Well-typed programs don't go wrong.
 No applying an Int (as a function) to a String
 No adding List to Bool

* No mishandled/forgotten arguments

"y * No /ll-formed messages

Haskell Curry e cofC.

Robin Milner

Follow the code!

github.com/ilyasergey/scilla-demo

lTypes

= P Primitive types
Cti... 1t Algebraic data types
t1 -> to Functions
‘A lype variables

forall ‘A . 1 FPolymorphic types
Viap 11 to Maps

lTypes

= P Primitive types
Cti... 1t Algebraic data types
t1 -> to Functions
‘A lype variables

forall ‘A . 1 FPolymorphic types
Viap 11 to Maps

Primitive types anad Values

D = Int32, IntB4, Int128, Int256
Uint32, Uinte4, Uint1238, Uint256
String
ByStrX, ByStr
BNumM

Vlessage

lTypes

= P Primitive types
Cti... th Algebraic data types
t1 -> to Functions
‘A lype variables

forall ‘A . 1 FPolymorphic types
Viap 11 to Maps

lTypes

= P Primitive types
Cti... 1t Algebraic data types
t1 -> 1o Functions
‘A Type variables

forall ‘A . 1 FPolymorphic types
Viap 11 to Maps

Structural Recursion in Scilla

Natural numbers (not Ints!)

nat_rec: forall a.0 > (nat > o -> o) -> nat > «
[l ——— 1
iterations

Value for O

constructing the next value final result

Structural Recursion with Lists

list_rec:foralla f.f > (a¢ -> lista -> f > p) > list a > p

/ [
Element type [argument list
lterator for non-empty list

Result type

Value for NIl argument list

lTypes

= P Primitive types
Cti... 1t Algebraic data types
t1 -> to Functions
‘A lype variables

forall ‘A . 1 FPolymorphic types
Map 11 to Maps

-XPressions (pure

Expression

Simple expression f

Selector
Pattern

Message entrry
Name

sel

pat

entry

b

f
let x (: T) =f in e
[

X
{ (entry)r }

fun (x : T) => e

builtin b (xp)

X (Xg)

tfun ¢ => e

@x T

C({Tk)} > (xk)

match x with (| selx) end
pat => e

X

C (paty)

(pat)

b:x

simple expression
let-form

primitive literal
variable

Message

function

built-in application
application

type function

type 1nstantiation
constructor instantiation
pattern matching

variable binding
constructor pattern
paranthesized pattern
wildcard pattern

identifier

Statements (eftecttul)

X <- f read from mutable field
f := x store to a field
X = e assign a pure expression

match x with (pat => s) end pattern matching and branching

X <- &B read from blockchain state
accept accept iIncoming payment
event m create a single event

send ms send list of messages

Statement Semantics

|s|| : BlockchainState — Configuration — Configuration

BlockchainState Immutable global data (block number etc.)

Configuration = Env X Fields X Balance X Incoming X Emitted

Y | |

o Contract's Messages
Immutable bindings o and events
OwWn TUnas to be sent

Mutable fields Funds sent to contract

Global Execution Model

Global Execution Model

M-
e}
my

Contract D m3
m%

Contract C

Contract E

Putting it All Together

Scilla contracts are (infinite) State-Iransition Systems

Interaction between contracts via sending/receiving messages
Messages trigger (eftecttul) transitions (sequences of statements)

A contract can send messages to other contracts via send statement
Most computations are done via pure expressions, no storable closures

Contract's state is immutable parameters, . balance

Contract Structure

Library of pure functions Transition
Immutable parameters

Demo

Scilla as a Framework

Checkers

Pattern Matching
Exhaustiveness Checker

Type Checker —— Standard Library

Checker N

Runtime kEvaluator

How can you contribute”

* Implementing contracts in Scilla
* Tooling support for better user experience

e Language Infrastructure and Checkers

Jacob Johannsen Amrit Kumar Edison Lim Vaivaswatha Nagaraj

lya Sergey Han Wen Chua

\VIore resources

e http://scilla-lang.org

* hitps://github.com/Zilliga/scilla

Thanks!

http://scilla-lang.org
https://github.com/Zilliqa/scilla

